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Abstract. We outline a novel approach to calculate exact p-levels for two-sample
randomization tests. The approach closely resembles permute in its applications,
with the main difference being that the results are approximated only if the exe-
cution time needed to calculate exact p-levels would exceed a specified maximum.
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1 Introduction

In this article, we present a command, tsrtest, that implements a two-group exact
randomization test with a test statistic of the user’s choosing. By “two-group exact
randomization test”, we mean a hypothesis test for which the null hypothesis is that the
observed value of the test statistic is consistent with a random assignment of cases to the
two groups. This is the same null hypothesis tested by permute (see [R] permute),1 but
tsrtest offers, as feasible, an exact p-value derived from examining the test statistic for
all distinct assignments of cases to groups rather than the sample of such assignments
generated by permute. tsrtest thus generalizes Kaiser’s (2007) permtest2, which
offers an exact randomization test for the difference of two means, by allowing the
test statistic to be any r-class result returned by a user-written or an official Stata
command. tsrtest has the further advantage of using a much more efficient algorithm
than permtest2. tsrtest combines flexibility with algorithmic efficiency sufficient to
feasibly calculate exact two-group tests for relatively large sample sizes.

2 The algorithm and its efficiency

The efficiency of tsrtest in implementing a randomization test rests on its generating
all assignments of the N cases to two groups, without regard to order within the group,

1. Compare with the views of others (e.g., Edgington and Onghena [2007, 289]) who wish to distinguish
the underlying logic of permutation and randomization tests. This distinction is not at issue here,
where our goal is simply to offer a new software routine.

c© 2009 StataCorp LP st0158
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rather than generating all permutations of the group or response variable vector, as
would be done by a conventional permutation routine, such as the one implemented in
permute or permtest2. Permutation of the response or explanatory variable is algo-
rithmically inefficient for randomization tests when the variable vector being permuted
is a two-category group variable because it generates many redundant arrangements of
the data, given that the order of cases within groups is irrelevant for any two-group
test statistic known to the authors. The extent of redundancy is dramatic: for a sample
comprising two groups of sizes n1 and n2, there are (n1 +n2)! permutations of the group
membership vector but only (n1 + n2)!/(n1!n2!) distinct assignments of the N cases to
the two groups; so a full permutation approach involves generating group assignments
and calculating the test statistic n1!n2! times more than necessary. For example, with
n1 = 10 and n2 = 20, there are 3.0 × 107 unique assignments of the 30 cases into two
groups, a large but tractable number for an exact solution, but there are N ! = 2.7×1032

permutations of the response vector, which is clearly beyond what is possible with cur-
rent computational equipment. Thus the combination-oriented approach taken here
makes it feasible to obtain exact p-values in many situations in which small sample sizes
make asymptotic approaches untrustworthy, but in which a full permutation approach
could not work.

3 Flexibility of the current approach

Like bootstrap (see [R] bootstrap) or permute, the tsrtest command is more flexible
than a special purpose command like permtest2, which gives only one test statistic.
It also is more flexible in allowing many more exact tests than can be obtained by
relying on exact options available for some official Stata commands (e.g., median [see
[R] ranksum]) but not others (e.g., ttest [see [R] ttest]). tsrtest permits the test
statistic to be anything calculated by a user-written or an official Stata command and
returned as an r-class result. As noted by Manly (2006), one virtue of the randomization
approach to hypothesis testing is that it frees the analyst from using a test statistic
whose null distribution is known or asymptotically well-approximated, allowing one to
choose or devise a test statistic that optimally measures the phenomenon of interest.
The flexibility of tsrtest fits well with this generic desired feature of randomization
tests.

4 A simple example using tsrtest

Before offering a more complete description of the functioning and syntax of tsrtest,
we present a simple illustration comparing it to the exact analogue to the two-group
t test implemented in permtest2. Suppose we wish to obtain a nonasymptotic p-
value for a test of the null hypothesis that the difference in mean miles per gallon
of domestic (U.S.) cars versus other (foreign) cars is no different than what might
occur from random assignment of the domestic and foreign labels within the sample;
the alternative hypothesis is that the difference in mean miles per gallon for domestic
cars is larger than expected under the randomization hypothesis. Assume further that
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interest lies only in more expensive cars, those costing $7,000 (USD) or more, of which
there are 10 domestic and 6 foreign. Considering that miles per gallon can well be
heteroskedastic and nonnormal, relying on the robustness properties of a conventional t
test at this small sample size would be dubious, and so we choose to address the question
by using permtest2 or tsrtest. Because permtest2 uses the Pitman–Fisher approach,
with the test statistic defined as simply the difference in means between samples, we
follow the same approach in using tsrtest.

Example

A short user-written Stata program is created to calculate the test statistic, which
is called by tsrtest similarly to how any user-written command might be called by
permute:

// Program to calculate test statistic
capture program drop meandiff
program meandiff, rclass
args y group
summarize `y´ if `group´ == 0
local mean0 = r(mean)
summarize `y´ if `group´ == 1
return scalar diff = r(mean) - `mean0´
end
//
sysuse auto
set seed 123456789
keep if price > 7000
tsrtest foreign r(diff): meandiff mpg foreign
//
// Comparison to -permtest2- and a conventional -ttest-
permtest2 mpg, by(foreign) exact
ttest mpg, by(foreign) // dubious application of ttest

In the preceding application, tsrtest gives the following results:

. tsrtest foreign r(diff): meandiff mpg foreign
Two-sample randomization test for theta=r(diff) of meandiff mpg foreign by foreign

Combinations: 8008 = (16 choose 6)
Assuming null=0
Observed theta: 4

Minimum time needed for exact test (h:m:s): 0:00:01
Mode: exact

progress: |........................................|

p=0.03072 [one-tailed test of Ho: theta(foreign==1)<=theta(foreign==0)]
p=0.97602 [one-tailed test of Ho: theta(foreign==1)>=theta(foreign==0)]
p=0.05832 [two-tailed test of Ho: theta(foreign==1)==theta(foreign==0)]
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The p-value of 0.03072 is identical to what permtest2 gives; however, tsrtest
gives a different two-tailed value because tsrtest, unlike permtest2, does not assume
symmetry of the upper and lower tails in calculating two-tailed p-values, but instead
separately counts values in the upper and lower tails.2

The preceding problem required about one second (in Stata/SE 9, using Windows XP

on a machine with one Intel processor running at 3.4 GHz), while permtest2 required
about six seconds. Superior performance of tsrtest is achieved even though permtest2
has the advantage of implementing all the calculations in Mata, does not have to call
another Stata program, and does not have the overhead of flexibility that tsrtest has.
For this small problem, the difference between the performance of the two programs
would not matter to the user, but with even a somewhat larger sample, the permutation
approach of permtest2 becomes intractable.

Example

When the preceding comparison is expanded to cars costing more than $6,000 (USD),
i.e.,

keep if price > 6000
tsrtest foreign r(diff): meandiff mpg foreign
permtest2 mpg, by(foreign) exact

there are 14 domestic cars and 9 foreign cars. The run time for tsrtest increased
to 95 seconds, a change in proportion to 23C9 from 16C6, but permtest2 did not even
finish within 12 hours because its permutation task increased in proportion to 23!/16! =
1.2 × 109. Were this problem increased further, say, by attempting the preceding test
with the full sample of 52 domestic and 22 foreign cars, the execution time would be
excessive even for tsrtest, and the program would revert to an approximate solution,
with a p-value based on some fixed number (10,000 by default) of permutations of the
values of the explanatory variable:

. tsrtest foreign r(diff): meandiff mpg foreign
Two-sample randomization test for theta=r(diff) of meandiff mpg foreign by foreign

Combinations: 3.64867747887e+18 = (74 choose 22)
Assuming null=0
Observed theta: 4.946

Minimum time needed for exact test (h:m:s): 1.42e+11:17:11
Reverting to Monte Carlo simulation.
Mode: simulation (10000 repetitions)

progress: |........................................|

p=0.00020 [one-tailed test of Ho: theta(foreign==1)<=theta(foreign==0)]
p=0.99970 [one-tailed test of Ho: theta(foreign==1)>=theta(foreign==0)]
p=0.00020 [two-tailed test of Ho: theta(foreign==1)==theta(foreign==0)]

2. Both programs will give the same results if sample sizes are equal. If not, p-values from tsrtest

are preferable because they are free of the symmetry assumption.
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5 Algorithm and functioning of tsrtest

When tsrtest performs an exact two-group randomization test, it first calculates the
test statistic on the observed data, with the observed assignment of cases to the two
values of the group variable. Using a Mata program, tsrtest then selects all the possible
combinations of choosing n1 cases out of the total N , where n1 represents the observed
number of cases in the smaller group. Taking each such combination as representing
one of the possible assignments of the cases to the two values of the group variable,
tsrtest then calls the user’s command to calculate the test statistic for comparison
with the test statistic computed on the observed data distribution.

Because this is a combinatorial problem in the strict sense, i.e., because the order of
the cases within the group does not matter, the Mata code uses a combinatorial algo-
rithm (Gentleman 1975). Although many combinatorial algorithms exist, Gentleman’s
is simple (i.e., it does not require recursion), relatively short, and requires only one call.

In the current application, one call generates the indices of each possible combina-
tion of the N cases taken n1 at a time, which corresponds to one possible arrangement
of the data in the group variable vector that has n1 of the cases allocated to group 1
and the others to group 2. Next the Mata program calls the user’s command with the
current combination used to designate group membership. The difference of the current
value of the test statistic relative to the null value is compared with that same difference
for the test statistic computed on the observed data. If the current difference exceeds
the observed difference, the count of positive differences is increased; similarly, for dif-
ferences equal to or less than the observed difference, the count of positive differences
is decreased. When all combinations have been generated, the combinatorial algorithm
terminates, and these counts are used to report a p-value. Users interested in more
detail should examine the Mata code, available in text form in the tsrtest command.

As implied above, even this relatively efficient approach to an exact randomization
test can exceed what can be completed in a reasonable amount of time. For this reason,
before attempting the full combinatorial approach to a randomization test, tsrtest
runs the user’s command on the observed data 200 times, and it uses those results to
estimate the total execution time for the exact solution. If this estimated time exceeds
the default or user-supplied maximum time and if the user has not selected an option to
force an exact solution, tsrtest reverts to a simulation approach, noting that fact for
the user. Here it performs a permutation simulation of the randomization p-value by
randomly shuffling the observed group assignment variable vector for some number of
repetitions by using the Mata jumble() function (see [M-5] sort( )); for each shuffling,
tsrtest calls the user’s command and counts the position of the test statistic relative
to the observed value, as the exact approach would have done.

The majority of the execution time of tsrtest arises from the actual calculations
performed within the command it calls, not from the overhead of generating combina-
tions or from calling a command and passing it parameters. For the example in section 4
using meandiff, commenting out the body of that program and substituting a dummy
assignment of an r-class value reduced total execution time by about 40%, whereas a
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similar example involving the use of tab1 (see [R] tabulate oneway) (see the example
in section 7.3 using diffmulti) reduced execution time by more than 90%. Thus care
exercised in choosing a test statistic, and in selecting an existing Stata command or
in implementing a user-written command, can offer considerable time efficiencies when
using tsrtest.

6 Full description of syntax

6.1 Syntax

tsrtest groupvar expr
[
if
] [

in
] [

using filename
] [

, quiet nodots nodrop

reps(#) simsec(#) nullvalue(#) exact overwrite
]
: command

6.2 Arguments

This syntax is similar to that of permute. In fact, one could use permute to approximate
the results of this exact test, but with tsrtest, one would obtain a true exact test based
on a complete enumeration of all possible arrangements.

tsrtest expects its first argument, groupvar, to be the grouping variable, which
can be any dichotomous variable. In the process of calculating p-levels, this variable is
reassigned but is restored when the program terminates . The second argument, expr,
specifies the test statistic, e.g., r(mean) (also see [R] saved results and [P] return),
which is generated by the command specified after the colon. It is possible to limit the
observations included with if or in.

Additionally, one has the possibility of generating a .dta file that contains in its
first line the observed value of the test statistic and in its subsequent lines all values of
the test statistics from the computed combinations; this can be achieved by specifying
using filename.

6.3 Options

quiet suppresses information about hypotheses and results.

nodots suppresses the display of dots.

nodrop specifies to not drop the observations excluded by if or in. By default, every
observation not included by if or in gets (temporarily) dropped.

reps(#) stipulates that # random group assignments be performed if simulating. The
default is reps(10000).
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simsec(#) stipulates that an exact test be used if its estimated execution time would
not exceed # seconds. If the estimated execution time exceeds # seconds, tsrtest
will revert to Monte Carlo simulation. The default is simsec(1000).

nullvalue(#) specifies that the null value of the test statistic is the real number #.
The default is nullvalue(0.0).

exact forces the calculation of exact p-values, even if the estimated execution time
would exceed the time specified in simsec().

overwrite specifies to overwrite the results file indicated with using.

6.4 Saved results

tsrtest saves the following in r():

Scalars
r(repetitions) number of repetitions done if Monte Carlo simulation was executed; if exact

solution was done, reverts to missing
r(simulated) 1 if results came from Monte Carlo simulation, 0 if exact p-values were obtained

from full randomization solution
r(missing) fraction of all combinations for which calculation of test statistic gave a missing

value
r(twotail) fraction of all combinations for which absolute value of test statistic minus null

value was greater than or equal to that same quantity for data distribution of
original sample

r(uppertail) fraction of all combinations for which value of test statistic minus null value was
greater than or equal to that for observed data of original sample

r(lowertail) fraction of all combinations for which value of test statistic minus null value was
less than or equal to that for observed data of original sample

r(obsvStat) value of test statistic computed on observed data distribution of original sample
r(combinations) number of combinations of possible assignments of cases to two groups, without

regard to order, i.e., n1+n2Cn1 . If the exact solution was obtained, this is
the actual number of data arrangements on which the p-values are based; if
a simulated solution was obtained, this is the number that would have been
required for an exact solution.

7 Applications of tsrtest

7.1 Somers’ D

As detailed by Newson (2002), Somers’ D has various uses and linkages to statistics
of interest. In the current situation, we use it to measure a difference in location for
an ordinal response with a binary explanatory variable, and we use tsrtest to give an
exact test of no difference.

Example

Suppose we are interested in gender differences in beliefs about the effect of mothers’
work situations on their relationships with their children, and more particularly whether
such gender differences hold up among younger, relatively educated people in high
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prestige occupations (where we might expect that such differences would be small).
The ordwarm2 dataset, drawn from the 2006 United States General Social Survey (see
Davis, Smith, and Marsden [2006]), contains the statement “a working mother can
establish just as warm and secure a relationship with her children as a mother who
does not work”, which is coded as 4 equals “strongly agree” down to 1 equals “strongly
disagree”. To test the hypothesis of no difference in location between women and men
against the hypothesis that men are more likely to disagree, we need a Stata program
to calculate Somers’ D and return it as an r-class result. Although this could be done
by writing a small wrapper for Newson’s somersd to make an r-class result from the
e-class result given by somersd, this is not the best approach, because economy of
calculation effort is crucial and somersd does many things besides calculate Somers’
D. Consequently, we have created a stripped-down program to calculate Somers’ D,
taking advantage of the identity between Somers’ D with a binary explanatory variable
and the rank-biserial correlation coefficient (demonstrated by Newson [2008]; see related
material in Cureton [1956]), which is a simple function of the difference in mean rank
across groups:

program somd, rclass
args y group g1 g2
// Assumes response variable has been converted to ranks

quietly {
count
local n = r(N)
summarize `y´ if `group´==`g1´, meanonly
local y1=r(mean)
summarize `y´ if `group´==`g2´, meanonly
local y2=r(mean)
local d=(2/`n´)*(`y2´-`y1´)

}
return scalar d = `d´

end

Before running the example, we convert the response variable to ranks by using
Stata’s built-in egen rank() function. We then run tsrtest with somd as the command
to be called:

sysuse ordwarm2
// younger, relatively well-educated and prestigious
keep if yr89 & (ed >=16) & (prst >= 70) & (age < 50)
// convert response variable to ranks
egen rwarm=rank(warm)

tab2 warm male
tsrtest male r(d), nullvalue(0): somd rwarm male 0 1

(Continued on next page)
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We obtain the following results:

Mother has
warm Gender: 1=male

relationsh 0=female
ip Women Men Total

D 0 4 4
A 4 9 13

SA 4 3 7

Total 8 16 24

Two-sample randomization test for theta=r(d) of somd warm male 0 1 by male

Combinations: 735471 = (24 choose 8)
Assuming null=0
Observed theta: -.4375

Minimum time needed for exact test (h:m:s): 0:01:58
Mode: exact

progress: |........................................|

p=0.98161 [one-tailed test of Ho: theta(male==0)<=theta(male==1)]
p=0.05242 [one-tailed test of Ho: theta(male==0)>=theta(male==1)]
p=0.07711 [two-tailed test of Ho: theta(male==0)==theta(male==1)]

These exact results (elapsed time = 122 seconds) indicate that among people of
relatively high education and prestige and aged 50 years or younger, there is some
evidence (p = 0.052) against the randomization hypothesis of no difference. By contrast,
a more conventional normal theory test, using the jackknife standard error given by
Newson’s somersd, gives a considerably stronger one-sided p = 0.012 for this small
sample.3

7.2 Difference in relative variation

Paleontologists and zoologists often are interested in comparing the amount of variation
in some quantitative trait across two samples of animals. There are various approaches
to such tests, all of which compare the level of variation between the two samples while
adjusting for differences in the means between the two samples (Plavcan and Cope
2001). Such mean adjustments are necessary since one cannot, to take a classic example,
meaningfully compare the standard deviation of tail length in a sample of mice with that
of a sample of elephants, because the scale difference would dominate any comparison of
variability. One common approach is to base the test on a comparison of the coefficients
of variation (CVs) of the two samples, where CV = 100s/Y , or equivalently, to compare
the standard deviations after rescaling the data in each sample by dividing each score

3. However, if one specifies both the transf(z) and tdist options with somersd, the p-value adjusts
to a more reasonable value of 0.063. See Newson (2007) for a discussion.
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by its sample mean. One method of testing CVs simply assumes normality of the
underlying trait and treats the ratio of squared CVs as an F statistic, whereas other
approaches assume normality of the underlying trait distributions but use a Monte Carlo
approach to generate the sampling distribution. See Donnelly and Kramer (1999) for
the former approach and also for a comprehensive survey of tests of relative variation; see
Cope and Lacy (1995) for an example of the latter approach. Because paleontologists
often possess small samples and cannot be certain of normality, randomization tests are
useful, so this situation provides another apt illustration of the use of tsrtest.

Example

Consider the data reported by Plavcan and Cope (2001, 210), in which they com-
pare the variation in skull length (mm) in a sample of 10 pygmy marmosets and 10
orangutans. These two primates vary dramatically in typical size, as seen in the de-
scriptive statistics reported (for the marmosets versus for the orangutans), but the CV

values suggest a modest difference in relative variation (1.74 versus 2.73). A relevant
randomization test for a difference in relative variation, then, would address whether
the CV in the orangutan sample exceeds that in the marmoset sample beyond what
could result from random assignment of the (mean-adjusted) individual values to the
two species. To conduct this test with tsrtest, the data in each of the two samples
were first rescaled by dividing each score by its sample mean, which gives each observed
sample a standard deviation equivalent to its CV. A user-written Stata program is used
to compute the test statistic, the difference of the sample standard deviations, which is
then called by tsrtest. The file copeplavcan.dta has to reside in the current working
directory for this example to work.

use copeplavcan.dta

// Difference of two standard deviations
capture program drop sddiff
program sddiff, rclass

args y group g1 g2
quiet summarize `y´ if `group´ ==`g1´
local sd1 = r(sd)
quiet summarize `y´ if `group´ ==`g2´
return scalar sddiff = r(sd) - `sd1´

end
// rescale by mean
summ lengthskull if orang ==1
local CVorang = 100 * r(sd)/r(mean)
local df1 = r(N) - 1
summ lengthskull if orang ==0
local CVmarmo = 100 * r(sd)/r(mean)
local df2 = r(N) - 1
bysort orang: egen m = mean(lengthskull)
gen lenadj = lengthskull/m
bysort orang: summ lenadj

tsrtest orang r(sddiff): sddiff lenadj orang 0 1

The preceding code required approximately 22 seconds to run on the Windows ma-
chine cited in section 4, using Stata 9.2, and gave the following results:
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Two-sample randomization test for theta=r(sddiff) of sddiff lenadj orang 0 1 by
> orang

Combinations: 184756 = (20 choose 10)
Assuming null=0
Observed theta: .0099

Minium time needed for exact test (h:m:s): 0:00:15
Mode: exact

progress: |........................................|

p=0.09663 [one-tailed test of Ho: theta(orang==0)<=theta(orang==1)]
p=0.90338 [one-tailed test of Ho: theta(orang==0)>=theta(orang==1)]
p=0.19326 [two-tailed test of Ho: theta(orang==0)==theta(orang==1)]

The relatively large p-value of 0.09663 suggests that these data provide weak evidence
against the randomization hypothesis of no difference. In this case, the conventional
normal theory test based on F = (CV2/CV1)

2 with df1 = n1 − 1 and df2 = n2 − 1 gave
a p-value = 0.0978, which is quite close to the exact p-value obtained here. Such a good
result, of course, need not occur for all datasets.

7.3 Difference in two multinomials

A final example application of tsrtest involves an omnibus test for the difference of
two multinomials, a test that could conventionally be done as a χ2 test, or, in a small
sample, by using an extended form of Fisher’s exact test, as implemented in the exact
option of tab2. Although the calculation of Fisher’s exact test is very fast, there is
no simple and clear measure of association to which it corresponds once we go beyond
the odds ratio underlying its use for a 2 × 2 table. For a k × 2 table, tsrtest allows
us to implement a test statistic that does correspond to an understandable measure of
association, and it allows a test that explicitly involves an explanatory and a response
variable.

Example

As an empirical example, consider data on religious preference and the geographi-
cal region of residence among persons in the United States, as derived from the 2006
General Social Survey (Davis, Smith, and Marsden 2006). More particularly, consider
comparing the regional distribution of U.S. residents who identify as Muslim and those
who identify as Hindu, for which the observed data are
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. use gss06religregion, clear
(General Social Surveys, 1972-2006: [Cumulative File], Dataset 0001)

. keep if relig == 7 | relig ==9 //hindu and muslim
(4482 observations deleted)

. tab2 region relig, chi2 exact

RS RELIGIOUS
REGION OF PREFERENCE
INTERVIEW HINDUISM MOSLEM/IS Total

MIDDLE ATLANTIC 1 5 6
E. NOR. CENTRAL 2 4 6
W. NOR. CENTRAL 0 1 1
SOUTH ATLANTIC 6 2 8

E. SOU. CENTRAL 0 1 1
MOUNTAIN 0 2 2
PACIFIC 2 2 4

Total 11 17 28

Pearson chi2(6) = 8.4349 Pr = 0.208
Fisher´s exact = 0.209

As an alternative to either the asymptotic χ2 test or Fisher’s exact test (which
give surprisingly similar results even in this sparse table), suppose we define a more
intuitively meaningful measure of the difference between the two distributions of regional
location, namely, the sum of the absolute differences in the row proportions of the sample
distributions

d =
k∑

i=1

| π̂i1 − π̂i2 |

where k is the number of rows, and π̂ij is the proportion of persons in the jth column
that fall in the ith row. In the context of a randomization test (also true for the χ2 test
or Fisher’s exact test), the row and column marginals are fixed, so an equivalent and
less calculation-intensive statistic can be used for testing purposes:

d =
k∑

i=1

| π̂i1 − π̂i. |

where π̂i. represents the marginal row proportion for the ith row, which remains constant
across all random allocations to the columns. This statistic can be calculated with a
short program:

(Continued on next page)
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capture program drop diffmulti
program diffmulti, rclass
// Calculates sum of absolute difference of first column versus
// marginal proportions.

args y x m xcol1 n1 nyval v1 v2 v3 v4 v5 v6 v7
// y and x are the response and explanatory variables,
// m is a one column matrix of the marginal relative //
// frequencies, xcol1 is the value of the x variable for the
// first column, n1 is the first column marginal frequency,
// nyval is the number of possible values for y, and v1-v7
// is a list of the possible values of y

local sumd = 0
forval i = 1/`nyval´ {

quietly count if `x´ == `xcol1´ & `y´ == `v`i´´
local sumd = `sumd´ + abs(r(N)/`n1´- `m´[`i´,1] )

}
return scalar d = `sumd´

end

This program is called by tsrtest with precalculation of the relevant program pa-
rameters,

// Get marginals, and column one sum.
tab1 region, matcell(marg)
mat marg = marg/r(N) // marginal relative freq
count if relig == 7
local n1 = r(N)
// Get value list for response variable
levelsof region
local vals = r(levels)
// count values of y
local nval = wordcount("`vals´")
tab1 region, matcell(marg)
mat marg = marg/r(N) // marginal relative freq
local rows = rowsof(marg)
count if relig == 7 // first column total
local n1 = r(N)
tsrtest relig r(d), exact: diffmulti region relig ///

marg 7 `n1´ `nval´ `vals´

and gives the following results (execution time = 11,485 seconds):
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Two-sample randomization test for theta=r(d) of diffmulti region relig marg 7 1
> 1 7 2 3 4 5 6 8 9 by relig

Combinations: 21474180 = (28 choose 11)
Assuming null=0
Observed theta: .5974

Minimum time needed for exact test (h:m:s): 3:15:03

WARNING: This will take *very* long! If this is not what you intended to do, hit
> BREAK and repeat the command without specifying the ´exact´ option!

Mode: exact

progress: |........................................|

p=0.15717 [one-tailed test of Ho: theta(relig==7)<=theta(relig==9)]
p=0.84416 [one-tailed test of Ho: theta(relig==7)>=theta(relig==9)]
p=0.15717 [two-tailed test of Ho: theta(relig==7)==theta(relig==9)]

Here a randomization test using a meaningful but nonstandard test statistic gave
more evidence against the null hypothesis of no difference than did either the conven-
tional χ2 test or the Fisher’s exact test, but it did not yield a sufficiently small p-value
to meet conventional standards for rejecting the null hypothesis. (The two-tailed and
one-tailed tests are identical here, because there is no sense of direction for the differ-
ence of two multinomial distributions.) From a programming efficiency point of view,
the current example also is instructive. An earlier version of diffmulti used tab1
to obtain frequency counts, which was quite a slow method. Changing to count (see
[D] count) to obtain frequencies reduced execution time by about 70%, again showing
the importance of judicious approaches to calculation in the user’s program.

7.4 Other applications

There are countless ways of applying the randomization test to test statistics of two
independent samples. One possible application is the ranksum test for the equality of
medians by Mann and Whitney (1947), also known as the Mann–Whitney U test. Stata
already provides an asymptotic implementation of this test (see [R] ranksum) because
exact p-levels can be tedious to derive even for moderate sample sizes (Narayanan and
Watts 1996). It has, however, been demonstrated (e.g., by Edwardes [2000]) that under
certain conditions the asymptotic test can yield much smaller and thus misleadingly
liberal p-values. By calculating the exact p-values through a randomization test, you can
avoid this pitfall. According to Siegel and Castellan (1988, 155), p-levels of the Mann–
Whitney test for the equality of medians can be computed exactly through a two-sample
randomization test for differences in means applied to the ranks of the variable observed.
The proceeding is largely identical to the example outlined in section 4 except that the
ranks of the values in the combined sample are used instead of the values themselves.
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For convenience, the supplemental program mwtest provides the Stata user with
a routine to carry out this test. Similar routines are provided for calculation of the
randomization test difference in means (fptest), Somers’ D (somersdtest), the relative
variation (sddiff), and the standard deviation of samples that are centered around their
means (vartest).

8 Conclusion

This article presented a new Stata command, tsrtest, that allows users to efficiently
conduct a wide variety of two-sample randomization tests. tsrtest was presented in
examples involving two-sample tests for difference of means, ordinal location, relative
variation, and multinomial distributions.
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