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An Information-Theoretic Approach to Modeling Binary Choices: 
Estimating Willingness to Pay for Recreation Site Attributes 

Miguel Henry-Osorio and Ron C. Mittelhammer1 

 
ABSTRACT 

This paper applies the new maximum likelihood-minimum power divergence (ML-MPD) binary 
response estimator developed by Mittelhammer and Judge (2011) to model the underlying 
behavioral decision process that leads to a person’s willingness to pay for recreation site 
attributes. Empirical choice probabilities, willingness to pay (WTP) measures for recreation site 
attributes, and marginal probability effects of decision-maker characteristics are estimated based 
on a real stated-preference on-site contingent valuation data, collected at the Caribbean National 
Forest in Puerto Rico. For comparison purposes, the linear probit model and the Kriström/Ayer’s 
estimators are implemented. The ML-MPD method yields a significantly lower mean WTP 
estimate ($27.80) to attend the recreation sites compared to WTP measures obtained from the 
fully parametric ($120) and fully non-parametric ($97) approaches. We argue, based on the 
decision context and demographics of decision makers visiting the recreation sites, that the ML-
MPD approach suggests a more defensible representation of the underlying data-generating 
process and economic decision-making behavior. As such, the ML-MPD estimator suggests 
future potential for improved econometric analyses of discrete behavioral decision choice 
processes. 
 
JEL classifications: C13, C14, C25, Q51  
 
Keywords: Minimum power divergence, Cressie-Read statistics, contingent valuation, empirical 
likelihood, discrete choice, binary response models    

 
1. Introduction 

Economists have used diverse valuation techniques2 to analyze choice processes in a wide 

variety of settings related to willingness-to-pay (WTP) for private or public goods and related 

policy analyses (Adamowicz 2004). Among these tools, stated preference techniques, also 

                                                            
1 We thank John B. Loomis for comments and suggestions, as well as for providing the data set used in this study, 
which was collected with the support of the National Science Foundation under Grant No. 0308414. We also 
gratefully acknowledge helpful comments and suggestions from J. Scott Shonkwiler, J.M. Gonzalez-Sepulveda and 
participants at the 2012-School of Economic Sciences Seminar.  
2 Hanemann, Loomis and Kanninen (1991), Cameron (1992), Englin, Lambert and Shaw (1997), Brownstone and 
Train (1999), and Atkinson, Healey and Mourato (2005) constitute very few of many applications of these valuation 
techniques.   
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known as direct or contingent valuation (CV) methods, stand out because of their frequent 

application and complexity compared with revealed preference methods (Adamowicz and 

Deshazo 2006).3 

Behavioral models have become the dominant framework in the theoretical and empirical 

choice literature for understanding the underlying decision processes that lead to a person’s 

WTP. These models are also useful for estimating welfare measures based on stated preference 

data. As Louviere, Hensher and Swait (2000) point out, these choice models and their underlying 

assumptions, stemming from McFadden’s seminal work on random utility maximization theory, 

form the theoretical context for discrete choice models,  including binary response models 

(BRMs). 

Since the late 1980s, the large majority of practitioners who have applied discrete choice 

models empirically have chosen parametric statistical procedures on the basis of precedent and 

readily available softwares. Typical methods of analysis require a full parametric functional 

specification of the relationship between the regressors and the response variable, and more 

importantly, a full specification of a parametric distribution of the disturbances (e.g., the probit 

(normal) or logit cumulative distribution functions [CDFs]). Although some distributional 

assumptions can be benign, especially if the parameterization is flexible enough to describe 

behavior adequately (McFadden 1994; McFadden and Train 2000), the implementation of an 

incorrect parametric functional form can lead to spurious statistical inferences due to biased and 

inconsistent estimates. Moreover, underlying economic theory provides little guidance for these 

functional specifications, so there is insufficient information regarding the appropriate 

distribution to adopt in practice (Mittelhammer, Judge and Miller 2000; Crooker and Herriges 

                                                            
3 For a more comprehensive review of the CV instrument, see Hausman (1993), Diamond and Hausman (1994), 
Hanemann (1994), and Venkatachalam (2004). 
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2004). Thus, any (parametric) functional specification for either the stochastic error or the utility 

differences used in these methods is in general uncertain and questionable (Creel and Loomis 

1997). 

This study applies the new ML-MPD binary response estimator, developed by Mittelhammer 

and Judge (2011), in which the parametric functional form of the conditional expectation as well 

as the parametric family of probability distributions underlying binary responses are not 

specified a priori. The ML-MPD estimator begins in a nonparametric context regarding model 

specification. Then, information theoretic methods are applied to orthogonality relationships in 

the form of sample moments that lead to a parametric family of probability distributions, a 

conditional expectation function for the BRM, and estimators for the unknowns of the model. 

Unlike most nonparametric methods, the ML-MPD does not employ the usual kernel density 

estimation methodology with the attendant implementation choices relating to bandwidth, kernel 

function, and other tuning issues. The ML-MPD approach effectively avoids using model 

specification information that the econometrician generally does not really have, and thereby 

reduces the potential for specification errors. The ML-MPD estimator is ultimately based on a 

large varied family of CDFs, relies only on a minimal set of orthogonality conditions, and is free 

of user specified tuning parameters.   

Several distribution-free estimators for estimating BRMs have already been proposed in the 

literature to overcome model misspecification issues (e.g., Manski 1975; Turnbull 1976; Cosslett 

1983; Horowitz 1992; Matzkin 1992; Klein and Spady 1993; Li 1996; Chen and Randall 1997; 

Creel and Loomis 1997; Huang, Nychka and Smith 2008). However, none of these estimators 

have found widespread application in the empirical discrete choice literature for a number of 

reasons that may include: 1) users’ lack of understanding regarding the estimation and inference 
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gains of the approach in empirical applications; 2) difficulty in interpreting results of the 

analysis; 3) nonidentification of model parameters (e.g., the Klein and Spady (1993) estimator4 

[KS]); and 4) ambiguity and/or uncertainty regarding the appropriate choices for tuning 

parameters and other estimator implementation-computational issues.  

Creel and Loomis (1997) underscore that the required scale and local normalizations for the 

identification of KS parameter estimates are questionable because they go beyond restrictions 

implied by demand theory. Moreover, it has been found that other suggested semiparametric 

methods do not achieve root-n consistency (e.g., the Manski [1985] and Horowitz [1992] 

estimators), and their finite sample behavior is in question (e.g., the Cosslett [1983], KS and 

Ichimura [1993] estimators).5 And while fully non-parametric estimation techniques tend to be 

more robust to incorrect functional specifications of conditional expectation functions as well as 

probability distributions, they involve various choices of tuning parameters, kernels, and other 

implementation choices. Sampling behavior in smaller-sized samples is also problematic. 

Crooker and Herriges (2004) state that the gains and losses from using non-parametric and semi-

parametric estimators to recover WTP measures relative to the standard parametric approaches 

are still unknown. There remains a continuing need to seek robust and efficient methods for 

analyzing discrete choice behavior. 

The empirical application in this paper relates to a stated-preference CV on-site dataset 

collected at the Caribbean National Forest (CNF) in Puerto Rico (other researchers who have 

used this data include Gonzalez, Loomis and Gonzalez-Caban (2008) and Santiago and Loomis 

(2009)). In order to compare the new ML-MPD estimator to other leading methods for analyzing 

BRMs, we implemented two prominent alternative estimation methods, including a fully 

                                                            
4 The KS estimator is considered a “best” semiparametric estimator because its asymptotic covariance matrix has 
been shown to achieve the semiparametric efficiency bound.   
5 See Chen and Khan (2003) for more details.  
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parametric and a fully nonparametric estimator that have been employed in the CV literature, in 

particular, the linear index probit model and the Kriström (1990)/Ayer et al. (1955) approach.  

In the next section, we describe and characterize the dataset utilized in this study. Section 3 

presents the implementation of the ML-MPD estimator in detail. In section 4, we discuss the 

estimation results, and we provide concluding remarks in section 5. 

 

2. Data  

The dataset is comprised of 718 in-person interviews acquired at ten different recreation sites 

along the Mameyes and Espiritu Santo rivers at the CNF in Puerto Rico during the summers of 

2004 and 2005. The data was collected through dichotomous-response CV surveys, employing 

the single-bounded6 bidding approach as the elicitation protocol, which is also referred to in the 

literature as the “closed-ended” CV approach or the “take-it-or-leave-it” approach. Additional 

details of the survey and its design are given in Gonzalez-Sepulveda (2008).  

The survey asked each recreation user the following CV question: “Taking into consideration 

that there are other rivers as well as beaches nearby where you could go visit, if the cost of this 

visit to this river was $____more than what you have already spent, would you still have come 

today?___Yes___No”. The hypothetical cost of the visit was randomly drawn from a pool of 18 

bid thresholds for each respondent, and ranged from $1 to $200 (see Table 1). Information on 

site attributes (road quality, volume and speed of water in the pools, and size of rocks around the 

pools), the recreation user’s income, and trip information (travel cost and travel time) were also 

collected. Previous work demonstrated that when including trip information in the models, the 

signs of the estimated coefficients for “travel cost” and “travel time” were not consistent with 

                                                            
6 This approach has the potential to be less efficient than the double-bounded protocol, however, McFadden (1994) 
and Cooper, Hanemann and Signorello (2001) have documented that the single-bounded CV question eliminates the 
response inconsistency and its associated bias. 
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theoretical expectations. By including travel time information as an indicator (= 1 if the travel 

time to the CNF is more than 30 minutes and equal to 0 otherwise), as Cameron and James 

(1987) propose, we obtain theoretically consistent results. Tables 2 and 3 summarize the 

variables included in the estimated model, along with selected descriptive statistics. 

The socio-demographic information in Table 3, indicate that lower income, moderately 

educated, middle-aged male visitors dominated the sample outcomes. 

  

3. Model and Estimation Framework  

We present the ML-MPD estimation procedure in this section. The linear probit model and the 

nonparametric7 estimators are well documented in the literature and are not reviewed here. All of 

the statistical approaches used in this study allow one to model the underlying decision-makers’ 

choices made from a single, finite and exhaustive choice set with mutually exclusive alternatives. 

We calculated a compensated WTP measure as an aggregate net estimate of WTP for the probit 

ML and ML-MPD models based on a grand constant term (see Hanemann, 1984, 1989). 

Regarding the Kriström/Ayer’s approach, we estimated the mean WTP through numerical 

integration of the estimated survivor function (i.e., WTP probability distribution), excluding the 

possibility of negative bids. The median WTP, in turn, is derived by finding the amount whose 

acceptance probability equals 0.5.  

This study makes the usual assumption that the observable discrete responses are the 

outcomes of utility-maximizing choices made by decision-makers. The behavioral decision 

process is assumed to be based on a linear and additive utility index, . * *
i iY x β εi , also known 

                                                            
7 Boman, Bosted and Kriström (1999) show how Kriström/Ayer’s approach can be reinterpreted as an 
approximation of Dupuit’s consumer surplus. This describes what consumers would be willing to pay for obtaining 
some units of a good.   
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as a latent index model or a discrete choice behavioral-Random Utility Maximization model, so 

that recreators choose the alternative that generates the greatest indirect utility. 

3.1 Minimum Power Divergence Distributions 

To motivate the ML-MPD estimator, note that the n -dimensional vector of unknown Bernoulli 

probabilities corresponding to the BRM, 

     . * .1 | 1 ,  1,...,      x β x βi i i i iP y x p F F i n ,  (1) 

is associated with an unknown link or transformation function  F 
 
of factors affecting the 

decision environment and that in practice is expressed in terms of an index function8 that is often 

linear. However, more generally, one can always characterize the Bernoulli random variables 

 T n
1 2, ,..., nY Y Y as being defined by ,i i iY p i   , with zero-mean error,   0iE   . 

Without knowledge of the particular distributional specification of the link function, the 

traditional ML approach is not available. One might then consider a Quasi-ML approach, but this 

method does not assure the full set of attractive ML sampling properties (Mittelhammer, Judge 

and Miller 2000), and moreover, it is difficult to characterize the actual sampling properties in 

any given application. Alternatively, one might consider the two-stage Generalized Method of 

Moment (GMM) estimator; however, the approach is not appealing for the current application 

due to the ill-posed, underdetermined nature of the estimating equations of the problem (see 

equation (2) ahead).  

We pursue an empirical likelihood type estimator of β  instead. Unlike classical estimation 

procedures, these estimators rely on Kullback’s (1959) information theoretic minimum 

                                                            
8 This index is usually a function of the covariates xand a vector of β unknown parameters, which is estimated 

along with the link function. Although non-linear specifications and the linear Box-Cox utility function are also 

possible, the commonly used linear index representation . 0  1x xβi , with 1β being a vector of parameters, is 

considered in this study.   
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discrimination information principle9 as well as on data-moment constraints, as defined in 

Mittelhammer and Judge (2011). The basic estimation principle is to jointly estimate the 

unknown parameters of the model along with the empirical sampling distributions that exhibit 

minimum discrepancy relative to a reference distribution. The ML-MPD approach is robust in 

terms of the uncountably infinite number of candidate distributions (such as symmetric, skewed, 

uniform) that are members of the distribution class. It also maintains the full set of familiar ML 

estimation and inference sampling behavior under familiar regularity conditions, and has been 

shown to be potentially mean square error (MSE) superior to probit and logit estimators. 

Moreover, the ML-MPD approach has been shown to be MSE superior to the best 

semiparametric (KS) estimator under certain sampling conditions. All of the aforementioned 

properties make this estimation procedure an appealing alternative relative to currently known 

parametric and semiparametric alternative estimating procedures.          

The application of the ML-MPD procedure can be conceptualized in two stages, although 

implementation of the estimation methodology can be performed in one computational step. One 

begins with an ill-posed inverse problem consisting of the nonparametric moment model 

 i i iY p ε  noted above, along with generally applicable orthogonality conditions between 

explanatory variables and model noise of the general form  '( )E     0g X Y p . A minimum 

power divergence solution for the probabilities is found that identifies a complete set of 

probability distributions (i.e., the MPD solution) for the BRM. In a second stage, based on the 

MPD class of probability distributions, ML estimation is used to estimate the unknowns that 

                                                            
9 An alternative to this principle is the maximum entropy principle, also known as the Shannon’s (1948) entropy 
measure or the generalized maximum entropy approach. Although there are some recent theoretical and empirical 
contributions in the econometric literature using the latter approach (e.g., Golan, Judge and Perloff, 1996; Crooker 
and Herriges, 2004; Marsh and Mittelhammer, 2004) a user of the method is also confronted with a notable number 
of “tuning parameter” type of decisions to make, for which the performance consequences are not well known 
currently.  



10 
 

occur in the class of probability distributions. The results of ML estimation produce estimates of 

the effects of explanatory variables on the conditional Bernoulli probabilities, and also identify a 

link function for those probabilities. In effect, the method estimates the form of the probability 

model along with estimates of the unknowns in the model.  

Regarding the first stage of the method, the Cressie-Read (CR)10 power-divergence family of 

statistics (see Read and Cressie 1988; Imbens, Spady and Johnson 1998) measures the 

discrepancy between probabilities to be estimated and a reference distribution for those 

probabilities. Including sample moment constraints based on zero-mean theoretical population 

conditions, the minimum power divergence extremum problem is specified as: 

 

  
  1

1,  ,  1,...,

Min CR , ,

s.t. '( )

     0





  

 



p
p q

g x y p 0

ip i i n

n  (2) 

where  CR , ,p q  is a member of the CR family,    T

1 2
1

, ,..., 0,1
n

n
i

q q q


  q is an n -

dimensional vector of reference Bernoulli probabilities, and  ,     is the scalar power 

parameter of the divergence measure. The sample moment constraint vector equation 

  1 '( )n  0g x y p
 

is of dimension 1m where :  k mg  is a real-valued measurable 

function. The inequality constraints on the probability values are non-negativity constraints and 

                                                            
10 This goodness-of-fit measure contains the empirical likelihood statistic as a special case when 0   and 

encompasses in its basic form the maximum entropy, the Kullback-Leibler statistic  1   and the Pearson’s
2 statistic   1   , among others. As   ranges from  to   the CR divergence measure leads to different 

information theoretic estimators (see Mittelhammer, Judge and Miller 2000, Chapter 13.4; Lee, Chao and Judge 
2010).  
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   T

1 2
1

, ,..., 0,1
n

n
i

p p p p


  
 

represents an n -dimensional vector of updated conditional-on-x 

Bernoulli probabilities (estimated empirical/sample distribution) underlying the binary decisions.  

Mittelhammer et al. (2004) point out that some potential candidates for specifying  g x are 

the n k matrix x of explanatory variables as well as powers and cross products of the same 

matrix. If one or more explanatory variables are determined simultaneously with the dependent 

variable or some regressors are statistically dependent with the unobservable stochastic noise 

component (i.e.
 

1 ' 0   x εE n ), then instrumental variables whose elements are uncorrelated 

with the noise component but correlated with the endogenous entries in x  should be included in 

the specification of the orthogonality conditions (Mittelhammer and Judge 2009). In the current 

application, the explanatory variables are exogenous and the function   xg x
 
was utilized.   

The estimation objective function in (2) relies on the information theoretic CR power-

divergence criterion, which in the binary case takes the following form (Mittelhammer and Judge 

2011): 

  
 

 

 
1

1
1 1 1

1

1
CR , ,

 

 




                             



p q

n
i i

i i
i i i

p p
p p

q q
  (3) 

The discrepancy measure is always positive valued unless i ip q , no matter the choice of  , 

becomes larger the more divergent are ip and iq , is convex in the 'ip s , and is second order 

continuously differentiable. On the basis of the constrained minimization problem specified in 

(2) and (3), the MPD family of CDFs solution for this extremum problem is given by: 



12 
 

  1
; , arg  when  < 0                      

1

                    arg  when  = 0                     
1

1

 

  




   






  


      
     
       
     
    
     

0

0
i

i i

i ii

i i

p

i i
i

i i

i p

p p
p w q w

q q

p p
Ln Ln w

q q

  
 

1

1 1

1

                              (4)

1
 

1
                    arg  when 0 and  1 ,

1

10

 



 

 





   



 

  






       


  

            
      
      

     

0

i

i i

i i i ii

i i

i

p

q
p p

w w q q
q q

q

where . x λi iw , and   represents the 1m vector of Lagrange multipliers of the moment 

constraints when the problem is expressed in Lagrange form. The definition in (4) characterizes 

an uncountably infinite number of distributions, with argument iw , indexed by the values of   

and iq . For example, when 0  and 0.5iq  , the standard logit model is subsumed by the 

family of distributions. It is clear that the inverse cumulative distribution function of the MPD 

family always exists in closed form, but except for a measure zero set of possibilities for 

and iq , the probabilities themselves must be solved for numerically. Fortunately, strict 

monotonicity properties of the terms involving the 'ip s  in (4) make for a relatively 

straightforward numerical solution procedure that is guaranteed to solve for the appropriate ip  

for any admissible argument, iw , of the CDF. Further discussion of the MPD family of 

distributions, including their myriad different shapes and characteristics, can be found in 

Mittelhammer and Judge (2011). 
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3.2 The ML-MPD estimator 

The family of probability distributions in (4) was used as a basis for specifying the likelihood 

function associated with the data outcomes in the usual way, leading to a log-likelihood function 

of the general form          . .
1

; , ; ,1, , ln 1 ln 


   x xq
i i

n

i i i i
i

p q p qL y y   , where we 

define    .11 In the implementation of the distribution family, we specify iq q i  , which is 

tantamount to assuming that the same basic probability distributional form is used across the 

observations in forming the conditional Bernoulli probabilities. In this context, it is the 'i sx , and 

thus the arguments of the distributions, that change the probabilities across decisions makers. 

The likelihood function was maximized using the non-gradient based Nelder-Mead simplex 

minimization algorithm proposed by Nelder and Mead (1965) (the negative of the likelihood 

function was minimized to obtain the maximum).12 This optimization method belongs to the 

general class of “direct search methods” and has become one of the most widely used techniques 

for non-linear unconstrained optimization. It does not rely on gradients or Hessians, so it tends to 

be faster between iterations than search methods that depend on derivatives of the objective 

function (e.g., Newton-Raphson). The Nelder-Mead approach is also immune to numerical 

problems caused by highly nonlinear and sometimes unstable gradient and/or Hessian 

calculations from iteration to iteration.   

In order to promote both stability and accuracy in the search for the ML optimimum, while 

guarding against converging to local optima, we first implemented a recursive grid search 

approach in the   direction with increments of 0.2 . In particular, we set the global values of   

                                                            
11 A formal argument of equating the Lagrange multiplier vector λ and the unknown parameter vector β is given in 

Judge and Mittelhammer (2012), Chapter 10.  
12 A detailed explanation of this algorithm and its implementation can be found in Nelder and Mead (1965) and 
Jacoby, Kowalik and Pizzo (1972). 
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external to the rest of the optimization problem, and sequentially updated the starting values 

based on the lagged recursive solutions for the previous value of  , beginning with the standard 

logit solution ( 0, .5q    in the MPD family of distributions). The recursive method does not 

guarantee a global optimum but reduces the possibility of not searching in the neighborhood of 

the global optimum. We also embedded a search for the optimal q along the grid from 0.01 to 

0.99, in .01 increments. The likelihood function was ultimately maximized at the values 

*ˆ 4.4   and *ˆ .88q   (see section 4.3).  

Upon identifying the ML solution, the variance-covariance matrix of β was estimated by 

substituting the optimized ML estimates *̂ and *q̂ , and the optimized ML-MPD parameter 

estimates *β̂ into the definition of the MPD distribution in (4) 13. The resulting expression is the 

value of a profile likelihood function for the parameter vector  , which can be used to calculate  

the asymptotic covariance matrix of the ML estimates, and for conducting inference. Since ip  is 

implicit in (4), the variance-covariance matrix is derived using implicit differentiation and the 

'ip s are solve for numerically. The variance-covariance matrix was estimated using the “outer-

product-of-gradients” approach, based on the computation of the inverse of 
       

       

L L 
 

, 

where
 


L 


is the n k  matrix of derivatives of the log of the profile likelihood function 

contributions,  , 1,...,iL i n  with respect to β .  

For implementing all of the preceding procedures relating to the MPD estimator, as well as 

the implementation of the probit maximum likelihood estimator (MLE), we used Aptech 

                                                            
13 Notice that if the optimized gamma is > 0, the resulting MPD CDF will be a model with finite bounded support, 
whereas for < 0, as is the case here, the MPD CDF has infinite support in both the positive and negative directions. 
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Systems’ GAUSSTM 11. The Kriström/Ayer estimator was implemented using the software 

environment for statistical computing and graphics R (R Development Core Team 2009).  

 

4. Results and discussion 

All of the models discussed in this section utilize the seven explanatory factors that are defined 

in Table 2.  

4.1 Parametric Model Results 

Using the conventional parametric structure of the probit model, we adopted the Berndt-Hall-

Hall-Hausman (BHHH) estimator (Berndt et al. 1974) to find the maximum likelihood estimator 

of the linear probit model, and the results are displayed in Table 4. The “bid” variable is highly 

significant and its sign is aligned with economic theory, indicating that the higher the visit price 

to the park, the less willing respondents are to pay. According to the CV literature (see e.g. 

Hanemann 1984; Haab and McConnell 2002; Gonzalez, Loomis and Gonzalez-Caban 2008), 

income has typically, but not necessarily, been dropped in these types of studies due mainly to 

the lack of statistical significance. However, based on the dichotomous indicator, the "income" 

variable was found to be significantly different from zero in the parametric approach. The 

variables “bid”, “size” (size of the rocks around the pool) and “road” (non-paved roads) 

contribute to the explanation of the dependent variable at the 0.01 level of type I error. “Income” 

and “volume” are both positively related to the probability of paying the bid amount, whereas the 

variables “discharge”, “road”, “size” and “non-residents” are negatively associated.  

Table 4 also reports the mean economic value of a visit to the rivers at the CNF as well as its 

corresponding confidence intervals (CIs). Employing  the parametric and non-symmetric CI  
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Krinsky and Robb (1986)14 simulation method for the mean WTP and Hanneman's approach for 

estimating the mean WTP (see section 3), the mean WTP measure is $120 and the 95% CI 

ranges from $107 to $136.25.  We note that either of these levels of WTP for the types of 

recreators surveyed, as well as the type of recreation experience obtained by a visit to the 

Caribbean National Forest, appears to be unrealistically high.      

4.2 Nonparametric Model Results 

Relating to the non-parametric estimation approach, Figure 1 illustrates both the proportion of 

individual WTPs for each ordered bid class (a so-called empirical survivor function or Ayer 

function) and the monotonized empirical survivor function F(p) using the non-parametric 

technique.15 Both curves were derived by setting the probability of a “yes” response equal to one 

at $0 and the maximum bid amount as the truncation upper limit point (T = $200 ; see 

frequencies of “yes” responses for each bid level and the distribution-free Maximum Likelihood 

estimates of the probability for acceptance in Table 1). The monotonized function represents a 

set of ML estimates (or maximizing set) of desired probabilities, which provides a continuous 

linear smoothed function with a non-constant slope. In the context of the current study, each ML 

estimate symbolizes the survival probability of WTP given a specific bid level. As the sample 

size becomes infinite, the estimated proportions will converge in probability to the true 

                                                            
14 Under this simulation procedure, draws of coefficient estimates are taken from their asymptotic distribution (i.e., 

  ˆ ~ ,VCOV ,  5,000   r N r ), after calculating the Cholesky decomposition (p) of the VCOV matrix, 

calculating a vector of parameter estimates such that 'ˆ ˆ ˆ*   r p , and computing the WTP of interest. Park, 

Loomis, and Creel (1991) constitute an application of this simulation technique in CV studies.   
15 This distribution-free estimator has desirable ML properties, represents a closed-form solution to the Non-
Parametric ML problem for single-bounded discrete choice data, and yields a monotonically non-increasing 
sequence of likelihoods of accepting the bid (i.e.,    ,  p bidF p P WTP bid   ). If the sequence is not monotonic 

in some regions for some bids, then the pool-adjacent-violators (PAVA) algorithm is applied. This smoothing 
procedure is repeated until a monotonic sequence of aggregated proportions emerges at each bid level. For more 
details on this technique, see Robertson, Wright and Dykstra (1988). 
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probability of success and the new sequence will provide a distribution-free nonparametric 

maximum likelihood estimator of the probability of success (Ayer et al. 1955).  

Several findings can be derived from Figure 1. First, to obtain the monotonic survivor 

function, constraining WTP to be non-negative upon assuming that 1  and 0 when the bid is 

$0 and $200, respectively, appears to be a reasonable approximation of behavior between the 

known points (“bids”). That is, if the bid is zero, then the probability of accepting the payment is 

unity and if the price is $200 the probability is zero since it is understood to be too high and, 

therefore, no one will be willing to accept the offered price. Second, the plot indicates that as the 

bid increases, the probability of WTP decreases.  

Although the selection of the truncation point is an empirical problem in the non-parametric 

literature (see Duffield and Patterson 1991) and its sensitivity must be noted, we integrated the 

smoothed survivor function up to the maximum bid level to obtain the mean WTP, following the 

approach of Creel and Loomis (1997). Using numerical integration

    200

0
1  


   

T
E WTP F p dp  and bootstrap pair resampling, the unconditional truncated 

mean compensated variation (WTP) is $97 and the 95% bootstrap CI ranges from $66.5 to $124. 

Note that the mean fully nonparametric WTP estimate does not fall within the 95% confidence 

interval for the mean WTP ($107, $136.25), constructed for the fully parametric estimator, and 

that while the level of mean WTP is lower than that of the parametric approach, the 

nonparametric WTP value still seems unrealistically high for the types of recreators surveyed 

and the type of recreation experience obtained.  

 

 

 



18 
 

4.3 ML-MPD Model Results 

The value of the ML estimate, ˆ
βML MPD  , of the   vector corresponding to the ML estimates of

*ˆ 4.4   and *ˆ .88q , is presented in Table 4. Substituting these point estimates into the MPD 

definition in (4) for 0   yields the estimated WTP probability distribution: 

    
4.4 4.4

* *
. .

1
ˆˆ; , arg 4.4

0.88 1 0.88


                      
x x 0i p i

p p
p w q w  (5) 

where  . .
ˆ

x x βi i ML MPDw , and .ix denotes a 1 k  row vector contained within the n k matrix x

of covariates, or any other vector value of interest relating to the explanatory variables.  

There is no closed form solution for the probabilities in (5). Accordingly, the derivatives of 

 * *ˆˆ; ,p w q
 
with respect to β needed to form the asymptotics covariance matrix are derived via 

implicit differentiation. The resulting n k  matrix of derivatives is given by 

 
     4.4 5.45.4 4.4

1

0.88 1 (1 0.88)


 
 
 
 
 

 
     

p x
β p p

        (6)

where   denotes the Hadamard (elementwise) product operator, all the division operations are 

Hadamard (elementwise) division, and p  is the 1n vector of estimated probabilities. As 

indicated in section 3, the outer product of the gradient method is then used to define the   k k

variance covariance matrix as 
   


 
    
       
    
 

 
 
L L

1

β β

β β
. 

The empirical probabilities
 
in (5) were recovered numerically using the interval bisection 

method. Interested readers are referred to Mittelhammer and Judge (2011) for additional detail 

on the computational methodology. Table 4 summarizes estimated coefficients and their 
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corresponding asymptotic standard errors as well as willingness to pay results for the MPD-ML 

estimator. 

A number of interesting findings can be deduced from the results reported in Table 4. First of 

all, based on the goodness-of-fit measures reported (pseudo R2, AIC, BIC, and deviance 

statistics) the ML-MPD model performs better than the probit model despite the fact that both 

models do not exhibit misspecification problems according to the outcome of the deviance 

goodness-of-fit test. Second, the parameter estimates in these two models have the same signs, 

except for the "income" variable. As mentioned previously, this dichotomous income indicator is 

positively related to the probability of paying the bid amount based on the probit model, but 

when using the ML-MPD approach, a negative effect of income is estimated, although the effect 

is not statistically significant. Third, there are sizeable differences in the magnitudes of the 

coefficients, where most of the ML-MPD estimates tend to be larger compared to the probit point 

estimates, although this by itself is not remarkable, given the notably different probability 

distribution functions for which the explanatory factors are arguments. Fourth, the MPD 

approach does not produce uniformly smaller estimated standard errors relative to probit. Under 

the fully parametric model the variables that are statistically significantly at the .01 level are the 

“bid”, "size", and “road” regressors. However, under the ML-MPD approach, only “bid” is 

significant at that level, although “size” and “road” are significant at the .05 level. The outcome 

of having just "bid" statistically significant at the .01 level is consistent with Gonzalez-Sepulveda 

(2008)'s findings. The "discharge" variable is insignificant at conventional levels in the ML-

MPD case, but is nearly significant at the 0.10 level, suggesting its effect should not necessarily 

be ignored.   
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4.4 Comparison of Marginal Effects and WTPs 

Using the estimating parameters derived from the probit and ML-MPD models, marginal 

effects16 of changes in the explanatory variables on mean WTP were calculated from Table 4. It 

should be mentioned that marginal effects from the Kriström (1990)/Ayer et al. (1955) approach 

were not computed, considering the fact that the essence of this empirical method consists only 

to serve as a mean or median WTP estimation technique given by the area under the empirical 

survivor function.    

Based on the probit results, visitors were willing to pay -$58 and -$65 for increasing in-

stream flows and non-paved roads, respectively, as well as -$3 for increasing size of rocks or 

sand around the pools. This indicates that increased stream flows, non-paved roads, and larger 

rock/sand sizes provide disutility to recreation users. The volume of water in the pools positively 

influences the WTP of recreation users, being the marginal effect $0.37. These marginal effects 

on WTP across site attributes become larger when employing the ML-MPD approach. For 

instance, visitors are willing to pay -$33 and -$40 for increasing in-stream flows and non-paved 

roads, respectively. The amount relating to the size of rocks or sand becomes -$2, whereas the 

marginal effect associated to the volume of water in the pools is $0.25. 

We also calculated marginal effects on the mean probabilities of acceptance of bids as a 

function of one unit changes in the levels of explanatory factors from the probit and ML-MPD 

                                                            
16 Marginal effect values are obtained for the probit and ML-MPD cases using the mean marginal effect approach. In 
the estimation procedure, there is potentially a different marginal effect at every observation if the observations 
evaluate different probabilities. For the probit model, the marginal effect representation is given by

   1
.
ˆ ˆ ,  i=1,...,n, j=2,...,k and     x βi ji

n is the standard Normal probability density function, while in the case of 

ML-MPD the marginal effects are represented by  

       
ˆ ˆ* *ˆ ˆ* 1 * 1

1

* *

ˆ

ˆ ˆ1 1
  


  


 
 
 

    
 ML MPD j

i

i i

n
p q p q

for 0  , where 

j=2,...,k,  
* * ˆˆ ˆ, q , and    ML MPD are the optimized ML point estimates reported above, pi are the empirical probabilities,  

and i=1,...,n. 
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models (see Table 5). These marginal effect outcomes were not calculated for the fully 

nonparametric approach, following the same argument previously mentioned. It is evident from  

table 5 that the effects on probabilities of one-unit changes in explanatory variables is notably 

different in magnitude for the probit and ML-MPD approaches, albeit except for income, the 

directional effects are the same. For income, the mean marginal effects contrast both in sign and 

magnitude. The impact of a one-unit change in travel time (i.e., indicating that travel time to the 

CNF takes over 30 minutes) is -0.06 for probit and -0.02 for ML-MPD. For every additional 

millimeter of grain size, the probability of bid acceptance decreases by 0.088 and 0.070 for the 

probit and ML-MPD methods, respectively. The probability of visiting recreational sites 

decreases substantially for non-paved roads and for increased water discharge based on both 

estimation approaches, although relatively speaking, the effects for the probit model, -.1662 and 

-.1858 respectively, are much higher than for the ML-MPD approach, being -.1125 and -.1345. 

As for mean WTP for a visit to the CNF, the ML-MPD WTP of $27.80 is substantially  lower 

than the results of the probit ($120) and nonparametric ($97.00) approaches, respectively. We 

note that a 95% CI under ML-MPD as well as the mean WTP measure were computed in a 

similar manner, as we described previously in section 4.1.  It is apparent from the fact that the 

CI’s are non-overlapping that the mean WTPs are estimated to be statistically different via the 

two approaches (this is true at any typical level of confidence (including 99%). To formally test 

whether there is a difference in WTP distributions for the probit and ML-MPD (i.e. Ho: WTPprobit 

= WTPML-MPD), we implemented the nonparametric complete combinatorial convolution 

approach of Poe, Giraud and Loomis (2005). A two-tailed p-value equal to 0.00082 rejects the 

null hypothesis convincingly, and it can be concluded that the two empirical WTP distributions 

are statistically different. In terms of providing information on mean WTP, the ML-MPD is more 
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informative and precise than the probit and fully nonparametric approach. For a 95% nominal 

coverage, the average CI length for the ML-MPD approach is $15.53, whereas for probit and 

Kriström/Ayer’s estimators this interval is wider at $29.23 and $57.52, respectively.                

 

5. Implications and Conclusions   

A major finding of this study is that the ML-MPD approach yields a substantially lower 

estimate of the mean WTP ($27.80) for visiting the recreation sites compared to WTPs obtained 

from the fully parametric ($120) and fully non-parametric approaches ($97). We argue, based on 

the decision context and demographics of decision makers, that the lower WTP value is a much 

more reasonable and defensible estimate of the WTP for visiting the recreation sites. Gonzalez-

Sepulveda (2008; Chapter three), using the same dataset and compensated WTP measures, but 

only a smaller subsample of the data, arrived at a related insight with regard to the level of WTP 

when comparing the Travel Cost Model (TCM) with the parametric logit model (CV method). 

Sampling issues affecting TCM and CV estimates are potentially part of the explanation for the 

difference in the WTP estimates obtained from these two approaches, including spatial 

truncation of TCM recreation markets and endogenous stratification of CV respondents in the 

sample. Estimates from the ML-MPD approach suggest yet another reason for the difference in 

WTP values -- relaxing the rigid distributional assumptions of the conventional parametric 

methods produce substantially lower WTP estimates. 

Another implication worthy of note is that income, expressed in terms of an income indicator 

of a $20,000 threshold, was statistically significant under the parametric approach, but 

insignificant, and nominally estimated to have a negative effect, based on the ML-MPD 

methodology. Income effects are often disregarded in CV studies, mainly due to insignificance 
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of the model parameter. Carson and Hanemann (2005) identify several sources of measurement 

errors that have contributed to biasing estimated income effects downward. While treating the 

effect of income as an indicator variable is not a common practice in CV, Aiew, Nayga and 

Woodward (2004) recognized how attractive an exploration of this type of specification might 

be, especially when understanding that the WTP distribution across income groups might be 

important from a policy perspective. Champ et al. (2002) conducted one of very few CV 

published studies that included income as an indicator variable. A negative effect of an income 

threshold over $20,000 is suggestive of wealthier Puerto Ricans not preferring visiting water 

pools, but possibly preferring other types of recreation (e.g., boating to nearby islands, visiting 

resorts ). While the negative effect is not statistically significant, the ML-MPD result seems more 

plausible than the result obtained with the probit model, especially when considering that more 

than half of the respondents who report that visiting the water pools was the main purpose of the 

trip had an annual income of less than $15,000. The negative income effect is also consistent 

with the mean ML-MPD WTP value of $27.80 compared to the substantially higher WTP values 

obtained using the other two approaches, which appear patently unrealistic relative to the 

demographics of the individuals who visit the water pools.  

In contrast to many alternative estimators, the ML-MPD procedure is free of subjective 

choices relating to various tuning parameters, has the flexibility to fit a wide range of varied 

distributional shapes to conform to the choices observed, and proceeds by imposing minimal 

assumptions on the information contained in the data. In addition, sampling experiments 

conducted by Judge and Mittelhammer (2012) to investigate the small sample properties of a 

range of MPD-based estimators and parametric methods (e.g. the probit model) indicate that the 

former ones compare more favorably in terms of MSE relative to parametric methods. 
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As such, the new ML-MPD approach to estimation of BRMs appears to have potential for 

providing a more defensible representation of the underlying data-generating process and 

economic decision-making behavior, and improved econometric analyses of discrete choice 

processes compared to the commonly used parametric methods. 
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Appendix 

Table 1. Proportions of Yes – Answers and Estimates of the Probability for Acceptance 

Bid($) Proportion Yes         P(“yes”) 
1 2/2   1 
5 69/75   .925 
10 66/71   .925 
15 54/61   .911 
20 58/62   .911 
30 39/54   .729 
40 39/53   .729 
50 28/43   .651 
60 24/43   .581 
80 26/43   .581 
100 13/40   .393 
120 15/36   .393 
130 3/5   .393 
140 11/27   .393 
150 8/25   .393 
160 10/28   .393 
180 10/26   .393 
200 13/24   .000 

      Sub-total 488/718 
 

 

 

 

 

 

 

 

 



30 
 

Table 2. Variables Used in the Analyses 

Variable Name   Description 

 Choice   = 1 if willing to pay the visit price 
= 0 otherwise 

 Bid   Offered U.S. dollar amount (threshold) 
 Road  = 1 if non-paved road; = 0 otherwise 
 Discharge  Mean annual speed of water in the pool (cubic feet) 
 Size  Median grain size (millimeters) around the pools 
 Volume  Volume of the pool (cubic feet) 
 Income  = 1 if family annual income (U.S. dollars) is greater than $20,000  

   = 0 otherwise 
 Travel Time = 1 if travel time (TT) exceed 30 minutes; = 0 otherwise 
Note: The variables volume, size, and income were scaled by 100, 10 and 1000, respectively, in estimation to 
support numerical stability and accuracy in calculations, and allow similar orders of magnitude for parameter 
estimates. 
 
 
 
 

Table 3. Descriptive statistics for selected unscaled quantitative variables  
 
    Variable Name Obs Mean  Std.Dev. Minimum Maximum 

 Bid  718 63.53  58.27  1  200 
 Discharge 718 0.83  0.5711  0.11  1.67 
 Size  718 509.22  628.17  102  2337 
 Volume 718 446.74  414.00  42  1868.4 
 Income 718 28652  21893.50 5000  75000 

  Travel Time 718 63.52  59.62  1  990 
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Table 4. Estimation Results for the Probit and ML-MPD Models 

Variable Name  PROBIT-MLE ML-MPD   
BID    -.00964***   -. 05612***  

    (.00088)    (.0140)   
DISCHARGE   -.56115**   -1.85838  

    (.281)     (1.198)   
SIZE    -.02974***   -.11546**  

    (.0108)     (.047)   
VOLUME   .00365     .014319  

    (.00261)    (.012)   
INCOME    .23559**   -.08717  
     (.108)     (.339)   
ROAD    -.62744***   -2.22201**  
     (.228)     (1.081)   
Travel Time   -.20266     -.25873 
     (.114)      (.351) 
INTERCEPT   1.84962 ***     4.15471** 
    (.328)     (1.659) 
McFadden R2   .1596      .1935 
AIC    772.7821     742.2593 
BIC    809.3939     778.8711 
Deviance statistic  756.7822     726.2593   
    {0.1088}    {0.3278} 
 
Krinsky Robb 
Mean WTP ($)   120.35       27.80        
LCIL    107.02        18.39 
UCIL    136.25         33.92 
 
Log Likelihood   -378.39     -363.13 
BHHH standard errors are shown in parentheses. AIC and BIC are the Akaike information criterion and Schwarz’s 
information criterion, respectively. The deviance statistic is a chi-squared test for goodness-of-fit with n-k degrees of 
freedom and defined by -2*LLH, where LLH is the log-likelihood, n is the sample size and k is the number of 
unknown parameters. Its associated p-value is reported in curly brackets. Lower and Upper Krinsky and Robb 
Confidence Interval Levels for the mean WTP, shown through LCIL and UCIL for 95% confidence levels, 
respectively, are calculated using the empirical convolutions method proposed by Poe, Giraud and Loomis (2005) 
and 5,000 repetitions. For the computational implementation of the probit model, an iterative algorithm with 
analytical gradients and analytical Hessian were implemented in GAUSS 11.  
 
*** Statistically significant at 99% confidence level; ** statistically significant at 95% confidence level. 

0.01,704 0.05,7042.5828, 1.9633t t   
 

 

 

 



32 
 

Table 5. Marginal Probability Effects of regressors on WTP for Recreation Site Attributes 

     PROBIT-MLE ML-MPD 
  BID   -0.0029  -0.0034 
  DISCHARGE  -0.1662  -0.1125 
  SIZE   -0.0088  -0.0070 
  VOLUME   0.0011   0.0009 
  INCOME   0.0698  -0.0053  
  ROAD   -0.1858  -0.1345 
  Travel Time  -0.0600  -0.0157 
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 Figure 1. WTP distribution function and the monotonized empirical survivor function. 
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