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Woodward: Dynamic Nutrient Carryover Model

A Dynamic Nutrient Carryover Model for
Pastoral Soils and its Application to Optimising
Fertiliser Allocation to Several Blocks with a

Cost Constraint

Simon J.R. Woodward’|=

A dynamical model of soil phosphorus carryover in grazed
pasture provides the basis for bioeconomic optimization
of fertiliser rates. A linear constraint is introduced to
optimise the allocation of limited funds to fertiliser on
several farm blocks, each of which represents a different
land and/or stock class. The optimal constrained mainte-
nance application of fertiliser to each block is calculated,
and an heuristic approach to this equilibrium is suggested.
In some cases this involves withholding of fertiliser from
unresponsive blocks. The dynamical model and eco-
nomic optimisation method have been implemented in a

commercial fertiliser planning decision support tool Out-
look™

1. Introduction

Fertiliser application is the single most significant
input to pastoral farms in New Zealand. Farmers must
attempt to maximise the benefits of increased produc-
tion over the costs of fertiliser application. Minimis-
ing fertiliser run-off into waterways is an important
additional consideration. However, the problem of
optimising fertiliser economics is complicated because
some proportion of soil nutrient is carried over from
one year to the next, so that investment in fertiliser at
a point in time returns a stream of benefits for several
years into the future (Godden and Helyar). In addition,
farm economic planning may have to consider the
costs and contributions from several blocks with dif-
ferent soil and/or stock characteristics. Finance avail-
able to be spent on fertiliser in any given year may also
not be unlimited. All of these factors make the budg-
eting of fertiliser expenditure an important and com-
plicated task, and one which has received much
attention from economists (Kennedy er al., Kennedy
1981, 1986a,b, Godden and Helyar).

Kennedy et al., used dynamic programming to calcu-
late the optimal long-term fertiliser application in a
cropping system, assuming that a constant proportion
of fertiliser was carried over into the following year.
Other models have extended this to consider the car-
ryover of nutrients for several years (Godden and

Helyar, Kennedy 1986a,b). These studies have fo-
cused on the economic aspects of revenue and cost
prices instead of the soil processes affecting annual
cycling of nutrients, and the empirical carryover func-
tions they have used are a considerable simplification
of the soil processes affecting retention and loss of
fertiliser nutrients. Since many of the processes affect-
ing nutrient cycling in fertilised soils are well under-
stood, a mechanistic approach to modelling carryover
is preferred.

This paper describes a method to calculate optimal
fertiliser application to several grazed blocks where
nutrient cycling on each block is described by a simple
dynamical model (which is due to Metherell). The
bio-physical and economic models are first described.
The optimal fertility level with a financial constraint
is then calculated using a discrete optimal control
formulation (Clark). An heuristic is proposed to pro-
vide fertiliser recommendations for the initial years
until the optimal level is reached. This is then illus-
trated with an example.

2. A Phosphate Cycling Model for
Grazed Pasture

The use of dynamical models in describing the dynam-
ics of biological and bio-physical systems is well
established (Edelstein-Keshet, Clark, Woodward).
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They offer a number of advantages. Firstly, dynamical
models allow mechanistic modelling of the interac-
tions between the components of a system. In the case
of fertiliser economics, for example, this means that an
understanding of soil system mechanisms may be used
to predict fertiliser carryover. Secondly, the mathe-
matical analysis of dynamical systems models yields
insights into the stability properties of the system
(Edelstein-Keshet, Woodward). Thirdly, the mathe-
matical formulation facilitates bioeconomic optimiza-
tion. )

As part of the development of a commercial fertiliser
decision support program called Outlook™, a mecha-
nistic model describing the dynamics of soil phosphate
(P) cycling in New Zealand pastoral soils has been
developed (Metherell, Metherell et gl.). Phosphorus
has been chosen because of its relatively high cost,
wide use, and great quantity applied, but it is intended
that future models will incorporate sulphur and potas-
sium, the other two main long term nutrients.
Metherell’s model describes the carryover of soil
phosphate on block i from year t to year t+1 using the
difference equation:

Soil P Accumulation  Slow Release P Fertiliser
(1) Pi(t+1)-Pi(t) = Psi + Fi(t)
Soil Losses
- Bi (Pi(v) + Fi(t)
Animal Losses

- s (1 _e ki (Pi(y +Fi(l)))

where

Pi(t) isthe soil P (kgP/ha) in block i at the start of year
t, prior to fertiliser application,

Ps; is the annual rate of release of slow release P in
the soil (kgP/ha),

Fi(t) is the rate of fertiliser application (kgP/ha) on
block i at the start of year t,

Bi is the proportion of soil P lost annually to soil
processes (the "soil loss™),

Yi  1s the rate of soil P lost per stock unit per year
(the "animal loss"),

si is the potential stocking rate on block 1, and
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ki  isthe calibration coefficient for the relative yield
to soil P response curve.

In this model, soil P represents the pool of phosphorous
compounds in the soil which are available for use by
plants, rather than the total soil P content, and all
processes are assumed to operate on this pool of plant-
available phosphorous. At the beginning of year t we
have Pi(t) units (kgP/ha) of "plant-available" phospho-
rus in the soil (soil P), to which Fj(t) units (kgP/ha) of
fertiliser phosphorous are then added. From this new
level of soil P the relative yield for year t is calculated,

(2) RY](‘) =]-e —ki (Pi(t) + Fi(1))

as is the loss of P to soil processes (such as immobi-
lisation by soil organisms and roots) in year t,

3)  Bi(Pi(t) + Fu(r))

Relative yield (Equation 2) is a fraction which de-
scribes the depression of pasture production below
potential due to a limiting availability of plant-avail-
able soil P, and follows a Mitscherlich diminishing
returns curve. The stocking rate (stock units per hec-
tare) and the pasture yield (and thus relative yield) are
assumed to be in constant ratio. This represents a fixed
efficiency of utilisation of herbage on each block.
Therefore as soil P increases, and relative yield in-
creases, so does stocking rate:

SRi(0)
RY(0)

SRi(t) = RY(t)

4 S
=si (1 — Ki®©+ Fl(t)))

where the ratio of initial stocking rate SR;(0) to tnitial
relative yield RYi(0) is the potential stocking rate on
that block and is denoted by s;. Losses of soil P in the
model due to animals (through transfer and through
incorporation into products such as meat, wool, or
milk) are assumed to be proportional to the stocking
rate with proportionality constant y; (see Equation 1).
Equation 1 also includes a constant term, Ps;, which
represents release of phosphorus into the soil from
non-plant-available sources such as apatite (phosphate
bearing rocks) and chemical mineralisation of organic
phosphorous compounds. This dynamic model
(Equation 1) is assumed to hold across a range of sites,
each block of land on a farm being characterised by a
different set of soil and animal parameters.

Thus the carryover of soil nutrient into the following
year is a non-linear function of the initial soil P and the
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Figure 1: Steady State Relative Yield for Different Rates
of Fertiliser Applied to Block 1 (Table 1)
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fertiliser applied. Figure 1 shows the stability analysis
for this model (see Edelstein-Keshet) following the
example of Godden and Helyar. For a given mainte-
nance application of fertiliser F; there is a "steady state"
(equilibrium) level of soil P (and thus relative yield)
which makes the right-hand side of Equation 1 equal
to zero. The arrows on Figure 1 indicate the direction
of year-to-year nutrient accumulation or loss if the
current relative yield is not at the equilibrium level.
Equally, this graph shows the maintenance fertiliser
requirement at any particular level of relative yield.

Kennedy (1986a) showed that, dependent on the type
of crop response function, including fertiliser carry-
over in the economic analysis can have a significant
impact on the estimated optimum rate of application,
and on net profitability. Therefore, carryover is an
important aspect of the fertiliser problem. Previous
economic analyses of fertiliser carryover have focused
on crop farming, and have used empirical single- or
multi- period carryover functions (e.g. Godden and
Helyar, Kennedy 1986a), the simplest of which as-
sumes that a proportion V; of fertiliser carries over
from year t to year t+1 in the soil (Kennedy et al.), so
that:

(5)  Pi(t+1) = Vi (1) [Pi(t) + Fi(1)]

Equation 5 is an empirical model of fertiliser carryover
which plays the same role in the economic analysis as
Metherell’s more mechanistic description of soil phos-
phorus dynamics (Equation 1). The key differences

are: firstly, that the Metherell model explicitly ac-
counts for the fate of all nutrient entering the system;
secondly, it includes a contribution of nutrient from
slow release soil processes (the parameter Ps;); and
thirdly, the Metherell model also considers additional
losses due to the level of production (i.e. stocking rate)
through the parameter y,. By modelling the soil
mechanisms which effect nutrient cycling, we elimi-
nate the need for a non-mechanistic carryover func-
tion. We will show how the dynamic model may be
used to carry out an economic cost-benefit analysis of
fertiliser application with carryover into subsequent
years.

3. The Discounted Profit Function
for N Blocks

The aim in simple one-year fertiliser analysis is to
maximise the excess of revenue from animal products
and sales over the fertiliser costs in that year. This
becomes more complicated when the farm consists of
several blocks and because fertiliser applied in the
present carries over to benefit revenue for several years
into the future (Godden and Helyar).

One method of estimating the present value of future
prices paid and received is to apply a time discounting
factor (Kennedy et al.). We assume that fertiliser
exnenditure is deducted at the beginning of each year,
and that revenue from animal sales and products is
received at the end of that year. When summed across
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N blocks and over T years, the net present value (NPV)

i8:
Revenue

T N
© NV =3 o ¥ [osais ( 1—¢ K Bl + Fi©) )

t=1 i=]

Cost
- AF® ]

where

T is the number of time periods (years),

o is the discrete time preference discount factor, =
1/(1+discount rate),

N s the number of blocks on the farm,

ri is the gross margin per stock unit per year
($/SU/yr),

Aj is the land area of block i (hectares), and

¢i 1is the cost per kgP of fertiliser applied to block i
($/kgP).

Note that as well as possibly different soil and animal
characteristics, blocks also may have different costs
and gross margins, reflecting the different costs of
fertiliser application on those blocks and the different
animal classes being run. The gross margin value in
Equation 6 is assumed to consist of the gross revenue
per stock unit minus the variable costs, which include
interest paid on stock capital.

When used in conjunction with the bio-physical model
for fertiliser carryover (Equation 1), Equation 6 pro-
vides the NPV of adopting a given fertiliser strategy.

4. Constrained Optimisation

Our aim is to choose the fertiliser application rates Fi(t)
in each block in each year to maximise the NPV
(Equation 6), subject to certain consiraints on the
fertiliser application rates. For instance, calculations
may suggest a high expenditure on fertiliser to maxi-
mise profits. However, other factors such as weather
and changing markets may mitigate against the full
return being received from this investment. A simple
method for managing this risk is for the farmer to
specify a "cap” on the amount of money he or she is
willing to invest in fertiliser each year. The size of this
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cap will be determined by the farmer’s available credit
and cash, as well as by his or her attitude to risk. In
many cases we find that almost maximal profit may be
still obtained with a significantly lower outlay of in-
vestment (Kennedy 1986a). The cap constraint across
N blocks is:

N
(M D= ciAiF20

i=1

where D is the maximum expenditure on fertiliser in
any one year ($).

Experiments studying pasture responses at different
rates of fertiliser have tended to examine fertiliser rates
in common use. For this reason it is rare for extremes
of fertiliser rate to be applied and the yield responses
in this situation are therefore less well understood.
Furthermore, recent emphasis on the polluting effects
of excess fertiliser running off into waterways has
shown that the proportion of nutrients lost in run-off
rises rapidly with the rate of application. Therefore,
we wish to specify an upper limit to the fertiliser rate,
beyond which the P cycling model (Equation 1) may
not be valid and where runoff may be considered
excessive. This upper limit is around 120 kgP per
hectare (1.3 tonnes of superphosphate). The rate con-
straint is expressed mathematically as (recalling that
Fi(t) must also be non-negative):

&) 0 <F; (@) <F™

Thus there are both rate and financial constraints im-
posed on the amount of fertiliser applied in each block
in each year.

Most previous analyses have used the method of dy-
namic programming to find the optimal fertiliser rate
in each period and the long term optimal equilibrium
level (Kennedy et al., Kennedy 1981, 1986a,b. God-
den and Helyar). Here, however, as we intend to use
a dynamic model (Equation 1) to calculate the cycling
of nutrient from year to year, it is more appropriate to
use an optimal control formulation (Clark), which
concemns the optimal strategy for controlling a dynami-
cally evolving system where there is some regular
input ("control variable"). In this case we wish to use
fertiliser application to control the evolution of the soil
nutrient system so as to maximise NPV over the whole
farm. Nevertheless, as Kennedy (1986b) points out,
the methods of dynamic programming and optimal
control are mathematically equivalent in this applica-
tion.
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The present value Hamiltonian for this optimal control
problem (see Clark) is constructed by appending the
state equation (Equation 1) to the year-t net revenue,
using adjoint multipliers Ai(t) (for conciseness we omit
the year if no ambiguity exists, e.g. P; = Pi(t)):

N
H(ty= 2 at! [Ot i Aisi (l—c ki (Pi+ Fi))— ciAiFi ]
=1

&)
+A—|[PSI+F1—B1 (P1+Fl)_% S (l_e ki (Pi"‘Fi))]

The Pontryagin maximum principle (see Clark) states
that to maximise the objective function (NPV) we must
choose the control variables Fi(t), subject to the cap
and rate constraints (Equations 7 and 8), to maximise
H(t) at every point in time. In addition we must satisfy
the discrete "adjoint equation” (Clark p237):

SHO 5 0 -
10) =35 = MO =MD

‘When the rate constraint (Equation 8) is "slack” so that
O<Fi<F{"™®, the Hamiltonian is maximised at a local
maximum, constrained by the cap constraint. This can
be achieved by forming a Lagrangian, so that the
constrained local maximum point satisfies

9 -1 g -
(1]) BFl (t){H(t)+p~a [D_gcl Aj F]J}—o

in each year, where the cap constraint has been ap-
pended to the Hamiltonian using a Lagrange multiplier
(). The value of pLis interpreted as the (undiscounted)
marginal value of increasing the financial constraint D
by one unit. A special case occurs when p=0, where
spending an extra dollar earns no extra profit —this
indicates that the cap constraint is slack and we are at
the unconstrained optimum.

In the case where the unconstrained optimum is infea-
sible, the value of pu must be found so that the total
fertiliser cost is equal to D. If, for example, p=0.5 at
this point, then for every extra dollar spent on fertiliser
(over and above D) in year t we expect the NPV to
increase by $0.50 times of ™.

5. Equilibrium Solution

In the long term we expect the optimum soil P level on
each block to approach some equilibrium level (Figure
1), which may be constrained by the cap constraint
(Equation 7). At equilibrium P;(t+1)=P; in Equation 9
and the maximum principle and adjoint equations

(Equations 11 and 10 respectively) may be solved
simultaneously to give the optimal post-application
fertility level {Pi+Fi} (see Appendix for details):

. . Bi-1+é
(12)  P+FP™ = o~ 1n

ki Y
Si k{Ci (i + lJ-) Yl]

Setting pu=0 in Equation 12 gives the unconstrained
optimal soil P level on block i to maximise the net
present value on that block. In the absence of con-
straints on the annual fertiliser application rate, the
optimal strategy is to apply a capital application of
fertiliser to achieve this equilibrium level in as short a
time as possible (i.e. after one year) and to maintain
that level thereafter.

The capital fertiliser application required to reach this
optimal level in one year is found by subtracting the
current soil P level:

(13) F; capial iP; + Fi}opu‘mal — p, current

The annual maintenance fertiliser application then
needed to maintain this optimal level is (rearranging
Equation 1 when P; is in equilibrium, and substituting
the optimal soil P level from Equation 12):

(14) F; maintenance _ —Ps; + '3 ; ‘:_Pi + Fij' optimal
+ Y-Si(l—e‘k' (Pi+Fy) )

However, this is of no use to us if the financial or rate
constraints prevent us from applying the capital or
maintenance rates of fertiliser specified in Equations
13 and 14.

The constrained equilibrium is not difficult to calculate
numerically by increasing W in Equation 12 from zero
until the recommended maintenance applications
(Equation 14) satisfy the financial constraint exactly
—i.e. to find W so that

N
(15) D- Z ¢ A F; maintenance _ 0

i=]

The optimal strategy of capital applications for reach-
ing this constrained optimum starting from given in-
itial conditions of soil P on each block Pi(1) is more
difficult to calculate. The question is: how may we
raise the fertility level over a period of several years
while still honouring the financial constraint? We also
wish to do this in the most profitable manner. This
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problem is called finding the optimal approach path (to
the optimal equilibrium).

6. An Approximately Optimal
Approach Path

The optimal approach path is calculated from the
Hamiltonian (Equation 9) by solving Equations 11 and
10 (i.e. the maximum principle and the adjoint equa-
tion). However this produces a condition at the start
(because the Pi(1) are given) and another condition at
the end (the A(T) must go to zero), so that finding the
optimal approach path is a (discrete) two-point bound-
ary value problem. Although there are numerical
methods for tackling this kind of problem (see Atkin-
son), we wish to find a simpler method.

An approximately optimal approach path to the long
run optimum works as follows: the total cost of moving
from the known current soil P; to some constrained
optimal equilibrium level is {combining Equations 12
and 13):

N N
1
(16) Y cAFi=Y ciAij —3 I

Ti
)

i=1 =]

The portion in the braces {} is the capital fertiliser
application on each block. This must be adjusted to
satisfy both the rate and financial constraints. The rate
constraint (Equation 8) is satisfied by truncating the
value in the braces to lie in the range O0<Fi<F;"%, as
illustrated in Figure 2. If the unconstrained optimum
is infeasible (i.e. the fertiliser cost is greater than D
when 1 =0) then the financial cap constraint (Equation
7) must also be satisfied by numerically adjusting p
until the right hand side of Equation 16 exactly equals
D, i.e. the constrained "optimal" soil P value comes
down to a level which we can afford to move to in one
year with a single capital fertiliser application. The
value in the braces in Equation 16 is then taken for
Fi(t).

This procedure is repeated each year, and the new scil
P level, Pi(t+1), is calculated from the dynamics equa-
tion (Equation 1). It may take several years to ap-
proach the constrained optimal equilibrium in this
manner. However, the financial constraint is satisfied
in every year, and the allocation of funds for fertiliser
in every year is approximately optimal, as we shall
show by an example.

- Pi current i

Figure 2: Incorporating the Rate Constraint
0 SFL imax

A Fi
(kgP/ha)

P Y
A %4

.......................

Maximum Fi Constraint
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Example

Table 1 contains details of the three land blocks of a
hill country sheep-beef farm in the Waikato region of
New Zealand. The block characteristics include slope,
soil type, initial soil P, stocking rate and relative yield,
gross margins and fertiliser costs. Additional informa-
tion needed to calculate the constrained optimum fer-
tiliser policy are the time preference discount factor o
and the maximum annual fertiliser expenditure D. A
discount rate of 10 per cent per annum gives
0=1/(1+0.1)=0.91 for this example.

Using the initial soil P and stocking rate from Table 1
and rearranging Equation 1 enables us to calculate the
maintenance strategy, which is defined as applying
sufficient fertiliser to maintain the existing fertility
level on each block:

—Psi +PBiPi (1) +7i SRi (0)
1-B;

(17) F; maintenance _

The maintenance policy for this farm consists of an-
nual applications of 17, 20, and 17 kg P per hectare
respectively for the three blocks and costs $7,241 per
annum. The annual net revenue over fertiliser costs at
maintenance is $58,400. The discounted NPV (Equa-
tion 6) for the maintenance strategy over the first ten
years (T=10) is $309,902.

The unconstrained optimal solution (using Equation
12 with p =0) consists of a capital application to
improve the fertility in blocks 2 and 3 in the first year,
but almost two years withholding from block 1, and an
application of 15, 23, and 21 kg P per hectare thereafter
to maintain the new equilibrium fertility level, the
"optimal maintenance”" (Table 2). After the initial
period of adjustment in the first two years, this strategy
costs $7,787 per year, and earns an undiscounted net
revenue over costs of $60,653 per annum. The NPV
over ten years is $311,790.

Setting the cap on annual fertiliser expenditure at
D=$7,241, the same expenditure as under the mainte-
nance strategy, allows us use the approximately opti-
mal method to assess the opportunity to achieve greater
returns while spending the same amount of money as
required for maintenance. In the constrained solution
shown in Table 3, fertiliser is withheld from block 1
for the first three years, with small increases in appli-
cation to blocks 2 and 3. Table 3 also shows the values
of |t required (see comments on Equation 11) to meet
the constraint (Equation 7). The equilibrium levels
reached after the initial four years of adjustment re-
quire 13, 21, and 20 kg P per hectare respectively to
maintain, and earn around $59,100 net per annum.
The ten-year NPV is $313,832,

Table 1: Parameters for a Typical Sheep/Beef Farm Consisting of 3 Blocks of Land

Parameter Block 1 Block 2 Block 3 Units
Area Ai 50 30 50 ha
Slope Steep Easy Easy
Soil Type Sedimentary  Sedimentary Volcanic
Soil Loss Bi 0.04 0.04 0.05 yr!
Initial Olsen P 8 9 9
Initial Soil P Pi(1) 200 214 176 kgP ha™
Slow Release P Psi 3 3 3 kgP ha yr
Initial Stocking Rate SRi(0) 10 18 14 SUha
Initial Relative Yield RYi(®) 87% 89% 84%
SR i(0): RY;(0) Ratio si 11.5 20.2 16.7 SU ha'!
Animal Loss % 1.08 0.75 0.75 kgP SU yr!
Scil Response Calibration ki 0.0095 0.0095 0.0095 ha kgP‘]
Gross Margin 1 30 35 35 $SUT yr!
Fertiliser Cost ci 3.50 3.00 3.00 $ kgP'!
Maximum Fertiliser Rate F™ 120 120 120 kgP ha'!
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Table 2: Optimal Unconstrained Ten-year Strategy for the Farm Specified in Table 1
Year Block 1 Block 2 Block 3 Total Fert Cost Revenue
kgP/ha kgP/ha kgP/ha &) %
1 - 71 81 18,555 61,031
2 1 23 21 5,410 60,653
3 15 23 21 7,787 60,653
4 15 23 21 7,787 60,653
5 15 23 21 7,787 60,653
6 15 23 21 7,787 60,653
7 15 23 21 7,787 60,653
8 15 23 21 7,787 60,653
9 15 23 21 7,787 60,653
10 15 23 21 7,787 60,653
Table 3: Optimal Constrained Ten-year Strategy with a Fertiliser Expenditure Cap of $7,241 per
annum
Year Block 1 Block 2 Block 3 1 Revenue
kgP/ha kgP/ha kgP/ha %

1 - 24 34 0.51 58,300
2 - 31 30 0.37 59,015
3 - 31 30 0.25 59,100
4 7 26 24 0.20 59,098
5 13 21 20 0.20 59,095
6 13 21 20 0.20 59,091
7 13 21 20 0.20 59,088
8 13 21 20 0.20 59,086
9 13 21 20 0.20 59,083
10 13 21 20 0.20 59,081

The ten-year NPV values are similar for all three
strategies. The improvement made by the constrained
$7,241 strategy over the maintenance strategy sug-
gests that less money should be spent on block 1 of the
farm, since the other two blocks are more responsive.
Nevertheless, the differences in NPV between the
strategies are small, reflecting the high initial fertility
of the farm.

In the first ten years, the unconstrained policy achieves
an NPV only 0.6 per cent better than that of the
maintenance strategy. This initially mediocre per-
formance is due to the high cost of the initial capital
fertiliser application, and in the long-term, the uncon-
strained optimal strategy will be superior to every
alternative strategy. However, a ten-year planning
horizon is likely to be more realistic from a farmer’s
point of view, and incurring the cost of large capital
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fertiliser applications in a single year may also be
undesirable. Therefore it is of interest to know
whether almost-optimal NPV may be achieved from
fertiliser policies that do not require such high initial
financial outlay.

From Table 2, the cost of maintaining the uncon-
strained optimal equilibrium fertility level is $7,787
per annum, and the unconstrained capital application
to reach this equilibrium is $18,555. Therefore, since
D is the maximum expenditure in any year, if
$7,787<D<$18,555 then the approach to the optimal
equilibrium will be constrained, and several years of
capital applications will be required to reach the opti-
mal equilibrium. Furthermore, if D<$7,787 then it
will not be possible to maintain the optimal equilib-
rium at all, even if it were possible to reach it.
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Figure 3: Long-term (100 years) Constrained Optimum NPV for
Different Values of the Cap Constraint
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Figure 3 shows how the long-term (100 year) optimal
NPV varies in response to the cap constraint. When
$7,787<D<$18,555, although capital applications of
fertiliser are constrained, NPV is not noticeably af-
fected. When D<$7,787, insufficient finance is avail-
able to apply the optimal maintenance, and in this case,
NPV declines sharply. The graph implies that con-
straining the approach path to this equilibrium has very
little effect on the long term NPV, so any approach
path will be equally good, including the approximately
optimal approach we have suggested in this paper.
However, if annual expenditure is constrained to such
an extent that the optimal equilibrium cannot be main-
tained, this will significantly decrease long term NPV,
Therefore, calculating the optimal equilibrium is the
key to maximising NPV in the long term. Further-
more, spending less money on capital fertiliser appli-
cations avoids the risk of overcapitalising.

8. Software Implementation

The biological model (Equation 1) has been developed
to be the engine of a decision support computer pro-
gramme Outlook ™™, which is designed to assist farm-
ers’ fertiliser planning by predicting the long-term (10
years plus) biological and economic outcomes of dif-
ferent fertiliser policies based on the current scientific
knowledge of %osphorus dynamics in New Zealand
soils. Qutlook ™ gives non-technical users access to
this information and to sophisticated mathematical
analyses, and also mediates the process by selecting

appropriate data from a scientific database, performing
the mathematical analyses, and displaying the results
in a practical format.

The constrained optimisation calculation described
here is an important part of this software both because
fertiliser is relatively expensive to apply and because
farmers are often constrained by cash flow. Specify-
ing a maximum expenditure in each year also provides
a simple means for introducing risk management into
fertiliser planning.

9. Conclusion

This paper illustrates the use of optimal control theory
to control a biological system in order to maximise
NPV when there are constraints. This required a dy-
namical model of phosphorus cycling in pastoral soils.
These methods are very general and are readily ex-
tended to optimal control of other agricultural systems.

The solutions for an example farm system of three
blocks show that it is sometimes optimal to withhold
fertiliser on part of the farm in the short term, because
other blocks may give higher returns. In addition, it
has been shown that it is the long-term maintenance
fertiliser level that determines long-term profitability,
and that the initial pattern of capital applications is not
significant in the long term. However, this analysis
considered only phosphate fertiliser economics; other
inputs (such as re-sowing) may also be important. As
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Outlook ™ is upgraded, similar dynamical models of
sulphur and potassium cycling will be developed for
finding optimal applications of muiti-nutrient fertilis-
ers for pastoral farming systems.
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Woodward: Dynamic Nutrient Carryover Model

Appendix: Calculation of Equilibrium Solution

At equilibrium, P; and F; are constant from year to year. Since Fj is constant, the undiscounted marginal value
of the constraint should be constant too. That is, p is constant with t. When 0<F<Fimax, the maximum principle
(incorporating the cap constraint, see Equation 11) becomes:

(Al) o' Ajsi kie_ki(‘)“LFi)—oﬂ_l GAi+Ai—AiPi —MY',Sjkie—k‘(P"LF*)—-ua‘—l ciAi=0
Rearranging Equation A1l gives an expression for Ai(t),

(1+p)- a%si kie N@Pi+F)
1

(A2) ri®=a""1c A

1-Bi-visik e SFi+F

At equilibrium the portion in the braces { } in Equation A2 is constant, and it is only the factor ol that changes
with time. So

(A3) Ai¢-1 =M
o
Substituting this into the discrete adjoint equation (Equation 10) and evaluating the partial derivative gives,
(Ad)y —o'nAisikie PR LB iyisikie PRI oy (t)—%
and then after substituting in Equation A2 for Ai(t) we obtain an expression for the optimal value of {Pi+Fi}:

1
i—1 4=
Bl o

(AS) [Pi+Fy
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