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Abstract. A new command, metamiss, performs meta-analysis with binary out-
comes when some or all studies have missing data. Missing values can be imputed
as successes, as failures, according to observed event rates, or by a combination of
these according to reported reasons for the data being missing. Alternatively, the
user can specify the value of, or a prior distribution for, the informative missingness
odds ratio.
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1 Introduction

Just as missing outcome data present a threat to the validity of any research study, so
they present a threat to the validity of any meta-analysis of research studies. Typically,
analyses assume that the data are missing completely at random or missing at random
(MAR) (Little and Rubin 2002). If the data are not MAR (i.e., they are informatively
missing) but are analyzed as if they were missing completely at random or MAR, then
nonresponse bias typically occurs. The threat of bias carries over to meta-analysis,
where the problem can be compounded by nonresponse bias applied in a similar way in
different studies.

Many methods for dealing with missing outcome data require detailed data for each
participant. Dealing with missing outcome data in a meta-analysis raises particular
problems because limited information is typically available in published reports. Al-
though a meta-analyst would ideally seek any important but unreported data from the
authors of the original studies, this approach is not always successful, and it is un-
common to have access to more than group-level summary data at best. We therefore
address the meta-analysis of summary data, focusing on the case of an incomplete binary
outcome.

A central concept is the informative missingness odds ratio (IMOR), defined as the
odds ratio between the missingness, M , and the true outcome, Y , within groups (White,
Higgins, and Wood 2008). A value of 1 indicates MAR, while IMOR = 0 means that
missing values are all failures, and IMOR = ∞ means that missing values are all successes.
We allow the IMOR to differ across groups and across subgroups of individuals defined
by reasons for missingness, or to be specified with uncertainty.

We will describe metamiss in the context of a meta-analysis of randomized controlled
trials comparing an “experimental group” with a “control group”, but it could be used
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58 Meta-analysis with missing data

in any meta-analysis of two-group comparisons. metamiss only prepares the data for
each study, and then it calls metan to perform the meta-analysis. It allows two main
types of methods: imputation methods and Bayesian methods.

First, metamiss offers imputation methods as described in Higgins, White, and
Wood (2008). Missing values can be imputed as failures or as successes; using the same
rate as in the control group, the same rate as in the experimental group, or the same
rate as in their own group; or using IMORs. When reasons for missingness are known, a
mixture of the methods can be used.

Second, metamiss offers Bayesian methods that allow for user-specified uncertainty
about the missingness mechanism (Rubin 1977; Forster and Smith 1998; White, Higgins,
and Wood 2008). These use the prior logIMORij ∼ N(mij , s

2
ij) in group j = E,C of

study i, with corr(logIMORiE , logIMORiC) = r.

The approach of Gamble and Hollis (2005) is also implemented. In this approach,
two extreme analyses are performed for each study, regarding all missing values as
successes in one group and failures in the other. The two 95% confidence intervals
are then combined (together with intermediate values), and a modified standard error
is taken as one quarter the width of this combined confidence interval. This method
appears to overpenalize studies with missing data (White, Higgins, and Wood 2008),
but it is included here for comparison.

2 metamiss command

2.1 Syntax

metamiss requires six variables (rE, fE, mE, rC, fC, and mC ), which specify the number
of successes, failures, and missing values in each randomized group. There are four
syntaxes described below.

Simple imputation

metamiss rE fE mE rC fC mC, imputation method
[
imor option

imputation options meta options
]

where

imputation method is one of the imputation methods listed in section 2.2, specified
without an argument.

imor option is either imor(# | varname
[
# | varname

]
) or

logimor(# | varname
[
# | varname

]
) (see section 2.3).

imputation options are any of the options described in section 2.4.
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meta options are any of the meta-analysis options listed in section 2.6, as well
as any valid option for metan, including random, by(), and xlabel() (see sec-
tion 2.6).

Imputation using reasons

metamiss rE fE mE rC fC mC, imputation method1 impuation method2[
imputation method3 . . .

] [
imor option imputation options meta options

]
where

imputation method1, imputation method2, etc., are any imputation method listed
in section 2.2 except icab and icaw, specified with arguments to indicate numbers
of missing values to be imputed by each method.

imor option, imputation options, and meta options are the same as documented
in Simple Imputation.

Bayesian analysis using priors

metamiss rE fE mE rC fC mC, sdlogimor(# | varname
[
# | varname

]
)[

imor option bayes options meta options
]

where

imor option and meta options are the same as documented in Simple Imputation.

bayes options are any of the options described in section 2.5.

Gamble–Hollis analysis

metamiss rE fE mE rC fC mC, gamblehollis
[
meta options

]
where

gamblehollis specifies to use the Gamble–Hollis analysis.

meta options are the same as documented in Simple Imputation.

2.2 imputation method

For simple imputation, specify one of the following options without arguments. For
imputation using reasons, specify two or more of the following options with arguments.
The abbreviations ACA, ICA-0, etc., are explained by Higgins, White, and Wood (2008).
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aca
[
(# | varname

[
# | varname

]
)
]

performs an available cases analysis (ACA).

ica0
[
(# | varname

[
# | varname

]
)
]

imputes missing values as zeros (ICA-0).

ica1
[
(# | varname

[
# | varname

]
)
]

imputes missing values as ones (ICA-1).

icab performs a best-case analysis (ICA-b), which imputes missing values as ones in
the experimental group and zeros in the control group—equivalent to ica0(0 1)
ica1(1 0). If rE and rC count adverse events, not beneficial events, then icab will
yield a worst-case analysis.

icaw performs a worst-case analysis (ICA-w), which imputes missing values as zeros
in the experimental group and ones in the control group—equivalent to ica0(1 0)
ica1(0 1). If rE and rC count beneficial events, not adverse events, then icaw will
yield a best-case analysis.

icape
[
(# | varname

[
# | varname

]
)
]

imputes missing values by using the observed
probability in the experimental group (ICA-pE).

icapc
[
(# | varname

[
# | varname

]
)
]

imputes missing values by using the observed
probability in the control group (ICA-pC).

icap
[
(# | varname

[
# | varname

]
)
]

imputes missing values by using the observed
probability within groups (ICA-p).

icaimor
[
(# | varname

[
# | varname

]
)
]

imputes missing values by using the IMORs
specified by imor() or logimor() within groups (ICA-IMORs).

The default is icaimor if imor() or logimor() is specified; if no IMOR option is
specified, the default is aca.

Specifying arguments

Used with arguments, these options specify the numbers of missing values to be imputed
by each method. For example, ica0(mfE mfC) icap(mpE mpC) indicates that mfE in-
dividuals in group E and mfC individuals in group C are imputed using ICA-0, while
mpE individuals in group E and mpC individuals in group C are imputed using ICA-p.
If the second argument is omitted, it is taken to be zero. If, for some group, the total
over all reasons does not equal the number of missing observations (e.g., if mfE + mpE
does not equal mE), then the missing observations are shared between imputation types
in the given ratio. If the total over all reasons is zero for some group, then the miss-
ing observations are shared between imputation types in the ratio formed by summing
overall numbers of individuals for each reason across all studies. If the total is zero for
all studies in one or both groups, then an error is returned. Numerical values can also
be given: e.g., ica0(50 50) icap(50 50) indicates that 50% of missing values in each
group are imputed using ICA-0 and the rest are imputed using ICA-p.
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2.3 imor option

imor(# | varname
[
# | varname

]
) sets the IMORs or (if the Bayesian method is being

used) the prior medians of the IMORs. If one value is given, it applies to both
groups; if two values are given, they apply to the experimental and control groups,
respectively. Both values default to 1. Only one of imor() or logimor() can be
specified.

logimor(# | varname
[
# | varname

]
) does the same as imor() but on the log scale.

Thus imor(1 1) is the same as logimor(0 0). Only one of imor() or logimor()
can be specified.

2.4 imputation options

w1 specifies that standard errors be computed, treating the imputed values as if they
were observed. This is included for didactic purposes and should not be used in real
analyses. Only one of w1, w2, w3, or w4 can be specified.

w2 specifies that standard errors from the ACA be used. This is useful in separating
sensitivity to changes in point estimates from sensitivity to changes in standard
errors. Only one of w1, w2, w3, or w4 can be specified.

w3 specifies that standard errors be computed by scaling the imputed data down to
the number of available cases in each group and treating these data as if they were
observed. Only one of w1, w2, w3, or w4 can be specified.

w4, the default, specifies that standard errors be computed algebraically, conditional on
the IMORs. Conditioning on the IMORs is not strictly correct for schemes including
ICA-pE or ICA-pC, but the conditional standard errors appear to be more realistic
than the unconditional standard errors in this setting (Higgins, White, and Wood
2008). Only one of w1, w2, w3, or w4 can be specified.

listnum lists the reason counts for each study implied by the imputation method option.

listall lists the reason counts for each study after scaling to match the number of
missing values and imputing missing values for studies with no reasons.

listp lists the imputed probabilities for each study.

2.5 bayes options

sdlogimor(# | varname
[
# | varname

]
) sets the prior standard deviation for log IMORs

for the experimental and control groups, respectively. Both values default to 0.

corrlogimor(# | varname) sets the prior correlation between log IMORs in the experi-
mental and control groups. The default is corrlogimor(0).

method(gh | mc | taylor) determines the method used to integrate over the distribution
of the IMORs. method(gh) uses two-dimensional Gauss–Hermite quadrature and is
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the recommended method (and the default). method(mc) performs a full Bayesian
analysis by sampling directly from the posterior. This is time consuming, so dots
display progress, and you can request more than one of the measures or, rr, and rd.
method(taylor) uses a Taylor-series approximation, as in section 4 of Forster and
Smith (1998), and is faster than the default but typically inaccurate for sdlogimor()
larger than one or two.

nip(#) specifies the number of integration points under method(gh). The default is
nip(10).

reps(#) specifies the number of Monte Carlo draws under method(mc). The default is
reps(100).

missprior(##
[
##

]
) and respprior(##) apply when method(mc) is used, but

they are unlikely to be much used. They specify the parameters of the beta priors
for P (M) and P (Y |M = 0): the parameters for the first group are given by the
first two numbers, and the parameters for the second group are given by the next
two numbers or are the same as for the first group. The defaults are both beta(1, 1).

nodots suppresses the dots that are displayed to mark the number of Monte Carlo draws
completed.

2.6 meta options

or, rr, and rd specify the measures to be analyzed. Usually, only one measure can be
specified; the default is rr. However, when using method(mc), all three measures
can be obtained for no extra effort, so any combination is allowed. When more than
one measure is specified, the formal meta-analysis is not performed, but measures
and their standard errors are saved (see section 2.7).

log has the results reported on the log risk-ratio (RR) or log odds-ratio scale.

id(varname) specifies a study identifier for the results table and forest plot.

Most other options allowed with metan are also allowed, including by(), random, and
nograph.

2.7 Saved results

metamiss saves results in the same way as metan: ES, selogES, etc. The sample size,
SS, excludes the missing values, but an additional variable, SSmiss, gives the total
number of missing values. When method(mc) is run, the log option is assumed for the
measures or and rr, and the following variables are saved for each measure (logor,
logrr, or rd): the ACA estimate, ESTRAW measure; the ACA variance, VARRAW measure;
the corrected estimate, ESTSTAR measure; and the corrected variance, VARSTAR measure.
If these variables already exist, then they are overwritten.
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3 Examples

3.1 Data

We apply the above methods to a meta-analysis of randomized controlled trials com-
paring haloperidol to placebo in the treatment of schizophrenia. A Cochrane review of
haloperidol forms the basis of our data (Joy, Adams, and Lawrie 2006). Further details
of our analysis are given in Higgins, White, and Wood (2008).

The main data consist of the variables author (the author); r1, f1, and m1 (the
counts of successes, failures, and missing observations in the intervention group); and
r2, f2, and m2 (the corresponding counts in the control group).

3.2 Available cases analysis

The following analysis illustrates metamiss output, but the same results could in fact
have been obtained by using metan r1 f1 r2 f2, fixedi:

. use haloperidol

. metamiss r1 f1 m1 r2 f2 m2, aca id(author) fixed nograph
*******************************************************************
******** METAMISS: meta-analysis allowing for missing data ********
******** Available cases analysis ********
*******************************************************************
Measure: RR.
Zero cells detected: adding 1/2 to 6 studies.

(Calling metan with options: label(namevar=author) fixed eform nograph ...)

Study | ES [95% Conf. Interval] % Weight
---------------------+---------------------------------------------------
Arvanitis | 1.417 0.891 2.252 18.86
Beasley | 1.049 0.732 1.504 31.22
Bechelli | 6.207 1.520 25.353 2.05
Borison | 7.000 0.400 122.442 0.49
Chouinard | 3.492 1.113 10.955 3.10
Durost | 8.684 1.258 59.946 1.09
Garry | 1.750 0.585 5.238 3.37
Howard | 2.039 0.670 6.208 3.27
Marder | 1.357 0.747 2.466 11.37
Nishikawa_82 | 3.000 0.137 65.903 0.42
Nishikawa_84 | 9.200 0.581 145.759 0.53
Reschke | 3.793 1.058 13.604 2.48
Selman | 1.484 0.936 2.352 19.11
Serafetinides | 8.400 0.496 142.271 0.51
Simpson | 2.353 0.127 43.529 0.48
Spencer | 11.000 1.671 72.396 1.14
Vichaiya | 19.000 1.157 311.957 0.52
---------------------+---------------------------------------------------
I-V pooled ES | 1.567 1.281 1.916 100.00
---------------------+---------------------------------------------------

Heterogeneity chi-squared = 27.29 (d.f. = 16) p = 0.038
I-squared (variation in ES attributable to heterogeneity) = 41.4%

Test of ES=1 : z= 4.37 p = 0.000
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The effect size (ES) refers to the RR in this output. For brevity, future listings
include only the four largest studies: Arvanitis, Beasley, Marder, and Selman, with 2%,
41%, 3%, and 42% missing data, respectively. Interest therefore focuses on changes in
inferences for the Beasley and Selman studies.

3.3 Imputation methods

We illustrate imputing all missing values as zeros, using the weighting scheme w4, which
correctly allows for uncertainty (although in ica0, w1 gives the same answers):

. metamiss r1 f1 m1 r2 f2 m2, ica0 w4 id(author) fixed nograph
*******************************************************************
******** METAMISS: meta-analysis allowing for missing data ********
******** Simple imputation ********
*******************************************************************
Measure: RR.
Method: ICA-0 (impute zeros).
Weighting scheme: w4.
Zero cells detected: adding 1/2 to 6 studies.

(Calling metan with options: label(namevar=author) fixed eform nograph ...)

Study | ES [95% Conf. Interval] % Weight
---------------------+---------------------------------------------------
Arvanitis | 1.362 0.854 2.172 24.38
Beasley | 1.429 0.901 2.266 25.01

(output omitted )

Marder | 1.357 0.745 2.473 14.75

(output omitted )

Selman | 2.429 1.189 4.960 10.42

(output omitted )

---------------------+---------------------------------------------------
I-V pooled ES | 1.898 1.507 2.390 100.00
---------------------+---------------------------------------------------

Heterogeneity chi-squared = 21.56 (d.f. = 16) p = 0.158
I-squared (variation in ES attributable to heterogeneity) = 25.8%

Test of ES=1 : z= 5.45 p = 0.000

The Beasley and Selman trials have more missing data in the control group, so
imputing failures increases their estimated RR, and the pooled RR also increases.

3.4 Impute using known IMORs

Now we assume that the IMOR is 0.5 in each group, that is, that the odds of success in
missing data are half the odds of success in observed data.
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. metamiss r1 f1 m1 r2 f2 m2, icaimor imor(1/2 1/2) w4 id(author) fixed nograph
*******************************************************************
******** METAMISS: meta-analysis allowing for missing data ********
******** Simple imputation ********
*******************************************************************
Measure: RR.
Method: ICA-IMOR (impute using IMORs 1/2 1/2).
Weighting scheme: w4.
Zero cells detected: adding 1/2 to 6 studies.

(Calling metan with options: label(namevar=author) fixed eform nograph ...)

Study | ES [95% Conf. Interval] % Weight
---------------------+---------------------------------------------------
Arvanitis | 1.399 0.878 2.227 22.12
Beasley | 1.120 0.737 1.700 27.47

(output omitted )

Marder | 1.358 0.746 2.473 13.34

(output omitted )

Selman | 1.743 0.973 3.121 14.11

(output omitted )

---------------------+---------------------------------------------------
I-V pooled ES | 1.699 1.365 2.115 100.00
---------------------+---------------------------------------------------

Heterogeneity chi-squared = 24.63 (d.f. = 16) p = 0.077
I-squared (variation in ES attributable to heterogeneity) = 35.0%

Test of ES=1 : z= 4.75 p = 0.000

The assumption is intermediate between ACA and ICA-0, and so is the result.

3.5 Impute using reasons for missingness

Most studies indicated the distribution of reasons for missing outcomes. We assigned
imputation methods as follows:

• For reasons such as “lack of efficacy” or “relapse”, we imputed failures (ICA-0).

• For reasons such as “positive response”, we imputed successes (ICA-1).

• For reasons such as “adverse event”, “withdrawal of consent”, or “noncompliance”,
we considered that the patient had not received the intervention, and we imputed
according to the control group rate ICA-pC, implicitly assuming lack of selection
bias.

• For reasons such as “loss to follow-up”, we assumed MAR and imputed according
to the group-specific rate ICA-p.

Counts for these four groups are given by the variables df1, ds1, dc1, and dg1 for
the intervention group, and df2, ds2, dc2, and dg2 for the control group.

In some trials, the reasons for missingness were given for a different subset of par-
ticipants, for example, when clinical outcome and dropout were reported for different
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time points. In such a case, metamiss applies the proportion in each reason-group
to the missing population in that trial. In trials that did not report any reasons for
missingness, the overall proportion of reasons from all other trials is used.

. metamiss r1 f1 m1 r2 f2 m2, ica0(df1 df2) ica1(ds1 ds2) icapc(dc1 dc2)
> icap(dg1 dg2) w4 id(author) fixed nograph
*******************************************************************
******** METAMISS: meta-analysis allowing for missing data ********
******** Imputation using reasons ********
*******************************************************************
Measure: RR.
Method: ICA-r combining ICA-0 ICA-1 ICA-pC ICA-p.
Weighting scheme: w4.
Zero cells detected: adding 1/2 to 6 studies.

(Calling metan with options: label(namevar=author) fixed eform nograph ...)

Study | ES [95% Conf. Interval] % Weight
---------------------+---------------------------------------------------
Arvanitis | 1.381 0.867 2.201 21.37
Beasley | 1.349 0.892 2.041 27.10

(output omitted )

Marder | 1.368 0.751 2.491 12.91

(output omitted )

Selman | 1.767 1.037 3.010 16.36

(output omitted )

---------------------+---------------------------------------------------
I-V pooled ES | 1.785 1.439 2.214 100.00
---------------------+---------------------------------------------------

Heterogeneity chi-squared = 21.86 (d.f. = 16) p = 0.148
I-squared (variation in ES attributable to heterogeneity) = 26.8%

Test of ES=1 : z= 5.27 p = 0.000

3.6 Impute using uncertain IMORs

Finally, we allow for uncertainty about the IMORs. In the analysis below, we take a
N(0, 4) prior for the log IMORs in each group, with the log IMORs in the two groups
being a priori uncorrelated.
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. metamiss r1 f1 m1 r2 f2 m2, sdlogimor(2) logimor(0) w4 id(author) fixed
> nograph
*******************************************************************
******** METAMISS: meta-analysis allowing for missing data ********
******** Bayesian analysis using priors ********
*******************************************************************
Measure: RR.
Zero cells detected: adding 1/2 to 6 studies.
Priors used: Group 1: N(0,2^2). Group 2: N(0,2^2). Correlation: 0.
Method: Gauss-Hermite quadrature (10 integration points).

(Calling metan with options: label(namevar=author) fixed eform nograph ...)

Study | ES [95% Conf. Interval] % Weight
---------------------+---------------------------------------------------
Arvanitis | 1.416 0.889 2.257 30.37
Beasley | 1.085 0.506 2.324 11.36

(output omitted )

Marder | 1.350 0.737 2.472 18.04

(output omitted )

Selman | 1.596 0.671 3.799 8.77

(output omitted )

---------------------+---------------------------------------------------
I-V pooled ES | 1.867 1.444 2.413 100.00
---------------------+---------------------------------------------------

Heterogeneity chi-squared = 20.93 (d.f. = 16) p = 0.181
I-squared (variation in ES attributable to heterogeneity) = 23.6%

Test of ES=1 : z= 4.76 p = 0.000

Note how the weight assigned to the Beasley and Selman studies is greatly reduced.
Because these studies have estimates below the pooled mean, the pooled mean increases.

4 Details

4.1 Zero cell counts

Like metan, metamiss adds one half to all four cells in a 2×2 table for a particular study
if any of those cells contains zero. However, this behavior is modified under methods
that impute with certainty (ICA-0, ICA-1, ICA-b, and ICA-w): the certain imputation is
performed before metamiss decides whether to add one half. As a result, apparently
similar options such as ica1 and logimor(99) differ slightly in the haloperidol data,
because the logimor(99) analysis adds one half to six studies with r2 = 0, whereas the
ica1 analysis does this only for three studies with r2 + m2 = 0.

(Continued on next page)
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4.2 Formula

For the imputation methods, in a given group of a given study, let r, f , and m be the
number of observed successes, failures, and missing observations; let π̂ = r/(r + f) be
the observed success fraction; and let N = r + f + m be the total count. Let k index
reason-groups with counts mk and IMOR θk, so that, for example, a group imputed by
ICA-0 has θk = 0. Then the estimated success fraction is

π̂∗ =
1
N

(
r +
∑

k

mkθkπ̂

1 − π̂ + θkπ̂

)

with the variance obtained by a Taylor-series expansion (Higgins, White, and Wood
2008).

For the Bayesian methods, let δj be the log IMOR in group j. Then

π̂∗
j (δj) =

1
Nj

(
rj +

mje
δj π̂j

1 − π̂j + eδj π̂j

)
and, for example, the log risk ratio is obtained by finding the expectation of

logπ̂∗
E(δE) − logπ̂∗

C(δC)

over the prior p(δE , δC) by numerical integration. The variance is obtained by combining
the variance conditional on p(δE , δC) with the variance over p(δE , δC) (White, Higgins,
and Wood 2008).

5 Discussion

We believe that ACA is a suitable starting point for a sensitivity analysis that might en-
compass, for example, imor(1/2 1/2), imor(1/2 2), sdlogimor(2) corrlogimor(1),
and sdlogimor(2) corrlogimor(0) (Higgins, White, and Wood 2008; White, Higgins,
and Wood 2008). However, a “best” analysis might use reasons for missingness together
with subject matter knowledge to assign suitable IMORs. Future work will explore how
to integrate the two approaches.
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