|

7/ “““\\\ A ECO" SEARCH

% // RESEARCH IN AGRICULTURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.


https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

Review of Marketing and Agricultural Economics

Vol. 55, No.2, August 1987

A Generalised Concept of Dominance
in Linear Programming Models

Ross G. Drynan*

The notion of dominance most familiar to
agricultural economists is perhaps the decision
theoretic concept entailed in comparing one risky
prospect to others. But dominance concepts are
also relevant in the linear programming context,
for example in identifying redundant constraints.
In this note, the standard concept of dominance
in linear programming is generalized by defining
dominance with respect to differing levels of
information about the programming problem.

1. Introduction

The decision theoretic concept of dominance
refers to the situation in which a course of
action in a decision problem is known to be
not preferred to some other course(s) of
action. Dominance is necessarily defined only
with respect to a particular level of
information about the decision problem. At
one extreme is the case of the fully defined
decision problem, where all acts are either
optimal or non-optimal, and the non-optimal
actions are dominated. But the more
interesting cases arise when the decision
problem is less-than-fully specified.

Various concepts of stochastic dominance
have been developed for use in comparing
risky prospects when the utility function
expressing preferences is imprecisely known
(Hanoch and Levy 1969; Fishburn 1974; Bawa
1982). The prospects are usually defined by
known probability distributions of the
attribute of interest (e.g. income), but concetps
of dominance also apply when the probability
distributions themselves are incompletely
specified (e.g. Fishburn 1964; Kmietowicz and
Pearman 1982).

Dominance concepts are not limited to risk
situations. For example, the courses of action
in a decision problem may have vector
outcomes with the preference structure over
the elements (attributes) known only to the
extent of positive monotonicity. Concepts of
Pareto efficiency have been developed for these
cases. Particular applications include the
identification of efficient sets in
multiple-objectives decision making (Cohon
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and Marks 1975) and the mean-variance
approach to risk analysis (Markowitz 1959).

Analogous dominance concepts can be
defined in the context of activity choice in
linear programming (LP). The purpose of this
note is to define some of the many dominance
conditions that arise as the level of
information assumed about the programming
problem is varied. In the following section,
sufficient conditions for an activity to be
dominated are given. These conditions apply
when the particular activity (and others) are
fully known. The section is longer than strictly
necessary given the availability of the results
elsewhere in the linear programming literature.
But there is little discussion of activity
dominance in the agricultural economics
literature, and the section therefore provides
a useful background for the remainder of the
note. In Section 3, a generalization of
dominance is introduced. The level of problem
information is reduced from the standard level
to that of linear partial information about the
activity coefficients. Sufficient conditions for
dominance are developed.

2. Activity Dominance —
Fully Known Activities

As with the general decision theoretic
concepts, strong and weak forms of activity
dominance can be defined. Strong dominance
of an activity is the situation in which, for a
given level of information about the
programming problem, an activity is known
never to be in an optimal basis for the LP
problem at a positive level. Any such activity
can be discarded without affecting the
objective value attainable. Weak dominance of
an activity can be defined as the situation in
which it is known that an optimal solution
always exists without the particular activity
being in the basis at a positive level, though
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there may be other equally good solutions
containing the activity at a positive level. The
activity again can be discarded. Dominated
activities have been called extraneous variables
fe.g. Zionts 1974, p. 103). Non-dominated
activites are said to be efficient.

Consider the following problem:

max CF'X
(X)
(1) subject to aFx £ B
X220

where B is an (m x 1) vector of restraints, CF
and X are (n x 1) vectors of objective function
coefficients and activity levels respectively, and
AF is an (m x n) matrix of input-output
coefficients. It is assumed throughout that
problem (1) has a finite, feasible solution.

Suppose that r of the activities are known,
their objective function coefficients forming
a vector C and their unit requirements for the
m resources forming a matrix A with columns
Ay, i = L12,..r.' The directions of
optimization and of the inequalities are also
assumed fixed as in problem (1). Other details
of the problem are unknown. Standard activity
dominance relates to the following question:
given this information, under what conditions
would activity A; never be needed in an
optimal solution to the full problem??

First compare two activities A; and A;.
This involves comparing two vectors and the
familiar Pareto efficiency criterion applies.
Given the objective and inequality directions,
the higher an objective coefficient ceteris
paribus the better, and the lower a resource
requirement ceferis paribus the better. If with
appropriate scaling, A; never requires more of
any resource and has an objective contribution
at least as large as A,, then A; is clearly
inferior to, and dominated by, A;. Irrespective
of what other activities may exist, or what the
resource levels B are, A; can never be the
more attractive use of resources.

But most instances of activity dominance
involve more than simple pair-wise
comparison. For A; to be dominated, it is
sufficient that there exist some other use of
resources which is always as good as A;; and

this other use may involve a combination of
the other known activities.

Suppose a solution exists to the following
problem of finding a vector W such that:

AWSAi

(2) C'W 2 Ci

where W; and C; are the ith elements of the
r-vectors W and C respectively. Then,
whenever activity A; is in a basis for problem
(1), it can be replaced with the positive linear
combination defined by W without causing
infeasibility and without lowering the objective
function. That is, A, is weakly dominated.

A suitable W, if one exists, can be found by
solving the following problem:

maximize W0

(W,Wl,WO)
subject to
(3) AW - A wt <o

L
-C'W + C; wi W, <0
2

wi> 1

W, WY, Wy > 0

where Wi and W; are scalars. Activity A, is
dominated if a feasible solution (unbounded)
exists.

1. The superscript F is used in problem (1) to refer to the
“full” A and C matrices, that is whenr = n.

2. This question requires the weak dominance concept,
i.e. the more general concept. Most of the discussion in
the note refers to this case.
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As an alternative approach to dominance,
one can focus on the dual of problem (1):

min B'V
(V)

(4) subject to AFry > cF

va20

where V is an (m x 1) vector of resource
shadow prices. When an activity is dominated,
its corresponding dual constraint can never be
active. Conversely, activity A; is dominated if
its dual constraint can never be active, that is,
if its objective function coefficient is never
sufficient to exceed the value of its resources
used in other ways. Such never-limiting
constraints in a programming problem are said
to be redundant. Strong and weak forms of
redundance can be defined (Thompson ef al.
1966; Llewellyn 1964; Zionts 1974; Karwan et
al. 1983).}

One dual-based LP model for detecting
dominance is:

minimize -H

(Z,ZO,H)
subject to
a'z - cZ0 20
(5) A;'2 - CjZg + H X 0

Zy 2 1
ZIZOIH_ZO

where Z, and H are scalar variables, and a and
¢ the same as A and C except that the ith
column and element respectively have been
deleted. If problem (5) has no feasible
solution, A; is necessarily dominated.

The dual formulation for detecting
dominance is perhaps the more instructive. An
activity is dominated because no set of shadow
prices that is possible, given the information
on the activities, would justify the activity’s
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inclusion in an optimal basis for problem (1).

Any additional information on the possible
shadow prices can only serve to push an
activity towards dominance. There are many
ways in which such information might arise.
The analyst may simply learn more about the
activites of problem (1). Alternatively,
information may be synthesized by the analyst
in asking particular questions. Will A; be
dominated when a particular resource is
known to be especially scarce, that is when it
has a shadow price greater than some specified
value? Will A; have a role to play when a
resource is not limiting?*

The information need not always relate only
to one shadow price as in these cases. For
example, the decision maker may believe that
two resources have equal, though unknown,
shadow prices.

Extra information on the shadow prices can
be expressed as a further set of t constraints,
M’V > D, on the shadow prices in (4), where
both M (m x t) and D (t x 1) are known. Any
such additional dual constraint information
corresponds to additional primal activities.
For example, by setting a shadow price to a
fixed value V* the analyst is allowing for
primal resource acquisition and selling
activities at the price V*.

As an illustration of dominance, consider
three primal activities represented by the
vectors (1 1.8 0.5), (§ 9.5 2.35) and (10 20 4),
where the first element in each case is an
objective function coefficient. Inspection
reveals that no activity is dominated by any
one other activity. However, the second
activity is dominated by, for example, the
combination of 2.5 times the first and 0.25
times the third. The vector for this
combination is (5 9.5 2.25).

In practice one would use more efficient
algorithms for detecting dominance than the
pedagogic procedures outlined. Karwan et al.
(1983) surveyed the major methods and have
given some guidance to relative performance.

3. In earlier linear programming literature (e.g. Hadley
1962), the concept of redundancy was derived exactly from
redundancy in linear equations. A redundant constraint
was one which was implied by other constraints, not one
which was as or more liberal than the others.

4. For this case, the shadow price could be set to zero. But
more efficiently, all mention of that variable could be
dropped, that is, by omitting the resource known to be
slack from problem (1).
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Commercial linear programming packages
usually include options to detect and eliminate
redundant constraints (and dominated
activities).

3. Activity Dominance:
Linear Partial Information

Problem (1) could be less than fully specified
because of lack of information either about
activities or about constraints. In the “full
information” analysis of Section 2, although
only r activities were recognized, for each of
these there was full information on their
coefficients in the objective function and in
the m constraints. The partial information
analysis of this section can be seen as a case
of less than full information about the
constraints or the objective function.

At the extreme of no information about the
objective function or a constraint (other than
its existence), each activity necessarily would
have to be judged efficient since each might
have the most desirable coefficient value. As
some information is learned about the
coefficients, situations of dominance begin to
emerge.

Suppose activities A; and A; are
represented by the vectors (C; 6 8) and G5
5):- With no information on C and C,
neither activity A; nor A, is dominated. With
full information on C; and C;, either A, or A;
could be detected as dominated depending on
Ci and C;. But full information is not
essential to detect dominance. For example, if
the only information about the objective
coefficients was that C; < C;, A; could never
be as desirable as A;, and hence would be
dominated.

This pair-wise comparison indicates the
nature of linear partial information and how
such information may be sufficient to establish
dominance. More generally and formally,
suppose that r activities, or the coefficients of
A and C, are known only to the extent of
satisfying the following inequalities:

(6) ES aAS ¢ @S
for s =1,2,...m,
C ¢ < o€

where As is the sth row of A, Es and EC are
known matrices, and Qs and Q€ are known

1

vectors. It is assumed that this information is
consistent, that is that it defines a set of
feasible coefficient values.

For activity A; to be dominated, there must
be, for each possible set of A and C
coefficients, a vector w = (w, w, ...W,) such
that problem (3) is satisfied. It is a fortiori
sufficient if there is one w such that problem
(3) is satisfied for all possible coefficient
values. Such a w exists if there is a feasible
solution to the following problem:

(7) maximize W

(w, wi, WO)

subject to

r s i
max (A®w Asi W)

{ S, wi, wg) }

-t

subject to E® A ¢ @S

.S. 0' S = 1'2 sse M,
[ —C! i 7
max (Cw+Ciw +wo)
(Clw, wl, wO) s
L..subj ect to EC C X< QC )

<0

w:L 2 1

i
W, W, W, 20

where Ag; is the ith element in this sth row of
A. Problem (7) is simply a modified version
of problem (3) in which the simple linear
functions of W in problem (3) have been
replaced by their “worst” possible values,

5. If the coefficients in a row were known exactly, then
the constraint would remain as the linear constraint in
problem (3).
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namely their maxima over possible coefficient
values.® If problem (7) has a feasible solution
with w, > 0, activity A, is weakly dominated.
If problem (7) has no feasible solution, then
A; may still be dominated, but this has not
been established. That is, a feasible solution
to problem (7) is a sufficient, but not a
necessary, condition for dominance.
Suppose each maximization problem in the
constraints of problem (7) is replaced by its
dual. For the st row of A this would be:

(8) min Qs,vs
(vS)
subject to ES'vS = w - wit
ve >0

where t is an (r x 1) vector containing zeros
except for the ith position which contains the
unit value. Now for any feasible solution to
the constraints of problem (8), Qs'vs = min
Qs'vs. Since the latter is equal to max (Asw —
A,wi), then the constraint for row s in
problem (7) is a fortiori satisfied if the
following constraint is satisfied:

(9)
[ Any QS'v®
{ subject to
T
-
ES'v® = w - wit }
v® >0
-
L 0.

A similar constraint can be written for the
objective function coefficients. Using all these
constraints to replace those in problem (7), it
follows that problem (7) has a feasible
solution, and A, is dominated, if the
following problem has a feasible solution:
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(10)
max YO
(w, wl, wo, vs, VC)
subject to
QS'VS_<. 0
Es'vS - I(w - wlt) =0
for s = l,2,...m,
QC'vC + w0 £0
EC'VC + I(w - wlt) =0
W:i. =0
wl 1
i S C

W,W,WoyV,V

where I is the identity matrix of order r. Note
that problem (3) is the special case of problem
(10) when there is full information on the
coefficients.

It should be noted that the sufficient
condition for dominance is limited to cases
where the linear partial information for C and
for each row of A is treated as independent
of that for other rows. Any dependence
between the coefficients in different rows,
which may mean that an activity is dominated,
is not exploited in the above sufficient
condition.f

As an illustration of dominance with linear
partial information, consider the following
three activities, A, = (C, 1.8 0.5), A, = (C;
20 4) and A, = (C; 9.5 2.35). With no
information on C, each activity is potentially
more desirable than the others. For example,
if C = (1 10 6), each activity could be in an
optimal basis and is efficient. Suppose,

6. Stronger sufficient conditions, but which still do not
account for dependence between rows, can be defined by
subdividing the feasible space for the coefficients and
searching for a series of w vectors, each of which serves
for a particular sub-region of the feasible space.
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however, that the objective function
coefficients are known to be constrained as

follows:
1 < Cl L 1
(11) 9 < C, < 13
4 < C 3 < 6

To determine the dominance of, say, A,, the
following problem must be solved:

(12)

max
Yo

subject to

6v5 - 4v6 + L) <0

vl-VZ_W3=0
Vg = Vg + Vg + Wy - w3 =0
l.8wl + 20w2 +
9.5w3 - 9.5w3 L0
0.5wl+ 4w2+
2.35w; - 2.35w> < O
w3 > 1
W3=0

vi,Wi,WIwozo

for all i.

The existence of feasible solutions to this
problem (for example, w, = 0.833, w, = 0.4,
wy; = 0, w* = 1) indicates that A, is

dominated. Once A, is eliminated, a pair-wise
comparison of A, and A, indicates that neither
is dominated.

4. Concluding Comments

This note has recalled the standard concept
of “full information” activity dominance in
linear programming, and developed a
generalized concept of dominance for the case
of linear partial information. It is not the
algebra of dominance which is important.
Neither is it the ability to detect dominance,
for it has to be recognized that dominance and
constraint redundancy are of little
consequence in solving LP problems (Karwan
et al. 1983). They serve mainly to reduce
computational efficiency marginally, a matter
of little concern with today’s computing
power. Further, it is the net saving after
allowing for the time required to detect
dominance that is relevant. Only if a model
is to be solved repeatedly with some minor
variations would there be value in detecting
dominance.

The practical relevance of dominance
concepts is in guiding LP activity
specification, in particular in avoiding wasting
time on specifying and budgeting activites that
are doomed never to be in an optimal basis.
For example, in specifying alternative activities
for a crop, if the activity vectors would differ
only in their gross margins (perhaps because
of differing fertilizer rates or because of
differing varietal yields), then only the activity
corresponding to the fertilizer rate or variety
that maximizes gross margin is efficient and
necessary in the model.

But care is necessary when using dominance
to discard alternatives from further analysis.
For example, in any decision problem involving
the possibility of collecting more precise
information on uncertain parameters,
dominated alternatives on existing
information may become non-dominated in
the new information scenario. Similarly, if
decision analysis were to involve sensitivity
analysis on parameters of the decision
problem, a dominated alternative in the
original problem may not be dominated in the
modified problem. In the programming
context, these possibilities arise when
parametric or other post-optimality analysis
is intended.

The real significance of dominance,
however, lies in the concept itself and the
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insight into other problems it offers. For
example, the identification and measurement
of the technical efficiency of production has
been approached in an activity dominance
framework (e.g. Farrell 1957). The question of
technical efficiency and its link to allocative
efficiency, and others, are pursued further in
Drynan (1987).
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