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Abstract. Multivariate meta-analysis combines estimates of several related pa-
rameters over several studies. These parameters can, for example, refer to multiple
outcomes or comparisons between more than two groups. A new Stata command,
mvmeta, performs maximum likelihood, restricted maximum likelihood, or method-
of-moments estimation of random-effects multivariate meta-analysis models. A
utility command, mvmeta make, facilitates the preparation of summary datasets
from more detailed data. The commands are illustrated with data from the Fib-
rinogen Studies Collaboration, a meta-analysis of observational studies; I estimate
the shape of the association between a quantitative exposure and disease events
by grouping the quantitative exposure into several categories.
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1 Introduction

Standard meta-analysis combines estimates of one parameter over several studies
(Normand 1999). Multivariate meta-analysis is an extension that can combine esti-
mates of several related parameters (van Houwelingen, Arends, and Stijnen 2003). In
such work, it is important to allow for heterogeneity between studies, usually by fitting
a random-effects model (Thompson 1994).

Multivariate meta-analysis has a variety of applications in randomized controlled
trials. The simplest is modeling the outcome separately in each arm of a clinical
trial (van Houwelingen, Arends, and Stijnen 2003). Other published applications ex-
plore treatment effects simultaneously on two clinical outcomes (Berkey, Anderson,
and Hoaglin 1996; Berkey et al. 1998; Riley et al. 2007a,b) or on cost and effective-
ness (Pinto, Willan, and O’Brien 2005), and explore combining trials comparing more
than one treatment (Hasselblad 1998; Lu and Ades 2004). Further applications have
been reviewed by Riley et al. (2007b).

There are also possible applications of multivariate meta-analysis in observational
studies. These applications include assessing the shape of the association between a
quantitative exposure and a disease, which will be illustrated in this article.

One difficulty in random-effects meta-analysis is estimating the between-studies
variance. In the univariate case, this is commonly performed by using the method
of DerSimonian and Laird (1986). However, maximum likelihood (ML) and restricted
maximum likelihood (REML) methods are alternatives (van Houwelingen, Arends, and
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Stijnen 2003); in Stata, they are not available in metan but can be obtained from
metareg (Sharp 1998). This article describes a new command, mvmeta, that performs
REML and ML estimation in the multivariate case by using a Newton–Raphson proce-
dure. mvmeta requires a dataset of study-specific point estimates and their variance–
covariance matrix. I also describe a utility command, mvmeta make, that facilitates
forming this dataset.

2 Multivariate random-effects meta-analysis with
mvmeta

2.1 Syntax

mvmeta b V
[
if
] [

in
] [

, reml ml mm fixed vars(varlist) corr(expression)

start(matrix |matrix expression | mm) showstart showchol

keepmat(bname Vname) nouncertainv eform(name) bscorr bscov

missest(#) missvar(#) maximize options
]

where the data are arranged with one line per study, the point estimates are held in
variables whose names start with b (excluding b itself), the variance of bx is held in
variable Vxx, and the covariance of bx and by is held in variable Vxy or Vyx (or the
corr() option is specified).

If the dataset includes variables whose names start with b that do not represent
point estimates, then the vars() option must be used.

2.2 Options

reml, the default, specifies that REML be used for estimation. Specify only one of the
reml, ml, mm, or fixed options.

ml specifies that ML be used for estimation. ML is likely to underestimate the variance,
so REML is usually preferred. Specify only one of the reml, ml, mm, or fixed options.

mm specifies that the multivariate method-of-moments procedure (Jackson, White, and
Thompson Forthcoming) be used for estimation. This procedure is a multivariate
generalization of the procedure of DerSimonian and Laird (1986) and is faster than
the likelihood-based methods. Specify only one of the reml, ml, mm, or fixed options.

fixed specifies that the fixed-effects model be used for estimation. Specify only one of
the reml, ml, mm, or fixed options.

vars(varlist) specifies which variables are to be used. By default, all variables b* are
used (excluding b itself). The order of variables in varlist does not affect the model
itself but does affect the parameterization.
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corr(expression) specifies that all within-study correlations take the given value. This
means that covariance variable Vxy need not exist. (If it does exist, corr() is
ignored.)

start(matrix |matrix expression | mm) specifies a starting value for the between-studies
variance, except start(mm) specifies that the starting value is computed by the mm
method. If start() is not specified, the starting value is the weighted between-
studies variance of the estimates, not allowing for the within-study variances; this
ensures that the starting value is greater than zero (the iterative procedure never
moves away from zero). start(0) uses a starting value of 0.001 times the default.
The starting value for the between-studies mean is the fixed-effects estimate.

showstart reports the starting values used.

showchol reports the estimated values of the basic parameters underlying the between-
studies variance matrix (the Cholesky decomposition).

keepmat(bname Vname) saves the vector of study-specific estimates and the vector of
the variance–covariance matrix for study i as bnamei and Vnamei, respectively.

nouncertainv invokes alternative (smaller) standard errors that ignore the uncertainty
in the estimated variance–covariance matrix and therefore agree with results pro-
duced by procedures such as SAS PROC MIXED (without the ddfm=kr option) and
metareg. (Note, however, that the confidence intervals do not agree because mvmeta
uses a normal approximation, whereas the other procedures approximate the degrees
of freedom of a t distribution.)

eform(name) exponentiates the reported mean parameters, labeling them name.

bscorr reports the between-studies variance–covariance matrix as the standard devia-
tions and reports the correlation matrix. This is the default if bscov is not specified.

bscov reports the between-studies variance–covariance matrix without transformation.

missest(#) specifies the value to be used for missing point estimates; the default is
missest(0). This is of minor importance because the variance of these missing
estimates is specified to be very large.

missvar(#) is used in imputing the variance of missing point estimates. For a specific
variable, the variance used is the largest observed variance multiplied by the specified
value. The default is missvar(1E4); this value is unlikely to need to be changed.

maximize options are any options allowed by ml maximize.

3 Details of mvmeta

3.1 Notation

The data for mvmeta comprise the point estimate, yi, and the within-study variance–
covariance matrix, Si, for each study i = 1 to n.
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We assume the model

yi ∼ N(μi, Si)
μi ∼ N(μ,Σ)

Σ =

⎛⎝ τ2
1 κ12τ1τ2 .

κ12τ1τ2 τ2
2 .

. . .

⎞⎠
where yi, μi, and μ are p×1 vectors, and Si and Σ are p×p matrices. The within-study
variance, Si, is assumed to be known. Our aim is to estimate μ and Σ.

We set Wi = (Σ + Si)−1, noting that this depends on the unknown Σ. If Σ were
known (or assumed to be the zero matrix, as in fixed-effects meta-analysis), then we
would have

μ̂ =

(∑
i

Wi

)−1(∑
i

Wiyi

)

3.2 Estimating Σ

Methods proposed for estimating Σ in the multivariate setting include extensions of
Cochran’s method (Berkey et al. 1998), of the DerSimonian and Laird method (Pinto,
Willan, and O’Brien 2005) for diagonal Wi, and of likelihood-based methods (van
Houwelingen, Arends, and Stijnen 2003). We use the latter because of their gener-
ality and optimality properties. Respectively, the likelihood and restricted likelihood
are

−2L =
∑

i

{log |Σ + Si | + (yi − μ)′Wi(yi − μ)} + nplog2π

− 2RL = −2L + log |
∑

i

Wi | − plog2π (1)

where Wi is a function of the unknown Σ, as noted above.

We maximize the (restricted) likelihood with a Newton–Raphson algorithm by using
Stata’s ml procedure. To ensure that Σ is nonnegative definite (for example, in the
bivariate case, to ensure that the between-studies variances are nonnegative and that
the between-studies correlation lies between −1 and 1), the basic model parameters are
taken as the elements of a Cholesky decomposition of Σ (Riley et al. 2007b).

3.3 Saved results

As well as the usual e() information, mvmeta returns the estimated overall mean in
e(Mu) and the between-studies variance–covariance matrix, the standard deviation vec-
tor, and the correlation matrix in e(Sigma), e(Sigma SD), and e(Sigma corr), respec-
tively.
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3.4 Files required

mvmeta uses the likelihood program mvmeta l.ado.

4 A utility command to produce data in the correct for-
mat: mvmeta make

4.1 Syntax

mvmeta make regression command
[
if
] [

in
] [

weight
]
, by(by variable)

saving(savefile)
[
replace append names(bname Vname) keepmat

usevars(varlist) useconstant esave(namelist) nodetails pause

ppfix(none | check | all) augwt(#) noauglist ppcmd(regcmd
[
, options

]
)

hard regression options
]

mvmeta make performs regression command for each level of by variable and stores
the results in savefile in the format required by mvmeta. weight is any weight allowed
by regression command.

4.2 Options

by(by variable) is required; it identifies the studies in which the regression command
will be performed.

saving(savefile) is required; it specifies to save the regression results to savefile.

replace specifies to overwrite the existing file called savefile.

append specifies to append the current results to the existing file called savefile.

names(bname Vname) specifies that the estimated coefficients for variable x are to
be stored in variable bnamex and that the estimated covariance between coefficients
bnamex and bnamey is to be stored in variable Vnamexy. The default is names(y S).

keepmat specifies that the results are also to be stored as matrices. The estimate vector
and the covariance matrix for study i are stored as matrices bnamei and Vnamei,
respectively, where bname and Vname are specified with names().

usevars(varlist) identifies the variables whose regression coefficients are of interest.
The default is all variables in the model, excluding the constant.

useconstant specifies that the constant is also of interest.

esave(namelist) adds the specified e() statistics to the saved data. For example,
esave(N ll) saves e(N) and e(ll) as variables e N and e ll.
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nodetails suppresses the results of running regression command on each study.

pause pauses output after the analysis of each study, provided that pause on has been
set.

ppfix(none | check | all) specifies whether perfect prediction should be fixed in no
studies, only in studies where it is detected (the default), or in all studies.

augwt(#) specifies the total weight of augmented observations to be added in any
study in which perfect prediction is detected (see section 7). augwt(0) turns off
augmentation but is not recommended. The default is augwt(0.01).

noauglist suppresses listing of the augmented observations.

ppcmd(regcmd
[
, options

]
) specifies that perfect prediction should be fixed by using

regression command regcmd with options options instead of by using the default
augmentation procedure.

hard is useful when convergence cannot be achieved in some studies. It captures the
results of initial model fitting in each study and treats any nonzero return code as a
symptom of perfect prediction.

regression options are any options for regression command.

5 Example 1: Telomerase data

Data from 10 studies of the value of telomerase measurements in the diagnosis of primary
bladder cancer were reproduced by Riley et al. (2007b). In the table below, taken
from that article, y1 is logit sensitivity, y2 is logit specificity, and s1 and s2 are their
respective standard errors, all estimated from 2 × 2 tables of true status versus test
status.

. use telomerase
(Riley´s telomerase data)

. format y1 s1 y2 s2 %6.3f

. list, noobs clean

study y1 s1 y2 s2
1 1.139 0.406 3.219 1.020
2 1.447 0.556 1.299 0.651
3 1.705 0.272 0.661 0.308
4 0.470 0.403 3.283 0.588
5 0.856 0.290 4.920 1.004
6 1.440 0.371 1.386 0.456
7 0.187 0.306 3.219 1.442
8 1.504 0.451 2.197 0.745
9 1.540 0.636 2.269 0.606
10 1.665 0.412 -1.145 0.434

. generate S11=s1^2

. generate S22=s2^2
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5.1 Univariate meta-analysis

We first analyze the data by two univariate meta-analyses:

. mvmeta y S, vars(y1) bscov
Note: using method reml
Note: using variable y1
Note: 10 observations on 1 variables

(output omitted )

Number of obs = 10
Wald chi2(1) = 38.52

Log likelihood = -8.7276382 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Overall_mean
y1 1.154606 .1860421 6.21 0.000 .7899701 1.519242

Estimated between-studies covariance matrix Sigma:
y1

y1 .18579341

. mvmeta y S, vars(y2) bscov
Note: using method reml
Note: using variable y2
Note: 10 observations on 1 variables

(output omitted )

Number of obs = 10
Wald chi2(1) = 12.93

Log likelihood = -18.728644 Prob > chi2 = 0.0003

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Overall_mean
y2 1.963801 .5460555 3.60 0.000 .8935515 3.03405

Estimated between-studies covariance matrix Sigma:
y2

y2 2.386426

These results agree with SAS PROC MIXED as reported by Riley et al. (2007b), except
that the standard errors for the overall means are slightly larger (0.5461 for y2, compared
with 0.5414 from SAS). This is because SAS does not, by default, allow for uncertainty in
the estimated between-studies variance (SAS Institute 1999). mvmeta’s nouncertainv
option inverts just the elements of the information matrix relating to the overall mean
and agrees with SAS PROC MIXED:
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. mvmeta y S, vars(y2) nouncertainv
Note: using method reml
Note: using variable y2
Note: 10 observations on 1 variables

(output omitted )

Alternative standard errors, ignoring uncertainty in V:

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Overall_mean
y2 1.963801 .5413727 3.63 0.000 .9027297 3.024872

5.2 Multivariate analysis

Because sensitivity and specificity are estimated on separate groups of individuals, their
within-study covariance is zero. We could generate a new variable, S12=0, but it is
easier to use the corr(0) option:

. mvmeta y S, corr(0) bscov
Note: using method reml
Note: using variables y1 y2
Note: 10 observations on 2 variables
Note: corr(0) used for all covariances

(output omitted )

Number of obs = 10
Wald chi2(2) = 159.58

Log likelihood = -24.415968 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Overall_mean
y1 1.166187 .1863275 6.26 0.000 .8009913 1.531382
y2 2.057752 .5607259 3.67 0.000 .9587493 3.156755

Estimated between-studies covariance matrix Sigma:
y1 y2

y1 .20219111
y2 -.7227506 2.5835381

Again these results agree with those of Riley et al. (2007b), except that our stan-
dard errors are slightly larger because they allow for uncertainty in the between-studies
covariance, Σ.

6 Example 2: Fibrinogen Studies Collaboration data

Fibrinogen Studies Collaboration (FSC) is a meta-analysis of individual data on 154,012
adults from 31 prospective studies with information on plasma fibrinogen and major
disease outcomes (Fibrinogen Studies Collaboration 2004). As part of the published
analysis, the incidence of coronary heart disease was compared across 10 groups defined
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by baseline levels of fibrinogen (Fibrinogen Studies Collaboration 2005). That analysis
used a fixed-effects model; here we allow for heterogeneity between studies by using
a random-effects model, but we reduce the analysis to five groups to avoid presenting
lengthy output.

In the first stage of analysis, we start with individual-level data including fibrinogen
concentration, fg, in five levels. Following standard practice in the analysis of these data
(Fibrinogen Studies Collaboration 2005), all analyses are stratified by sex and, for two
studies that were randomized trials, by trial arm (variable tr). We adjust all analyses
for age (variable ages), although in practice, more confounders would be adjusted for.
We use the esave(N) option to record the sample size used in each study in variable
e N.

. stset duration allchd

(output omitted )

. xi: mvmeta_make stcox ages i.fg, strata(sex tr) nohr
> saving(FSCstage1) replace by(cohort) usevars(i.fg) names(b V) esave(N)
i.fg _Ifg_1-5 (naturally coded; _Ifg_1 omitted)
Using coefficients: _Ifg_2 _Ifg_3 _Ifg_4 _Ifg_5

-> cohort==1

failure _d: allchd
analysis time _t: duration

Iteration 0: log likelihood = -5223.9564
Iteration 1: log likelihood = -5135.3888
Iteration 2: log likelihood = -5129.5633
Iteration 3: log likelihood = -5129.551
Refining estimates:
Iteration 0: log likelihood = -5129.551

Stratified Cox regr. -- Breslow method for ties

No. of subjects = 14436 Number of obs = 14436
No. of failures = 603
Time at risk = 127969.6428

LR chi2(5) = 188.81
Log likelihood = -5129.551 Prob > chi2 = 0.0000

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

ages .0501925 .0072871 6.89 0.000 .03591 .064475
_Ifg_2 .2523666 .1895222 1.33 0.183 -.11909 .6238233
_Ifg_3 .5317069 .1804709 2.95 0.003 .1779905 .8854233
_Ifg_4 .9464425 .1761563 5.37 0.000 .6011824 1.291703
_Ifg_5 1.400935 .1779354 7.87 0.000 1.052188 1.749682

Stratified by sex tr

-> cohort==2

(output omitted )

Here are the data stored for the first 15 of the 31 studies; the data also include
covariances V Ifg 2 Ifg 3, etc., which are not displayed to save space. The first row of
the data below reproduces the results from the stcox analysis given above.
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. use FSCstage1, clear

. format b* V* %5.3f

. list cohort b_Ifg_2 b_Ifg_3 b_Ifg_4 b_Ifg_5 V_Ifg_2_Ifg_2 V_Ifg_3_Ifg_3,
> clean noobs

cohort b_Ifg_2 b_Ifg_3 b_Ifg_4 b_Ifg_5 V_Ifg_~2 ~3_Ifg_3
1 0.252 0.532 0.946 1.401 0.036 0.033
2 -0.184 -0.032 0.119 0.567 0.348 0.344
3 0.001 -0.529 -0.339 0.416 0.375 0.323
4 0.066 0.184 0.407 0.645 0.058 0.053
5 0.078 0.406 0.544 1.088 0.101 0.083
6 -0.113 0.456 0.456 0.875 0.065 0.054
7 -2.149 -0.264 -0.494 0.169 1.336 0.421
8 -0.039 0.170 0.420 1.053 0.042 0.038
9 0.443 0.595 0.922 0.797 0.202 0.175

10 0.356 1.312 0.628 2.133 1.500 1.170
11 1.297 1.052 1.421 1.752 0.559 0.542
12 0.323 0.545 0.681 0.540 0.132 0.122
13 -0.042 0.509 0.560 0.998 0.088 0.072
14 -2.667 -2.524 -2.010 -1.767 1.337 0.584
15 5.946 5.420 6.088 7.057 189.088 189.271

(output omitted )

Note the large parameter estimates and very large variances in study 15, which
occur because this study has no events in category 1 of fg. Details of how such perfect
prediction is handled are described in section 7.

Now the second stage of analysis:

. mvmeta b V
Note: using method reml
Note: using variables b_Ifg_2 b_Ifg_3 b_Ifg_4 b_Ifg_5
Note: 31 observations on 4 variables

(output omitted )

Wald chi2(4) = 139.59
Log likelihood = -79.489126 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Overall_mean
b_Ifg_2 .1615842 .0796996 2.03 0.043 .005376 .3177925
b_Ifg_3 .3926019 .0878114 4.47 0.000 .2204947 .5647091
b_Ifg_4 .5620076 .0905924 6.20 0.000 .3844497 .7395654
b_Ifg_5 .8973289 .0942603 9.52 0.000 .712582 1.082076

Estimated between-studies SDs and correlation matrix:
SD b_Ifg_2 b_Ifg_3 b_Ifg_4 b_Ifg_5

b_Ifg_2 .22734097 1 .98953788 .97421937 .70621223
b_Ifg_3 .28611302 .98953788 1 .99657543 .80096928
b_Ifg_4 .30834247 .97421937 .99657543 1 .84773246
b_Ifg_5 .32742861 .70621223 .80096928 .84773246 1

It is interesting to compare the estimates with those obtained from four univari-
ate meta-analyses, which can be run by mvmeta b V, vars(b Ifg 2), etc., and are
summarized in table 1.
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Table 1. Summary of estimates from four univariate meta-analyses

Group Univariate Multivariate
μ̂i se(μ̂i) τ̂i μ̂i se(μ̂i) τ̂i Correlations κ̂ij

2 vs 1 0.200 0.066 0.134 0.162 0.080 0.227 1
3 vs 1 0.430 0.073 0.196 0.393 0.088 0.286 0.990 1
4 vs 1 0.568 0.084 0.263 0.562 0.091 0.308 0.974 0.997 1
5 vs 1 0.840 0.101 0.363 0.897 0.094 0.327 0.706 0.801 0.848 1

The univariate and multivariate methods give broadly similar point estimates, μ̂i,
but the multivariate method gives rather larger estimates of three between-studies stan-
dard deviations, τ̂i, and, consequently, larger standard errors for μ̂i. A different choice
of reference category would yield the same multivariate results but different univariate
results. Of course, the multivariate method also has the advantage of estimating the
between-studies correlations.

7 Perfect prediction

7.1 The problem

One difficulty that can occur in regression models with a categorical or time-to-event
outcome is perfect prediction or separation (Heinze and Schemper 2002). In logistic
regression, for example, perfect prediction occurs if there is a level of a categorical
explanatory variable for which the observed values of the outcome are all one (or all
zero); in Cox regression, it occurs if there is a category in which no events are observed.
Here, as one or more regression parameters go to plus or minus infinity, the log likelihood
increases to a limit and the second derivative of the log likelihood tends to zero.

Stata handles this problem in two ways. Stata first attempts to detect perfect
prediction. If successful, it drops the relevant observations and term from the model.
However, sometimes (in particular, if perfect prediction is in the reference category of
a variable with more than two levels) Stata fails to detect perfect prediction. Here
Stata reports very large ML estimates, observes that the variance–covariance matrix is
singular, and reports a generalized inverse.

In the meta-analysis context, perfect prediction is likely to occur in some studies
and not in others. (In the FSC analysis, it occurred in four studies.) Unfortunately,
neither of the above solutions is satisfactory. In the first case, the model fit to a study
with perfect prediction differs from that fit to other studies and has fewer parameters,
so combination across studies is not meaningful. In the second case, some extremely
large coefficients have inappropriately moderate standard errors, so they can have an
excessive influence on meta-analytic results.
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As an example, we use data from FSC study 15, which has no events in the reference
category fg==1:

. xi: stcox ages i.fg if cohort==15, nohr

(output omitted )

No. of subjects = 3134 Number of obs = 3134
No. of failures = 17
Time at risk = 9465.954814

LR chi2(5) = 16.43
Log likelihood = -127.22742 Prob > chi2 = 0.0057

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

ages .0357279 .0263705 1.35 0.175 -.0159573 .087413
_Ifg_2 21.36403 .9147602 23.35 0.000 19.57113 23.15692
_Ifg_3 20.84916 . . . . .
_Ifg_4 21.50048 .8689028 24.74 0.000 19.79746 23.2035
_Ifg_5 22.47926 .7987255 28.14 0.000 20.91379 24.04473

Perfect prediction has not been detected, and the coefficients are appropriately large
but with inappropriately small standard errors.

7.2 Solution: Augmentation

mvmeta make checks for perfect prediction by checking that 1) all parameters are re-
ported and 2) there are no zeros on the diagonal of the variance–covariance matrix of
the parameter estimates. If perfect prediction is detected, mvmeta make augments the
data in such a way as to avoid perfect prediction but gives the added observations a
tiny weight to minimize their impact on well-estimated parts of the model.

The augmentation is performed at two design points for each covariate x, defined by
letting x = x ± sx (where x and sx are the study-specific mean and standard deviation
of x, respectively) and by fixing other covariates at their mean value. The records added
at each design point depend on the form of regression model. For logistic regression, we
add one event and one nonevent. For other regression models with discrete outcomes,
we add one observation with each outcome level. For survival analyses, we add one event
at time tmin/2 and one censoring at time tmax + tmin/2, where tmin and tmax are the first
and last follow-up times in the study. For a stratified Cox model, the augmentation is
performed for each stratum.

A total weight of wp is then shared equally between the added observations, where w
is specified by the augwt() option (the default is augwt(0.01)), and p is the number of
model parameters (treating the baseline hazard in a Cox model as one parameter). The
regression model is then rerun including the weighted added observations. For study 15,
this yields

(Continued on next page)
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No. of subjects = 3134.06 Number of obs = 3134
No. of failures = 17.03
Time at risk = 9466.077771

LR chi2(5) = 16.33
Log likelihood = -115.75111 Prob > chi2 = 0.0060

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

ages .0353976 .0263231 1.34 0.179 -.0161948 .08699
_Ifg_2 5.946375 13.75093 0.43 0.665 -21.00495 32.89771
_Ifg_3 5.41975 13.75757 0.39 0.694 -21.54459 32.38409
_Ifg_4 6.088434 13.74965 0.44 0.658 -20.86039 33.03726
_Ifg_5 7.057288 13.74605 0.51 0.608 -19.88448 33.99905

Stratified by sex tr

The coefficients for the Ifg * terms are reduced but still large, but their large
standard errors now mean that they will not unduly influence the meta-analysis. The
coefficient and standard error for ages are barely changed. It is useful to compare the
variance–covariance matrix of the parameter estimates before augmentation,

ages _Ifg_2 _Ifg_3 _Ifg_4 _Ifg_5
ages .00069444

_Ifg_2 .00156723 .83711768
_Ifg_3 0 0 0
_Ifg_4 -.00185585 .49628548 0 .75596628
_Ifg_5 -.00303957 .49370111 0 .50944939 .64022023

with that after augmentation:

ages _Ifg_2 _Ifg_3 _Ifg_4 _Ifg_5
ages .00069291

_Ifg_2 -.00309014 189.08811
_Ifg_3 -.00465418 188.76205 189.27067
_Ifg_4 -.00650648 188.77085 188.78488 189.05294
_Ifg_5 -.00768805 188.77649 188.79309 188.81504 188.95394

Because the covariances in the latter matrix are large, contrasts between groups 2,
3, 4, and 5 will receive appropriately small standard errors. This study will therefore
contribute information about contrasts between groups 2, 3, 4, and 5 to the meta-
analysis, but it will contribute no information about contrasts between group 1 and
other groups.

A related problem occurs if some study has no observations at all in a particular
category. The augmentation algorithm is applied here, too, with the modification that
the value sx, used to define the added design points, is taken as the standard deviation
across all studies, because the within-study standard deviation is zero.
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8 Discussion

8.1 Difficulties and limitations

The main difficulty that might be encountered in fitting multivariate random-effects
meta-analysis models is a nonpositive-definite Σ. However, the parameterization used
here ensures that Σ is positive semidefinite and achieves a nonpositive-definite Σ if one
or more elements of the Cholesky decomposition approach zero. I have encountered non-
convergence of the Newton–Raphson algorithm only when the starting value is Σ = 0,
which is avoided by a suitable nonzero choice of starting values, or when inappropriately
handled perfect prediction has led to extreme parameter estimates with small standard
errors.

The standard error provided for an REML analysis allows for uncertainty in estimat-
ing Σ by inverting the second derivative matrix of the restricted likelihood (1). This
is not the standard approach (Kenward and Roger 1997), and its properties require
further investigation. Confidence intervals based on a t distribution would be a useful
enhancement.

At present, the augmentation routine in mvmeta make effectively ignores any cat-
egory in which perfect prediction occurs but allows information to be drawn from
other categories from that study. A larger augmentation would allow information
to be drawn from categories with perfect prediction. For example, if the data con-
sist of 2 × 2 tables, then standard practice would add 0.5 observations to each cell
(Sweeting, Sutton, and Lambert 2004). This amounts to assigning to the augmented
observations a total weight equal to the number of parameters, and it is tempting to
apply this rule more widely (by using augment(1)). However, larger augmentation
weights have the undesirable property of not being invariant to reparameterization; for
example, a different choice of reference category for the fg variable in section 6 would
lead to somewhat different results. Larger augmentation is probably best implemented
by the user.

There are alternate ways to handle perfect prediction, including various forms of
penalized likelihood. The methods of Le Cessie and van Houwelingen (1992) and Ver-
weij and van Houwelingen (1994) have been implemented in Stata by the plogit and
stpcox commands, respectively, and both are currently being updated to allow for per-
fect prediction (G. Ambler, pers. comm.). The method of Firth (1993) is invariant to
reparameterization and is being implemented by the author. When suitable routines
become available in Stata, they can be called by the ppcmd() option in mvmeta make.

8.2 Comparison to other procedures

All the models considered here can also be fit in SAS PROC MIXED, although some
programming effort is required to specify the known within-study variances, Si. The
two approaches are very similar, but by default, SAS produces standard errors that ignore
the uncertainty in Σ, and produces confidence intervals by using the t distribution on
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n− 1 degrees of freedom. Further, SAS optionally provides a standard error adjusted to
allow for uncertainty in estimating Σ and provides the approximate degrees of freedom
of Kenward and Roger (1997), which has good small-sample properties.

Multivariate meta-analysis models cannot be fit by using existing Stata commands,
but univariate models can. metan differs from mvmeta because it uses DerSimonian
and Laird (1986) estimation of the random-effects variance. metareg offers the choice
of DerSimonian and Laird, ML, or REML estimation, so if run without covariates, it
can be compared to mvmeta. The original metareg (Sharp 1998) used the algorithm
of Hardy and Thompson (1996) and did not always find the best solution. Version 2
of metareg, by Harbord and Higgins (2008), uses Newton–Raphson maximization via
ml, and produces the same point estimates as mvmeta and the same standard er-
rors as mvmeta with the nouncertainv option. metareg produces confidence inter-
vals that allow for nonnormality of the sampling distributions by using the method
of Knapp and Hartung (2003); its z option produces confidence intervals that agree
with mvmeta. Of course, metareg also has the enormous advantage of handling meta-
regression.

8.3 More than two outcomes

Although mvmeta handles several outcomes perfectly well, its computing time increases
sharply as the number of outcomes increases. mvmeta can even computationally handle
situations where there are more quantities of interest than studies (p > n); however,
fitting such large models can be unwise and results can be untrustworthy.
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