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Sufficient Conditions for Dominance of
Simply Related Prospects

Ross G. Drynan*

Sufficient conditions for dominance of simply
related prospects are developed for newly
defined classes of limited-variation-in-risk-
parameter utility functions. Necessary and
sufficient conditions are given for classes of
contant-risk-parameter utility functions. The
latter include classes of quadratic, power and
exponential utility functions. The conditions
can be incorporated into easily implemented
procedures for locating effictent prospects.

1. Introduction

In the context of decision theory, efficiency
analysis aims to divide any set of feasible
prospects into two mutually exclusive and
exhaustive sets. All those prospects which
are not considered optimal on the basis of
any member of a particular class of utility
functions are placed in one set (the
dominated set), and the remaining
prospects in the other (the efficient set).
The classes of utility functions initially
studied by efficiency analysts included the
class of all Bernoullian utility functions,
the class of all risk averse utility functions,
and the class of decreasingly risk averse
risk averters. Necessary and sufficient
conditions for one prospect to dominate
another, or equivalently, for one prospect
to be dominated by another, for these
classes are embodied in stochastic
dominance ordering rules developed by
Hanoch and Levy (1969), Hadar and
Russell (1969, 1971) and Whitmore
(1970). Readers of this Review will be
acquainted with these results through the
paper by Anderson (1974).

There have been subsequent
developments. Drynan (1977), Fishburn
(1978) and Meyer (1979) have noted that
the (pure) dominance concept of one
prospect being dominated by another

involved in these rules is actually too
narrow for the (mixed) dominance concept
inherent in efficiency analysis. They have
shown that the necessary and sufhcient
conditions for pure dominance are only
sufficient conditions for determining if a
prospect is dominated in the sense of
efficiency analysis. Necessary and sufficient
conditions for mixed dominance for the
utility classes mentioned above have been
given by these latter authors.

_ Implementation of these conditions is

relatively easy (Drynan 1977).

One cause for concern with efficiency
analysis 1s the frequent finding that many
prospects are not detected as dominated.
There are two reasons. First, analysts have
often used only sufficient rather than
necessary and sufficient conditions for
dominance. In particular, analysts have
not routinely used the mixed dominance
rules, opting instead for pure dominance
rules. Whether this occurs through lack of
knowledge of mixed dominance or because
of the casier implementation of pure
dominance conditions is not clear, though
given the availability of computers for
efficiency analysis, one suspects that
ignorance of mixed dominance must be
the primary explanation.

The second reason for large efficient sets
1s the use of classes of utility functions so
broad, that diversity of optimal choice is
inevitable. The class of risk averters, for
example, includes near risk indifferent
decision makers as well as extreme risk
averters and many whose local risk
aversion oscillates, or alters slowly, rapidly
or uniformly between the extremes. The
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onus is on the decision analyst to ensure
that the class of utility functions has been
constrained as much as possible. One
suspects that decision analysts have failed
here, perhaps because of greater famihiarity
with, and the ease of implementation of,
dominance conditions for the broader
classes of utility functions. But also
contributing to the tendence to study
broad classes of utility functions is the
analyst’s desire to obtain strong,
aesthetically appealing results: far better to
be able to say that no risk averter would
select some particular prospect rather than
only that those who are not too risk averse
would not select some prospect. From a
practical viewpoint, the latter conclusion
would be just as useful as the former if
extreme risk averters did not exist.

Important advances in defining
narrower classes of practically relevant
utility functions, and in establishing
conditions for dominance, have been
achieved by Hammond (1974) and Meyer
(1977a,b). Both defined classes of utility
functions by quantitatively restricting the
local risk aversion function rather than
restricting the derivatives of the utility
function in a qualitative way. In

particular, Meyer (1977a) defined classes

in which the local risk aversion function is
constrained to lie between lower and upper
bounding functions. Appropriate definition
of these general risk constrained classes by
bounding functions means that utility
functions displaying extreme risk attitudes
can be excluded. Meyer developed
necessary and sufficient conditions for one
prospect to dominate another.
Implementation of the conditions, which
are not in general in closed form, is
tedious, though easy with computer
facilities. When risk aversion is bounded
from only one side, the conditions simplify
(Meyer 1977b). Implementation of these
conditions for “stochastic dominance with
respect to a function” is similar to that for
standard stochastic dominance rules.!
Drynan (1977, 1986) developed the
necessary and sufficient conditions for
mixed dominance for these risk
constrained classes. Implementation in the
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case of classes bounded on only one side
1s straightforward, paralleling the
procedures for determining second degree
stochastic dominance. But in the absence
of closed conditions for pure dominance
for the more general risk constrained
classes, no easy method for detecting
mixed dominance has been developed.

Hammond (1974) reported more
specific results for particular types of
prospects, namely those which are simply
related.? One important result (see
Theorem 1 below) is that, for simply
intertwined prospects, there exists a break-
even value of local risk aversion such that
a decision maker with this level of
constant risk aversion is indifferent
between the two prospects, decision
makers more risk averse preferring one
prospect, and all decision makers less risk
averse preferring the other. This is a
special case of a more general result
obtained by Meyer (1977b) for any pair of
prospects with distributions crossing a
finite number of times: a break-even risk
aversion function (not necessarily or
generally constant) always exists dividing
decision makers in this way.

These results represent a simple
alternative to applying the Meyer (1977a)
conditions for pure dominance, which
apply for any pair of distributions, to
simply related distributions.
Unfortunately, corresponding simpler
conditions for mixed dominance of simply
related distributions are not apparent for
general risk constrained classes.

In this paper, necessary and sufficient
conditions are defined for mixed
dominance of simply related distributions
for a number of more narrowly defined,
single risk parameter classes of utility

I The “function” is not the bounding function itself,
but the marginal utility function corresponding to 1t.

2 Simply related distributions have cumulative
distribution functions which intersect no more than
once. Those which do intersect once are said to be
simply intertwined. That prospect which has a
distribution function which first increases from 0 to
exceed that of another is said to be the more prone
to low outcomes of the two.
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functions. These classes include the class
of constant risk aversion functions, the
class of quadratic utility functions, and the
class of power functions. Sufficient
conditions are also given for somewhat
more general classes of limited-variation-
in-risk-parameter utility functions. All
these .classes are subclasses of Meyer’s
general risk constrained classes, differing
most notably in eliminating utility
functions displaying widely varying local
risk aversion. Means of implementation
are outlined in all cases.

These results are necessarily of limited
practical relevance since, in general,
distribution functions would cross more
than once. As well, the classes of utility
function may be too restrictive.
Nevertheless, when these restrictions are
met, or judged to be reasonable
approximations, the conditions provide an
added weapon in the analyst’s arsenal.

In an attempt to develop results that
should prove more useful more often, the
class of utility functions is enlarged by
defining classes on the basis of two risk
parameters. Necessary and sufficient
conditions are again given. The paper
concludes with a simple iltustration of the
ability of the rules to detect dominated
prospects that are not detected with the
pure dominance rules.

2. Utility Classes
The general class of utility functions

considered in this pape€r is the class of.

limited-variation-in-risk-aversion utility
functions defined by:

U, = {u(w): rp, <r(w) = ry,
and max r(w) — min r(w) < r}

where a < w < b, u(w) is a Bernoullian
utility function of monetary consequences
w, Hw) (= —u"(wyu'(w)) is the local risk
aversion function, and a and b are the
tightest lower and upper bounds on the
domain of monetary consequences
encompassing all possible consequences of
the feasible prospects. The class includes
all utility functions such that local risk

aversion never exceeds lower (r;) and
upper (ry) limits, and never varies more
than a specified amount (r,) over the
domain of monetary consequences.

Specific classes can be defined by
selecting particular bounding values and
values for r, First when r, = 0, U,
reduces to a class U, of constant risk
aversion utility functions. As noted earlier,
Hammond (1974) obtained a number of
useful results for comparing one prospect
to another for U,. classes, but he gives no
mixed dominance results. A second special
case occurs when r, = ry — ry in which
case the only constraints on the class of
utility functions are the upper and lower
bounds on risk aversion. The U,, class is
then a member of the general risk
constrained classes studied by Meyer
(1977a), and in fact a special case of his
classes since he permitted r, and r,; to be
bounding functions (of w) rather than set
constants. By appropriate choice or r, and
ru, this case includes the class of all
Bernoullian utility functions, and the class
of risk averse utility functions. As already
noted, necessary and sufficient conditions
for dominance for general risk constrained
classes are available in Drynan (1977).
Necessary and sufficient conditions for
dominance for U,, classes have not been
published.

Other specific classes can be devel-
oped by defining bounds on risk
aversion implicitly. In particular, classes
of limited-variation-in-risk-parameter
utility functions can be defined as follows:

Up = {u(w) : pr = p(w) = py,
and max pw) — mHi'n p(w)y =< p}

where a < w < b, p(w) is a risk parameter
function such that the utility function u(w)
has a local risk aversion function r(w) (=
—u'(w)u'(w)) = r¥wp(w)) which 1s
assumed to be bounded given the risk
parameter function p(w), ar¥(w,p)/dp is
continuous and positive, and a and b are
the tightest lower and upper bounds on the
domain of monetary consequences
encompassing all possible consequences of
the feasible prospects. When p, = 0 (the
class U,), each utility function has a
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constant risk parameter for all w levels.
Local risk aversion may, however, still
vary. By appropriate choice of p(w), risk
aversion for any w can be made arbitrarily
small or large.? Clearly, the higher is p(w),
the more risk averse the decision maker at
that w.

Examples of risk aversion functions
based on a constant rnisk parameter are
given in Drynan (1981). The classes of
quadratic utility functions, constant
absolute risk aversion utility functions,
power utility functions and constant
partial risk aversion functions, amongst
others, can be represented in this way.

Comparing the U,, and U,, classes, it is
clear that when r*(w, p(w)) = p(w) the two
are identical. Although there is always an
r(w) corresponding to a p(w), a U, class
cannot generally be re-expressed as a U,,
class because the lower and upper bounds
on r(w) would generally be functions of w
rather than constants. On the other hand,
all U, classes can be expressed as U,
classes.

Finally, broader utility classes can be
defined by introducing additional risk
parameter functions. Here attention is
confined to classes of constant risk
parameter utility functions. These classes
can be defined as follows:

Ump( i { (W) P = Dy <pk(’
fork=1..K}

wherea < w < b, pi, k=1 2,...K, are
risk parameters such that the utility
function u(w) has a local risk aversion
function r(w) (= —u"(wW)/uw'(w)) =r¥(w, p,,
P2 . . .) which is assumed to be bounded
given the risk parameters, ar*(w,p,)/dp; is
continous and positive for all k, and @ and
b are the tightest lower and upper bounds
on the domain of monetary consequences
encompassing all possible consequences of
the feasible prospects. This class is clearly
a generalization of the single constant risk
parameter classes defined earlier. Again,
the higher is any p,, the more risk averse
the decision maker.
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In practice, analysis with more than two
parameters may prove intractable.
Example risk aversion functions with two
risk parameters include linear risk
aversion functions (i.e., W) = p, + p,w),
power functions (i.e., r(w) = pw?’2),
inverse functions such as those associated
with constant relative risk aversion (i.e.,
r(w) = p/(w—p>) ) and functions formed
as the sum of two single risk parameter
risk aversion functions, namely

r(w) = ri(w.p;) + raw,ps).

3. Sufficient Conditions for
Dominance

In proving the subsequent results, the
following dominance relationship between
two simply intertwined prospects will be
used.*

Theorem 1I: Let the prospects a; and g;
be simply intertwined, with g, being more
prone to low outcomes than a;. Then there
exists a breakeven risk aversion level r;
such that, for all utility functions with
local risk aversion everywhere less than r,
a; is preferred to a; and for all utility
functions with local risk aversion
everywhere greater than ry; a; is preferred
to a;.}

3 Strictly. some qualificattons are needed. For
example, If ufw) = w — pw?and if u'{w) is required
to be positive. then p cannot be sclected 1o achieve
arbitrarily high Ievels of local risk aversion. See also,
Theorem 7.

* If simply related prospects are not simply
intertwined, then either the distributions are identical
or one distribution stochastically dominates the other
in the first degree (and hence for all classes of utility
functions). Conscquently, throughout the text, all
distributions are assumed (o be different. Only trivial
modifications are nceded to include identical
distributions. As well attention is confined to simply
intertwined prospects because the dominance
question is solved if the distribution functions do not
intersect.

> Note the convention that the order of subscripts in
r; (and later p,) reflects the fact that g, is preferred
by more risk preferring decision makers, and g; is
preferred by those more risk averse. The notation is
subsequently extended to p,;|p, to indicate a
conditional breakeven value for p, given p,.
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Proof: This theorem follows from
Hammond (1974), Theorems 1 and 3.

Theorem 2: Let the prospects a; and g,
be simply intertwined, with a; being more
prone to low outcomes than a;. Then there
exists a breakeven parameter value p; such
that, for all utility functions with bounded
local risk aversion r(w,p) where dr(w,p)/dp
is continuous and positive, g, is preferred
to a; when p < p;; and g, is preferred to
a; when p > p;.

Proof: Given the monotonic relationship
between p and local risk aversion, it
follows from Theorem 1 that if for some
value of p the decision maker is indifferent
between prospects g; and a;, then for all
higher p a; is preferred and for all lower p
a; 1s preferred. A breakeven value of p will
always exist for simply intertwined
prospects since expected utility is
continuous in p and, from Theorem 1, for
sufficiently large p, prospect g; is preferred,
and for sufficiently small p, prospect 4; is
preferred. This completes the proof.

Theorem 3: For the class of utility
functions U,, and for a set of simply
intertwined feasible prospects, prospect g;
is dominated:

(a) if there exists a prospect a; more
prone to low outcomes than g,
and p; > py; or

(b) if there exists a prospect ay. less
prone to low outcomes than a,,
and pjy << p; or

(c) if there exist two prospects, a;
and a;, with a; more and a; less
prone to low outcomes than a,
and such that p;—py > p, > 0.

Proof: 1t follows from Theorem 2 that g,
will be dominated by a; if p(w) < p;. If (a)
holds, then p(w) < pi < pj;, so a; will be
dominated. Following a similar argument,
a; will be dominated (by a,) if (b) holds.
Suppose that (c) holds. Then no utility
function in U,, can have both a minimum
p(w) < py and a maximum p(w) > p,.
Each utility function either has risk
parameter levels everywhere greater than
pjx (and so ay is preferred to a)), or has risk
parameter levels everywhere less than p;,

(and so a, is preferred to ‘a;). Hence, for
U,., when (¢) holds, a; is dominated since
either a; or ay; is preferred to a; This
completes the proof.

This theorem, composed essentially of
known dominance relations between two
prospects and of pure dominance
concepts, provides sufhicient conditions for
determining mixed dominance for U,.
That the conditions arc not generally
necessary is easily shown by counter-
example (Drynan 1977). Stronger sufficient
conditions can be developed using the
mixed dominance results for general risk
constrained classes. Thus if there is no
utility function with risk aversion within
the boundaries 1mplied by a risk
parameter function within the limits
defined by (p;—p,) and (py; + py), then g;
is dominated. The difficulty with this
stronger condition lies in the lack of
efficient methods for determining mixed
dominance for general risk constrained
classes.

Necessity can be proved for one
important case, namely, for the class of
constant risk parameter utility functions,
U, that is for a class of utility functions
each member of which has a risk
parameter function p(w) = p, a constant,

Theorem 4: For the class U, of constant
risk parameter utility functions, and for a
set of simply intertwined feasible
prospects, prospect g, 1s dominated if and
only if one or more of the following
conditions hold:

(a) there exists a prospect a, more
prone to low outcomes than aj,
and p;; > p; or

(b) there exists a prospect a, less
prone to low outcomes than a;,
and p; << p; or

(c) there exist two prospects, a, and
a,, with g, more and a; less
prone to low outcomes than a;,
and such that p; > pj.

Proof: Sufficiency follows immediately
from Theorem 3 using p, = 0. To prove
necessity, suppose a; is dominated but that
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no prospects exist satisfying (a), (b) or (c).
Hence, any prospect, say 4, less prone to
low outcomes than g, produces a break-
even value of p; > p;; and any prospect,
say @; more prone to low outcomes than a;
produces a break-even value p; < p,. If
either an a; or a, does not exist, a; clearly
is preferred for utility functions with local
risk parameter levels at one end of the risk
parameter domain, contradicting the
assumption of dominance. Suppose then
that both a; and a; exist. Since (a), (b) and
(c) are untrue, p; =< p; =< py., and there will
exist in U,, a utility function with
constant risk parameter ps, p; =< px =< py,
for which neither g, nor g, is preferred to
a;. This again contradicts the assumption
of dominance, and some prospects must
exist satisfying (a), (b) or (c¢). This
completes the proof.

Simtlar conditions to those of Theorems
3 and 4 for U,, and U, can be stated for
limited-variation-in-risk-aversion classes of
utility functions. Proofs parallel those in
Theorems 3 and 4.

Theorem 5: For the class of utility
functions U,., and for a set of simply
intertwined feasible prospects, prospect a;
1s dominated:

(a) if there exists a prospect g, more
prone to low outcomes than g,
and r; > r¢; or

(b) 1if there exists a prospect a; less
prone to low outcomes than a;
and ry < r; or

(c) 1f there exist two prospects, a;
and a;, with ¢, more and q, less
prone to low outcomes than a;,
and such that r; — ry > r, > 0.

Theorem 6. For the class U, of constant
risk aversion utility functions, and for a set
of simply intertwined feasible prospects,
prospect a; i1s dominated 1if and only if one
or more of the following conditions hold:

(a) there exists a prospect g, more
prone to low outcomes than a;,
and r; > ry; or

(b} there exists a prospect a, less
prone to low outcomes than q,
and ry << ry; or
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(c) there exist two prospects, «; and
a., with a, more and g; less
prone to low outcomes than q,,
and such that r; > ry.

Another constant risk parameter class
that may be of interest is the class of
quadratic utility functions, u#(w) = w —
pw? with p; <.p < p. But in this case
conditions for pure and mixed dominance
are quite simple, not just for simply
related distributions, but for any set of
distributions. For example, the “E-V rule”
1s a sufficient condition for pure
dominance for any class with p, > 0.
Necessary and sufhicient conditions for
pure dominance have been established
by Hanoch and Levy (1970) for the case
pr = 0. Necessary and sufficient conditions
for the more general case and for mixed
dominance are established below.

Theorem 7: For the class of utility
functions with members u(w) = w — pw?,
where p; < p < pu, and u’(w) > 0 (and
hence p < 1/2b where b is the tightest
upper bound on the domain of monetary
consequences), a; is dominated by a; if and
only if;

M,’ - Mj =

pu (Vi = VYL — pu(M; + M))]
itV 4+ M? <V, + M2

M; — Mj >0

if V, + M2 =V, + M2,

M, — Ml >
pr (Vi— VI — pp (M; + M))]
ifV,+ M2 >V, + M2,
where M and V denote mean and variance

respectively.

Proof: The expected utility of 4; is given
by:
EU =M, — p(M? + V),

and similarly for a,. Note that any increase
in the mean of a prospect can only serve
to increase its expected utility. Expected
utility is clearly a negatively sloping linear
function of p, and there will exist a
breakeven p;; value defined by:

M, —p; (M2 + V) =
M; — p;(M? + V)
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or equivalently when:

M, — M; =
py (Vi = VJ[1 — py; (M; + M))].

For smaller p values the prospect with the
larger (M? + V) 1s preferred, and for larger
p the one with the smaller (M? + V) is
preferred. To prove sufficiency, suppose Vi
+ M2 <V, + M2 Suppose that for p,
a;, is preferred, that is that the first
condition of the theorem holds. Then g,
must be preferred for all utility functions
in the class. Suppose V; + M? = V; 4+ M?
and that g; is preferred (second condition).
It must then have the larger mean, and be
preferred for all quadratic utility functions
since p does not affect expected utility.
Suppose V;, + M2 > V;, + M2 If q; is
preferred for p, (third condition), it must
be preferred for all utility functions with
higher p and hence for all in the given
class.

To prove necessity, one need only to
note that, if the conditions of the theorem
do not apply, then there is at least one
quadratic function for which g, is not
preferred to a;. This completés the proof.

If p; = 0, that is the class contains all
risk averse quadratic utility functions, the
conditions correspond to the Hanoch and
Levy (1970) rule. If the conditions are
applied with p; = 0 and py infinite, they
reduce to the “E-V rule”. This is sufficient
for dominance but not necessary because
the upper bound is needlessly loose since
no p can exceed 1/2b if u’(w) is required
to be positive.

Necessary and sufficient conditions for
mixed dominance are embodied in the
following theorem.

Theorem 8: For the class of quadratic
utility functions u(w) = w — pw?, where
pL = p =< pyand u’'(w) > 0O, prospect g,
is dominated if and only if one of the
following holds:

M, - M; >
pu (Ve = VY[l — py (M. + M))]
iV + MP <V, + M2,
M, — M;>0if Vi + M2 = V. + M2,
M. — Mj>

pr (Ve — V)1 — pp (M. + M)]
iV, + M2 > V. + M2,

where M and V' denote mean and
variance, respectively, and the subscript z
denotes some mixed prospect formed by
selecting available prospects other than g;
with defined probabilities,

Proof: This theorem is a particular
application of the necessary and sufficient
conditions for mixed dominance for
general classes of utility functions as
developed in Drynan (1977, 1986).

However, from a practical viewpoint,
one requires the means of establishing if a
suitable mixed prospect exists. It is easy to
search for that mixed prospect which
maximizes expected utility for the
quadratic with p = p; but which has
M2 + V.= M? + V, Similarly, one can
locate that mixed prospect which
maximizes expected utility for the
quadratic with p = p; but which has
M2 + V. = M2 + V. The required
probabilities are determined as the
solution to the following linear
programming problem:

max &, P, (M, + p« (M2 + V)
subject to X, P, = ;

XP, (M2 4+ V){=/=I M2 + V,
and P,,= 0,

where * is either L or U and the inequality
is = or =<, respectively. If either solution
satisfies one of the conditions, then a; is
dominated. If neither of these solutions
satisfies one of the three conditions, the
conditions can never be satisfied since the
mixed prospects best available to satisfy
them cannot do so. Hence the necessary
and sufficient conditions for dominance
cannot be met, and a; 1s not dominated.

To complete the set of results, Theorem
4 for a single risk parameter class U, 1s
generalized to the double risk parameter
class U,

Theorem 9: For a class U, of utility
functions with two constant risk
parameters, and for a set of simply
intertwined feasible prospects, prospect g,
is dominated if and only if one or more of
the following conditions hold: for every p;
within the limits of p»; and ps.,
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(a) there exists a prospect ¢; more prone
to low outcomes than aj;, and p;;| p; >
Py, or

(b) there exists a prospect a, less prone
to low outcomes than a;, and pyy| p> <
P or ,

(c) there exists two prospects, a; and ay,
with a;, more and a; less prone to low
outcomes than a;, and such that p,;;| p; >
D1k | b2 where the prospects a; and a; may
change for different levels of p..

Proof: This follows immediately since
the conditions amount to the application
of Theorem 4 for all levels of parameter
Do
An alternative to the necessary and
sufficient conditions of Theorem 9 is the
following sufficient condition for
dominance.

Theorem 10: For a class U,,,. of utility
functions with two constant risk
parameters, and for a set of simply
intertwined feasible prospects, prospect g,
1s dominated if one or more of the
following conditions hold:

(a) there exists a prospect g, more
prone to low outcomes than g,
and py|p2 > pyy or

(b) there exists a prospect a; less
prone to low outcomes than a,,
and pyx|p2 < pys or

(c) there exist two prospects, a; and
ay, with a; more and a; less
prone to low outcomes than g,
and such that p,;|p, > pu|p;
for all P = Dy = poy.

Proof: Consider (a). For any value of
P> there exists a break-even value of p; (p;;
|p2) such that for those utility functions
with greater risk parameter than p,; |p,, a;
1s preferred, and for those with smaller p,
values, a; 1s preferred (Theorem 2). Since
r(w) is continuous and monotonic in both
p; and p, the break-even values for
different p, values form a negatively
sloped locus in p; X p, space. For any
utility function with risk parameters below
this locus, a; is preferred. Hence if the co-
ordinates (p;;, p»y) lie under the locus, a;
is preferred for all utility functions in the
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class. If the latter point lies above the
break-even locus, a; is preferred to a, for
some utility functions.

A similar argument is used for (b).
When condition (c¢) applies, it ensures that
one break-even locus (for a; and a;) lies
below the other break-even locus (for g;
and a;) throughout the relevant p, domain,
and hence, whenever a; is preferred to a;,
a; 1s not preferred to a;. This completes
the proof.

4. Discussion

Few decision makers probably display
constant risk parameter behaviour over all
possible monetary outcomes. However, it
may often be reasonable to approximate
utility functions over the relevant domain
of monetary consequences by such
functions. Except where normal
distributions have been assumed, users of
the “E-V rule” have been prepared to
accept this. Those involved 1n more recent
attempts to estimate farmers’ risk attitudes
have also used this type of approximation,
at least locally. King and Robison (1981)
and Wilson and Eidman (1983) assumed
constant absolute risk aversion in
establishing upper and lower bounds on an
individual’s risk aversion over a narrow
monetary domain. Binswanger (1980)
assumed constant partial risk aversion in
classifying farmers by risk aversity.® The
quality of these approximations remains
an empirical question. In all three cases,
the evidence indicates that, over wider
domains, the particular assumed constant
risk parameter is inappropriate. Apart
from indicating that an alternative single
(or double) risk parameter model may be
necessary, it also implies that the local risk
assumptions used in these studies were
inappropriate.

If this level of approximation is

“unacceptable, Theorems 3 and 5 give

sufficient conditions for prospect
dominance for more general classes of

¢ Binswanger’s work is also interesting in that the
farmers were given choice sets of simply related
prospects some of which were dominated (in the
mixed sense). A number of respondents preferred the
dominated prospects.
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utility functions. The important empirical
points here concern how much vartation
in  the risk parameter must be
acknowledged for realism and whether one
can more successtully detect dominance by
working with sufficient conditions for
these limited-variation-in-risk-parameter
classes than by applying necessary and
sufficient conditions for the broad classes
associated with the traditional stochastic
dominance concepts.’

Even larger classes of utility functions
can be defined as the union of any two or
more of the limited-variation-in-risk-
parameter classes. A necessary and
sufficient condition for dominance for the
union is that a prospect be dominated for
every member class of the union.

When Theorems 3 and 5 are invoked
for U,, and U,, respectively, it may still be
useful to examine the application of
Theorems 4 and 6 to the corresponding
U, and U, classes. If it is found that
Theorem 4 or 6 yields the same reduced
set as Theorem 3 or 5, that set is also the
efficient set for U,, or U,, respectively.
Hence, in some cases, even though
necessary and sufhicient conditions for
dominance for U,, and U,, have not been
given, it is possible to recognize the
efficient set.

5. Implementation

Under the assumption of simply
intertwined distributions with a known
distributional form, the break-even value
of a single risk parameter can be found
relatively easily. At this point, the
expected utility of the two prospects, g;
and g, say, must be equal. Letting F; and
F; be distribution functions, expected
utilities are equal when:

JOLF, — F] w/'(w) dw = 0.

Expressing u(w) in terms of r(w), with rfw)
= r¥wp), the break-even value p; is
defined by:

oJPLE; — F}] exp(— r*(x,p;)dx) dw = 0.
Generally, numerical or iterative search

methods would have to be used. In some
cases, the task is simpler. For example, for

a constant risk aversion utility function
with risk aversion p (p#0), u(w) =
—(1/p exp(— pw), and the break-even value
is defined by:

El—1/ry) exp(—ryw)] =
E{—(1/ry) CXD(-fUW)],

where E; and E; denote expectations with
respect to the distributions for prospects g;
and a;, respectively. These expectations
have the form of moment generating
functions, and can be written in terms of
the parameters of the distributions and the
constant risk aversion level r; The latter
break-even value often has an explicit
analytical solution. For example, in the
case of normal distributions,

rp=2(M; — M)I(V, — V).

But even for constant risk aversion
functions explicit solutions do not always
exist (e.g., for uniform distributions),
although solutions are easily obtained
iteratively using the convenient
expressions for expectations.

For U, (and similarly for U,), the
efficient set contains only those prospects
which are preferred for at least one value
of the risk parameter in the prescribed
range. An easy way to locate the efficient
set 1s to search over the risk parameter
values noting which prospects are
preferred. As a first step, the feasible:
prospects should be arranged in order
from that most prone to low outcomes to
that least prone to low outcomes
(descending order of wvariance if the
distributions are normal). Locate the
prospect with the largest expected utility
for p = p; (that with maximum (M —
0.5r; V*°) value if normality and constant
risk aversion is assumed). From Theorem
2, it follows that this prospect will be
preferred on the basis of all utility
functions with risk parameter greater than

7 There is theoretical supporting evidence in the
results of Meyer (1977a). For any general risk
constrained class of utility functions, the function
which will first prevent dominance {(as a class is
widened) is one with risk aversion varying from the
lower to the upper risk aversion limits.
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p; and less than p,;, where p, is the
minimum p,, value, * > [ It is easily
shown that the sequence of preferred
prospects as the risk parameter increases
shows decreasing proneness to low
outcomes; hence, in determining p;, only
prospects which are less prone to low
outcomes than prospect a; need be
considered. At p;, ignoring the possibility
of identical break-even values, the
preferred prospect changes from g; to ay.
Prospect a, will be the preferred prospect
for risk parameter levels to p,,, where p;,
1s the smallest p;, value, t > k. At p.,, a;
becomes the preferred prospect. The
efficient set can be isolated by continuing
in this way either until the smallest break-
even value is larger than pg, or until no
more prospects less prone to low outcomes
than the current preferred prospect
remain. If two prospects yield the same
minimum break-even value, both
prospects belong in the efficient set. As the
risk paramater is further decreased, the
one with the higher expected utility would
be chosen as the next preferred prospect;
and the procedure continues as outlined.
The preceding procedure is designed for
locating the efficient set. Where the
question is simply whether a given
prospect is decminated, one can either use
this same procedure, or on¢ can compute
all break-even values for that prospect and
examine them to see if any of the
conditions of Theorem 4 hold.
Dominance analysis for a U, (and
similarly U,,) class i1s a little more difhcult,
and in essence, each prospect must be
examined in turn. Some computational
efficiencies can be made. Again, arrange
the prospects in order of decreasing
proneness to low outcomes. Then locate
the preterred prospects for risk parameter
levels of p; and py, say a; and ap. It
follows from Theorem 2, and (a) and (b)
of Theorem 3, that all prospects which are
more prone to low outcomes than ag; or
less prone to low outcomes than g, are
dominated either by a; or a;, and can be
discarded. Prospects a; and a, are
necessarily efficient and need not be
examined for dominance. For prospect a;,
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compute the break-even values with the
other remaining prospects. Find max py;,
k < j, and min py, s > j, and test for
conditions (a), (b) and (c¢) of Theorem 3.
If any holds, discard a;. Continue with
other prospects until all have been
examined for dominance, leaving a
reduced set of all efficient, and possibly

. other, prospects.

Finally, for the double risk parameter
utility functions, the procedure essentially
involves repeating the single parameter
analysis. Once the prospects have been
ordered, dominance on the basis of p,;
values is assessed conditional on each of a
series of p, values. The finer the p, grid,
the more precisely are the conditions of
Theorem 9 applied. The sufficient
conditions of Theorem 10 (a) and (b)
require only a single parameter search
each and are therefore readily examined.

6. An [llustration

The limited-variation-in-risk-parameter
classes of utility functions defined in this
paper differ significantly from other classes
defined in the literature in that a host of
seemingly unrealistic utility functions,
each displaying wide variation in the risk
parameter over the relevant domain of
monetary consequences, are now excluded.
The potential for reducing the set of
feasible prospects is illustrated in Figure 1
under the assumption of normally
distributed prospects and U,, classes.

Consider prospects a; and a,, with
means M, and M,, and variances V; and
V. rtespectively. If the necessary and
sufficient conditions of second degree
stochastic dominance (the “E-V rule”
under normality) were applied to all pairs
of prospects, all prospects in the dotted
area would be eliminated since they are
dominated by «; or 4.

Suppose that the relevant class of utility
functions is that of all risk averse, constant
risk aversion utility functions. From
Theorem 6, conditions (a) and (b) yield the
same dotted area as for second degree
stochastic dominance. Condition (c) says
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Figure 1: Areas of dominance for example utility classes

that a prospect g, is dominated if r; > ry,
where it is assumed that variance V; > V;
> V. Using the expression for break-even
risk aversion for normality, a, is
dominated if:

2(M; — M)I(V, — V) >
2 (M; — MV, — V.
In terms of Figure 1, any prospect g; lying

to the lower right side of a straight line
joining a; and a, is dominated. Hence the

hatched and crossed areas are to be added
to the dotted area of dominance. This
result reflects the fact that iso-utility lines
in mean-variance space under the
assumptions of normality and constant
risk aversion are linear, implying that the
efficient set of prospects must lie on a
convex frontier.

Finally, consider the class of all risk
averse utility functions in which local risk
aversion for any particular utility function
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cannot vary more than r,. Conditions (a)
and (b) of Theorem 5 imply that any
prospects in the dotted area will be
dominated. Condition (¢) reduces to:

2(M; — MYV, — V) —
2(M; — MV, — V) > r..

That is, if the slope of the line from g; to
a; exceeds the slope from a, to a; by r/2,
then a; is dominated. Consequently, any
prospects which fall in the crossed area in
Figure 1| will be dominated. For a U,
class, the area of dominated prospects
includes the dotted and the crossed area.

7. Concluding Remarks

This paper has presented new results in
efficiency analysis by defining new classes
of utility functions. The utility classes
proposed here are likely to be of more
relevance to an efficiency analysis which
relates to a group of decision makers than
to an analysis for a single decision maker
whose utility function has not been
precisely defined. In the latter case, it is
difficult to see situations in which more
would be known about the variation in a
risk parameter than is contained in the
upper and lower risk bounds. But for the
former case, one may frequently be
confident of the type and variation of the
risk parameter function for each decision
maker, yet may need to acknowledge the
differences between decision makers.
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