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Conclusive Evidence on the Benefits of Temporal Disaggregation 

to Improve the Precision of Time Series Model Forecasts 

 

 

 

Summary 

Simulation methods are used to measure the expected differentials between the Mean Square 

Errors of the forecasts from models based on temporally disaggregated versus aggregated data. 

This allows for novel comparisons including long-order ARMA models, such as those expected 

with weekly data, under realistic conditions where the parameter values have to be estimated. 

The ambivalence of past empirical evidence on the benefits of disaggregation is addressed by 

analyzing four different economic time series for which relatively large sample sizes are 

available. Because of this, a sufficient number of predictions can be considered to obtain 

conclusive results from out-of-sample forecasting contests. The validity of the conventional 

method for inferring the order of the aggregated models is revised. 

Keywords: Data Aggregation, Efficient Forecasting. 
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The issue of whether prediction accuracy can be improved by building time series models on the 

basis of disaggregated data and averaging their forecasts up to the desired level of aggregation 

has been sporadically explored in the literature for nearly four decades. Amemiya and Wu (1972) 

theoretically investigated a scenario where the disaggregated series followed autoregressive 

{AR(1) and AR(2)} processes, deriving formulas to compute the prediction efficiency losses due 

to non-overlapping temporal aggregation and concluding that they could be substantial. 

Tiao (1972) similarly analyzed the case of integrated moving average processes and 

found that significant gains in forecasting accuracy could be achieved by using disaggregated 

data, especially for short-term predictions, when the process is non-stationary. Wei (1978) 

expanded those results to seasonal autoregressive integrated moving average (SARIMA) models. 

He showed that the loss in forecasting efficiency through aggregation could be substantial if the 

non-seasonal component of the disaggregated series is non-stationary. Lütkepohl (1984) and Wei 

(1990) extended the previous findings to multivariate cases. Other related contributions include 

Rose (1977), Wei (1978), Tiao and Guttman (1980), Weiss (1984), and Gonzalez (1992). All of 

the previously cited works and results, however, are theoretical and asymptotic in nature, and 

assume that the model parameters are known.  

Notably, Lutkepohl (1987) compared the Mean Square Error (MSE) of the forecasts from 

disaggregated versus aggregated ARMA models when the parameters have to be estimated. He 

showed that, asymptotically, the MSE matrix for the vector of 1-step to r-step ahead aggregate 

predictions from a disaggregate ARMA model strictly dominates the MSE matrix for the 

prediction vector from the corresponding aggregate model. In addition to being asymptotic, 

however, his analyses were limited to a “very special” type of AR process. Lacking a broader 

result, he concludes that “it seems that temporal aggregation generally results in efficiency losses 
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in forecasts if the ARMA coefficients are estimated” and “overall, the results suggest that using 

disaggregate data is preferable.” On the feasibility of obtaining broader theoretical results, 

Koreisha and Fang (2004) opine that it is too complicated to analytically compute the effect of 

parameter estimation errors on the prediction MSE for models as simple as an ARMA(1,1).  

Lutkepohl (1987) also points out that “the fact that in practice temporally aggregated data 

sometimes do provide better forecasts than the disaggregate data (e.g. Abraham 1982) cannot be 

explained by asymptotic theory” and provides the following possible reasons for this apparent 

contradiction: a) the sample sizes involved are too small for the asymptotic theory to be valid, b) 

the assumptions, such as structural stability over time, underlying asymptotic theory are violated 

in practice, and c) a specific estimate obtained on the basis of a single realization of the data 

generating process is not a good approximation to the actual forecast MSE of the underlying 

process. In short, he questions the applicability of asymptotic results under small sample 

conditions and whether empirical out-of-sample forecasting contests based on a limited number 

of predictions provide reliable estimates of the actual MSEs. 

Several empirical studies have failed to unequivocally support the previously discussed 

theoretical results (Koreisha and Fang, 2004). Butter (1976), for example, compared monthly 

versus quarterly models of the difference between the yield on mortgages and the yield on 

government loans using data from 1961 to 1974. He generated quarterly forecasts based on a 

quarterly ARMA(1,1) model and on the average of the monthly predictions from an AR(1), and 

found the quarterly model to be generally more accurate than the monthly model when the 

forecast horizon was more than one quarter. Nijman and Palm (1990) compared annual 

predictions from annual, quarterly and monthly IMA(1) models of the Netherlands GNP 

estimated using data from 1957 to 1984. Their results suggest that the MSE of the forecasts from 
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the quarterly models is lower than that of the annual models but further disaggregation into 

monthly data hardly yields extra information to forecast that series on an annual basis. 

Lutkepohl (1987, pp 250-257) provides examples involving U.S. personal consumption 

expenditures and U.S. gross private domestic investment where it is not obvious that the 

forecasts from the disaggregate (quarterly) models outperform those from the aggregate (semi-

annual and annual) models. More recently Silvestrini et al (2008) forecast France’s annual 

budget deficits using both monthly and annual information and conclude that “the one-step-

ahead predictions based on the temporally aggregated models generally outperform those 

delivered by standard monthly ARIMA models.” However, it is important to keep in mind that 

the out-of-sample comparisons in all of those examples are based on a handful of observations. 

Georgoutsos, Kouretas and Tserkezos (1998) conducted an empirical evaluation based on 

monthly and quarterly Structural Vector Autoregressive (SVAR) models of the interrelationships 

between the rate of growth of the real monetary aggregate (M1), the industrial production index, 

and the 3-month treasury bills rate. A total of 24 years of data (1964-1987) were used to build 

the models and four years were saved to assess their ability to make ex-post quarterly forecasts. 

They report the standard deviation of the actual and predicted values, Theil’s inequality 

coefficients, and MSE bias and variance/covariance decomposition results and conclude that “all 

the measures of forecasting accuracy assume larger values when the aggregate data is used 

instead of the aggregated forecasts from the monthly observations.” The magnitudes of the 

forecast MSE reductions, however, are not provided by these authors. 

More recently Koreisha and Fang (2004) examined the forecasting accuracy of models 

based on aggregated versus disaggregated data where the disaggregated predictions are 

immediately updated as new information becomes available. These authors assume that the 
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disaggregated (“monthly”) data are generated by hypothetical short-order {up to ARMA(2,1) and 

ARMA(1,2)} models and theoretically show that new monthly observations becoming available 

during the current quarter could be used to improve the performance of quarterly forecasts in the 

case of short-term predictions. A recent synopsis of past literature on this issue is presented in 

Silvestrini and Veredas (2008). 

In summary, previous studies have shed light on the potential gains in forecasting 

efficiency that could be achieved by using more disaggregated time series models. However, the 

principle of building models and making predictions based on the lowest possible level of data 

disaggregation even when only more aggregate level forecasts are desired has not been adopted 

in practice, and there does not seem to be a concerted effort to collect more disaggregated data 

for the purpose of increasing forecasting efficiency. 

This might be due to the fact that, as previously discussed, the stronger results in favor of 

disaggregated models are theoretical in nature and there is still doubt as to whether those results 

actually hold in small sample applications. Related concerns include the relatively short orders of 

the ARMA models that have been theoretically and empirically investigated to date and the lack 

of generally applicable measurements of the efficiency gains that could be expected under 

conditions where the model parameters have to be estimated. Further, the potential benefits of 

disaggregation down to weekly data have not been investigated. A final issue is that the few 

empirical evaluations available to date have yielded mixed results, perhaps because they have 

been based on out-of-sample forecasting contests where the limited number of predictions 

available for the comparisons might have obscured the outcomes. 

This research attempts to address the previous issues by measuring the exact MSE 

differentials between the disaggregated and the aggregated model forecasts through simulation 
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methods. This allows for comparisons including long-order ARMA models, such as those 

expected with weekly data, under realistic conditions where the parameter values have to be 

estimated. The weakness of past empirical evidence is addressed by analyzing four different time 

series for which a large number of observations are available. Because of this, a sufficient 

number of predictions can be considered to obtain conclusive results from the out-of-sample 

forecasting contests. Comprehensive comparisons involving annual forecasts from annual, 

quarterly, monthly and weekly models; quarterly forecasts from quarterly, monthly and weekly 

models; and monthly forecasts from monthly and weekly models are presented.  

A final issue explored in this research relates to Brewer’s (1973) formula, which has been 

used in numerous past studies (up to Silvestrini et al 2008) to ascertain the ARMA order of 

aggregate models based on that of the “originating” disaggregated model. It has been noted that 

this formula implies that the ARMA orders (p and q) do not decrease with aggregation, which 

contradicts empirical observation (Rossana and Seater, 1995). This is another instance where a 

theoretical result does not appear to match what is being experienced in practice. This research 

assesses whether such high ARMA orders are really necessary to properly model the aggregated 

processes corresponding to particular disaggregated time series. 

The Data Series 

Four common, readily available data series are used in the research: the US oil spot price (1326 

weekly observations beginning 2/22/1985), the 10-year US bond yield (2332 weekly 

observations beginning 11/13/1965), the US/Japan exchange rate (1942 weekly observations 

beginning 6/8/1973), and the US Federal funds rate (2120 weekly observations beginning 

1/7/1970).  All data was downloaded from the IHS Global Insight data services website 

(http://www.ihs.com). The four series were subject to augmented Dickey-Fuller and Phillips-

http://www.ihs.com/�
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Perron tests with an intercept and a linear time trend. The null hypothesis of a unit root could not 

be rejected at an α of 0.10 in any of the cases. In addition, the more general test suggested by 

Ouliaris, Park and Phillips (1989) was conducted assuming a third-degree polynomial trend. The 

unit root hypothesis again held in all four series (α=0.10). Alternatively, through the same battery 

of tests (α=0.001), it is concluded that the first-differenced data is stationary. 

The differenced series, however, seem to experience periods of high and low volatility 

over time (Figures 1 to 4). Specifically, the standard deviation (STD) of the last 380 or so 

observations of Series 1 (the US oil spot price) is over three times that of the previous 9401. In 

the case of Series 2 (the 10-year US bond yield), the STD of observations 720 to 1150 is about 

2.5 times higher than in the rest of the data1. Series 3 (the US/Japan exchange rate) seems to be 

almost twice as volatile during the first 840 periods1. Finally, the STD of Series 4 (the US 

Federal funds rate) is approximately three times higher during the first 890 observations1. 

Therefore, in all four series, the first-differenced data are re-scaled using the appropriate standard 

deviation ratios in order to achieve a more homogeneous level of volatility over time (for the 

purposes of peer-review, the re-scaled data are shown in Figures 1S-4S). It is important to note 

that without re-scaling the ARMA orders needed to attain independently distributed errors are 

excessive (p>24 and q>24 in the case of Series 2 and 4). 

 The next step is to determine the appropriate ARMA order for each of the first-

differenced re-scaled series. For this purpose, a total of 625 ARMA(p,q) models encompassing 

all possible p-q combinations (p=0,…,24 and q=0,…,24) are estimated. In the case of Series 1, 

an ARMA(16,11) exhibits the lowest Akaike Information Criterion (AIC=4,030.03). However, a 

more parsimonious ARMA(8,7) still appears to have independently distributed errors2 and shows 

a nearly identical AIC of 4,030.11. The latter is thus selected as the appropriate order. For Series 
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2, the minimum AIC (-4,754.61) corresponds to an ARMA(14,13), but an ARMA(6,3) still 

exhibits independent errors2 and has the eight lowest AIC (4,750.22). The more parsimonious 

specification is also chosen in this case. The ARMA order with the smallest AIC (p=11, q=11) is 

selected for Series 3 because there is no substantially more parsimonious model with seemingly 

independent errors2. Finally, an ARMA(13,19) with an AIC of 2,308.90 is chosen for Series 4 

since this is the least parameterized model with independent errors2.  

Simulation Analyses 

In the following analyses, it is only assumed that the previously selected ARIMA data-generating 

processes are generally representative of the dynamic behavior of economic variables which are 

observed on a weekly basis. While it is not implied that they are the exact models underlying the 

observed oil prices, bond yields, and exchange and federal funds rates, from here on, they will be 

referred to as the “true” models. 

The next step in the analysis is to compute the Mean Square Errors of the monthly, 

quarterly and annual out-of-sample forecasts from those “true” models, i.e. assuming that their 

parameter values are known. The forecast errors are defined as the differences between the 

average of the first four (for “monthly”), twelve (for “quarterly”) and forty eight (for “annual”) 

periods ahead predictions from these weekly models and the average of the values “observed” 

during those periods3. The observed values and predictions, of course, are for the original (non-

differenced) series. The MSE of the forecasts from the corresponding aggregate (monthly, 

quarterly and annual) models are needed as well. In the case of the monthly models, for example, 

the forecast errors are defined as the differences between the averages of the one (for monthly), 

three (for quarterly) and twelve (for annual) period-ahead predictions and the averages of the 

four, twelve and forty eight weekly values observed during those periods. 
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As previously mentioned, Koreisha and Fang (2004) derived formulas to compute the 

MSE of the forecasts from monthly AR(1), AR(2), MA(1), MA(2), ARMA(1,1), ARMA(1,2) 

and ARMA(2,1) models with known parameter values, and from their corresponding aggregate 

(quarterly and annual) models. These authors assumed that the aggregate models conform to the 

result of Brewer (1973) which states that if the disaggregate model is ARMA(p,q) the aggregated 

time series follows and ARMA(p, [ p+1+(q-p-1)/m]) where [k] denotes the integer part of k and 

m is the number of periods being aggregated. For future reference, it is important to point out 

that the orders prescribed for the aggregate series (p and [p+1+(q-p-1)/m]) are only maximum 

(Stram and Wei, 1986) in the sense that there could be more parsimonious ARMA specifications 

that also exhibit independently distributed errors. Also note that the procedures utilized by 

Koreisha and Fang (2004) require derivation of the parameter values implied for the aggregate 

models based on those assumed for the disaggregate model. This derivation becomes 

exponentially complex for larger values of p and q, which might explain why they limit their 

examples to aggregations of monthly models with p≤2, q≤2 and p+q≤3.  

Given that the objectives of this research include exploring the potential forecasting 

efficiency gains from utilizing more disaggregate (weekly) models, which realistically exhibit 

much larger p and q orders, and to obtain results pertaining to small sample applications where 

the parameter values are unknown and have to be estimated, and for other key reasons that will 

become apparent later in the paper, an alternative simulation-based procedure to compute 

estimates for the MSE of the forecasts from the disaggregate and aggregate models is developed. 

This procedure (A) consists of the following steps: 

1) A sample of T weekly observations is simulated from an ARMA(p,q) process using 

the order and parameter values corresponding to each of the four “true” models 
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discussed in the previous section. Since the simulated observations are actually first-

differences, the corresponding level values are recovered assuming zero as the 

starting level. 

2) The first 1,000 observations from both the first-difference and the level samples are 

discarded to eliminate the impact of the starting values for the ARMA simulates, 

which were also set to zero. 

3) The last 192 observations are also excluded and saved for the out-of-sample forecast 

evaluation.   

4) The remaining T-1,192 observations from the first-difference sample are utilized to 

estimate an ARMA(p,q) model using the Gauss 9.0 ARIMA module. The same 

ARIMA module is used to produce 1- to 192-period-ahead forecasts from the 

estimated model. Those predictions are then translated into level forecasts by adding 

the appropriate number of predicted differences to the last observed level value.  

5) The resulting forecasts and the last 192 observations excluded and saved from the 

simulated levels sample are used to compute the errors of the model’s monthly, 

quarterly and annual one-, two-, three- and four-period-ahead predictions. In the 

annual case3, for example, the level forecasts for weeks 1 to 48, 49 to 96, 97 to 144 

and 145 to192 are averaged and subtracted from the average of the observed values 

during those four periods to obtain the corresponding prediction errors. 

6) The same T-1,192 first-difference observations are then aggregated into monthly, 

quarterly and annual data, i.e. averaged over every 4, 12 and 48 time periods 

respectively. 
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7) Monthly, quarterly and annual ARMA(p*,q*) models are then estimated on the basis 

of that data. The order of those models is determined utilizing the previously 

discussed result of Brewer (1973). 

8) One-, two-, three- and four-period-ahead difference forecasts from those models are 

also obtained using the Gauss 9.0 ARIMA module, and prediction errors are 

computed by subtracting their corresponding levels forecasts from the appropriate 

observed averages of the weekly levels data. 

9) Quarterly and annual predictions and prediction errors are analogously computed for 

the monthly model, and annual predictions and prediction errors for the quarterly 

model, in order to allow for forecasting precision comparisons across monthly versus 

quarterly and annual, and quarterly versus annual levels of aggregation as well. 

10) Steps 1-9 above are repeated 10,000 times to obtain 10,000 of prediction errors 

corresponding to each of the previously discussed models and forecasting timeframes. 

Those errors are squared and averaged to obtain the desired MSE estimates. 

A secondary issue of interest related to step 7) above is that while the orders for the 

aggregate models determined by applying Brewer’s (1973) formula are guaranteed to make their 

error terms independently distributed, it is possible that more parsimonious models can be found 

which: 1) also exhibit independent errors, and 2) produce more efficient forecasts under finite 

sample conditions. The following procedure (B) is utilized in order to investigate the first part of 

this hypothesis: 

1) 1,000 samples of T=5,000 weekly observations are simulated from ARMA(p,q) 

models with the orders and parameter estimates of each of the four “true” first-

difference models discussed in the previous section. 
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2) The first 1,000 observations from each sample are discarded to eliminate the impact 

of the starting values for the ARMA simulates, which were set to zero. 

3) The remaining T-1,000=4,000 observations in each sample are aggregated into 

monthly data. 

4) 1,000 ARMA models of increasing order (p=1, q=0; p=0, q=1; p=1, q=1; p=2, q=0; 

p=0, q=2; p=2, q=1; p=1, q=2; p=2, q=2; …) are estimated on the basis of the 1,000 

monthly samples. 

5) Box-Pierce tests with 120 lagged residuals are conducted and the lowest ARMA(p,q) 

order under which less than 100 out of 1,000 estimated models fail this test at α=10% 

and less than 10 at α=1% is selected as the most parsimonious monthly specification 

that is likely to exhibit independent errors. 

6) The above steps are repeated with T=13,000 and T=49,000 to obtain 12,000 and 

48,000 weekly observations which are then aggregated into 1,000 quarterly and 1,000 

annual observations and used to determine the order of the most parsimonious 

quarterly and annual models likely to exhibit independent errors. 

Results 

As previously indicated, procedure (A) is applied assuming that the true models are the 

ARMA(p,q) data-generating processes implied by the estimated US oil spot price, 10-year US 

bond yield, US/Japan exchange rate, and US federal funds rate first-difference models discussed 

in a previous section. Since the presumed true models are bona fide estimates of actual economic 

time-series processes, the results should be generally representative of what could be expected in 

practice. The first set of results corresponds to a scenario where T=49,192 weekly observations 

are repeatedly simulated and 48,000 of them are made available for model estimation. This 
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means that the monthly, quarterly and annual models are estimated with 12,000, 4,000 and 1,000 

observations respectively. At these sample sizes the parameter estimates tend to be close but are 

still not identical to their “true” values. Therefore, this scenario only approximates the “known 

parameter value” assumption underlying previous theoretical analyses. 

The results, presented in the left half of Table 1 {Model 1(L) to Model 4(L)}, are 

generally consistent across the four data series in regard to the forecasting efficiency gains that 

can be expected from using models with lower levels of data aggregation. In the case of one-

period-ahead forecasts, disaggregation from monthly to weekly (M to W) data reduces the MSEs 

by an average of 32.41% (range of 25.38% to 39.41%). Interestingly, the gains from quarterly to 

weekly (Q to W) and annual to weekly (A to W) disaggregation are even higher (average of 

45.98% and 44.23% respectively).  Disaggregation from quarterly to monthly (Q to M), annual 

to monthly (A to M) and annual to quarterly (A to Q) data yields marked MSE reductions 

(average of 35.25%, 41.38% and 32.51 %) as well. Improvements in the precision of the two-, 

three- and four-period-ahead predictions are lower but remain notable at all levels of 

disaggregation, averaging 14.85% for two periods ahead, 8.90% for three periods ahead and 

6.72% for four periods ahead. 

The next set of results relate to the hypothesis that lower orders than those prescribed by 

Brewer’s (1973) formula for the aggregate ARMA models can be found which also exhibit 

independent errors. Table 2 presents the orders of the monthly, quarterly and annual models 

implied by that formula for each of the four weekly processes under consideration, and the orders 

obtained on the basis of the second procedure (B) described in the previous section. Note that 

there is always a model order which clearly exhibits independent errors and is substantially more 

parsimonious than Brewer’s. In fact, aggregate quarterly and annual models with independent 
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errors can be obtained with very low (p≤2, q≤1) ARMA orders in three of the four cases, even 

when the Brewer’s formula suggests that much higher orders are needed. In addition, note that 

the average AIC values are always lower in the more parsimonious models at all levels of 

aggregation. These results support the general observation that, in practice, the optimal order of 

ARMA models rapidly declines with aggregation. 

The results in Table 2 also illustrate the loss of information about the dynamic behavior 

of the time series that can occur with aggregation. In the case of Series 4, for example, the 

weekly model is an ARMA(13,19) with highly significant parameters, which theoretically 

involves several overlapping cycles of various lengths. And the most parsimonious monthly 

model with independent errors is still an ARMA(6,5). In contrast, according to Procedure B, the 

quarterly and annual models are both ARMA(0,1) with barely significant MA parameters. 

The next question is whether the more parsimonious models identified through Procedure 

B exhibit smaller forecasting errors than those specified using Brewer’s formula. Under an 

infinite sample size, it stands to reason that the forecasts from all models with independently 

distributed errors should have the same MSE regardless of their ARMA order. In other words, 

adding statistically unnecessary parameters should not affect the asymptotic efficiency of the 

forecasts. Alternatively, in finite-sample applications, it seems that more parsimonious models, 

so long as they have independent errors and a lower AIC, should yield more accurate predictions. 

In order to explore the validity of this claim, Procedure A is applied with a sample size of 

SS = 3840 weekly = 960 monthly = 320 quarterly = 80 annual simulated observations, which is a 

high upper-bound for what might be available in practice, and under two sets of aggregate model 

orders: the ones prescribed by Brewer’s (1973) formula and the parsimonious specifications 

identified through Procedure (B). Table 3 shows the percentage increase in the MSE of the 
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forecasts resulting from the use of the more heavily parameterized models.  In the case of the 

forecasts from the monthly models (M-M, M-Q and M-A) small but consistent MSE increases 

are observed even at this relatively large sample size of 960 monthly observations. The 

differences in this case are not striking because there is still an ample number of observations 

available to estimate the excessively parameterized monthly models. 

As expected, since there are only 320 observations available for model estimation, much 

larger differences are generally found when comparing the MSE of the forecasts from the 

quarterly models (Q-Q and Q-A). In the case of the annual predictions (A-A), the MSE increases 

range between 11 and 23 percent. Finally note that the magnitudes of the differences seem to 

hold for the longer-term (up to four-period-ahead) forecasts. In short, it appears that the formula 

developed by Brewer (1973) is a very conservative upper bound for the ARMA order required 

for aggregated models to exhibit independently distributed errors. As a result, in small sample 

applications, it seems best to seek and utilize more parsimonious ARMA orders. 

The previous finding is also pertinent for the next step in this research where MSE 

differentials for increasing levels of data aggregation are evaluated under small sample 

conditions because, in such cases, it becomes difficult to estimate the more aggregated models 

with the long ARMA orders implied by Brewer’s formula. Specifically, for the selected small 

sample size of 1920 weekly observations, there are only 160 and 40 data points available to 

estimate the quarterly and annual models. Even with samples of 160 observations, convergence 

issues are frequently encountered when attempting to repeatedly estimate heavily parameterized 

ARMA models (which is required to implement procedure A). In addition, the previous results 

confirm that the more lightly parameterized models exhibit a superior forecasting performance. 
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Thus, for the small sample evaluations, Procedure A is again applied using the most 

parsimonious specifications reported in Table 2 for the aggregated models.  

The results from these small sample evaluations are presented in the right half of Table 1 

{Model 1(S) to Model 4(S)} to allow for an easy comparison with the large sample results 

{Model 1(L) to Model 4(L)}. Overall, it appears that the forecasting efficiency gains that can be 

expected from using models with lower levels of data aggregation under small sample size 

conditions are not much different from those observed in the large sample scenario. However, 

depending on the circumstances, they can be somewhat larger or smaller. 

In order to explore the reason for this ambiguity, the Model 1 and Model 3 forecast MSEs 

which underlie the results in Table 1 are presented in Table 4. As expected, the predictions from 

the models estimated on the basis of small samples (SS=1,920) always exhibit larger MSEs. The 

relative MSE differences, however, vary widely. In the case of Model 1, for example, the MSE 

of the one-period-ahead annual forecasts from the weekly model (W-A) is 12.88% larger when 

the model is estimated with 1,920 instead of 48,000 observations. In contrast, the MSE of the 

annual forecasts from the annual model (A-A) is only 4.33% bigger. As a result, the forecasting 

precision gains from annual-to-weekly disaggregation (A to W in Table 1) are 35.28%-

30.00%=5.28% smaller when SS=1,920. Alternatively, in the case of Model 3, the MSE of the 

one-period-ahead quarterly forecasts from the monthly model (M-Q) is only 1.26% larger at 

SS=1,920 while the MSE of the quarterly forecasts from the quarterly model (Q-Q) is 9.29% 

bigger. As a result, the forecasting precision gains from quarterly-to-monthly disaggregation (Q 

to M in Table 1) are 38.91%-34.09%=4.88% higher when SS=1,920. 

To summarize the small-sample results (Table 1), disaggregation from monthly to weekly 

(M to W) data reduces the one-period-ahead forecast MSEs by an average of 32.21 % (range of 
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25.37 to 38.98%). The gains from quarterly to weekly (Q to W) and annual to weekly (A to W) 

disaggregation are even higher (average of 46.06% and 43.51% respectively). Disaggregation 

from quarterly to monthly (Q to M), annual to monthly (A to M) and annual to quarterly (A to Q) 

data yields marked MSE reductions (average of 35.88%, 41.58% and 32.23 %) as well. As in the 

large sample scenario, the improvements in the precision of the two-, three- and four-period-

ahead predictions are lower but remain substantial at all levels of disaggregation (average of 

14.28% for two periods ahead, 8.31% for three periods ahead and 6.34% four periods ahead).  

Precision gains of these magnitudes should be very appealing to time series forecasters 

and justify a strong recommendation to collect more disaggregated data and build models at the 

lowest possible level of disaggregation. As previously explained, these efficiency gain estimates 

relate to four time-series data-generating processes that are generally representative of the 

dynamic behavior of economic variables which are observed on a weekly basis (oil prices, bond 

yields, exchange and federal funds rates). However, they are still theoretical measures of 

expected gains based on simulation analyses. 

Given the mixed empirical evidence discussed in the introduction, a valid question is 

whether such gains will manifest themselves in the typical out-of-sample forecast (OSF) contest 

where NS sub-samples of T-NS-K+1, T-NS-K+2,…, T-K observations are extracted from an 

actual sample of size T and one- to K-period-ahead predictions are obtained from models based 

on each of those sub-samples in order to compute the OSF MSEs. Table 5 presents the results of 

such analyses for the four datasets considered in this study and K=4. The statistics under the 

All/480 heading are obtained when the maximum number of complete annual observations 

available (27 for series 1, 48 for series 2, 40 for series 3 and 44 for series 4) are included in the 
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analyses and the last 480 weeks are used in the OSF evaluations. Thus the annual, quarterly and 

monthly OSF MSE comparisons are based on 10, 40 and 120 observations respectively. 

First note that in the case of the one-period-ahead forecasts (1 P-A), on average across the 

four series, the actual MSE differentials are somewhat close to those obtained in the theoretical 

simulation-based analyses. There is, however, quite a bit of variability in the results across series. 

In the case of Series 3, for example, the MSE of the annual forecasts from the annual model is 

25.73% and 51.07% lower than the MSEs of the annual forecasts from the monthly and the 

quarterly models. That is, disaggregation from annual to quarterly and monthly data substantially 

increases the annual forecast MSE. Additional contradictions with the theoretical findings appear 

in the two-period-ahead (2 P-A) predictions, with the annual forecasts from the weekly model (A 

to W) in Series 1, the annual forecasts from the monthly model (A to M) in Series 2, as well as 

the annual forecasts from the monthly and quarterly models (A to M and A to Q) in Series 3 

exhibiting noticeably larger MSEs than those from the corresponding annual models. 

More pronounced and frequent contradictions are observed in the three- and four-period-

ahead predictions to the point where, even on average, in more than half of the cases, the 

aggregate models show lower MSEs than their disaggregated counterparts. Note, however, that 

all of these “reversals” correspond to annual or quarterly forecast comparisons, which are only 

based on 10 and 40 observations, respectively. In short, although the number of observations 

included in the OSF contest is larger than in past studies, frequent and substantial inconsistencies 

with the theoretical results are still observed, even in the case of one-period-ahead forecasts. 

Fortunately, in three of the four series, there are sufficient observations available to 

significantly increase the number used in the OSF evaluations while still having a suitable 

amount left for model estimation. These more robust comparisons are also presented in Table 5 



 

19 
 

under the heading “All/Min=960”, which means that the smallest sub-sample used for model 

estimation included the first 960 weekly (20 annual, 80 quarterly, 240 monthly) observations and 

the remaining were used in the OSF contest. The numbers included in the contests at the various 

levels of aggregation are shown under the #OSF column. 

Clearly, involving a higher number of observations in the OSF comparisons makes the 

resulting statistics more consistent with the outcomes of the simulation analyses. Although there 

are still a few instances where the MSEs of the forecasts from the aggregate models are 

somewhat lower than those from their disaggregated counterparts, the overall pattern as well as 

the four-series averages now strikingly favor the disaggregated models at all forecasting 

horizons. Depending on the level of disaggregation, average efficiency gains range from 31.64% 

(Q to M) to 54.82% (A to W) for the one-period-ahead, from 9.3% (Q to M) to 21.36% (Q to W) 

for the two-period-ahead, from -0.62% (Q to M) to 13.53% (A to M) for the three-period-ahead, 

and from -0.70% (Q to M) to 10.09% (M to W) for the four-period-ahead forecasts. 

In short, the OSF contests provide convincing empirical evidence to the substantial 

benefits of disaggregation at various levels ranging from annual to weekly data. They also shed 

light on the reason why the evidence from previous studies has been mixed, by showing that 

OSF comparisons based on less than 10 annual and 40 quarterly observations are subject to 

substantial sampling error and can therefore yield unreliable results. 

Conclusions and Recommendations: 

The first scenario explored in the paper is based on very large samples, which is approximately 

equivalent to assuming that the true model parameters are known. Under such scenario, 

consistent improvements in forecasting accuracy resulting from higher levels of data/model 

disaggregation are found for four different data-generating processes that are broadly 



 

20 
 

representative of the dynamic behavior of economic time series variables. Efficiency gains are 

high across all possible levels of disaggregation, i.e. from annual to quarterly, monthly and 

weekly; from quarterly to monthly and weekly; and from monthly to weekly. Asymptotic gains 

have been theoretically measured in previous studies, but only under small-order ARMA models 

with hypothetical parameter values, i.e. not necessarily realistic data-generating processes. 

In the second scenario, the true parameter values are unknown and have to be estimated 

on the basis of a realistic sample size of 1920 weekly observations. This is still a simulation-

based analysis which allows for a relatively precise measurement of the theoretically expected 

gains. Under this scenario, the efficiency gains from increased disaggregation are similar to those 

obtained when using large samples. This comparison had not been previously accomplished due 

to the difficulties in analytically computing the expected forecasting errors under finite sample 

sizes. That is, the simulation-based procedures advanced in this paper appear to be the only 

feasible way to obtain the necessary measurements. So, it is established that the forecasting 

efficiency gains expected from temporal disaggregation are not hindered when the model 

parameters have to be estimated on the basis of small samples. 

Thirdly, on average, similarly high levels of accuracy improvements are observed when 

the actual data series are modeled and subjected to a traditional out-of-sample forecasting 

contest. This finding is aided by the fact that the time series being evaluated are substantially 

longer than those used previous studies, and that several series are considered in order to obtain 

this average result. In fact, when only ten years of data are used in the contests, the average gains 

are not as conclusive and the improvements from disaggregation are far from obvious in some of 

the individual series, which explains the mixed findings reported in past papers. 
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It is hoped that the previously discussed results, which include theoretical measurements 

under small sample conditions and more realistic ARMA orders and parameter values, and a 

convincing empirical validation of those measurements, will increase awareness of the 

substantial accuracy gains that can be achieved by using more disaggregated data and models for 

time series forecasting. Another important finding of this study is that Brewer’s formula only 

provides a very conservative upper bound for the ARMA order required for the aggregate models 

corresponding to a particular disaggregate process. It seems likely that, in most cases, much 

more parsimonious specifications for the aggregate models can be found that exhibit independent 

errors and provide more accurate forecasts in small sample applications.  
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Footnotes 

1 With t-test(s) rejecting the null hypotheses of equal variance across periods (α<0.001). 

2 The errors are considered independent if Ho can’t be rejected at an α=0.25 by the Box-Pierce 

test with 120 lagged residuals. 

3 To simplify the computations required later in the analyses, a month, quarter and year are 

assumed to consist of four, twelve and forty-eight weeks respectively. Thus, for the remainder of 

the paper, month, quarter and year will used to denote simulated data-periods of these weekly 

lengths. In addition, “observed” and “observation” will be used in reference to simulated data. 
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 Table 1: Percentage forecast MSE reductions resulting from different levels of disaggregation 
under large (L) and small (S) sample sizes (SS=48,000 and SS=1,920 observations).  
 
Model 1(L) 1 P-A 2 P-A 3 P-A 4 P-A Model 1(S) 1 P-A 2 P-A 3 P-A 4 P-A 

M to W 26.39 12.37 8.08 5.74 M to W 25.61 10.73 5.68 2.51 
Q to W 43.54 15.46 6.98 4.34 Q to W 42.40 11.30 0.22 -0.39 
A to W 35.28 8.48 6.21 5.35 A to W 30.00 0.32 0.97 1.35 
Q to M 34.02 11.34 4.79 2.88 Q to M 34.19 10.64 2.78 1.58 
A to M 32.22 7.59 5.41 4.68 A to M 30.49 3.89 3.19 3.57 
A to Q 24.09 5.64 4.27 3.68 A to Q 23.84 4.69 4.56 4.26 

Model 2(L) 1 P-A 2 P-A 3 P-A 4 P-A Model 2(S) 1 P-A 2 P-A 3 P-A 4 P-A 
M to W 38.44 15.17 8.68 5.74 M to W 38.89 15.56 9.02 6.24 
Q to W 43.74 14.04 8.53 6.86 Q to W 44.20 14.03 8.72 7.01 
A to W 42.23 16.18 10.13 7.63 A to W 43.26 16.42 10.06 7.65 
Q to M 31.03 9.67 5.92 4.91 Q to M 31.24 9.22 5.60 4.59 
A to M 39.07 14.98 9.26 6.91 A to M 39.79 14.66 8.62 6.35 
A to Q 31.57 11.99 7.35 5.57 A to Q 32.62 12.18 7.15 5.34 

Model 3(L) 1 P-A 2 P-A 3 P-A 4 P-A Model 3(S) 1 P-A 2 P-A 3 P-A 4 P-A 
M to W 39.41 15.85 9.03 6.56 M to W 38.98 15.38 8.82 6.51 
Q to W 46.48 19.45 12.45 9.24 Q to W 50.17 26.45 19.13 15.67 
A to W 47.36 18.29 11.45 8.37 A to W 48.59 18.73 11.59 8.53 
Q to M 34.09 14.97 9.82 7.52 Q to M 38.91 22.53 16.91 14.29 
A to M 44.51 17.51 11.07 8.01 A to M 45.96 18.07 11.32 8.26 
A to Q 34.74 12.93 7.72 5.19 A to Q 31.15 7.92 3.06 0.69 

Model 4(L) 1 P-A 2 P-A 3 P-A 4 P-A Model 4(S) 1 P-A 2 P-A 3 P-A 4 P-A 
M to W 25.38 13.34 8.46 7.08 M to W 25.37 12.68 7.42 6.57 
Q to W 50.17 24.77 12.81 10.39 Q to W 47.48 22.55 11.00 8.67 
A to W 52.02 20.79 13.00 9.82 A to W 52.18 20.40 12.41 8.92 
Q to M 41.85 20.32 10.10 8.48 Q to M 39.19 17.97 8.52 7.29 
A to M 49.70 19.82 12.34 9.30 A to M 50.09 19.94 12.40 9.03 
A to Q 39.63 15.44 9.65 7.09 A to Q 41.32 16.43 10.34 7.56 

 
Notes: M to W, Q to W, and A to W compare the MSEs of the monthly, quarterly and annual 
forecasts from the respective aggregate models versus those from a weekly model.  Q to M and 
A to M compare the MSEs of the quarterly and annual forecasts from the respective aggregate 
models versus those from a monthly model. A to Q compares the MSE of the annual forecast 
from the annual model versus the MSE of the annual forecast from the quarterly model. 1 P-A, 2 
P-A, 3 P-A, and 4 P-A refer to the one-, two- three- and four-period-ahead forecast comparisons.  
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Table 2: ARMA model orders prescribed by Brewer’s (1973) formula versus those of the most 
parsimonious models with independently distributed errors identified through Procedure (B). 
 
 Brewer’s Most Parsimonious 
Model 1 Order AIC P-Value Order AIC P-Value 
Monthly (8,8) 3733.53 0.960 (2,1) 3731.14 0.618 
Quarterly (8,8) 4983.66 0.936 (2,1) 4981.49 0.608 
Annual (8,9) 5937.57 0.964 (1,1) 5933.35 0.661 
 Brewer’s Most Parsimonious 
Model 2 Order AIC P-Value Order AIC P-Value 
Monthly (6,6) 4344.05 0.874 (3,2) 4341.98 0.7095 
Quarterly (6,6) 5460.10 0.904 (1,1) 5457.56 0.6660 
Annual (6,6) 6657.37 0.904 (0,1) 6651.39 0.6646 
 Brewer’s Most Parsimonious 
Model 3 Order AIC P-Value Order AIC P-Value 
Monthly (11,11) 4387.51 0.9207 (3,3) 4372.39 0.6702 
Quarterly (11,11) 5552.32 0.9398 (5,5) 5545.55 0.7548 
Annual (11,12) 6940.78 0.9753 (0,1) 6931.24 0.6638 
 Brewer’s Most Parsimonious 
Model 4 Order AIC P-Value Order AIC P-Value 
Monthly (13,15) 3691.55 0.9826 (6,5) 3688.94 0.7752 
Quarterly (13,14) 5218.38 0.9824 (0,1) 5209.31 0.5784 
Annual (13,14) 7003.40 0.9836 (0,1) 6984.81 0.6749 
 
Notes: P-value is for testing the null hypothesis of independent errors using the Box-Pierce 
statistic with 120 lagged residuals. The AIC and p-values are averages for 1000 models 
estimated on the basis of 1000 simulated observations each (see Procedure B).   
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Table 3: Percentage increase in the MSE of the forecasts from the models with the ARMA orders 
prescribed by Brewer’s (1973) formula versus the most parsimonious orders with independently 
distributed errors identified through Procedure B, under a sample size of 3,840 weekly 
observations. 
 

 
Model 1 Model 2 

 
1 P-A 2 P-A 3 P-A 4 P-A 1 P-A 2 P-A 3 P-A 4 P-A 

M-M 2.238 1.892 1.525 1.135 1.181 1.065 1.269 1.078 
M-Q 1.717 0.924 0.924 0.750 1.119 0.741 0.431 0.392 
M-A 1.012 0.529 0.482 0.671 0.529 0.343 0.347 0.505 
Q-Q 4.622 4.420 4.341 3.698 4.625 4.529 4.291 3.772 
Q-A 4.159 2.993 3.493 3.537 4.185 2.990 2.749 2.568 
A-A 14.512 12.966 11.614 10.401 13.194 13.557 12.188 11.680 

 
Model 3 Model 4 

 
1 P-A 2 P-A 3 P-A 4 P-A 1 P-A 2 P-A 3 P-A 4 P-A 

M-M 1.671 1.753 1.879 1.829 3.017 2.769 3.089 3.457 
M-Q 1.861 1.660 1.032 1.451 3.085 3.565 3.373 2.850 
M-A 1.367 1.391 1.151 0.934 3.317 2.514 2.455 2.497 
Q-Q 1.832 1.564 1.900 1.975 5.951 7.134 7.040 6.581 
Q-A 1.663 2.354 1.642 1.334 6.925 5.863 5.261 4.507 
A-A 19.589 21.801 21.491 20.603 21.791 22.836 21.886 21.472 

 
Notes: M-M, M-Q and M-A refer to the monthly, quarterly and annual forecasts from the 
monthly models, Q-Q and Q-A refer to the quarterly and annual forecasts from the quarterly 
models, and A-A refers to the annual forecast from the annual model. 1 P-A, 2 P-A, 3 P-A, and 4 
P-A refer to the one-, two- three- and four-period-ahead forecast comparisons.  
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Table 4: Forecast MSE from Models 1 and 3 for under large (L) and small (S) sample sizes 
(48,000 and 1,920 observations). 
 
Model 1(L) 1 P-A 2 P-A 3 P-A 4 P-A Model 3(S) 1 P-A 2 P-A 3 P-A 4 P-A 

W-M 1.87 6.27 11.21 16.13 W-M 2.95 11.14 19.22 27.31 
W-Q 5.00 19.1 29.86 36.95 W-Q 8.50 32.37 55.25 78.36 
W-A 16.21 39.49 53.84 65.63 W-A 31.89 128.7 227.3 328.5 
M-M 2.51 7.03 11.89 16.54 M-M 4.84 13.17 21.08 29.21 
M-Q 5.72 19.24 29.09 36.22 M-Q 10.42 34.10 56.77 79.64 
M-A 16.09 38.07 52.64 64.15 M-A 33.52 129.7 228.0 329.5 
Q-Q 8.69 21.53 29.93 36.8 Q-Q 17.06 44.02 68.32 92.92 
Q-A 17.63 37.76 51.90 63.69 Q-A 42.71 145.8 249.2 356.6 
A-A 23.15 39.62 54.37 66.53 A-A 62.03 158.3 257.1 359.1 

Model 1(L) 1 P-A 2 P-A 3 P-A 4 P-A Model 3(L) 1 P-A 2 P-A 3 P-A 4 P-A 
W-M 1.83 6.03 10.62 15.08 W-M 2.88 10.88 18.99 27.17 
W-Q 4.77 17.54 26.69 33.30 W-Q 8.35 32.22 54.97 77.85 
W-A 14.36 34.97 49.12 60.9 W-A 31.66 128.2 226.5 327.5 
M-M 2.48 6.88 11.56 16.00 M-M 4.75 12.93 20.87 29.08 
M-Q 5.58 18.39 27.32 33.81 M-Q 10.29 34.01 56.62 79.34 
M-A 15.04 35.31 49.54 61.33 M-A 33.38 129.4 227.5 328.8 
Q-Q 8.45 20.74 28.69 34.81 Q-Q 15.61 40.00 62.78 85.78 
Q-A 16.84 36.05 50.13 61.97 Q-A 39.30 136.6 236.0 338.9 
A-A 22.19 38.21 52.37 64.34 A-A 60.15 156.9 255.8 357.4 

% Diff 1 1 P-A 2 P-A 3 P-A 4 P-A % Diff 3 1 P-A 2 P-A 3 P-A 4 P-A 
W-M 2.19 3.98 5.56 6.96 W-M 2.43 2.39 1.21 0.52 
W-Q 4.82 8.89 11.88 10.96 W-Q 1.80 0.47 0.51 0.66 
W-A 12.88 12.93 9.61 7.77 W-A 0.73 0.39 0.35 0.31 
M-M 1.21 2.18 2.85 3.37 M-M 1.89 1.86 1.01 0.45 
M-Q 2.51 4.62 6.48 7.13 M-Q 1.26 0.26 0.26 0.38 
M-A 6.98 7.82 6.26 4.60 M-A 0.42 0.23 0.22 0.21 
Q-Q 2.84 3.81 4.32 5.72 Q-Q 9.29 10.05 8.82 8.32 
Q-A 4.69 4.74 3.53 2.78 Q-A 8.68 6.73 5.59 5.22 
A-A 4.33 3.69 3.82 3.40 A-A 3.13 0.89 0.51 0.48 

 
Note: W-M, W-Q and W-A refer to the monthly, quarterly and annual forecasts from the weekly 
model; M-M, M-Q and M-A refer to the monthly, quarterly and annual forecasts from the 
monthly model; Q-Q and Q-A refer to the quarterly and annual forecasts from the quarterly 
model; and A-A refers to the annual forecasts from the annual model. 1 P-A, 2 P-A, 3 P-A, and 4 
P-A refer to the one-, two- three- and four-period-ahead forecast comparisons.  
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Table 5: Percentage forecast MSE reductions resulting from different levels of disaggregation in 
out-of-sample forecasting (OSF) contests based on the actual data. 
 
  Model 1 - All/480 Model 1 - All/Min=960 
  1 P-A 2 P-A 3 P-A 4 P-A #OSF 1 P-A 2 P-A 3 P-A 4 P-A #OSF 
M to W 45.94 20.32 11.25 6.39 120.00 45.94 20.32 11.25 6.39 120.00 
Q to W 53.72 18.11 -4.55 -8.02 40.00 53.72 18.11 -4.55 -8.02 40.00 
A to W 60.73 -16.29 -27.05 -15.50 10.00 60.73 -16.29 -27.05 -15.50 10.00 
Q to M 33.39 11.34 -5.67 -10.49 40.00 33.39 11.34 -5.67 -10.49 40.00 
A to M 58.91 33.44 30.07 31.08 10.00 58.91 33.44 30.07 31.08 10.00 
A to Q 44.89 8.90 7.71 14.01 10.00 44.89 8.90 7.71 14.01 10.00 
  Model 2 - All/480 Model 2 - All/Min=960 
  1 P-A 2 P-A 3 P-A 4 P-A #OSF 1 P-A 2 P-A 3 P-A 4 P-A #OSF 
M to W 50.89 24.59 16.53 15.84 120.00 44.55 19.11 12.63 9.42 288.00 
Q to W 54.04 17.31 -5.92 3.07 40.00 51.28 15.71 3.79 6.89 96.00 
A to W 43.75 13.15 3.28 -11.16 10.00 47.11 12.92 13.84 5.25 24.00 
Q to M 33.74 2.96 -17.98 -6.38 40.00 34.05 7.37 -1.95 1.43 96.00 
A to M 25.38 -8.79 -25.02 -30.89 10.00 39.26 5.25 5.77 -2.22 24.00 
A to Q 57.27 31.13 19.36 5.95 10.00 45.97 21.99 16.19 6.18 24.00 
  Model 3 - All/480 Model 3 - All/Min=960 
  1 P-A 2 P-A 3 P-A 4 P-A #OSF 1 P-A 2 P-A 3 P-A 4 P-A #OSF 
M to W 50.48 25.23 19.20 11.58 120.00 37.83 24.54 14.99 10.49 192.00 
Q to W 54.37 26.15 3.96 9.50 40.00 58.58 28.75 6.73 7.31 64.00 
A to W 38.77 19.14 0.13 -11.47 10.00 47.53 24.40 18.65 6.02 16.00 
Q to M 34.90 14.94 0.22 6.26 40.00 30.26 17.73 7.98 6.97 64.00 
A to M -25.73 -29.23 -39.17 -43.60 10.00 4.09 -6.35 4.19 2.73 16.00 
A to Q -51.07 -46.05 -55.35 -92.26 10.00 -15.73 -15.10 0.54 -5.84 16.00 
  Model 4 - All/480 Model 4 - All/Min=960 
  1 P-A 2 P-A 3 P-A 4 P-A #OSF 1 P-A 2 P-A 3 P-A 4 P-A #OSF 
M to W 15.93 11.49 11.23 14.08 120.00 12.93 12.56 12.77 14.08 240.00 
Q to W 56.79 26.19 15.99 13.53 40.00 50.18 22.88 13.81 11.46 80.00 
A to W 68.96 26.89 9.48 -1.85 10.00 63.91 25.77 11.89 3.62 20.00 
Q to M 37.75 6.75 -0.38 0.84 40.00 28.85 0.74 -2.86 -0.71 80.00 
A to M 68.28 27.91 12.85 4.38 10.00 63.92 26.61 14.10 7.83 20.00 
A to Q 60.92 25.61 14.15 6.60 10.00 58.19 23.81 12.56 6.31 20.00 
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Table 5 (continued): Percentage forecast MSE reductions resulting from different levels of 
disaggregation in out-of-sample forecasting (OSF) contests based on the actual data. 
 
  Averages - All/480 Averages - All/Min=960 
  1 P-A 2 P-A 3 P-A 4 P-A #OSF 1 P-A 2 P-A 3 P-A 4 P-A #OSF 
M to W 40.81 20.41 14.55 11.97 120.00 35.31 19.13 12.91 10.09 210.00 
Q to W 54.73 21.94 2.37 4.52 40.00 53.44 21.36 4.94 4.41 70.00 
A to W 53.05 10.72 -3.54 -9.99 10.00 54.82 11.70 4.33 -0.15 17.50 
Q to M 34.95 9.00 -5.95 -2.44 40.00 31.64 9.30 -0.62 -0.70 70.00 
A to M 31.71 5.84 -5.32 -9.76 10.00 41.55 14.74 13.53 9.85 17.50 
A to Q 28.00 4.90 -3.53 -16.43 10.00 33.33 9.90 9.25 5.16 17.50 

 
Notes: All/480 indicates that the maximum number of complete annual observations available 
was included in the analyses and the last 480 weeks were used in the OSF evaluations. All/Min 
=960 indicates that the smallest sub-sample used for model estimation included the first 960 
weekly observations and the remaining were used in the OSF contest. #OSF refers to the average 
number of observations available for the OSF contest. All other notation is as defined in the 
previous tables. 
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Figure 1: 1985-2010 Weekly US Oil Spot Price (first differences)
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Figure 1S: 1985-2010 Weekly US Oil Spot Price (re-scaled first differences)
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Figure 2: 1966-2010 Weekly 10-Year US Bond Yield (first differences)
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Figure 2S: 1966-2010 Weekly 10-Year US Bond Yield (re-scaled first differences)
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Figure 3: 1974-2010 Weekly U.S./Japan Exchange Rate (first differences)
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Figure 3S: 1974-2010 Weekly U.S./Japan Exchange Rate (re-scaled first differences)
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Figure 4: 1971-2010 Weekly U.S. Federal Funds Rate (first differences)
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Figure 4S: 1971-2010 Weekly U.S. Federal Funds Rate (re-scaled first differences)


