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Allocative vs. Technical Efficiency, and Related
Matters in Linear Programming

Ross G. Drynan*

The relationship between technical and allocative
efficiency is examined by drawing on concepts of
activity dominance in linear programming. The
conclusion is reached that there is no fundamental
distinction between technical and allocative
efficiency. Other topics addressed in the paper, all
connected by the common thread of activity
dominance, include activity specification and the
nature of returns to scale.

1. Introduction

Linear programming (LP) models have been
used and discussed in agricultural economics
for three decades or more. The opportunity to
contribute further and the marginal value of
contributions is probably now small.

This paper is a pot pourri of
programming-related matters, joined with the
common thread of activity dominance. It is,
in part, intended to illustrate the use of the
dominance concept, but is also intended to
contribute to understanding of other
programming-related concepts. The major
new material for practitioners experienced in
linear programming is that concerning
technical and allocative efficiency.

After a brief introduction to activity
dominance in Section 2, consideration is given
to returns to scale in linear programming
models and the ability of these models to
accommodate the twin allocative and technical
production problems. The discussion leads to
a consideration of two further issues in
subsequent sections. First, serious doubts are
raised about the notion and measures of
technical efficiency. Drawing on concepts of
activity dominance, it is shown that allocative
and technical efficiency, concepts that
economists have sought to clearly distinguish,
are more akin than generally recognized.
Second, the question of LP activity
specification is broached. Do optimal factor
ratios for a production process change with the
specification of resource levels in a linear
programme? Can many of the activities

needed to reflect fully production
opportunities be omitted?

2. Activity Dominance

The notion of activity dominance in linear
programming, namely that an activity can be
discarded from consideration because it is
evident that it would never be needed in the
optimal basis, is not new. A comprehensive
formal treatment of “full information”
activity dominance (or equivalently dual
constraint redundancy) is available in Karwan
et al. (1983).
Consider the following problem:

max CF'X
(X)
(1) subject to AFX < B
X220

where B is an m-vector of resource levels, CF
and X are n-vectors of objective function
coefficients and activity levels respectively, and
AF is an (m x n) matrix of input-output
coefficients. It is assumed that problem (1) has
a finite, feasible solution. Suppose that r of
the activities are recognized, their objective
function coefficients forming a vector C and
their unit requirements for the m resources
forming a matrix A with columns A;,
i = 1,2,... ' The directions of optimization
and of the inequalities are also assumed fixed
as in problem (1). Activity A; is dominated if
there is no feasible solution (Z) satisfying the
dual constraints of problem (1) (Drynan 1987,
equation set 5):

* Department of Agriculture, University of Queensland,
St. Lucia. The first draft of this paper was prepared while
the author was on leave in the Department of Agricultural
Economics, University of Manchester. Thanks are due to
John Longworth for constructive comments.

1. The superscript F is used in problem (1) to refer to the
“full” A and C matrices, that is whenr = n.

147



Review of Marketing and Agricultural Economics

Vol. 55, No.2, August 1987

a'z - c >0

(2) Ai'Z -C; L0

220

where a and ¢ are the matrices A and C after
eliminating the ith column and element
respectively, C; and Z; are the ith elements of
the m-vectors C and Z respectively. Additional
information on possible shadow prices, if
available, can be incorporated by the addition
of further constraints on Z in problem (2).

3. LP and Constant Returns to Scale

Considerable resources have been devoted to
empirically estimating returns to scale. Some
would question such efforts, on the basis that
constant returns to scale are inescapable: if all
inputs are variable, it must always be possible
to replicate the production process.
Production functions must be linearly
homogeneous. Observed non-constant returns
to scale can reflect only imperfect
measurement: all inputs cannot have been
increased in proportion.

This position is accepted here a priori. Given
the inevitability of constant returns to scale,
observed decreasing returns to scale can be
nothing more then diminishing returns to the
variable inputs with some unspecified input
held fixed, or at least not varied
proportionally. Increasing returns to scale
reflect ecither increasing returns to variable
inputs, or a more than proportional increase
in some unspecified input.

The linear programming model is quite
instructive here. It is necessarily a linearly
homogeneous model and thus consistent with
the logical necessity for constant returns.? But
it permits the modelling of observed
decreasing returns, that is diminishing returns
to variable inputs.

Any concave downwards function can be
approximated arbitrarily well by a piece-wise
linear approximation or polytope formed as
the solution of an LP problem. That is, the
function ¥ = f (X,, X,,...X,;) can be
approximated by:

Y2 = max 3. Y. ws

(3) i Vi
(wi)

subject to
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X wi=xj'

for j = l'.-om'

i %51

ZiW-SI
w, 2 0.

where the activity vector (Y; X, Xzj---Xmi)
represents one point on the true function. The
relationship thus established between Y? and
X;, j=1,2..m, is a convex polyhedron or
polytope with vertices on the true function.

The second constraint, the convexity
constraint, is quite important. It forces the
solution in problem (3) to be a convex
combination of the various points on the
function (and the origin). In the context of a
production function, although it appears to be
a hypothetical resource in problem (3), it is in
fact a proxy for the unspecified input giving
rise to the apparent decreasing returns to scale.

Without the convexity constraint, many of
the activity vectors in problem (3) would be
dominated. For example, suppose that there
is a set of vectors corresponding to identical
ratios of all inputs but differing in the level
of the inputs. Suppose too that output shows
decreasing returns’ to the specified inputs.
Then only one activity would be efficient, all
other activities in the set being dominated by
the activity with the lowest level of inputs (and
highest average output). The LP model would
suggest that ouput could be increased linearly
by scaling the specified inputs upwards. But
with the convexity constraint, none of the
activities in the set would be dominated by
others since each either has lower input
requirements or higher output than the others.

The linear programming model of problem
(3) with these “points on the production
function” activities and the convexity
constraint is still a constant returns to scale
model: if all inputs, including the convexity
constraint are increased proportionally, output
also increases proportionally. But with respect
to the specified inputs alone, diminishing

2. One of the key assumptions identified in any text on
linear programming is that of constant returns to scale.
More advanced texts on linear programming will probably
go on and describe how this linearity restriction can be
overcome. Unfortunately, it is easy to gain the false
impression that linear programming models need not
involve constant returns to scale.
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returns will prevail. Thus apparent decreasing
returns are accommodated by modelling the
implicit unspecified input(s) with an explicit
proxy (set of) hypothetical input(s).

A programming model has the advantage
of enforcing constant returns to scale. But the
onus is on the user to account for all resources.
If the convexity constraint were omitted,
constant returns to scale to the specified
resources alone would be wrongly imposed.

4. LP and the Technical and Allocative
Production Problems

Since Farrell’s (1957) pioneering work on
production efficiency, economists have sought
to distinguish between two production
problems: the technical problem of how to get
the most output from a given bundle of inputs,
and the allocative problem of how to allocate
inputs to various production processes to
maximize the economic value of production.

Conventional production function analysis
is inadequate to address both problems: the
production function is defined as the
relationship between bundles of inputs and the
maximum output achievable (e.g. Henderson
and Quandt 1958). As Dorfman et al. (1958)
have emphasized, and Longworth and Menz
(1980) have shown more recently in this
Review, beginning economic analysis with a
production function assumes away the
technical problem of how inputs are to be
transformed into output. This technical
problem has first to be made explicit and
solved before any production function can be
specified, let alone used to solve allocative
problems.

On the other hand, an activity based model
can do precisely these things since it can
encompass both the technical and allocative
problems. The LP models for both problems
are presented here in preparation for the
subsequent discussion on efficiency matters.

Consider the technical production problem
for product j. The solution to this problem
defines the production function for the
product:

Y. = T, Y . . a
o J (3??) i Y31 Vi

ji
subject to Zy gkji wji = xkj

for all k,

Zi WjiSI

Wj i 20 for all i,
where X,; is the amount of resource k
available for producing product j, (Y g
g:j;...) defines one of a number of available
activities for product j, and (Wj1, W2, ...) is a
vector of levels of activities.

The allocation problem is that of how much
of each resource should be devoted to
alternative products. Suppose the firm seeks
to maximize the return to its fixed resources:

max . C. Y.
b 73 7]
(5) (ij)

subject to

z < Bk for all k,

i %kj

ij 2 0 for all k and j

where C; is the objective coefficient for
product j, and By is the total availability of
resource k to the firm. Now Y; and Xy; are
linked through the technical problems, and
combining the problems, the overall problem
for the firm is:

(6)
max y. C: (max r: wss: Y..)
j 1 Y31 Yji
for all k,

P W51 < L
wji.ZO

for all i,
subject to

Zj ij <L Bk for all k.
ij 20 for all k and j.

149



Review of Marketing and Agricultural Economics

Vol. 55, No.2, August 1987

For any set of resource allocations, Xj; for all
k and j, the variables and constraints of one
technical problem are independent of those in
the others. Then the inner max operator can
be taken outside the summation signs. The
problem is then to choose Sy; and wj; to:

(7)
max L. I, . - .
PITA B S B E AT
kj’ "ji
subject to
i 9kji 91 T Xk3 = O
for all k,
Zj ijSBk
for all k,
23 Wji$1
for all j,
Wiji 20

for all i and j.

This, the standard programming formulation,
then reflects both the technical and allocative
problems.

5. Technical vs. Allocative Efficiency

The approaches taken by Farrell (1957), Seitz
(1970), Timmer (1970) and others to the
measurement of technical inefficiency differ,
not only in whether they use programming
methods, but in their measures. Some,
including Timmer (1970), measure technical
inefficiency with an “output based” measure
by focussing on the shortfall in output
obtained from a given bundle of inputs.
Others, for example Farrell (1957), have relied
on an “input based” measure and focussed on
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the extent to which all inputs could be
proportionately reduced and still produce a
given level of output.

The input based and output based measures
of technical efficiency are generally not
identical. Only if the production function
displays constant returns to scale are they the
same (Fare and Lovell 1978). Further, when
using an input based measure, technical
efficiency can be measured in various ways by
reducing a selected input, or combination of
inputs, rather than by using a proportional
reduction in all inputs, while maintaining
output. These generalizations have been
discussed by Kopp (1981) and are illustrated
in Figure 1. The figure depicts the efficient unit
isoquant and a series of particular activites.
A, D and E are efficient activities under any
of the measures. C is an inefficient activity
under any of the measures, but the extent of
inefficiency depends on the chosen measure.
For example, C is quite inefficient relative to
A but only moderately so with respect to D
and E.

What about B? Because the efficient unit
isoquant is vertical above D, the same output
can be produced with less input that at B, in
particular less of input 2 and the same amount
of input 1. B is inefficient. However, with the
bundle of inputs used by B, the maximum
output is the unit output. Hence B is efficient.
The same conclusion of efficiency is made if
one focuses on a proportional reduction in
inputs.

The failure of these last two tests to detect
the inefficiency of B is due to a too limited
comparison of B with other uses of resources,
namely only to the set of combinations of
other activities using exactly the same ratio of
resources as activity B.

A more appropriate way to establish
technical inefficiency is to focus on problem
(4). Any activity which is dominated for
problem (4) is technically inefficient. There is
no resource situation in which the activity
would be included in an optimal basis.
Without knowledge of resources, and hence
their shadow prices, such activities can be
discarded because they waste resources in an
absolute sense.

Any activity dominated in problem (4) will
also be dominated in problem (7). But problem
(7) may include other dominated activities,
namely activities which are technically
efficient for their own product but which,
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given available information on product prices,
cannot compete with other products under any
resource (or shadow price) situation. These
activities are here called “allocatively
inefficient”.’

Although the notion of technical efficiency
appears simple enough, a closer examination
leads to the inescapable conclusion that
technical inefficiency is an impossibility. How
can the level of output from a given bundle
of inputs differ? If all inputs are fully and
precisely identified, then logically only one
output can result, and perfect technical
efficiency is achieved as a necessity. Measured
technical inefficiency can occur only through
the analyst’s failure to fully specify the
production process.* Either there must be
unspecified inputs being used at different
levels by the various activities, or the existing
specification of input usage must not be

¢ B
Technical efficiency measures for C:

Input 2 AYy/CY

DZ/CZ

EO/CO

A 1FD__ o _’C (unit output)
s g
' Z
0 Y
Input 1
Figure I: Measures of technical efficiency using the efficient

unit isoquant (EUI).

sufficiently revealing. In particular, the inputs
may not be homogeneous.

The concept of the maximum of several
possible outputs achievable from a given
bundle of inputs thus has relevance only if the
inputs are imperfectly specified, The analyst

3. This differs from the usual definition of allocatively
inefficient activities: technically efficient activities which
are not economically justified under an assumed set of
prices. The definition used here allows for a range of
allocative inefficiencies as the level of price information
varies.

4. Those who measure technical inefficiency concede this,
arguing that differences in technical efficiency reflect
differences in the non-conventional inputs, namely
management, technology, skills, effort, timeliness, ec.
There seems little merit in choosing not to try to measure
these inputs but to measure their overall impact and to
describe differences in the latter by the value laden term
“inefficiency”.
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focusses explicitly on certain defined aggregate
inputs and measures technical efficiency with-
in that context, and imposes some price
information in forming the aggregates.
Technical inefficiency is merely a convenient
catch-all for the failure of the firm to allocate
the individual inputs within aggregates
correctly on the analyst’s assumed prices. Any
observed activity can be inefficient only
because either (a) the firm has made incorrect
allocation decisions about individual inputs;
or (b) the analyst has assumed inappropriate
prices.’

To see that technical inefficiency is only a
form of allocative inefficiency, suppose there
are r fully known activities A;, j = 1,..1, and
that they have unit requirements A;, and A;.
for two forms of capital, and certain
requirements for resources 3, 4, ..m. A
would be dominated if, using problem (2):

(8)

Alel + Aj2Z2 +eeo— Cj 2 0

for all j, j # i,

zZ 2 0.

If the two forms of capital were aggregated to
form resource * by assuming

A = Aj+K A, A would be dominated if:
(9)
Aj*Z* + Aj3Z3+.oo_ Cj _2 0

for all j, j # i,

Z 20

where Z is now redefined to be of length m—1.
That is, A; is dominated if:
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(10)
(Aj1+ K Ajz)z* +

3+.00-Cj20

for all j, j # i,

Aj3Z

Ai3Z3+ aoo'_Ci.S.O

z 2 0.

Suppose dominance of A; is studied
assuming information on the relative shadow
prices of the two forms of capital. In
particular, assume that Z, = K Z. Then to
determine dominance, a Z is sought satisfying:

(11)

Bj181 * Byply *...-C5 20
for all j, j # i,

RijZy *+ Bjplp *... - C3 L0
KZl—Z2=0

Z 2 0.

5. By working with the production function, the analyst
takes it for granted that the many within-agregate
allocation decision are to be made correctly on the basis
of the analyst’s assumed prices. One of the dangers of
working with production functions is that of
mis-interpretation. Errors are quite common. For example,
Just et al. (1983) considered the case of the input “fencing”
formed as the sum of goat fencing and cattle fencing.
Extra fencing causes both goat and cattle output t0
increase. Then one can increase cattle output by increasing
goat fencing alone. From a practical perspective, this
appears to be nonsense. But when it is remembered that
the production function shows the maximum output
possible from a given set of imperfectly defined resources,
it is clear that the production function does not imply that
a firm could increase its cattle output by using extra goat
fencing. It implies only that, if the sum total of fencing
were increased and optimally allocated to fence types,
cattle output would increase. The production function
relates maximum output and aggregate inputs, not output
and individual inputs. Only one of the many combinations
of individual inputs making up the particular level of
aggregate input would give the production function
output.



Drynan: Allocative vs. Technical Efficiency

By eliminating Z,, the same set of equations
as in problem (10) is obtained. Thus any test
of dominance to detect technical inefficiency
using aggregate inputs is equivalent to a test
for allocative efficiency given the prices on
which the aggregates were formed.

But there are cases which appear to
contradict the impossibility of technically
inefficient LP activities. Suppose two activities
are identical except that the first uses more
fertilizer (F, > F,), produces more yield (Y,
> Y:), and has the greater gross margin (GM,
> GM.). If the activities are specified in an
LP by the vectors (GM; X, X;; ...), i=1,2, in
which fertilizer and yield are only included
implicitly via the gross margins, then the
second is pair-wise dominated by the first. But
it would be incorrect to call the activity
technically inefficient. It represents a point on
the production function and this, by
definition, makes it technically efficient. If the
fertilizer and outputs were made explicit in the
activity vectors, then neither activity would be
dominated.

The dominance status changes here because
of altered price information. When a gross
margin is used, information on the prices of
fertilizer and output is assumed. But when
fertilizer and output are explicit, no
information is assumed about their prices.
Then shadow price situations exist in which
each of the two activities could be optimal.

But suppose that F, were less than F,, and
yield and gross margin were still greater for the
first activity than the second. The latter then
lies in the irrational zone of negative marginal
returns. It is dominated both under a gross
margin specification and a fertilizer/yield
disaggregation. Is it technically inefficient? If
using an output measure of technical
efficiency, the activity must be called
technically efficient, for it is on the production
function, that is it gives the highest yield from
the bundle of inputs. Now one might argue
that by leaving some fertilizer idle, yield will
be increased. But this clearly cannot happen,
for if it did the production function would not
show negative returns. The existence of
negative marginal returns implies that there is
some fixity in the system which prohibits
resources being idle. Fertilizer must be used.
Now if one defines an m+1th resource and
makes this “resource requirement” explicit as
Xm+1, the activities must be defined by vector
specifications (Y; F; Xy Xiz ..., Xjmag), i=1,

2, where X| 111 < X3 may < 0. With this
additional resource, again neither activity is
dominated.

In summary, all activities are technically
efficient if fully specified. Correspondingly, no
activities are dominated if they are fully
specified. Dominance arises as price
information is injected into the analysis.
Dominated activities are not technicalily
inefficient but allocatively inefficient with
respect to the assumed price information.

6. Specification of Linear
Programming Activities

In building a programming model only
efficient activities need be included. Where
there is no price information, all activities
describing the production opportunities must
be included if the optimal solution to problem
(1) is to be assured. But where prices are
implicit in forming aggregates, only the
so-called technically efficient activities need be
retained in the model. Where further price
information is available, only activities
representing some part of the production
space will be necessary. The difficulty, and
there is no easy solution, is that of how to
identify a priori dominated activities without
having to define them fully first.

In defining an activity, suppose the ratios
of all inputs except one, fertilizer, have been
fixed. With a known fertilizer price and output
price, the optimal fertilizer level can be
determined as that maximizing the activity
gross margin. Only one level of fertilizer is
needed once all other inputs have been fixed.
If a second, different set of ratios of the fixed
factors is defined, a new optimal level of
fertilizer must be determined. But again only
one fertilizer level, one activity, is needed.

Nevertheless, a multitude of activities has
to be defined to allow for the many possible
ratios of the other factors. The major problem
concerns the resources which are fixed to the
firm. In most linear programmes, the shadow
prices of these resources are not obvious a
priori. The optimal factor ratios cannot be
specified a priori, but will be those at which
the marginal rates of substitution of the
factors are equal to the ratios of optimal
shadow prices. There is no alternative but to
specify a range of activities with different
ratios for the unpriced resources. For each
such activity, levels of priced inputs should be
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chosen (if possible) to maximize the gross
margin.

But even the choice of fertilizer level may
not be simple. In particular, when one alters
the fertilizer level, the requirement for some
other factor may necessarily change as well.
For example, one of the resources which is
required for a crop is cash. When more
fertilizer is applied, more cash is needed. As
well, more cash will be generated from the sale
of extra output. If cash constraints are
included with shadow prices to be determined
within the model, it will be impossible to
establish @ priori an optimal fertilizer level
since some of the costs and benefits of using
more fertilizer are not a priori known. Thus
one would need, for any set of fixed factor
ratios (excluding cash), a series of activities
with differing fertilizer (and cash)
requirements.®,’

There is one reason why it may be desirable
to include multiple activities with varying
fertilizer levels while all other resource
requirements remain unchanged. Given a set
of fertilizer and output prices, all except one
of these activities will be dominated. But if the
analyst intends to perform a price or output
sensitivity analysis, that is to alter the problem
information, the optimal activity may change.
If only one activity were specified, the linear
programme would not be able to reflect the
kind of adjustments that a profit motivated
firm would make.

7. Concluding Remarks

The major conclusion of this paper is that
technical inefficiency cannot occur. Observed
cases of technical inefficiency are either cases
of allocative inefficiency or analyst error.
While this may seem an extreme and not
particularly useful position (just as to deny
non-constant returns to scale may seem
pointless to some), it is surely futile knowingly
to label, interpret and wrongly draw
impiications from observed inefficiencies.
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6. Despite the multiple activities, there is strictly still only
one fertilizer level for a set of other factor ratios. One could
specify a set of ratios (including cash), and determine the
gross margin maximizing fertilizer level. But the latter
problem is trivial because, once the cash requirement is
set, only one fertilizer level is feasible.

7. Because all choices between activities are allocative
decisions, it is impossible for the economist to leave the
task of defining activities to the technologist. If the
economist begins his work at the time of budgeting a
proposed activity, he is acceding to the technologist’s
judgement about prices in the formation of aggregate
inputs. To do so is expecting too much of the technologist
and abrogating on¢’s responsibilities as an economist.



