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CLOSED LOOP SOLUTION FOR OPTIMAL SEQUENTIAL HEDGING AND
FORWARD CONTRACTING IN U.S. HOG PRODUCTION

Abstract

This paper develops a multiperiod model in which hedge adjustments are allowed. The two
major marketing alternatives specified in the model are to sell in the spot market or to forward
contract using formula pricing. To proxy the underlying forward contract value, the American
put-call parity (APCP) technique is used. The conceptual framework considers a mean-variance
utility function that is maximized sequentially to obtain optimal forward contract and hedge
ratios. The closed loop solution guides the dynamic flow of information between decision stages
via three essential features: sequential dependence, feedback, and anmticipated revision. The
empirical model considers a multivariate ARMA-GARCH framework that estimates the time
series of APCP values, live hog prices, and futures gains/losses simultaneously with the
conditional (time-varying) variance-covariance structure. This provides a superior forecasting
tool to capture the second-moment dynamics for computing optimal forward contract and hedge
ratios. The simulation results recommend significant upward hedge adjustments on average. This
reflects the time-varying pattern of optimal hedge ratios. The optimal forward contract ratios
indicate in almost all instances that hogs should be marketed entirely in advance. The
effectiveness of CME live/lean hog futures hedging is assessed for its ability to reduce both spot
price and contract value risks under the closed loop solution. The percentage improvement in
utility is compared with two other alternative portfolios of no hedging and non-adjustable
MGARCH hedging. The findings indicate that the closed loop solution is able to achieve the best
utility outcome especially in volatile market situations.
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1. Introduction

U.S. hog prdduction has undergone a significant change in its market structure.
The practice of vertical coordination via contractual arrangements has become prevalent
in recent years, thereby reducing the conventicnal role of spot market transactions. The

University of Missouri and National Pork Producers Council (2000) reported that 74.3%

of all U.S. hogs slaughtered were sold under non-spot market transactions in January

2000. In contrast, this number was 64.2% in the same month of 1999 and 56.6% in the
year of 1997.

The most common marketing practice at this time is forward contracts under the
formula pricing method. This accounted for 47.2% of all U.S. hogs sold in January 2000",
Formula pricing is generally tied to a reported price plus some fixed premium amount
about US$1-US$3 per cwt. The premium acts as 4 monetary incentive for producers to
provide a consistent level of meat quality, whereas the reported price is based on a quoted
spot market price when hogs are delivered. In this r-espect, hog producers are ﬁot shielded
from price risk as the formula moves dollar for dollar with the cash market. This is
contrary to the belief that producers enter into contractual arrangements primarily for the
purpose of minimizing price risk in the market place®. Adding the spot market transaction

figure of 25.7% * to the formula-pricing one, 72.9% of all hogs sold were susceptible to

. spot price risk (directly or indirectly} and together they represented a substantial

marketing share.

While many studies have examined futures hedging models to manage spot
market risk, the rising importance of forward contracting suggests that such models must
be extended to fully address forward contracting. Consider a hog producer who enters
into a forward contract under the formula pricing method six months before delivery, The
producer makes both optimal hedge and forward contract decisions at the initial stage.

The forward contract ratio determines the portion of hogs to be marketed in advance

.while the remaining portion is to be sold on the spot market. At the subsequent stages

' 2000 Hog Marketing Contract Study by University of Missouri and National Pork Producers Council, March 2000,
? Producers enter into formula pricing contracts because they can be guaranteed future market access or shackle space
when the available hog supply is above slaughter capacity (USTTC 1999}. This issue will not be discussed in this study.
3

See [1]. )



{two and four months later), the forward contract position cannot be adjusted as it
becomes a legal and binding agreement. Further complications introduced by forward
contracting, beyond the sequencing of hedge decisions, include volatility, time, and time
value for example. The forward contract value accounts for these important factors and
this risky variable serves as a forward market signal in the decision-making process.

The purpose of this paper is to develop a mean-variance hedge model of optimal
sequential forward contracting and hedging decisions when output price and contract
value risks are both present for a representative producer. The model builds upon
previous research by Haigh and Holt, Mathews and Holthausen, and Antle that takes into
consideration all three essential features of a closed loop solution. In addition, this paper
introduces a new technique based upon the American put-call parity (APCP) as described
in Black (1973) to proxy the effects of forward contract value on optimal sequential
decisions. Assuming hedging begins six months before delivery, this requires that the
multi-step-ahead forecasts of conditional (timc-varying) variances and covariances of
risky variables be estimated from a MGARCH model. With changing market conditions
(e.g., 1998 hog price crisis), it is important that the producer is able to incorporate
dynamic flow of information and to periodically update the “portfolio optimality” over
time. The MGARCH methodology combined with the closed loop solution equip
producers with a tool to efficiently utilize information of time-varying risks (conditional
variances and covariances) in developing sequential optimal hedging strategy.

The paper proceeds as follows. The next sections will detail the conceptual
framework of American put-call parity as a proxy for forward contract value, the closed
loop solution, sequential forward contracting and hedging, as well as the complete
strategies for optimal adjustment of hedging decisions with information revision. This is
followed by a description of recent hog market data used in the time-scrics ARMA-
"MGARCH estimation. The in-sample and out-of-sample simulated results are discussed.

The final section concludes with a summary of the findings.



2. American Put-Call Parity as a Proxy for Forward Contract Value

Huil defines a forward contract as a contract that obligates the holder to buy or
sell an asset at a predetermined delivery price at a predetermined future time. In fact, a
forward contract can be considered as a risk swap between the producers and processors.
The formula for a forward contract value on an investment asset that provides no income
is
() fF=8S—-Ke

where fis the forward contract value of live hogs in a long position today; § is the price
of the asset (live hogs) underlying the forward contract today; K is the delivery price of
the forward contract; r is the risk-free interest rate per annum today; and T is the time
until delivery date (in years). The formula of put-call parity for American option prices is

defined as
() C-P=<S5-Xe”

where C is the American call option value to long one call option contract; P is the
American put option value to long one put option contract; § is the current asset (live
'hog) price; X is the eiercise price of option; r is the risk-free interest rate; and T is the
time to expiration of the option. Hence, the relationship between forward contract value

and put-call option can be expressed as the following
3 C-P<f=8§5-Ke.

The difference between the call and put option values provides the lower bound for the
forward contract value®.

Figure 1 illustrates the relationship between the forward contract value and put-call
parity. Suppose a call option, a put opticn, and a forward contract (all in a long position)
have the same expiration date T and strike price X. There are no transaction costs
involved. The forward contract value can be considered as a swap agreement between
two individuals for the payoffs that may otherwise be obtained in the option market. In

fact, areas underneath the call and put option lines and above zero represent risky

* If the options are Ruropean, the difference between call and put options will exactly equal the forward
contract value, ) )



outcomes. They describe the expected profits of producers and processors respectively by
integrating all the possible profits with respect to the probability density function. The
exact value of the contract will be the same as respective put and call values at the
expiration date. An individual (processor) may agree to compensate the other party the
equivalent payoff of a put option, e.g. at point A, should the price fall below the strike
individual will be compensated in exchange by the other party by the equivalent payoff of
a call option, e.g. at point B, should the price rise above the strike price. This individual
effectively transforms his or her financial situation into a long forward contract position
by exchanging the cash flows with the other party. Put-call parity actually can be used to
describe the dynamic gains and losses relative to producer or processor.

Formula pricing contracts may involve a system whereby a selling price is
normally based on the spot price (or a reported price)} plus some premium. In this case,
the expected delivery price can be thought of as the expected cash price prevailing on the
delivery date T. According to Black, the value of a forward contract when it is initiated is
always zero as the delivery price is always set equal to the current futures price for a
transaction that will occur at 7. Therefore, the expected delivery price can be
approximated by the futures price, using the closest futures contract month to the delivery
date, at the beginning of pfoduction process (when the contract is initiated). As the
futures contracts are settled and prices are rewritten on a daily basis®, producers or
processors compensate the other party implicitly should the daily futures prices deviate
from the initial expected delivery price. Only the actual gains and losses on the delivery
date will be transferred and realized. If the spot price falls below the initial expected cash
price at T, producers yield a positive gain. With the formula pricing scheme, this will be
transferred back to processors by bringing the initial expected delivery price (strike price)
to the realized cash level. This makes the formula price move dollar-for-dollar with the
spot market. .

For example, Figure 2 illustrates an example of February forward contract values

with different strike prices generated using the put-call parity formula. The graphs

¥ Black (1976) describes a futures contract as a series of forward contracts. Each day, yesterday’s contract is settled,
and today’s contract is written with a contract price equal to the futures price with the same maturity as the futures
contract.

. { Deleted:




fluctuate around the mean-zero fevel and these patterns constitute the forward contract
value cycles. Positive forward contract values provide gains {losses) for processors but
losses (gains) for producers. Positive values are mutually exclusive so that producers and
processors cannot benefit simultaneously. It is a zero-sum game in which the participants
swap cash flows of gains and losses. Specifically, the amplitude of the February contract
values was the greatest below the mean-zero line during the “hog price crisis”, indicating
the high volatility (risk) in that period relative to others. It also represents the processors’
potential financial losses if the contracts were fixed price and they were to be sold back to
pfoducers before the delivery date. Depending on the current and expected future market
conditions, gains and losses are uncertain and they may shift between producers and
processors within the life of a particular forward contract. Forward contract values evolve

dynamically with uncertainty.

3. Features of the Closed Loop Solution to Optimal Contracting and
Hedging

Previous studies (e.g., Mathews and Holthausen 1991; and Hoit and Brandt 1985)
have primarily focused on sequential hedging as a risk management tool for reducing the
spot price risk. In Mathews and Holthausen’s multiperiod hedge model, a producer is
permitted to update the futures position over the production process so that the spot price
risk can be managed periodically. With four trading opportunities, an initial hedge is
placed six months before delivery and adjustments are made two months and four months
thereafter. At the final stage (delivery), the hedge is lifted and all hogs are sold in the spot
market. The model is set up with the objective to minimize the portfolio risk by choosing
the optimal hedge ratios®. These results exhibit three essential features of the closed loop
solution presented by Antle (1983) and they relate to how the information is utilized by
the decision-maker. Firstly, the portion of hogs to be hedged at each stage is sequentially
dependent. For example, the initial hedge ratio is a function of the adjustment ratios such
that the risk expectations in subsequent periods are linked to the initial hedging decision.

Secondly, earlier information is always learned and incorporated into the subsequent

% The hedge ratio is expressed in terms of the proportion of futures positions to cash positions (risk
exposure) for an asset.



decisions through the feedback mechanism. Hence, the adjustment ratios are optimized
under a lesser risky environment. Thirdly, hedging decisions depend on the conditional
second moments in the spot and futures prices. These conditional expectations are formed
based on the information -set that is revisable. This ensures that the initial hedging
optimality can be adjusted when new information becomes available. Holt and Brandt’s
selective model entails a simple binary strategy: to hedge fully or not to hedge at all
depending on the expected price signals at each adjustment stage, and it fails to
implement these features. Consequently, their sequential hedging outcome may be
limited by the inferior information set.

The core function of Antle’s closed loop solution consists of three essential
features outlining how information should be utilized:

{a)  Sequential dependence of decisions (open loop solution)

- decisions made earlier may affect those made later;

{b) Information feedback (sequential updating solution)
- information that becomes available during earlier stages may be
utilized in subsequent decisions; and

(¢} Anticipated revision (condifional expectation)
- decisions made earlier may be revised later as new information
becomes available.

Suppose initial forward contracting and futures hedging decisions are made at
time ¢ and hedge adjustment decisions are followed at later times t+j (j =/, 2,..,n).
Feature (a) is known as the open loop solution. For example, it affects how the initial
forward contract ratio is determined at ¢. As the forward contract position remains fixed,
its optimal choice made at ¢ is linked to the optimal hedge adjustment decisions made at
t+j.- In other words, the flexibility in sequential hedge adjustments at t+j (f =1, 2,...,n)
may be used to complement the forward contract rigidity and its inability to respond to
risk. Consequently, optimal hedge ratios are dependent on initial forward contract ratio
under feature (a). The main limitation of (a) is that information cannot be updated and all
unconditional expectations in hedge adjustment decisions are based on the minimal

information set prescribed by feature (a).



The information feedback feature (b) is known as the sequential updating
solution. It specifies that information that becomes available in the earlier stages will
always be learned and incorporated into subsequent optimal decision process. For
example, a hedge adjustment replaces the previous futures position at ¢ with a new futures
position at'r+2. The actual profit/loss from the previous futures position is the difference
between the corresponding futures prices at 7 and at #+2. It will be observed and known
(non-risky) when determining the hedge adjustment ratios at subsequent stages. Although
feature (b) does not allow for sequential dependence of decisions as in the open loop
solution (a), all unconditional expectations in the hedge adjustment decisions are based
on a richer information set than the one of (a). Uncertainty costs may also be reduced due
to observability. _

The closed. loop solution combines both open loop and sequential updating
solutions (a) and_ (b), plus the anticipated revision feature (c). This is considered to be a
superior solution to (a), (b), or both. The anticipated revision feature (c) modifies features
{a) and (b) with conditional expectations in each sequential stage. Hedgin_g-decisions
determined in the earlier stages can be revised as new information becomes available.
This means that optimal hedge ratios may become time varying and thus more responsive
to changing market conditions.

Mathews and Holthausen estimated the sequential hedge ratios for hogs showing
an increasing trend through time from 0.912 to 0.942 (from the initial stage to the final
stage). This upward adjustment patiern suggests that the live-hog futures contract
becomes slightly more effective in reducing spot price risk as delivery nears. One notable
observation is the recommendation of 91.2% of hogs to be hedged at the initial stage.
This necessarily reflects the high correlation between the spot and futures prices
predicted six months ahead and it also means greater ability for futures contracts to
mitigate risk. Despite the promising results, Mathews and Holthausen only partially
utilize fhe property of revisable information set. The risk expectations are formed
conditional on the information set available at each initial stage and new information
revealed through the subsequent stages is not incorporated into adjustment hedge ratio
estimations (e.g., information is only revisable at each initial stage). This simplifying

assumption is made for the tractability purpose of variance and covariance computations



using the method of mean products of forecast errors (Peck 1975), or else it would
require too many of them to be estimated. Clearly, the method used to generate the
conditional variances and covariances of risky variables could have implications on the
hedge ratio performance. This raises the question as to whether the high initial hedge
ratio and insignificant upward hedge adjustments obtained by Mathews and Holthausen
are in fact “optimal”. |

To remedy this shortcoming, Haigh and Holt’s (2000) mean-variance hedge
model incorporates the Multivariate Generalized Autoregressive Conditional
Heteroscedasticity (MGARCH) approach to estimate conditional variances and
covariances between spot and futures prices simultaneously within a system of equations.
These one-step-ahead estimates of variances and covariances are used to calculate the
time-varying hedge ratios. Several previous articles have also developed similar
GARCH-type models to analyze the impact of time-varying risk on production levels
(Holt and Aradhyula 1998, Holt 1993, Holt and Moschini 1992, Holt and Aradhyula
1990). The GARCH-type framework is appropriate because short-term volatility is
reflected directly in the optimal hedge ratios conditional on the information set available
at the time of decision-making. This is achieved by the expected variance-covariance
structure of risky variables being a function of their own lagged values and also lagged
values of squared innovations, Hence, a temporary change in volatility would be carried
over to subsequent risk expectations and to the optimal hedge ratios in a dynamic way.
This is important for modeling risk empirically in U.5. hog production given that there
exist periods of high price volatility and also periods of price tranquility”.

The MGARCH methodology satisfies feature {(c) and it is the choice in this study
to generate the conditional risk expectations used in optimal hedging decisions. It is also
the only feature utilized in Haigh and Holt’s non-sequential framework. In contrast,
Mathews and Holthausen’s sequential framework used all three features but only partially
implemented feature (c), constrained by the computational complexity of Peck’s method
compared to MGARCH.

7 This also translates to periods of high contract value volatility and tranquility.



4. Sequential Forward Contracting and Hedging Model

Following Haigh and Iolt, the optimal hedge framework considers a mean-
variance utility function. It is expressed as a linear certainty equivalent profit function,
increasing in expected return and decreasing in return variance. The extension to Haigh
and Holt’s MGARCH framework is that hedging decisions can be sequentially optimized
under the closed loop solution presented by Antle and partially implemented by Mathews
and Holthausen.

It takes approximately six months for hogs to reach maturity from the birth stage
to the slaughter stage. Suppose the birth stage is denoted by # and the marketing stage is
denoted by #+6. Two-month intervals divide the intermediate adjustment stages at #+2
and at +4. A representative hog producer is limited to only the two major marketing
alternatives: (i) to sell in the spot market at 7+6; and/or (ii) to forward contract in advance
with formula-pricing method at ¢ for delivery at r+6. It is assumed that all hedging,
forward contracting, as well as marketing decisions are made in the first week of the
month.

For simplicity, this paper only considers hogs that are born and marketed in the
months of June and December. Hence, futures hedges and forward contracts are initiated
in the first week of June (December) and they are lifted or expired in the first week of
December (June). Hedge adjustments are made every two months in the first weeks of
February and April for the June futures contracts (August and October for the December
futures contracts). A commission cost of US$0.15/cwt. is levied when a futures hedge is
placed. ‘

At stage ¢, the producer chooses the optimnal forward contract and futures hedge
(by going short in the futures market) positions concurrently. The forward contract
position cannot be adjusted once it is locked in, since it becomes a legal binding
agreement. However, the hedge position can be adjusted at intermediate dates #+2 and
t+4 (evéry two months) by closing the previous futures position and opening a new one.
This allows the producer to respond to any changes in market conditions when new
information arrives and to update the “optimality” of the initial hedge position
accordingly. At stage t+6, the producer lifts his or her hedge and completes the

transactions in both spot and forward contract markets.



Initial Hedging and Forward Contracting Decisions with Closed Loop Features

The first-period forward contract and hedge ratios at the initial stage ¢ are
determined using a three-period optimization process beginning at stage t+4%. The
producer maximizes a mean-variance utility function, with respect to the expected third-

period (#+4) hedge ratio iz conditional on the information set £; available at .
A
@) MaxE[U, )= MaxE[(7,,s| Q)= 0 (T, | Q)]

E; is the conditional expectation operator (feature (c)) based on the information set £
available at birth stage ¢, A is the risk aversion coefficient set to equal two, as also
assumed by Haigh and Holt in their work. The fourth-period (z+6) profit 11, (per cwt.)

can be expressed as

Tps = Pog(l—a) + (Fy s + APCF,  + K}, + (Fig06 — Frogpes —M M

3

(5)
+ (F1+4\t+6 - Fr+2|1+6 - M)hz + (F:'+2|l+6 - Fﬂnﬁ _M)hl -¢

where P.s is the spot price at ¢+6. m is the futures price at ¢ expiring at 7+6 and it is
also taken as the expected delivery price at ¢ (strike price). Fiizjs and Fregue are the
futures prices at ¢+2 and at 1+4 expiring at t+6. APCP,,¢ is the American put-call parity
value at #+6 having a strike price of (or_ close to) m In fact, APCP,.s corrects the
expected delivery price back to the spot level and it can also be viewed as the deviation
above or below F,l:ﬁ- K is the fixed formula-pricing premium and it is set at US$2/cwt
(taken at the midpoint of $1-$3 per cwt). ¢ is constant marginal cost assuming the
production exhibits constant-returns-to-scale technology. o is the forward contract ratio
selected at £ (0< &, S1). hy, ky, and h; are the sequential hedge ratios selected at 7, £+2,

and #+4 successively and these are negative if the producer goes short on the positions
and positive otherwise. The difference terms (Feisjrs -Fradiesh (Frediers -Frezjes), and
(Fre2je+s -Fijres) represent the profits/losses from hedging at different sequential stages at £,

t+2, and t+4. M is the commission cost of US$0.15/cwt. for futures contract trade and it

8 This follows from Mathews and Holthausen’s optimization method, moving backward from #+4 to £,
However, the results would be the same if optimization is taken forward from ¢ to t+4 under the closed loop
features. .
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is subtracted from these profits/losses. To simplify the notations, (Fivejp+s “Fredjres -M),
(Freqpss ~Frezes -M), and (Frizpes -Fyes -M) are rteplaced by dFg, dFg, and dFy
respectively.

By implementing the closed loop solution feature (b), the only risky variables in
equation (6) are P dFs and APCPr;g at r+4. The information feedback feature (b)
allows the previous hedge ratios 2 and h;, hedge adjustment profits/losses dFy, and dFa,
initial forward contract ratio a, fixed premium K, and constant marginal cost ¢ all be
learned and incorporated at #+4. There will be no uncertainty associated with them and
the variance of the profit 02( Iys) at t+4 is
©6) O (T g)iatt+4:= (L= 0) O s + 08 Clpcpa + 1 Ol + 2L~ GOy pcias

+2(1— 058 g ape T 200150 spcpcivs arars
where ¢, represents the variance of risky variable x and o, represents the covariance
between risky variables x and y. Substituting equations (5) and (6) into (4) and
maximizing with respect to the third-period hedge ratio 3 conditional on the information
set available at ¢, the first order condition is

aEr [UHE]

7 on,

= E [dF, _;“(h?:o';ﬁﬁr +({1- (a’l* | DO s6.ar6 + (al* | ) spcrrve.are =0

Solving for the optimal hedge ratio h3*| ¢ (éonditional on the information set ) from (7),

_ E (dF) - Al( - (al* | NE (T s ire) T (al* | )E, (O speprasare )]

8 b,
® Al AE, (G

Similarly moving from t+4 to t+2 and using feature (b), the risky variables in
equation (9) this time are P.s dFs, dFy, and APCPr.s The uncertainty cost becomes
greatér due to the smaller information set when the decision stage gets closer to . The

variance of the profit 02(17,46) at1+2 is

2 . . — 2 2 2,2 2.2 2.2
O (Rpg) @t t+2:=(1=0) Opug + O Tlipopores + 1y Oape + 1 O
(9} 4 2(1 @)U O prug apcrivs T 20— OO by g apse T 20— C B O g iy
+ 20010 apcpasarsr T 20010 spepragarer  2PaRaO spes g -
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Substituting equations (5), (8) and (9) into (4) and maximizing with respect to the
expected second-period hedge ratio f, conditional on the information set available at ¢,

the first order condition 1s

O, (U]

(10) o, = E,[dF, _ﬂ(hzo-jmr +(1— (e |,*))O'p,fﬁ,dp4, +(a, L‘)la’APCPHMM

+ (h’l* |I)O-dF6.!,dF41 )] =0.

Solving for the optimal hedge ratio h2*|, (conditional on the information set #) from (10),

Er (chtr ) - /?'[(1 - (al‘ t ))El (O'Pr+6.dF4r) + (6“"1“= |1 )Ex (O-APCP1+6,dF41)

+ (ha* |)E, (O arorara )]
2Er (O-:Fdlr)

an k=

Lastly moving from #+2 to the initial stage ¢ and again using feature (b), the risky

variables are P4, dFg, dFy, dFs, and APCP,.s. The variance of the profit 02(17,+6) at¢is

2 o 2.2 2 3 2 2 2 2 2.2
O (T o) iatt = (1= &) Ops + O Opepras + 1 Opge T 1y Oy + 1y Oy,

+ 2(1— 0 )2NO prog apcrivs T 20— QT py s aper + 20 =~ 0O I O g apay
+ 20 = 0O gy ap2y T 200130 spcpy g are + 2001, 8 ppcpy s ara

+ 2060 gocpissarae T PO upgrara + 2O yogy gy 2O gess arae -

(12)

| Substituting (5), (8), (11), and (12) into (4) and maximizing with respect to the first-

period hedge ratio #; and the first-period forward contract ratio oy conditional on the

informaticn set available at ¢, the first order conditions are

OF,[U, 6]
(13) o,

= Er {dFZt - /1(’110-:1-‘% + (1 - (a] |£‘))O-Pt+6.dF21 + (al L*)IGAPCP1+6,Q'FZI

* (haa |.' YO yperara ) + (hz' ir IO gy ar N=0.

aEl [Ur+6]

(14) 2a

=E|[G, + (1" |,)G, + (B, |,)G, + (I )G, +(,)G;]1=0,

where

12



*

— an" |
G, = (Fy + APCP; + K)— F ¢ +(dF, — AT p3050) 2|

0,
' O, |, |
+{dFy — Ay 60ru) azal + (dFy, = ACpyis4p21) _'3"&1"'{' + A0 nss
- AO’PI+6,APCPI+5 >
oh, |, ahz* I

G, =-Al(c wrs:) 3

= O presars: T O arcrissarar T (O arerars: )—aa
1 |

oh
+ (O g ara) #];

*

on," | ohy |
_ 2 2
G, =-Al(0"wru)- = O psarts T O arcrirears T (O argara) :
aal 0,
o’ |
+{o ) “J:
apardru ) o a
on,’ | on," |
— 2 1 3
G, =-Al(c"rn) =~ O pusars T O ppcrivsarn T argrara ) l
aa’l aal
an,’ |
(O grgy gpr ) s

day,
and

oy |, o, |,

— 2 2 I L
G5 =~AT rrs + O apcrive = 20 6 4perns — (Cpragares) (O prasars)
oo, gy

', ok, |, oh, |,

+ (O.PHﬁ,dFZr) aal + (GAPCPI+6,dF6l) aal + (O-APCPJ+6.dF4£) aal

+ (O.APCPH{»,JF 2r )

on, L]
da,

Solving for the optimal hedge ratio h{"lr and forward contract ratio o ;*I, {conditicnal on

the information set £) from (13) and (14),

E (dF,)-Al{l- (0-’1* | DVE (& prasarze ) + (“1* 1 )E, (O spepias.iiz)

sy n'|= +(h I,)E,(amm}%{);(f::;' |,))E,(am,m)] -
! dF 2
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— ‘E; (Ga + (h; ir)G‘Z +(h2* lz )Ga + (hl‘
E (Gy)

16 o JG)

All optimal hedge ratios are negative for short positions but positive for the
optimal forward contract ratio. Equation (15) provides the optimal decision rule for the
first-period hedging conditional on the information set available at z. The first term
E{dF5) in the equation represents the speculative part of the decision. For example, if the
next period futures price (Fy.2) is expected to increase, the speculative part is positive and
the producer reduces his or her first-period hedge ratio in the short position in response to
the futures loss. The conditional covariance terms associated with hz'|, and h3*|, { Curadre
and Gyrearze) represent the risk management part of the decision. I these covariances are
positive, the futures gain/loss in the first period (dF3;) is expected to move in the same
direction of those in the second and third periods (dFy, and dFs). With rising futures
prices, each sequential stage could expose the producer to the downside risk of futures
losses. This has a negative effect on the first-period hedge ratio (hi']; ) given the
expectation that hedge adjustments may not be effective for subsequent risk. reduction.
Similarly, the conditional covariance terms with a;*|, (Oprisary and Cupcpresare:) also
represent the risk management part of the decision but they are related to how hedging
can reduce spot price and contract value risks. If Opris g and Gapcprsary are positive
and Opwsarz > OapcPs,dra, it MEANs that the expected spot price is more correlated with
the first-period futures gain/loss than is the expected contract value at the delivery date
t+6. Therefore, hedging is expected to be relatively effective in reducing the contract
value risk. The producer substitutes away from the spot market transaction towards the
forward contract one at ¢, and this has a negative effect on the first-period hedge ratio
(BT

Equation (16) provides the optimal decision rule for the first-period forward
contracting conditional on the information set available at #. This equation contains some
partial derivative terms of hedge ratios (h;*|,, hz*ln and h3*|,) taken with respect to the
forward cbntract ratio (af]r). This results from the implementation of feature (a),

sequential dependence of decisions, which explicitly includes the indirect effect of the
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current forward contracting deciston {at £) on current and subsequent hedging stages (af ¢,
.t+2, and r+4). However, feature (a) could become irrelevant if first-order conditions (8)
and (11) are independent of the optimal forward contract choice (a;'!,) made at £. This
requires that the conditional covariances associated with o, within (8) and (11) are either

zero or identical.

Hedging Adjustment Decisions with Information Revision

The optimal forward contract and hedge ratios a,:*|, and h,:*|, are determined
simultanecusly by (8), {11}, (15), and (16) with conditional expectations based on the
initial information set available at ¢, with the knowledge that more information will
become available in the future under anticipated revision feature (c). Feature (¢) allows
the producer to revise these conditional expectations in later stages. By carrying over a;*| ¢
from ¢, the revised optimal hedge ratio h3*|,+ ; can be found by using first-order conditions

(7) based on the new information set available at #+2

aEl+2 [Ul+ﬁ ] =
(17) ah3 1+2
=0.

LdFy, -ﬁ(hao-:m + (1_(6‘1* () - (‘31* | )G spcrrrs are )

Solving for h3*| (+2 (conditional on the information set £+2) trom (17),

E1+2 (dFsr )= ’1[(1 B (al‘ |1 ))E1+2 (O-Pr+6,dF61 )+ (a’l* |; )Er+2 (JAPCPHE,dFél )l

18) Iy l,,=
( ) 3|r+2 /IE;H(O-;F!‘:J)

The re\}ised optimal hedge ratio h2*|,+2 can be found by using first-order conditions (10)

based on the new information set available at t+2

aEHZ [Ur+ﬁ ] -

(19) o E,,[dF, _ﬂ(hzo':m +{1-( ]:‘))UPHé.dMJ +(& IJ*)IO-APCPHG.dFM
2

+ (ha* 1l+2)GdF61,dF4r)] =0.

Solving for hz*|,+2 (conditional on the information set #+2) from (19),

¥ The speculative and risk management parts in (12) and (15) can be explained similarly.
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(20) h; |H"2 =

The revised optimal hedge ratio hz*ln.z is determined simultaneously by (18) and (20)
based on the new information set available at #+2.

At the last hedge adjustment stage ¢+4, the information set used to detérmine the
optimal hedge ratio is revised again with the new information set. Carrying over a;*|,
from ¢, first-order condition (7) becomes

3E, .U, 6] _
21 oh, e

=0.

LdF, _A(hao';ﬁﬁr +{1- (a]* | N prsgars T (0"1* | )G spcprssdre )]

Solving for h3*|,+4 {conditional on the information set +4) from (21),

E,  (dF,)—Al(1- (0«'1‘ | VE,., (Cpigare) T (0"1* | )E .4 (T speprssare: )]

(22) By lp= )
1+d 4ara

The revised optimal hedge ratio h3*|,+4 is determined by (22) based on the information set

available at #+4.

Complete Strategies for Optimal Sequential Hedging and Forward Contracting
The complete strategies for optimal sequential hedging and forward contracting
under the closed-loop solution are as follows:

(i} At stage ¢, initial forward contract and hedge ratics a,u*|, and h;‘l, are obtained by

solving
E(Ouais) EOuwryirad ElOpiairn = Fapce esdrn )] [ E(dFy - R'O-FH-G.AFZ.')_
E,(O'zdFZI) E(cirn) E (0% r2) . AE (o i)
0 E(Opgara)  E(Coisara ~ Farcrss.dear) hl‘ L E(dF, - AGp.sara)
E(6%ra) E (&%) By |2 AE, (0 ) :
0 0 1. E (T o g.arer — L, h; |, E (dF, - j'amra.d.rm)
E (0 drer) aI* I AE (0 arer}
EG)  E(G) E(Gy) . - EG)
| E(Gs) E(Gs) E(Gs) _ E,(Gy)
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(ii) At stage #+2, initial forward contract ratio d;*l, is carried over. The information set is

revised to #+2 and hedge adjustment ratio h2*|,+2 is obtained by solving

E(dF,) = Al - 0 |VE, (T arad) @ LVE (O arcnaara)}
1 B Oprarad [y * )
E (szp4) [hz |'+1i|= N AEH'Z(O. wwa) . and
e 1 h] |H-2 EHI(dFGr)_I‘L[(].'al |.')E'1-2(0‘P1+6.JF6.:)+(‘11 |J)E‘J'+2(O'AFCFI+6.JF6I')]

AE, (P arer)

(iii) At stage #+4, initial forward contract ratio o ;*!t is carried over. The information set is

revised to t+4 and hedge adjustment ratio /|, is obtained by solving

Er-:-d (dFﬁr ) - /1[(1 - (al* Ir ))E.‘M (O.F!+6.JF61 ) + (al* |l )EI+4 (GAPCPr+6,dF6r )]
;{'EIAM (O-jFﬂr )

h’; |1+4=

5. Data and Time-Series ARMA-MGARCH Estimation Results

Data
All of the monthly data series are collected for the period from January 1988 to

May 1999 for a total of 137 observations. The in-sample analysis covers March 1988 to
December 1995. The remaining data from January 1996 to May 1999 will be reserved for
assessing the out-of-sample effectiveness of the closed loop hedging strategy vis-a-vis
other alternatives (no hedging and non-adjustable MGARCH hedging).

The weekly IA-MN live hog prices (US$/cwt., barrow and gilts, 230-240 1bs)
were  obtained from the Livestock Marketing ~ Information  Center
¢http://imic1.co.nres.usda.gov/). The average live hog price for the first week of the relevant
month is taken to represent the monthly price P;. If the first working day of the month
begins on a Friday, the average price of the second week is used.

The daily CME live/lean hog futures and options prices were purchased from the
Futures Industry Institute. A simple average of the daily June futures prices during the
first week of each month are used to represent the monthly futures price series for the

June contracts. These weekly averages contain the first working day of the month. If the

17



first working day begins on Friday, the following week is used. The monthly futures price
series for the December contracts are also constructed following the same process.

To obtain futures contract gains/losses from hedging (US$/cwt.), these futures
prices are differenced between two-month intervals to reflect the hedge adjustment
frequency. The June and December futures contracts are combined to form the monthly
data series of futures gainsfiosses dF, This allows for consecutive hedging at two
marketing stages in June and December (J anuary to June- June futures contracts; July to
December- December futures contracts). For example, the futures gain/loss in the month
of I anﬁary is the difference between the June futures price in January and the June futures
price in November of the previous year. The July futures gain/loss is the difference
between the December futures price in July and the December futures price in May.

To obtain the APCP values (US$/cwt.), the strike price for the June (December)
call and put options is taken to be the one closest to the average June (December) futures
price in December of the previous year (June of the following year) when forward
contracts are entered. The strike price is fixed thereafter until the delivery month of June
(December), The APCP values are the difference between the call and put settle prices,
with tespect to the chosen strike price. Similar to the futures price series, a simple
average of the daily June APCP values during the first week in each month are calculated
to represent the monthly APCP value series for the June contracts. These weekly
averages contain the first working day of the month. If the first working day begins on
Friday, the following week is used. The monthly APCP value series for the December
contracts are also constructed using the same process. The June and December options
contracts are combined to rtepresent the monthly series of APCP,. This allows for
consecutive forward contracting at two birth stages in June and December (January to
June- June call and put options contracts; July to December- December put and call
options contracts).

With the exception of delivery months in June and December, the fespective
APCP values are calculated using equation (3) due to unavailability of the options data.
This is supported by the fact that T (time to expiration of the option) is close to zero in
the months that the options contracts expire. As a result, the discount factor can be

disregarded and equation (3) reduces to be only the difference between the current price



and the initial strike price. For example, the June APCP value (June options contracts) is
the difference hetween the live hog price P; in June and the initial strike price (Tune
futures price) chosen in December of the previous year.

As for the missing options data from July 1993 to November 1993, this data is
also approximated using equation (3) but the discount factor is taken into consideration.
The risk-free interest rates used for discounting are the monthly one-year treasury bill
rates, auction average, from the Federal ‘Reserve Bank of St. Louis
(www.stls.frb.org/fred/datafirates/tb lya).

The live hog futures and options contracts were replaced by the lean hog contracts
in January 1997. The lean hog futures gains/losses and APCP values from January 1997
to May 1999 in the out-of-sample analysis are converted to their corresponding live hog
values by a multiplication factor of 0.74 (Wellman 1996).

Each data series is tested for stationarity and this is conducted by the augmented
Dickey-Fuller test (1981) (ADF) over the in-sample period. The presence of a unit root is

rejected in all series (they are concluded to be stationary).

"ARMA-MGARCH Specification

Bollersiev’s GARCH model (1986) is an extension to the original ARCH model
developed by Engle (1982). The main shortcoming of ARCH is that it can be non-
parsimonious when the lag length becomes undesirably large. GARCH can be used to
circumvent this possibility: fhe conditional variance is not only dependent on the past
realized values of errors but also on the past conditional variances. As GARCH is able to
track/forecast the second-moment dynamics, this facilitates the conditional expectations
to be revised pericdically and it is essential for implementing feature (c) of the closed
loop solution.

In the multivariate GARCH setting, the parsimonious MGARCH(1,1)
specification is chosen to model the time-varying conditional variances and covariances.

According to Engle and Kroner, the BEKK parameterization of W, is specified as
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where | = futures gains/losses dFP;; 2 = American put-call parity values APCPy; 3 = live
hog price P, W;is a (3x3) symmetric conditional variance-covariance matrix; and C, A,
and B are (3x3) parameter matrices with C being triangular. The BEKK' representation
of (23) ensures the conditional variance-covariance matrix is positive semidefinite. The
Vector Autoregressive Moving Average (VARMA) structure also allows for parametric
interactions in the MGARCH brocess to be present across all second-moment equations.

The econometric specification of the multivariate model is

dFP, = 6, dFP, , + 6,dFP,_, + £,

APCP, = A, APCP | + A,APCP _, + £,,;
24 |P=¢, +¢1P:—1 TEy ¥ V212t

e, =[€, &, &,1/Q,,~N(OW,) and
W,=CC +A'¢_g,A +BW_B .

The appropriate p-g-order of ARMA(p, q) mean equations is selected by using the sample
autocorrelation function and partial autocorrelation function of each series in conjunction
with the Schwartz Bayesian Criterion (SBC). The system of equations contains 31
parameters in (24). Under the assumption of conditional normality, they are estimated
simultaneously using the nonlinear FIML procedure. The Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm from the software packagé RATS Version 4 is used to obtain

the estimation results.

1% The acronym BEKK comes from the earlier paper by Baba, Engle, Kraft, and Kroner (1989).
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Multivariate ARMA-GARCH Estimation Results

Table 1 summarizes the estimation results of (24). All coefficients in the ARMA
mean equations are significantly different from zero at the 5% level, with the exception
of the second autoregressive coefficient A, in APCP,. In addition, the characteristic roots
of the mean equations lic within the unit circle and this confirms that all series dFF,,
APCP,, and P, are convergent. '

Analysis of the estimated BEKK parameters of the MGARCH matrices A and B
reveals that the majority of them are highly significant at the 5% level. Particularly, the
off-diagonal elements in both matrices show that there are notable parametric linkages
between the conditional variance and covariance equations. In other words, the live hog
price, futures gains/losses, and APCP values all have influences on each other’s
innovations and variances. This is not surprising as these series react to current and
expected market conditions. Any perturbations would result in movements in the live hog
prices, futures gains/losses, and APCP values. The resulis indicate that the BEKK
parameterization of MGARCH(1,1) is able to capture such cross-effects in volatility
reasonably well. '

In all diagnostic tests of the standardized and squared standardized residuals (Ng
1991), Q(12) and Q*(12) of the Ljung-Box statistics show strong evidence of no serial
correlation in both conditional first and secdnd moments at the 5% level. Hence, the
multivariate model provides adequate descriptions of conditional mean and variance-

covariance dynamics.

6. The Closed Loop Solution for Optlmal Sequential Hedging and
Forward Contracting

The Complete Strategies: In-Sample Simulations

The conditional variances and covariances at different sequential stages are

computed from the MGARCH parameter estimates so that the complete strategies can be
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implemented''. The in-sample simulations are performed using the data from Decernber
1988 to October 1995, consisting"of 14 production cycles from birth to marketing. The
optimal sequential hedge and forward contract ratios under the closed loop soluticn are
presented in Table 2. The optimal forward contract ratios indicate that, in almost all
instances, the producer should market his/her hogs entirely in-advance at the initial stage ¢
under the formula-pricing forward contracts. The negative sign associated with all of the
hedge ratios implies that the producer should go short with the CME hog futures
contracts, which also agrees with the appropriate hedge position if the spot price and
contract value risks are to be neutralized.

The plots of the optimal hedge ratios at ¢, t+2, and t+4 are illustrated separately in
Figure 3, Figure 4, and Figure 5. The time-varying pattern suggests that the hedge ratios
tend to increase over the adjustment stages and the negative signs also reflect that short
positions are taken in order to redube risks. In fact, the optimal results recommend
significant upward adjustments by twofold from —0.3006 at ¢ to —0.6330 at #+4 at the
mean level. This trend reflects the greater positive correlation between the expected spot
price and futures gainfloss when the delivery month approaches. Hence, the risk
management part of the decision calls for additional hedging in the CME futures market,

In order to assess the effectiveness of the closed loop solution for reducing both
spot price and contract value risks, two different strategies are also considered for
comparative purposes: (i} no hedging and (ii) non-adjustable MGARCH hedging. This
provides the representative hog producer with the options to do nothing in the CME
futures market (no hedging), or to hedge optimally in the initial period ¢ but with no
adjustmenté and information revisions taking place at #+2 and t+4 (non-adjustable
MGARCH hedging). The expected utility improvement of the complete strategy is
measured by the percentage change of the certainty equivalent profit level (expected
income utility) over these two alternative portfolios.

In contrast with the closed loop solution, the no hedging alternative sets the hedge
ratios constant so that £ |, =" |,.,=m" |,.,= 0. It does not change across and within

each hedge horizon as the cash position is always chosen. The non-adjustable MGARCH

1 o derive the conditional covariance between the same risky variable forecasted for different periods
(e.2. Gy arar), @ simple example is illustrated in Appendix 1.
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hedging alternative is only time variant at . All conditional expectations are solely based

on the information set at £ when the hedge decision is made. Hence, the initial hedge ratio
is fixed at all subsequent adjustment stages so that A™ |, =A" | ,=h" |, It only

changes across each hedge horizon but not within, and both features (a) and (b) of the
closed loop solution do not apply in this case. No hedging and non-adjustable MGARCH
hedging strategies obviously lack the flexibility of the closed loop solution for utilizing
new information: its hedge ratios are allowed to be time varying both across and within
hedge horizons.

The optimal hedge and forward contract ratios under the alternative strategies are
presented in Table 3. The conditional mean, variances, and covariances used in deriving
these ratios all utilize the MGARCH pardmeter estimates and equations from (24)"2.
Similar to the closed loop solution, the forward contract ratios of both strategies indicate
that the producer should market his/her hogs entirely at ¢ in almost all instances. The
time-series plot of the non-adjustable MGARCH hedge ratios, presented in Figure 6,
shows some variations across hedge horizons. Compared with the closed loop hedge
ratios at the mean level, the non-adjustable MGARCH alternative requires more hedging
in short positions at ¢ and f+2 (0.5384 > 0.3006 and 0.5334 > 0.4767 respectively) but

less at r+4 (0.5384 < 0.6350).

Table 4 reports the descriptive statistics of expected income utility for each
portfolio, along with the percentage improvement from using the closed loop solution.
The results indicate that the closed loop solution clearly ocutperforms both alternative
choices with the greatest utility value (48.2849). On average, the closed loop solution is
able to enhance the producer’s utility by 4.89% over no hedging and by 1.92% over non-
adjustable MGARCH strategies. Figure 7 and Figure 8 further depict the time-varying
percentage improvement. There are a few occasions in which the no hedging and non-
adjustable MGARCH hedging portfolios outperform the closed loop.solution. These
negative percentages are shown to be modest, except for one instance when the utility

loss reaches as high as ~20.41% relative to the no hedging case. Nonetheless, in the long

"2 The hedge ratios for no hedging are constrained to be zero in all periods.
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run, the gains to the producer from using the closed loop solution still outweigh these

sporadic losses.

The Complete Strategies: Out-of-Sample Simulations

The multivariate model in the previous section uses the in-sample data to obtain
the parameter estimates and hence the in-sample simulations. The results point to the
closed loop solution for providing the best hedging performance relative to both no
hedging and non-adjustable MGARCH hedging alternatives. However, it i.s also
important for the representative producer to learn the predictive power of the closed loop
solution outside this data range. The out-of-sample simulations provide this assessment.

The out-of-sample forecasts for the conditional mean values, variances, and
covariances cover the period from January 1996 to May 1999, consisting of 7 production
cycles. As hog price crisis occurred in the 1998, the out-of-sample data set also provides
an opportunity to examine the hedging performance of the closed loop solution in a
highly volatile situation.

Table 5 presents the optimal forward contract and hedge ratios for the three
portfolios. In fact, the out-of-sample results do not differ very much from those generated
by the in-sample data at the mean level. In all periods, the unity ratios suggest that hogs
should be forward contracted entirely. Approximately half of the hogs should be hedged
under the non-adjustable MGARCH strategy (-0.5075), while significant upward
adjustments are recommended once again under the closed loop solution (from -0.2443
to —0.7042). However, these upward adjustments are in contrast with modest results
shown in Mathews and Holthausen's study (from —0.9120 to -0.9420)"*. Mathews and
Holthausen may have “over-cstimated” the initial hedge ratio without taking time-varying
conditional variances and covariances into consideration.

More interestingly, the low initial hedge ratio of the closed loop solution may well
signify that a short futures position can be initiated reasonably four months prior to
delivery. Except during the volatile period of hog price crisis, the initial hedge ratio for

the June 1999 contract taken in December 1998 shows a rise in value (-0.4637). This is

13 The conditional variances and covariances in Matthews and Holthausen's multl-penod hedge model are
calculated using the Peck’s method of mean products of forecast errors.
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mainly due to the temporary shock in the spot price market being immediately translated
into the futures and options markets. Any corresponding changes in risk expectations are
expressed by the conditional covariance terms in (15); E{Garcressarze)y E{ Gurarara), and
E{ours,ara)™. _

Comparing with the June 1996 futurcs contract taken in December 1993, the
conditional covariance E{Gipcpisq4r2) shows an increase from 0.33 to 2.07. This
necessarily means that co-movements of the APCP value and futures gain/loss are
strengthened considerably due to the market perturbation, thereby making short hedging
more attractive in reducing contract value risk at the initial stage. The conditional
covariances £, ( Gyrq ar2) and E; ( Oyrsgarz) also show an increase in absolute value from
—0.14 to —0.29 and from —0.62 to —2.67 respectively. This necessarily means that the
futures gain/loss in the first period (dFs) becomes even more negatively correlated with
those in the second and third periods (dF 4 and dFg;). This further reduces the possibility
of downside risk exposure of futures losses in the subsequent stages and this increases the
initial hedge ratio.

In addition, the shock effect appears to get carried over to the second period (at
t+2) in February 1999 and the conditional covariances continue to give rise to even

greater adjustment hedge ratio (A, |,., = -0.9308). In the third period (at ++4), all market

signals begin to reflect the “true™ expected demand/supply conditions as the shock effect
subsides. With the revision feature (¢) facilitated by MGARCH, such new information

can be incorporated into the adjustment decision. Accordingly, the second-period hedge
ratio is corrected downward as a consequence of overshooting (7, |,,, = -0.8493).

Figure 9 illustrates the time-varying pattern of percentage improvement from

using the closed loop solution over no hedging and non-adjustable MGARCH hedging

(with optimal forward contract ratios). By examining the plot, the closed loop solution
yields significant gains during the hog price crisis. From June 1998 to June 1999 when
the high market volatility occurred, the closed loop solution improves over no hedging by

25.76% and over non-adjustable MGARCH hedging by 2.21% on average. These are

“In equation (15), the optimal forward contract ratio is set to unity; hence, the conditional covariance
between the spot price and futures gain/loss is irrelevant. For simplicity, effects of sequential dependence
of decisions on the initial hedge ratio are also suppressed.
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indeed higher than the out-of-sample averages 12.12% and 1.47% respectively, The
results confirm the effectiveness of the closed loop solution for reducing both the spot
price and contract value risks via the CME live/lean hog futures contracts. More
importantly, the three essential features of the closed loop utilize dynamic changes of
information and make necessary sequential adjustments along the hedge optimality path.
Its superior performance has also been demonstrated in the presence of volatile market

situations.

7. Summary

Formula-pricing arrangements have become the most common marketing practice
in the U.S. hog industry and this form of forward coatracting is a source of risk to income
stability. Previous research has primarily focused on futures hedging and its ability to
reduce spot price tisk. No attempts have been made in developing hedge strategies that
reflect the current marketing changes. Moreover, hedge recommendations have been
based on variance-covariance forecasts other than those from time-series econometric
models. This could limit the predictive accuracy of volatility movements and
consequently the performance of hedging. _

Adding to the existing literature, this research is the first analysis to consider both
spot price and contract value risks in a sequential hedging and forward contracting
framework for U.S. hog production. The three main contributions are the theoretical and
empirical applications of APCP for forward contract valuations, the closed loop solution
for dynamic decision process, and application of the MGARCH methodology for time-
varying conditional variance-covariance forecasts.

The APCP technigue is a useful proxy measure for quantifying thé forward
contract gains or losses between two parties and incorporating this risky variable into
hedging decisions to account for the contract effects. APCP is not only applicable to
forward contract valuations for output marketing but also to those for purchasing input
factors (e.g., corn or barley feed), or both under different pricing or risk-sharing contract
schemes. However, an APCP limitation arises when fuiures and options contracts do not

exist for a forward-contracted commodity.
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The conceptual framework for sequential hedging and forward contracting
decisions is presented. The representative producer maximizes a mean-variance utility
function conditional on the information set available at ¢, ¢+2, and ¢+4. The optimal
forward contract and hedge ratios derived from the first-order conditions embody all
three essential features of the closed loop solution. These features outline how the
information flows in the dynamic optimization process. Feature (a) specifies dependence
between sequential forward contracting and hedging decisions. Feature (b) feeds back
information from earlier stages so that uncertainty cost can be reduced in subsequent
hedging decisions. Feature (¢) provides anticipated revision and this “closes™ the
information loop. As the sequential. hedge ratios contain conditional variance and
covariance terms, this feature allows the producer to revise risk expectations sequentially.

- To model the conditional variances and covariances of multiple risky variables,

the MGARCH methodology is used to implement aaticipated revision feature (c).
MGARCH is a time-series process that specifies the conditional variance (covariance) as
a function of the past realized errors as well as conditional variances and covariances.
Therefore, perieds of tranquility or volatility may lead to similar forecasts being
incorporated into hedge ratio calculations. Previous research of hedging in U.S. hog
production has overlooked MGARCH as a superior forecasting tool to capture both
variance and covariance dynamics in sequential decisions.

The multivariate ARMA-GARCH model is estimated and the empirical results
indicate evidence of GARCH behavior in the equation system. Peck’s methed of mean
products of forecast errors has undesirable complexity in order to facilitate information
revision. It lacks the econometric time-series specification to closely track changing risk
conditions and this limitation similarly extends to the constant variance assumption of
QLS or SUR. As a result, such methods would not be able to render full risk management
capability especially in volatile situations. This further confirms the importance of
GARCH and its potential to improve hedge performance.

The multivariate ARMA-GARCH parameter estimates are used to form the
conditional expectations necessary for the computations of optimal forward contract and
hedge ratios under the closed loop solution. Both in-sample and out-of-sample simulation

results recommend considerable upward hedge adjustments. This gives rise to the time-
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varying pattern of optimal hedge ratios in response to a changing risk environment. The
low initial hedge ratio-—in contrast with results of Mathews and Holthausen—may well
signify that hedging with futures contracts could be delayed, ‘reasonably four months
prior to delivery. This suggests the greater positive correlation between the expected spot
price (APCP value) and futures gain/loss as the delivery month approaches. The optimal
forward contract ratios indicate in almost all instances that hogs should be marketed
entirely in advance under the formula-pricing contracts. This could explain the reason
why an increasing trend toward contract production has been observed over the years.

To evaluate the futures hedge performance under the closed loop solution, the
percentage improvement in utility is compared with two other portfolios of no hedging
and non-adjustable MGARCH hedging. The in-sample and out-of-sample findings
indicate that closed loop hedging provides the best hedge performance of all portfolios.
The improvement over non-adjustable MGARCH hedging is modest possibly due to its
ability to revise information across the hedge horizons. On the other hand, the
improvement over no hedging is quite significant. In volatile market situations such as
the hog price crisis in 1998, the closed loop hedging is proven to achieve notable utility
gains over both alternative portfolios. This research combines the APCP technique,
closed loop solution, as well as MGARCH methodology to help assess the effectiveness
of the CME liveflean hog futures contracts for reducing both spot price and contract value
risks. The results confirm this fact and provide valuable information to hog producers.

Future research may expand the same modeling framework to other commaodities
and different hedging horizons, explore cross-hedging opportunities and other types of
contract value risks (e.g. fixed price tied to a feed price with ledger maintained), or
consider the effects of government-sponsored price stabilization programs on optimal

hedging choices.
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Table 1. Multivariate ARMA-GARCH Estimation Results:

ARMA(2,0) Coefficients for Series dFF,

6, 0.4276 8,  -0.2558
(7.3119) (-4.1728)
Q12) 20.0026
(0.0670)
QX (12) 5.3161
(0.9466)
ARMA (2,0) Coefficiens for Series APCP,
A 0.6051 A,  -0.0390
(7.4945) {-0.5949)
Q(12) 5.4231
(0.9423)
QX12)  0.0450
(1.0000)
ARMA(].12) Coefficients for Series P,
é, 8.8442 &, 0.8023
(11.8686) (35.7501)
QU12) 9.7027
(0.5660)
Q¥12) 6.7353
(0.8746)

MGARCH(1,1)-BEKK Coefficients

[C,, =0.6464 C,, =-0.1089 C,, =0.6627]
(2.0647) (-0.4781) (1.4215)

co 0 C,, =—0.1605 C,, =1.6351
- (~0.7641) (6.4328)

0 0 Cyy =0.4571
I (4.6373)
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[ @, =09252 @a,=1.0474 @, =0.3421
(6.2021) (8.6773) (1.8035)
o, =-03031 @, =02328 @, =0.0417
A= ,
(-2.9252) (2.4943) (0.2784)
oy, =-0.1435 @, =-02920 a,, =-0.0773
| (~2.1560) (—4.9067) (—0.8718)
[ B, =04840 fB,=07855 B, =02458
(2.9156) (10.1969) (1.9066)
B By =-0.1371 S, =-02584 S, =0.5806
{(-0.96221)  (-3.0136) (3.7611)
B, =04892 B, =0.1122 B, =-0.0525
| (6.9522) (2.2677) (—0.4140)

Log-likelihood

L =-319.0902

Note: All parameter estimates: ¢-statistics are in parenthesis.
Ljung-Box Q-statistics: P-values are in parenthesis

Q(12): Ljung-Box Q-Statistic for the 12" Order Autocorrelation in Standardized Residuals
Q*(12): Ljung-Box Q-Statistic for the 12® Order Autocorrelation in Squared Standardized Residuals
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Table 2. Optimal Hedge and Forward Contract Ratios under the Closed Loop Solution:

In-Sample Simulations

B l,

o |,

at t+2

h; |r+2

at (+4
h*

3 ]r+4

1988.12
1989.02
1989.04
1989.06
1989.08
1989.10
1989.12
1920.02
1990.04
1990.06
1990.08

1990.10

1990.12
1991.02
1991.04
1991.06
1991.08
1991.10
1991.12
1992.02
1992.04
1992.06
1992.08
1992.10
1992.12
1993.02
1993.04
1993.06
1953.08
1993.10
1993.12
1994.02
1994.04
1994.06
1994.08
1994.10
1994.12
1995.02
1995.04

-0.1541
-0.1551
-0.2038
-0.1762
-1.0003
-0.2343
-0.2339
-0.2239
-0.2109
-0.6210
-0.3572 |
-0.2470

-0.23336

1.0000

1.0000

1.0000

1.0000

(0.0000

1.0000

1.0000

0.8674

1.0000

0.3931

1.0000

1.0000

1.0000
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-0.4254

-0.2893

-0.6388

-0.5000

-0.7951

-0.2474

-0.3872

-0.3425

-0.4426

-0.7901

-0.3907

-0.5121

-0.5112

-0.5575
-0.6835
-0.7175
-0.6741
-0.3123
-0.5980
-0.6762
-0.6671
-0.6577
-0.5751
-0.7083
-0.6894

-0.6889



1995.06 -0.1564 1.0000

1995.08 -0.4021
1995.10 -0.6847
Mean -0.3006 0.8757 -0.4767 - -0.6350

Table 3. Optimal Hedge and Forward Contract Ratios under No Hedging and Non-
Adjustable MGARCH Hedging Strategies: In-Sample Simulations

All decisions are made at t

No Hedging Non-Adjustable MGARCH Hedging

thH |t thA Ir

= hévh' ir+2 = h’im |:+2

=h.;:m 1:1—4: 0 alim |r =h;vd I£+4 a"lNA |r
1988.12 0.0000 1.0000 -0.47606 1.0000
1989.06 0.0000 1.0000 -0.4541 1.0000
1989.12 0.0000 1.0000 -0.4638 1.0000
1990.06 0.0000 1.0000 -0.3773 1.0000
1990.12 0.0000 0.7813 -1.0085 0.0000
1991.06 0.0000 1.0000 -0.4675 1.0000
1991.12 0.0000 1.0000 -0.4977 1.0000
1992.06 ‘ 0.0000 0.8848 -0.4418 0.9292
1992.12 0.0000 1.0000 -0.4749 1.0000
1693.06 0.0000 0.8635 - -0.8872 0.0000
1993.12 0.0000 1.0000 -0.5957 1.0000
1994.06 0.0000 1.0000 ' -0.5112 1.0000
1994.12 0.0000 1.0000 -0.4759 1.0000

1995.06 0.0000 1.0000 -0.4056 1.0000

Mean 0.0000 - 0.9604 -0.5384 0.8521
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Table 4. Descriptive Statistics for No Hedging, Non-Adjustable MGARCH Hedging, and
Closed Loop Solution:

Expected Income Utility

No Hedging Non-Adjustable
Closed Loop Solution
MGARCH Hedging
Mean 46.0523 47.4435 48.2849
Standard Error 0.5916 0.7708 0.7207
Minimum 39.1560 34.3835 39.3398
Maximum 53.8330 57.5750 58.86057
Sum (in sample) 1934.1971 1992.6269 2027.9650
In-sample size 42.0000 42,0000 42.0000

% Improvement from Using the
Closed Loop Solufion Relative to

No Hedging

Mean 4.39%
Standard Error 0.8824
Minimum -20.41%
Maximum 17.21%
Non-Adjustable MGARCH
Hedging

Mean 1.92%
Standard Error 0.4670
Minimum -0.88%

Maximum 18.51%
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Table 5. Optimal Hedge and Forward Contract Ratios: Out-of-Sample Simulations

Closed Loop Solution

ati at t+2 at t+4

h‘; |r 0!; |r h; |r+2 h; |i'+4
1995.12 -0.1476 1.0000
1996.02 -0.7122 :
1996.04 -0.7954
1996.06 -0.2285 1.0000
1996.08 -0.5170
1996.10 -0.7058
1996.12 -0.1953 1.0000
1997.02 -0.5375
1997.04 -0.7220
1997.06 -0.2956 1.0000
1997.08 -0.4471
1997.10 -0.6502
1997.12 -0.1771 1.0000
1998.02 -0.4408 .
1998.04 -0.5828
1998.06 -0.2025 1.0000
1998.08 -0.5174
1998.10 - -0.6241
1998.12 -0.4637 1.0000
1999.02 -0.9308
1999.04 -0.8493
Mean -0.2443 1.0000 -0.5861 -0.7042

No Hedging Non-Adjustable MGARCI Hedging
n" |, m™,

=h" |1+2 =h’i\m |r+2

=h§w{ |z+4= 0 alml Ir =h’:§m |r+4 aflmI |r
1995.12 0.0000 1.0000 -0.4488 1.0000
1996.06 0.0000 1.0000 -0.4576 1.0000
1996.12 0.0000 1.0000 -0.4455 1.0000
1997.06 0.0000 1.0000 -0.5322 1.0000
1997.12 0.0000 1.0000 -0.3737 1.0000
1998.06 0.0000 1.0000 -0.4278 1.0000
1998.12 0.0000 1.0000 -0.8672 1.0000
Mean 0.0000 1.0000 -0.5075 - 1.0000
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Figure 1. Forward Contract Value and Put-Call Parity.

F 3
Profit
-.' "
"« Put Option (producer) &
i e y 4 |
Call Option (prlkc.cssor) .‘-#/‘ ! .
o
A ” X B St
*
r 4
-»
”
. Forward Contract (processor)
7 @
->
”
Figure 2. Average of F-—— -7 -~ -= ¥7-te-- b -1 Strike Price (February
Call
Contracts) ol

Prices

§ - iz

ENB:28388823288288°¢8

g.—s—‘—ongospggsggc ]

4 8 85288385 HFEFsHFEEEDE
Tracla Cate

980708
981130

Contract Values

35




Figure 3. Optimal Hedge Ratio at t (h1]t)}
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Figure 5. Optimal Hedge Ratio at t+4 (h3|t+4)

-0.4000

% .0.6000

-0.8000

-1.0000

-1.2000

37



Figure 7. % Improvement of the Closed Loop Solution over No Hedging
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Figure 9. % Improvement of the Closed I.oop Solution (w/ Optimal Forward
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Appendix 1

Suppose a time series X; is represented by a simple AR(1) process: X, =a, + ¢, X, +£,.
At time £+1, X, can be expressed as X, =a, +a X, + £, and similarly at time ¢+2
X, =a,+aX,, +¢,, Basedon the information set available at time ¢, X,,; and X,
are iterated back so that X ,, =(a, + apa,)+a} X, +a,&, +¢&,,, and

X, =(ay+aua +agal)+a'X, , +a’e, +a¢,, +¢,,. The conditional covariance
Oxe+1,xe42)s therefore becomes E(X,y1-Ef Xps 1))(Xie2-Ed Xis2))) = & o',z(r . The result is
equivalent to the conditional variance of X, multiplied by the AR(1) coefficient a; .
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