

Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

The Stata Journal (2009)
9, Number 1, pp. 137–157

Speaking Stata: Rowwise

Nicholas J. Cox
Department of Geography

Durham University
Durham City, UK

n.j.cox@durham.ac.uk

Abstract. Stata’s main data model treats observations in rows and variables in
columns quite differently, but rowwise problems also arise that require working
against the grain. This column shows how to exploit existing functions and egen

functions when they exist and apply to such problems. It offers advice on how to
build your own loops, egen functions, or programs when needed. Mata provides
especially convenient tools for constructing many such functions and programs,
centered on putting selected data into matrices and then processing each obser-
vation as a separate vector. Two programs, rowsort and rowranks, are formally
published with this column.

Keywords: pr0046, rowsort, rowranks, rows, functions, loops, egen, Mata, mini-
mum, maximum, median, any, all, distinct values, sorting, ranking

1 Introduction

Stata’s main data model is asymmetric. Your datasets consist of tables of data, but
Stata regards the rows (observations) and columns (variables) of those tables differently.
There is a command to summarize variables, for example, but no exact equivalent to
summarize observations. Most of the time, this will not bother you in the slightest. You
do not want to average a patient’s age and systolic blood pressure, or the number of
employees and the income of various firms in a given year. But you might well want to
summarize across variables that contain systolic and diastolic blood pressures, or sales
in different quarters. In these and similar problems, the impulse is to work against the
grain, or rowwise.

This column takes working rowwise as a theme, building upward from ideas that
should already be familiar.

Sometimes, the best way to work rowwise is direct, even though it may take a little
writing of code or learning of unfamiliar parts of Stata to get where you want to be.
That is the main focus of this column.

At other times, the best way to work is indirect: the easiest way to proceed can be
to work with a different data structure, at least temporarily. The answer then is (very
occasionally) to transpose with xpose or (much more commonly) to reshape the data
with reshape. See the help files or manual entries for more information. A different
data structure is especially likely to be a good idea if you have panel or longitudinal
data in what Stata calls a wide structure. Stata has a marked preference for handling

c© 2009 StataCorp LP pr0046

138 Speaking Stata

such data in a long structure. Data restructuring is often easy, but it may raise a variety
of questions that lie beyond the story here.

Operations for data that are essentially matrices in which rows and columns are of
similar kind (counts, similarities, flows, interactions, and so forth) also lie beyond the
scope of this column.

2 Operators and functions

Some rowwise procedures are so easy that you will not even think of them as working
against the grain. You can combine variables easily as sums, differences, products,
ratios, and more complicated expressions by using appropriate operators and functions.
Getting the difference between or the average of systolic and diastolic blood pressure is
child’s play:

. generate diffbp = systolic - diastolic

. generate avebp = (systolic + diastolic)/2

Four important functions that can be used to work rowwise are max(), min(),
inlist(), and missing(). (The last has a synonym, mi().) If you feed a list of vari-
able names (or other appropriate arguments) separated by commas to max(), min(),
inlist(), or missing(), the result is determined rowwise, that is, separately for each
observation.

2.1 Observation minimums and maximums

Consider a simple statistical problem in which we will find good use for the functions
min() and max(). We will use simulation to look at the variation of sample extremes
drawn from a normal, or Gaussian, distribution. For reproducibility, we will set the
seed explicitly before firing up the random-normal generator.

. clear

. set seed 2803

. set obs 100

. forvalues j = 1/100 {
2. generate x`j´ = rnormal()
3. }

The loop enclosed by forvalues and its braces generates 100 new variables, named
x1 to x100. Using a loop clearly beats typing out 100 separate generate commands. If
you want to know more about using forvalues for looping, check out [P] forvalues or
the tutorial in Cox (2002a). j is called a local macro; I will say more about that in a
moment. If this is the first time you have heard of a macro, take it for now as part of
the machinery that controls the loop, here a loop over all the integers from 1 to 100.

Prompts like 2. and 3. above are inserted by Stata in interactive sessions. Do not
include such prompts in your programs or do-files.

N. J. Cox 139

The function rnormal() was introduced in Stata 10.1. If you are using an older
version of Stata, invnormal(uniform()) will work instead.

The example is deliberately as symmetrical as possible. We have 100 samples all
of size 100. We could think of each observation (row) as a separate sample or of each
variable (column) as a separate sample. Each viewpoint is perfectly valid statistically.
The only issue is what kind of further procedures are easiest in Stata for each viewpoint.
So we could follow the grain and type

. summarize x*

to see the minimums and maximums. That is easy, but we now have a long table that
is awkward to work with. For example, it is not especially obvious how to get the
extremes out of the table into new variables, although you can probably think of ways
to do that, at least crudely. At the very worst, you could just type the extremes into a
new variable. Clearly, that is a poor method and limited to moderate sample sizes. We
need something much better.

It would be better in many ways to work rowwise. We have already seen that min()
and max() are functions that will work rowwise. On sight of the syntax, however, the
heart sinks, at least slightly. The syntax—which can be seen directly from help min()
or help max()—requires that the arguments to each function be separated by commas.
Do we really need to type out 100 names separated by 99 commas? As you might hope,
the answer is no. There are higher-level ways to work with that many arguments. These
ways can be especially useful when you are doing something like this in a program or
do-file where automation is essential.

Here is one way to do it. The unab command ([P] unab) has one role, to “unabbre-
viate” a variable list. We can agree that the word is ugly, but the role is useful.

. unab xvars: x*

puts the unabbreviated list from x1 to x100 in a local macro, as we can see for ourselves
by displaying it.

. display "`xvars´"
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22
> x23 x24 x25 x26 x27 x28 x29 x30 x31 x32 x33 x34 x35 x36 x37 x38 x39 x40 x41
> x42 x43 x44 x45 x46 x47 x48 x49 x50 x51 x52 x53 x54 x55 x56 x57 x58 x59 x60
> x61 x62 x63 x64 x65 x66 x67 x68 x69 x70 x71 x72 x73 x74 x75 x76 x77 x78 x79
> x80 x81 x82 x83 x84 x85 x86 x87 x88 x89 x90 x91 x92 x93 x94 x95 x96 x97 x98
> x99 x100

The local macro xvars is just a place where we can hold a piece of text. To define it,
we use a local command. To use it, we refer to it using single quotes, ‘ ’, to include the
name. As the example makes clear, that text can include numeric as well as alphabetic
characters. If you want to know more about macros, one place to start is the tutorial
just mentioned (Cox 2002a). Note that local macros in forvalues and foreach loops
are special: they are defined tacitly and they automatically disappear at the end of
their loop.

140 Speaking Stata

A subtlety worth underlining here is that the double quotes, " ", are essential in the
last display statement to ensure that the macro is shown as literal text. Otherwise,
display will try to interpret the variable names and show their values. The best way
it can do that is to show the values in the first observation.

The unab command does not require that the variable list fed to it is of simple form,
in our case x*. It just needs to be a variable list. It can be as messy in form as you like
so long as it is a variable list. aardvark-zebra wwg j? foo* is fine so long as that is
a variable list.

The problem of getting input suitable for min() or max() is half solved already. We
just need to replace those spaces in the local macro xvars with commas. One virtue
of unab is that you can be sure that the resulting list of names is separated by single
spaces and that there are no leading or trailing spaces. min() or max() would choke
on arguments that began or ended with , or contained ,,. So would missing() or
inlist() for that matter.

. local xarg : subinstr local xvars " " ",", all

is the device we need. A local named xarg is produced by substituting single spaces with
commas into the local macro called xvars, and that is done in all possible instances.
You may want to look at the documentation, most conveniently at the help file for
extended macro functions, help extended fcn.

Now rowwise extremes can be put into new variables:

. generate xmin = min(`xarg´)

. generate xmax = max(`xarg´)

That is, you type the macro name, but the generate statement will see the macro
contents.

Those new variables could now be used in further analysis. The same devices of
producing an unabbreviated and comma-separated variable list could be used with
missing() or inlist().

2.2 A note on inlist()

inlist() deserves a separate comment. The discussion and examples given in Cox
(2006b) fall short of explaining rowwise uses of this function. Thus, for example, if
inlist(1, a, b, c, d, e, f) is a neat alternative to if a == 1 | b == 1 | c ==
1 | d == 1 | e == 1 | f == 1. Similarly, if inlist(y, x1, x2, x3, x4, x5) is
a neat alternative to if y == x1 | y == x2 | y == x3 | y == x4 | y == x5. Yet
more complicated examples are possible.

N. J. Cox 141

3 Loops

We have already used a forvalues loop to loop rowwise when generating a bunch of
new variables. Let’s look at some further examples showing how useful loops can be.

3.1 Observation minimums and maximums again

Suppose, for example, that you did not know the tricks for getting comma-separated
variable lists used in the previous section. You could make use of a simple looping
algorithm for getting rowwise extremes. We will first illustrate with minimums for the
same 100 variables.

1. Initialize the minimum as x1.

2. Loop across x2 to x100. If any variable is less than the minimum so far, it becomes
the new minimum.

That translates easily into code:

. generate xmin2 = x1

. forvalues j = 2/100 {
2. replace xmin2 = min(xmin2, x`j´)
3. }

Code often looks obvious when it is correct, but it may well be worth spelling out
some mistakes that beginners often make and that experts occasionally make too. Why
is the code not as follows?

. forvalues j = 1/100 {
2. generate xmin2 = min(xmin2, x`j´)
3. }

There are two separate reasons why not.

The first time around the loop, for j equal to 1, Stata sees on the right-hand side
min(xmin2, x1). But xmin2 does not exist yet. Stata cannot proceed any further, so
the loop will fail.

Even if you fixed that, say, by an initialization before the loop to missing (.),

. generate xmin2 = .

the loop would fail the second time around. When j is 2, Stata sees on the left-hand
side generate xmin2. But xmin2 already exists. As the original code shows, you need
a replace statement instead of a generate statement. Initializing with a generate
statement followed by a loop over replace statements is a very common pattern.

A useful refinement to the code is to insist that Stata does all this quietly (which
means, here, suppressing messages about changed values). The loop could be

142 Speaking Stata

. generate xmin2 = x1

. quietly forvalues j = 2/100 {
2. replace xmin2 = min(xmin2, x`j´)
3. }

or it could be

. generate xmin2 = x1

. forvalues j = 2/100 {
2. quietly replace xmin2 = min(xmin2, x`j´)
3. }

What is the difference? In this example, none in terms of the results you see when
the code is executed. But I tend to put quietly on the loop as a whole, as in the first
of these two segments, for two reasons. First, in more complicated loops, there could
be several potentially noisy commands that would all need attention. Typing quietly
just once is less work. Second, commands within the loop are more likely to be longer,
so putting quietly where there is more space has the edge.

Separately from such details, quietly tends to be added at a late stage when you
are happier that the code is good. The noisier output can make any bugs more obvious.

By the way, you might wonder if there is any objection to

. generate xmin2 = .

. quietly forvalues j = 1/100 {
2. replace xmin2 = min(xmin2, x`j´)
3. }

In terms of substance or style, I think there is very little in it. Indeed, some people
might prefer this last segment as a little clearer than the first segment. Stata is obliged
to do a bit more work, but we could usually live with that.

We should perhaps spell out what should be familiar. In all these loops, there
is another tacit loop over observations. Stata ensures that the replace takes place
separately in each observation.

In other problems, you may not find the variables to be neatly numbered. The most
general approach to looping over variables would use foreach rather than forvalues.
forvalues has an edge in speed whenever both constructs are possible.

3.2 Is initialization safe?

A crucial detail in writing loops is ensuring that the initialization is safe, meaning that
it cannot prejudice the result. Carelessness on this point is a frequent source of bugs.

For calculating a minimum using the algorithm above, an initialization of 0 would not
be safe if values were always positive, because the initial value would never be revised.
(When each new value is encountered, the question would be whether it was less than
0, and the answer would always be “No”.) Even if values were always positive, an
initialization of . would still be better style. When there is a choice, it is better to base

N. J. Cox 143

code on something that is always true—as that min(., anything) is anything—rather
than on something that may be true. The latter code is more difficult to understand
without a context and all too likely to be copied to a problem where the contingent
assumption is no longer satisfied.

For calculating a sum, an initialization of . would never be safe, because it would be
unaffected by anything added to it and Stata would exit from the loop with a sum that
was missing, a case of termination with extreme prejudice. (Strictly, the sum should be
missing if it were the case that all values encountered were missing, but that would still
be getting the right answer for the wrong reason.) Conversely, an initialization of 0 is
safe for a sum, as is 1 for a multiplication.

3.3 Maximums and missing values

We could use an equivalent algorithm for calculating maximums:

. generate xmax2 = .

. quietly forvalues j = 1/100 {
2. replace xmax2 = max(xmax2, x`j´)
3. }

A key detail here, and one that may occasionally surprise, is that in Stata max(.,
anything) is always anything, even though it is also true elsewhere in Stata that missing
is treated as higher than any nonmissing value. Thus the maximum of 42 and missing,

. display max(42, .)
42

is 42, not missing. In essence, this is a deliberate inconsistency, designed into Stata’s
code on the grounds that the answer is more likely to be what you want.

The question deserves careful attention. Set Stata aside for a moment and consider
the following: which is the maximum of 0, 1, 2.71828, 3.14159, 42, and missing? There
are two defensible answers: 42; and we cannot say, because one value is missing. The
latter is, as said, a defensible answer, but if we followed the same attitude elsewhere, we
would end up shrugging our shoulders in many real statistical problems because missing
values are so common. Giving the most definite answer we can is usually a good idea.

Now reintroduce Stata to the conversation. A third answer now is that the largest
value is missing, because of Stata’s rule that missing is to be considered as larger than
any nonmissing value. However, notice two things. This third answer is not the same
as the second answer: the reasoning is quite different. The rule is one that Stata needs
because it needs to decide what to do in certain problems. For example, if you sort
values, where do numeric missings go? Stata’s rule implies that they must be sorted
above all numeric nonmissings, but to anyone outside Stata, the rule is no more than
a convention. Indeed, a convention of treating missings as arbitrarily low is equally
defensible and can be encountered in other software. So this reasoning would be quite
arbitrary to anyone outside Stata.

144 Speaking Stata

With all this in mind, let’s consider what to do if for some reason we really did want
a row maximum to be returned as missing whenever any value in an observation were
missing. More precisely, say we want system missing, ., to be returned if any missing
values exist in that observation, whether . or the extended missing values .a, . . . , .z.

. generate xmax3 = x1

can be our initialization. Within the loop, we can follow the same device of comparing
each variable and the maximum previously encountered, but we will have to be more
delicate in making the comparison, given the way that max() behaves.

The cond(x,a,b) function is suitable machinery. Its main idea is to test a condi-
tion for truth or falsity, and assign results according to each possibility. Complicated
branching can be handled by nesting two or more function calls. For a tutorial, see
Kantor and Cox (2005).

. quietly forvalues j = 2/100 {
2. replace xmax3 = cond(missing(x`j´, xmax3), ., max(x`j´, xmax3))
3. }

The branching inside cond() can be put into words like this:

1. If either this variable or the maximum so far is missing, we want the new maximum
to be missing. We need to peel off this case first and not feed values to max(),
because max() will always choose a nonmissing value if one is present. The “or”
here is inclusive and includes the case where both values are missing.

2. Otherwise, we want the new maximum to be the maximum of this variable and
the maximum so far. max() is safe for this case because if neither value is missing,
then both values must be nonmissing.

Alternatively, if we have extended missing values (any of .a, . . . , .z), then we may
simply want to see the largest of those. That is even easier:

. generate xmax4 = x1

. quietly forvalues j = 2/100 {
2. replace xmax4 = x`j´ if x`j´ > xmax4
3. }

The inequality operators do treat missing values as larger than nonmissings and ex-
tended missing values as larger than system missing (.z is largest of all).

3.4 Any, all, and counting

max() and min() can be useful tools even when the problem is not calculating extremes.
There is a simple correspondence between max() and min() and what may be called
any and all problems. Consider a bunch of numeric variables (a, b, c, d, e, and f)
and an interest in which of those variables is positive. For the moment, set the issue of
whether missing values are present aside. Precisely, we can ask

N. J. Cox 145

1. Are any of the variables positive in each row? (answer 1 if true, 0 if false)

2. Are all of the variables positive in each row? (answer 1 if true, 0 if false)

While we are answering those questions, we can throw in a third:

3. How many of the variables are positive in each row?

Two simple algorithms for the first two questions are

any.1 Assume no variables are positive in each row.

any.2 Looping across variables, change your mind about that row if you meet a
positive value for that variable in that row.

all.1 Assume all variables are positive in each row.

all.2 Looping across variables, change your mind about that row if you meet a
zero or negative value for that variable in that row.

In code, we first initialize, also adding an initialization for a count:

. generate byte any = 0

. generate byte all = 1

. generate byte count = 0

Our loop should use foreach:

. foreach v of var a b c d e f {
2. replace any = max(any, `v > 0 & `v´ < .)
3. replace all = min(all, `v´ > 0 & `v < .)
4. replace count = count + (`v > 0 & `v´ < .)
5. }

So the variable any is born as 0, but we bump it up to 1 if we meet any variable for
which (‘v’ > 0 & ‘v’ < .) is true, which numerically evaluates to 1. Conversely, the
variable all is born as 1, but we bump it down to 0 if we meet any variable for which
that condition is false, which numerically evaluates to 0. We cannot use inrange(‘v’,
0, .) here, because that includes any zero values; see Cox (2006b) for more details.
If you knew that all missings were really positive, or wanted to include them for some
reason, then the condition ‘v’ > 0 would suffice.

Declaring the variables to be byte is not essential unless memory is very tight but
is nevertheless recommended as good style.

The beauty of this approach is that it can be extended to any circumstance that
can be stated as a true or false condition, including tests on string variables. We might
want to split the code for very complicated problems into more commands. That would
not be problematic.

You should note that there is some redundancy in this code. You could produce just
the counting variable count and then test whether count > 0 or count == 6 (or, more
generally, equal to the number of variables):

146 Speaking Stata

. generate byte any2 = count > 0

. generate byte all2 = count == 6

Knowing two ways to solve a problem is always preferable to knowing none. Indeed,
we will mention yet other solutions in the next section.

4 egen functions

The egen command is part of official Stata. It is in essence a little engine that drives
various functions written in the Stata language. Despite the use of the same term, these
functions are quite distinct from Stata’s functions in the strict sense, as documented
at [D] functions, which are all part of the executable; or indeed distinct from Mata’s
functions, whether built in or user written. A habit of always carefully referring to egen
functions as such serves everyone well in communication.

The help file for egen, the manual entry [D] egen, and the tutorial in Cox (2002b)
give overviews or introductions in different styles.

If you already know egen, you may be surprised that I did not leap straight into
a review of various egen functions that are applicable rowwise. One good reason for
not doing that is because they are typically built on the principles outlined in previous
sections. Another good reason is that users sometimes jump to conclusions on what
is possible rowwise from what is evidently and readily available as canned code. That
reaction is especially unfortunate. One of the main motives behind this column is a
desire to make clear that rowwise operations need not be nearly so difficult as you
might imagine.

What may not be immediately obvious from the official Stata documentation in
particular is that egen is highly extensible, so functions for egen can often be written
easily and quickly. Frequently, taking an existing function as template and changing
just a few lines is quite enough. In fact, writing a new egen function is often a very
good exercise for anyone interested in learning more about Stata programming, even
though it would not necessarily help very much in learning how to write quite different
Stata programs.

As it happens, the number of user-written egen functions (most of them accessible
by typing findit egen) much exceeds the number of officially written Stata functions,
although, unsurprisingly, the official functions tend to cover most of the more important
tasks. So watching out for user-written egen functions is good practice, if only because
you may identify a function closer to what you want.

N. J. Cox 147

The official suite of egen functions includes these functions that are applicable row-
wise:

anycount() rowfirst() rowmean() rownonmiss()
anymatch() rowlast() rowmin() rowsd()
concat() rowmax() rowmiss() rowtotal()
diff()

We will not cover them in detail here because their documentation is easily accessible.
If any of these functions looks possibly interesting or useful, but not familiar, you know
where to look.

You may now be learning for the first time that rowmin() and rowmax() exist as
canned egen functions for observation minimums and maximums. You should still be
better off for knowing that they could have been invented or emulated quite easily if
they did not exist—and especially for knowing that there are ways of producing variants
when their built-in behavior is not what you want.

In the previous section, we looked at any or all problems. If we had a bunch of
indicator or dummy variables, we could use these egen functions to find solutions to
such problems for those variables. The row minimum of a set of indicator variables will
be 1 if all those variables equal 1 in that row. The row maximum of a set of indicator
variables will be 1 if any of those variables equals 1 in that row. More indirect and less
elegant solutions are also possible by using anycount(), anymatch(), concat(), and
rowtotal(). However, note the starting point here of possessing a bunch of indicators.
If those indicators did not already exist, it would be better to use the approach from
first principles outlined earlier.

You can get a better understanding of how egen works with egen functions by
glancing at the code. Know that egen itself is implemented as egen.ado and that
any egen function, foobar, will be implemented in gfoobar.ado. Know further that
the command viewsource has the role of finding a file of Stata code and opening the
Viewer on that file (Cox 2006a). Thus

. viewsource _growmax.ado

takes you directly to the official implementation of the egen function rowmax().

5 The problem of row medians

Let’s consider a problem that did not make the official Stata list of egen functions: row
medians.

5.1 Medians

To recapitulate some basics: If you want a median of a variable, you could sort on
that variable and pick out the median yourself. Some care is needed whenever you are

148 Speaking Stata

interested in only some of the observations or whenever there are missing values. Many
users fire up summarize, detail, which takes care of all such matters, and identify the
median within the results. Possible alternatives include centile and tabstat. egen’s
median() function is available to put medians into a new variable, as will often be
needed when there is a structure of different groups (e.g., panels).

When you have a bunch of variables of the same kind and you want row medians
across those variables, sometimes there is an easy answer. If those variables are really
panel or longitudinal data, you should reshape long and work with a different data
structure. As mentioned in the introduction, life will be much easier that way, not only
for row medians, which are now just panel medians, but also for almost all kinds of
analysis you might want to do with such data.

If you know that the values of your row variables are in numerical order, so that,
for example, y1 ≤ y2 ≤ y3, and so forth, then the median can be calculated directly as
either one of the variables or the mean of two of the variables, depending on whether
the number of variables is odd or even. But that recipe would be messed up by any
missing values.

Next come situations when you have few variables (two, three, or four) over which
you want to take the row median and again no values are missing. The median of two
variables is the same as their mean, so that first case is easy:

. generate median = (y1 + y2)/2

A less-known trick for three variables also makes solving the problem simple:

. generate median = y1 + y2 + y3 - min(y1, y2, y3) - max(y1, y2, y3)

In words, work out the row sum, and then subtract the minimum and the maximum.
What remains must be the median.

Now a trick for four variables is immediate:

. generate median = (y1 + y2 + y3 + y4 - min(y1, y2, y3, y4) -
> max(y1, y2, y3, y4))/2

In words, work out the row sum, and then subtract the minimum and the maximum.
What remains is the sum of the two inner values, and halving gives the median.

Simple tricks for five or more variables, in general, are not in evidence.

Some thought shows that ties pose no problem to any of these tricks. The more
awkward assumption is that no values are missing. There is some scope for salvaging
problems with missing values.

With any missing values, the median of two can be salvaged by using egen’s rowmean()
function,

. egen median = rowmean(y1 y2)

N. J. Cox 149

or by using

. generate median = (y1 + y2)/2

. replace median = max(y1, y2) if median == .

The last two commands exploit the fact, already explained in section 3.3, that
max(y1, y2) is nonmissing whenever one of the values is. If both values are miss-
ing, we do not lose out, because some missings are just overwritten by missings. You
could write min(y1, y2) if that made you feel more comfortable.

Similarly, the median of three can be salvaged. Consider again

. generate median = y1 + y2 + y3 - min(y1, y2, y3) - max(y1, y2, y3)

If y1, y2, and y3 are all missing, you already have the only possible answer: missing.
The situations to fix are that just one variable is missing and that two variables are
missing in each observation.

. replace median = max(y1, y2, y3)
> if (missing(y1) + missing(y2) + missing(y3)) == 2

If two variables are missing, then we can get the other one from max(), and it is
automatically the median:

. replace median = (cond(missing(y1), 0, y1) +
> cond(missing(y2), 0, y2) +
> cond(missing(y3), 0, y3))/2
> if (missing(y1) + missing(y2) + missing(y3)) == 1

If one variable is missing, then the mean of the other two gives the median. We
make sure that missings are ignored in the sum by using 0 instead. You could do the
same thing more easily with egen’s rowmean() function:

. egen rowmean = rowmean(y1 y2 y3)

. replace median = rowmean if (missing(y1) + missing(y2) + missing(y3)) == 1

5.2 An egen function

The code seen so far in this section has some curiosity value in showing tricks for row
medians of two, three, or four variables. These tricks have found application in some
special problems. For example, medians of three values feature in some robust nonlinear
smoothing methods (e.g., Tukey [1977]). But we still need a program embodying a more
general approach.

However, there is no official egen function for row medians. The explanation is
partly historical. Before Stata 9, the problem was a little difficult to solve well. In
essence, two approaches were possible before Stata 9.

The first is to loop over observations, copy values for each observation into a variable,
and then get the median. Unfortunately, this approach assumes that the number of
variables concerned is no greater than the number of observations. That is usually

150 Speaking Stata

but not necessarily true. More importantly, this approach can be slow indeed with
interpreted code.

The second is to restructure the dataset on the fly, calculate medians, and then
restructure back. Arguably, restructuring a dataset is not something that should be
done in the middle of an egen function, but in any case this approach could easily
fail if the number of observations required exceeded the maximum allowed or if enough
memory were not available.

With Stata 9, however, came a more positive opportunity: to use Mata. If you
want to know more about Stata’s matrix language, Mata, the main sources are the
Mata manual and William Gould’s Mata matters columns in this journal. Baum (2009)
contains an excellent introduction. Those looking at Mata code for the first time and
thinking “This is like C!” are right on target.

The egenmore package available from the Statistical Software Components (SSC)
archive includes a rowmedian() function. Use ssc ([R] ssc) if you wish to install that
package. This function is much faster than previous egen functions, even though the
basic loop is still a loop over observations, and it requires little extra memory. Here is
the central part of the code:

mata:

void row_median(string scalar varnames,
string scalar tousename,
string scalar medianname,
string scalar type)

{
real matrix y
real colvector median, row
real scalar n

st_view(y, ., tokens(varnames), tousename)
median = J(rows(y), 1, .)

for(i = 1; i <= rows(y); i++) {
row = y[i,]´
if (n = colnonmissing(row)) { // sic

_sort(row, 1)
median[i] =

(row[ceil(n/2)] + row[ceil((n + 1)/2)])/2
}

}

st_addvar(type, medianname)
st_store(., medianname, tousename, median)

}

end

The algorithm should seem unsurprising. The variables in question are seen through
a Mata view. A column vector of medians is initialized to missings. Values in each
observation (row) are copied and transposed into a column vector called row. (That
may seem backward, but while the name row reflects what the contents are, a row of
the data, in Mata it is easier to handle those contents as a column vector.)

N. J. Cox 151

Note a small programming trick: the Mata function colnonmissing() counts non-
missing values in each column. The test

if (n = colnonmissing(row))

does two things in quick succession. The assignment

n = colnonmissing(row)

puts the count in the scalar n. Once n is calculated, it can be used in the test

if (n)

That will be true whenever n is nonzero, which can only be when n is one or more,
and false when n is zero. There is no point to calculating a median if all the values in
a row are missing. Recall that the median was initialized as missing, so we would not
change our mind by doing the work.

If there are nonmissing values, then we sort the row on the fly and pick out the
median. Clearly, the rule used has to be able to cope with both odd and even numbers
of values. Textbooks usually introduce a rule for ordered values: if the sample size n
is odd, select the value with position (n + 1)/2; if n is even, average the values with
positions n/2 and n/2 + 1. This is equivalent to a rule to average the values with
positions ceil(n/2) and ceil((n + 1)/2). ceil() (think ceiling) yields an integer,
rounding up if necessary. For a short tutorial on ceil() and its sibling, floor(), see
Cox (2003).

Some experimenting within Mata will make that clear:

: n = 1..10

: ceil(n/2)\ceil((n :+ 1)/2)

1 2 3 4 5 6 7 8 9 10

1 1 1 2 2 3 3 4 4 5 5
2 1 2 2 3 3 4 4 5 5 6

So, for n odd, as for n = 1, 3, 5, 7, and 9, we average two copies of the middle value,
and for n even, as for n = 2, 4, 6, 8, and 10, we average the two middle values.

6 Looping over observations using Mata

The egen function just discussed is based on a simple idea, but one so useful for rowwise
operations that it deserves a small flag.

As we loop across observations, we can focus on values for each observation, which
are held in Mata as a row vector, part of a matrix of data. We should set up that matrix
to be a view whenever we can (Gould 2005).

Mata has its own bias, inherited from Stata, so that many operations are done on
columns, not on rows. You can sort columnwise, but not rowwise, for example. This

152 Speaking Stata

problem, however, is trivial: just transpose the row vector to a column vector and then
do the work required on that column vector. Transposing the values for one observation
is much, much less of a big deal than transposing or reshaping much of or all of the
dataset. If the result of some work is a scalar, as it often will be, then we use that scalar
result. The row median is a case in point. If the result is another column vector, we
can easily transpose that back to a row vector.

We will look at further examples of each kind, scalar results and vector results.

7 Numbers of distinct values

Imagine once more numeric variables: a, b, c, d, e, and f. Now consider how we would
compute the number of distinct values in each observation. If an observation contains
the values 1, 1, 1, 1, 2, and 2, then it contains two distinct values, 1 and 2. Some
people would call those unique values, regardless of the fact that neither value occurs
just once. This problem is akin to that of determining distinct observations, discussed in
the previous column (Cox and Longton 2008). Although the example refers to numeric
variables, the same question can be asked of string variables.

The problem is also an example of counting across rows, earlier considered in sec-
tion 3.4. But the twist of counting distinct values makes it more difficult with the
approach considered there. A loop across variables would have to consider whether any
value had been met previously in the loop, which is trickier.

A more congenial approach uses Mata in the way described in the last two sections.
The egenmore package available from the SSC archive includes two egen functions:
rownvals() for the number of distinct numeric values and rowsvals() for the number
of distinct string values. Most of the code is identical to that of the rowmedian()
function discussed in section 5.2. The interesting differences lie at the heart of each
function. Focus only on the default cases, which are to ignore missings. For distinct
numeric values, we have

for(i = 1; i <= rows(y); i++) {
row = y[i,]´
nvals[i] = length(uniqrows(select(row, (row :< .))))

}

and for distinct string values, we have

for(i = 1; i <= rows(y); i++) {
row = y[i,]´
svals[i] = length(uniqrows(select(row, (row :!= ""))))

}

Just as in elementary algebra, telescoped expressions with nested parentheses are
best read from the inside outward. The column vector row (that naming was explained
in section 5.2) is thinned down by omitting any missing elements. It is then thinned
down further by removing any duplicated elements. The length() of what remains—
equivalently here the number of rows rows()—is the number we seek.

N. J. Cox 153

The obvious variation on the default is to include any missing values. The expression
now would be length(uniqrows(row)), for both numeric and string cases.

Naturally, we lean heavily here on the canned Mata function uniqrows(), but that
is what canned functions are for.

8 Row sorting and ranking

The problem of row medians is often extended to an interest in row sorting or ranking
a set of variables of the same kind (or both). Although the idea of changing the data
in place is sometimes entertained, it is safer to treat both problems as a mapping of a
set of existing variables to a set of new variables.

Thus three numeric variables, y1, y2, and y3, might be sorted to s1, s2, and s3,
such that s1 ≤ s2 ≤ s3, and ranked in r1, r2, and r3, such that r1 contains the rank
of y1 in the three variables, and so forth. If the values in one observation were 42, 7,
and 56, then the corresponding sorted values are 7, 42, and 56 and the corresponding
ranks are 2, 1, and 3, assuming lowest maps first in sort order or ranking. Ascending
sorts are the default in Stata, as is generally so in statistical computing.

Interest in row sorting and ranking can include string variables as well as numeric.
A problem with dyads requiring the row sorting of two string variables is discussed
in Cox (2008), although that does not need the machinery here. Note, however, that
Stata’s sorting of strings does not match the order used in any standard dictionaries,
even for the English or American languages. For example, all uppercase letters A to
Z sort before all lowercase letters a to z. On occasion, converting strings to one case
or the other by using the functions upper() or lower() in Stata or strupper() and
strlower() in Mata may be advisable before sorting and ranking.

Now that we seek a result of several new variables, one consequence is that we should
leave egen behind. It can produce only one new variable at a time, and although that
does raise the possibility of calling it in a loop, a more direct approach is to program
the production of several variables from one command.

8.1 Complications in sorting and ranking

The complications that can affect sorting and ranking are tied values, missing values,
and any preference for descending sorting or ranking rather than ascending.

Ties are unproblematic for sorting. Whether any value occurs twice or more is
immaterial, because the sorted sequence is identical regardless of where the tied values
came from. Ties are, however, a small headache for ranking, because they can reasonably
be treated in different ways.

Perhaps the most common practice in statistical science is to assign to tied values
the mean of the ranks that would have been assigned otherwise, a practice likely to be
familiar to you from nonparametric statistics. For example, this method for ties is the
default of egen’s rank() function.

154 Speaking Stata

Perhaps the most common ranking practice outside statistical science—whenever
ties are not broken by injecting other information—is to take the lowest rank possible,
so that 2, 3, 3, 5, 5, 5 would be ranked 1, 2, 2, 4, 4, 4. Thus rank is defined precisely as 1
+ the number more extreme. Thomson (2001, 139) refers to this rule as schoolmaster’s
rank, but the term is likely to seem obscure, if not objectionable to schoolmistresses.1

A convention with opposite flavor takes the highest rank possible, yielding for that
example 1, 3, 3, 6, 6, 6. Thus rank is now defined precisely as the number as or more
extreme. Let’s call these low and high ranks, respectively. High ranks are likely to
be more familiar to you in their guise of cumulative frequencies and may be calculated
in Stata by using the cumul command. Ranks with ties broken by means are just the
means of the low and high ranks.

Sometimes there is a preference for descending rather than ascending ranks. A
small point that may be overlooked is that even when ascending ranks do not appear
to be supported by a command, they are always obtainable by negating the variable
concerned, which clearly reverses the order. The egen function rank() makes this
especially easy, because the argument it takes is an expression: a negated variable name
is one such expression.

8.2 rowsort and rowranks

New versions of programs rowsort and rowranks are published with this column. (Ear-
lier versions were made available via the SSC archive.) The main idea is already familiar:
passing the data to Mata, looping over rows, sorting each row, and using each vector of
results to produce a row of sorted values or ranks. Because each program comes with
its own detailed help file, including remarks not reproduced here, examples are left to
readers’ own experiments. A formal statement of the programs’ syntax follows.

Syntax for rowsort

rowsort varlist
[
if
] [

in
]
, generate(newvarlist)

[
descending highmissing

]
Description

rowsort creates new variables containing the row-sorted (-ordered) values in each ob-
servation of varlist. varlist should contain either only numeric variables or only string
variables.

By default, the first (second, . . .) new variable contains the lowest or first-ordered
(second-ordered, . . .) value within each observation. The descending option may be
used to reverse order. With strings, uppercase letters sort before lowercase.

1. “Schoolmaster” is an old-fashioned word for a male teacher in a school, schools here definitely not
including colleges or universities.

N. J. Cox 155

Options

generate(newvarlist) specifies new variable names for the variables to be generated,
one for each variable in varlist. newvarlist may be specified in hyphenated form, as
in s1-s5. This option is required.

descending specifies that newvarlist should contain descending values, so that ordering
is from highest, or last, downward.

highmissing specifies that missing values should be treated as higher than nonmissing
values. This option bites for numeric values only when descending is also specified
and does not bite for string values if descending is also specified. With these
two options, 1 . 3 . 5 . 7 would be sorted to 7 5 3 1 . . . and generated as
such. Note also that 1 .c 3 .b 5 .a 7 would be sorted to 7 5 3 1 .c .b .a and
generated as such.

Syntax for rowranks

rowranks varlist
[
if
] [

in
]
, generate(newvarlist)

[
descending highmissing

missing method(method)
]

Description

rowranks creates new variables giving the row ranks of values in each observation of
varlist. varlist should contain either only numeric variables or only string variables.

By default, lowest values rank lowest and the ranks created are distinct, with ties
being broken by the order of occurrence within varlist. For example, given values on
five variables,

2 3 5 7 9
2 3 3 3 9

the ranks created are (for both observations)

1 2 3 4 5
1 2 3 4 5

The descending option may be used to reverse order. With strings, uppercase
letters sort before lowercase.

Options

generate(newvarlist) specifies new variable names for the variables to be generated,
one for each variable in varlist. newvarlist may be specified in hyphenated form, as
in r1-r5. This option is required.

descending specifies that ranking should be from highest downward.

156 Speaking Stata

highmissing specifies that missing values should be treated as higher than nonmissing
values. This option bites for numeric values only when descending is also specified
and does not bite for string values if descending is also specified.

missing specifies that missing values be included in the ranking. By default, missing
values are mapped to missing ranks.

method(method) specifies an alternative to the default. Alternatives are low, high, or
mean. Any abbreviation is allowed. low specifies the use of low ranks, 1 + (# <
this value). high specifies the use of high ranks, (# ≤ this value), a.k.a., cumulative
frequencies. mean specifies the use of mean ranks so that the sum of ranks is preserved
under ties.

9 Conclusions

Working rowwise is easier than you might fear.

Several Stata functions can work rowwise, notably, max(), min(), missing(), and
inlist(). Some simple macro manipulations help in preparing long lists of comma-
separated arguments.

You can write your own loops over variables by using forvalues or foreach. A
common pattern is to initialize a variable by using generate and then to loop over
variables by using replace. Note in particular the duality of max() and “any” and of
min() and “all”.

The official command egen includes several functions that work rowwise. (Not all
their names start with row.) Other such user-written functions are in the public domain,
and yet others can be written using existing code as a template to be modified. Examples
of row medians and the number of distinct numeric or string values in each row show
that it can be congenial and efficient to pass the tricky central part of each calculation
to Mata.

A more challenging class of problems entails working rowwise with a set of variables
to produce another set of variables. Row sorting and ranking are good examples. Here,
again, a combination of Stata and Mata is a recommended strategy.

10 Acknowledgments

William Gould helped improve the row median code. Jeffrey Arnold’s program sortrows,
available from the SSC archive, helped provoke the versions of rowsort and rowranks
published here. In particular, their highmissing option was suggested by an option of
sortrows.

N. J. Cox 157

11 References
Baum, C. F. 2009. An Introduction to Stata Programming. College Station, TX: Stata

Press.

Cox, N. J. 2002a. Speaking Stata: How to face lists with fortitude. Stata Journal 2:
202–222.

———. 2002b. Speaking Stata: On getting functions to do the work. Stata Journal 2:
411–427.

———. 2003. Stata tip 2: Building with floors and ceilings. Stata Journal 3: 446–447.

———. 2006a. Stata tip 30: May the source be with you. Stata Journal 6: 149–150.

———. 2006b. Stata tip 39: In a list or out? In a range or out? Stata Journal 6:
593–595.

———. 2008. Stata tip 71: The problem of split identity, or how to group dyads. Stata
Journal 8: 588–591.

Cox, N. J., and G. M. Longton. 2008. Speaking Stata: Distinct observations. Stata
Journal 8: 557–568.

Gould, W. 2005. Mata Matters: Using views onto the data. Stata Journal 5: 567–573.

Kantor, D., and N. J. Cox. 2005. Depending on conditions: A tutorial on the cond()
function. Stata Journal 5: 413–420.

Thomson, N. 2001. J: The Natural Language for Analytic Computing. Baldock, UK:
Research Studies Press.

Tukey, J. W. 1977. Exploratory Data Analysis. Reading, MA: Addison–Wesley.

About the author

Nicholas Cox is a statistically minded geographer at Durham University. He contributes talks,
postings, FAQs, and programs to the Stata user community. He has also coauthored 15 com-
mands in official Stata. He wrote several inserts in the Stata Technical Bulletin and is an editor
of the Stata Journal.

