

Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

The Stata Journal (2008)
8, Number 4, pp. 540–553

A shortcut through long loops: An illustration
of two alternatives to looping over observations

Ward Vanlaar
Traffic Injury Research Foundation

Ottawa, Canada
wardv@trafficinjuryresearch.com

Abstract. It is well known that looping over observations can be slow and
should be avoided. The objective of this article is to discuss two alternative solu-
tions to looping over observations that can be used to overcome a particular data-
management problem of merging datasets in which unique key identifiers changed
over time. The first alternative, mapch, which is introduced in this article, uses
a combination of appending, indexing, and merging to solve the problem, while
the second alternative uses repeated merging. Both solutions are much quicker
than looping over observations. However, depending on the nature of the prob-
lem, one solution may work better than the other. It is argued that the use of such
dataset-type manipulations may be suitable to overcome other data-management
problems. More generally speaking, the issue that is addressed—searching for an
alternative to looping over observations—may be common and illustrates the im-
portance of balancing the costs of developing an efficient solution with the benefits
accruing from that solution.

Keywords: dm0041, mapch, appending, data management, indexing, looping,
merging

1 Introduction

It is well known that looping over observations can be slow and should be avoided.
Cox, for example, lists this as one of his suggestions regarding Stata programming style
on speed and efficiency; he comments that “fortunately, [looping over observations]
can usually be avoided” (2005, 565). This article elaborates on this suggestion and
illustrates how the issue regarding time constraints can be overcome by relying on such
alternatives as appending, indexing, and merging.

First, the problem—essentially, the issue of unique key identifiers that changed over
time—will be described. Following this description, two practical solutions will be
discussed as alternatives to looping over observations. These solutions will also be
compared and contrasted. Finally, some general conclusions will be drawn from the
central ideas that were applied, and some thought will be given to balancing the costs
associated with the development of an efficient solution with the benefits accruing from
that solution.

c© 2008 StataCorp LP dm0041

W. Vanlaar 541

2 The problem

The illustration in this article is based on the problem of merging datasets from a
particular jurisdiction in which unique key identifiers, more precisely, driver license
numbers, changed over time. A substantial portion of the jurisdiction’s population of
several hundred thousand drivers changed their driver license numbers—many of them
more than once—because the driver license number is an alphanumeric combination
based on the driver’s name. Furthermore, the jurisdiction’s data warehouse is organized
such that certain datasets use old driver license numbers, for example, the number in
use at the time of a crash, while other datasets are constantly updated and use only the
most recent driver license number.

As a result, the former datasets may contain multiple records per driver, for example,
if a driver was involved in more than one crash. Each such record may be listed under
a different driver license number; for example, if a driver was involved in two crashes
and the second crash happened after the driver license number changed, each record
pertaining to this driver would be listed under a different driver license number. The
datasets using only the most recent number contain records of those same drivers, but
they are listed using only one driver license number, more precisely, the driver license
number in use at the time of data extraction. Using nonupdated driver license numbers
as key identifiers in some datasets and updated driver license numbers as key identifiers
in other datasets may become problematic when merging datasets of both kinds.

For the sake of clarity in this article, I will refer to the old, nonupdated driver license
numbers as the old numbers; one driver can be listed under several old numbers. I will
refer to the updated, most recent number as the updated number or terminal ID; one
driver can be listed under only one such updated number.

The involved jurisdiction provided a cross-reference dataset containing three vari-
ables: a variable with the old driver license number, a variable with the updated driver
license number, and a variable indicating when the old number changed into the new
number. As such, the cross-reference dataset from the involved jurisdiction contains ap-
proximately 86,000 lines. Each line represents a change pertaining to a certain driver,
and there may be several lines per driver; more precisely, if a driver changed his or
her driver license number more than once, there would be more than one line for that
driver. Example 1 illustrates the format of this cross-reference dataset.

Example 1: Illustration of the format of the cross-reference dataset

. use testfileSJ

. sort date

(Continued on next page)

542 A shortcut through long loops

. list old updated date

old updated date

1. A B 16001
2. Q P 16004
3. E F 16007
4. G H 16008
5. X1 X2 16016

6. X2 X3 16017
7. P O 16100
8. O N 16999
9. B C 17000
10. C D 17200

Two challenges arise with such a cross-reference dataset if it is to be used to overcome
the problem of dataset merging described previously. Because lines of information
pertaining to the same person may be spread throughout the entire dataset (e.g., in
example 1, lines 1, 9, and 10 all pertain to the same driver), the first challenge is
to find a way to sort through this wealth of information and identify each driver’s
changes, knowing that there may be several changes per driver. This can be particularly
challenging with large datasets (e.g., say the first change is on line 1, but the second is
not until line 51,000). The process of sorting and finding each driver’s changes can be
called mapping the chains of events, with an event in this context being a change of the
driver license number.

Once the chains have been mapped for each driver, the second challenge is to create
a new variable that contains the end value of each chain, or the terminal ID (the updated
driver license number).

How to overcome both challenges is explained in more detail in the next section,
which illustrates two solutions that can be used as alternatives to looping over observa-
tions.

3 The solution

3.1 Conceptual approach

To capture all records per driver when merging datasets containing the updated numbers
with datasets containing the old numbers, the changes in driver license numbers have
to be mapped; i.e., each driver’s changes have to be identified to produce chains (e.g.,
if “A” changes into “B” and later on “B” changes into “C”, then this produces the
chain “A B C”). And somehow, each old number pertaining to the same driver has to
be linked to the terminal ID (e.g., “A” has to be linked to “C”, and “B” also has to be
linked to “C”). Such a cross-reference dataset can be merged with datasets containing
the old numbers by using the old number as the key identifier. In a second step, the

W. Vanlaar 543

resulting dataset can then be merged to datasets containing the updated numbers by
using the updated number as key identifier (the updated number is contained in each
driver record because of the first step).

From a conceptual point of view, this is an easily understood solution for a not too
complicated problem. However, the hardest part is translating this conceptual solution
into a practical one. By using a combination of several looping procedures on a dataset
with 86,000 changes in driver license numbers, some with chains of length of five steps
(i.e., some people in this jurisdiction changed their driver license number as many as
five times), it took about 12 hours to compare the first 8,000 values from the variable
updated with the values from the variable old in the first loop. This performance review
was run on an Intel Pentium M, 1.73 GHz processor with 1.5 GB of RAM. Obviously, this
was not a feasible approach. Two alternative solutions were developed: the first one,
mapch, which I developed, uses a combination of appending, indexing, and merging;
the second one—suggested as an alternative to mapch by a reviewer—uses repeated
merging.

Both approaches are discussed in more detail below and are compared with one an-
other. The time gained by using either alternative rather than looping over observations
is astounding: the dataset, containing 86,000 changes, can be mapped in a couple of
seconds rather than dozens of hours.

3.2 mapch: appending, indexing, and merging as an alternative to
looping over observations

Inside the program mapch

While mapping chains was not at all feasible by looping over observations, fortunately,
the mapping can be done by using a combination of appending, indexing, and merging.
This approach is formalized in mapch. This section explains how mapch functions by
illustrating how the data patterns that emerge when using a combination of appending,
indexing, and merging allow for an efficient means of mapping the chains.

In the first step, the variable link is created as a copy of the variable updated. This
dataset is saved and, using the original dataset, the variable link is created again, but
this time it is created as a copy of the variable old. Both resulting datasets are then
appended. Example 2 displays the result of these data manipulations after sorting on
link and date.

(Continued on next page)

544 A shortcut through long loops

Example 2: Resulting dataset after appending

. use testfileSJ

. sort date

. generate link = updated

. save testfile1, replace
(note: file testfile1.dta not found)
file testfile1.dta saved

. use testfileSJ, clear

. generate link = old

. append using testfile1

. sort link date

. by link: generate test1=_N

. by link: generate test2=_n

. list old updated date link

old updated date link

1. A B 16001 A
2. A B 16001 B
3. B C 17000 B
4. B C 17000 C
5. C D 17200 C

6. C D 17200 D
7. E F 16007 E
8. E F 16007 F
9. G H 16008 G
10. G H 16008 H

11. O N 16999 N
12. P O 16100 O
13. O N 16999 O
14. Q P 16004 P
15. P O 16100 P

16. Q P 16004 Q
17. X1 X2 16016 X1
18. X1 X2 16016 X2
19. X2 X3 16017 X2
20. X2 X3 16017 X3

Despite the noise created by replicating lines of information due to appending (e.g.,
lines 1 and 2 or lines 7 and 8 in example 2), a useful pattern emerges in the output
of link. As shown in example 2, link contains the value “B” in lines 2 and 3. More
generally speaking, each link in a chain can be identified by using this data pattern,
which allows us to distinguish between chains of only one change (such as “E” into “F”
in lines 7 and 8 of link) and chains of at least two changes (such as “A” into “B” into
“C”; this time link contains “B” in line 2 and in line 3).

W. Vanlaar 545

The next step consists of cleaning up the noise by dropping each line that is either
a replica of another line or a line pertaining to a one-step chain. This can be done by
sorting on link and then generating a count of lines per value of link by using N. If
the resulting count is different from two, the observation should be deleted. In example
2, lines 1, 6, 7, 8, 9, 10, 11, 16, 17, and 20 will be deleted. The result of this step can
be seen in example 3.

Example 3: Resulting dataset after cleaning up the noise

. drop if test1!=2
(10 observations deleted)

. list old updated date link

old updated date link

1. A B 16001 B
2. B C 17000 B
3. B C 17000 C
4. C D 17200 C
5. P O 16100 O

6. O N 16999 O
7. Q P 16004 P
8. P O 16100 P
9. X1 X2 16016 X2
10. X2 X3 16017 X2

Now that we have identified chains with at least two steps, we can create yet another
variable, recent, that contains the most recent update, using indexing and after sorting
on date. It is also possible to achieve this if dates are not available. The package mapch
can be run with or without dates, although I do not illustrate the latter in this article.

After sorting on date, the variable recent can be generated such that it contains
the most recent value of updated. For example, for link equal to “B”, the variable
recent would contain “C”. The result is displayed in example 4.

Example 4: Resulting dataset after generating recent

. generate str2 recent=""
(10 missing values generated)

. by link: replace recent=updated[_N]
(10 real changes made)

. sort old date

546 A shortcut through long loops

. list old updated date link recent

old updated date link recent

1. A B 16001 B C
2. B C 17000 B C
3. B C 17000 C D
4. C D 17200 C D
5. O N 16999 O N

6. P O 16100 O N
7. P O 16100 P O
8. Q P 16004 P O
9. X1 X2 16016 X2 X3
10. X2 X3 16017 X2 X3

At this point, mapping two-step chains is complete. For example, the chain “X1 X2
X3” has been identified as such a two-step chain, and its values for recent are “X3”,
i.e., the end value (terminal ID) of that chain, in lines 9 and 10 in example 4. Three-
step and longer chains, on the other hand, have not yet been mapped completely, for
example, the three-step chains “A B C D” and “Q P O N”. To replace their values of
recent with the end value of the chain, the process of appending and indexing has to
be repeated. However, before it can be repeated, the original dataset has to be restored
and extended with the variable recent.

To restore the original dataset, more noise has to be cleaned up. For example, lines
3 and 6 in example 4 are replicas of lines 2 and 7, so we need a solution to delete those
replicated lines. This can be done by exploiting the data pattern that emerges when
sorting on the variable old. Whenever the count of lines per value of the variable old
is greater than one, one of the lines should be dropped. Example 5 shows the result of
this data manipulation. Each line displayed in example 4 is also displayed in example
5, except for lines 3 and 6.

Example 5: Resulting dataset after cleaning up more noise

. by old: generate test3=_N

. by old: drop if updated!=recent & test3>1
(2 observations deleted)

. save testfile2, replace
(note: file testfile2.dta not found)
file testfile2.dta saved

W. Vanlaar 547

. list old updated date link recent

old updated date link recent

1. A B 16001 B C
2. B C 17000 B C
3. C D 17200 C D
4. O N 16999 O N
5. P O 16100 P O

6. Q P 16004 P O
7. X1 X2 16016 X2 X3
8. X2 X3 16017 X2 X3

The dataset in example 5 can now be merged with the original dataset, using old
as the key identifier. As shown in example 6, one- and two-step chains are completely
mapped, but three-step chains are only partly mapped at this point. The process of
appending, indexing, and merging can now be repeated to complete the mapping for
three-step chains. The variable link has to be created by copying the result of recent
(rather than updated) in one dataset and copying old in the other dataset before
appending both datasets.

Example 6: Resulting dataset after the first iteration of appending, indexing, and
merging has been completed

. use testfileSJ, clear

. sort old

. merge old using testfile2

. replace recent=updated if recent==""
(2 real changes made)

. drop link test1 test2 test3 _merge

. erase testfile1.dta

. erase testfile2.dta

. list old updated date recent

old updated date recent

1. A B 16001 C
2. B C 17000 C
3. C D 17200 D
4. E F 16007 F
5. G H 16008 H

6. O N 16999 N
7. P O 16100 O
8. Q P 16004 O
9. X1 X2 16016 X3
10. X2 X3 16017 X3

548 A shortcut through long loops

Repeat this process as many times as the length of the longest chain in the dataset
minus one to map all chains. Actually, because it may not be known in advance what
the length of the longest chain will be, the process has to be repeated one more time
after all chains have been mapped to allow for a comparison of the number of changes in
recent with the number of changes in the previous run. When both counts are equal,
the process of mapping is complete. Thus the number of times the process has to be
repeated is really equal to the length of the longest chain in the dataset. The command
mapch automatically stops when that point has been reached, and then it creates a
dataset, mapping, that contains the mapped chains and summarizes how many chains
of length n the dataset contains, with 1 ≤ n ≤ N .

The output after running mapch on the example dataset is contained in example 7,
and the resulting dataset, mapping, is displayed in example 8. The variable NoOfEvents
refers to the number of changes per chain and is used to summarize how many chains
of length n are contained in the dataset.

Example 7: Output of mapch

. use testfileSJ, clear

. mapch old updated date

* Mapping complete *

Frequency of NoOfEvents:

NoOfEvents Freq. Percent Cum.

1 2 20.00 20.00
2 2 20.00 40.00
3 6 60.00 100.00

Total 10 100.00

The number of 1-step chains is equal to 2/1
The number of 2-step chains is equal to 2/2
The number of 3-step chains is equal to 6/3

W. Vanlaar 549

Example 8: Resulting dataset, mapping, after mapping chains has been completed

. list

old updated date recent NoOfEv~s

1. A B 16001 D 3
2. B C 17000 D 3
3. C D 17200 D 3
4. E F 16007 F 1
5. G H 16008 H 1

6. Q P 16004 N 3
7. P O 16100 N 3
8. O N 16999 N 3
9. X1 X2 16016 X3 2
10. X2 X3 16017 X3 2

3.3 Repeated merging as a second alternative to looping over ob-
servations

An alternative to mapch consists of repeatedly match-merging the variable old to the
variable updated, until nothing further changes. This procedure works as follows: In
the first step, a clone of updated is added to the original file (see example 9a). Then,
a clone of old, entitled clone, and a clone of updated, entitled terminal, are created
and stored in a temporary file (see example 9b).

Example 9a: Original dataset, including a clone of updated

. use testfileSJ, clear

. keep in 1/5
(5 observations deleted)

. generate clone=updated

. list old updated clone

old updated clone

1. A B B
2. B C C
3. C D D
4. E F F
5. G H H

(Continued on next page)

550 A shortcut through long loops

Example 9b: Temporary dataset

. use testfileSJ, clear

. keep in 1/5
(5 observations deleted)

. rename old clone

. rename updated terminal

. list clone terminal

clone terminal

1. A B
2. B C
3. C D
4. E F
5. G H

The temporary file is then merged with the original file, using the clone of old as the
key identifier in the temporary file and the clone of the variable updated in the original
file. The resulting dataset (see example 10) contains the original variables, old and
updated; the unique key identifier, clone; and the merged values of terminal, coming
from the temporary file. These values correspond to the values that are one step further
in the chain and can be used to replace the values of updated in the original file (see
example 11). The process can then be repeated until nothing further changes, thus
allowing replacement of the variable updated with the terminal IDs, thereby mapping
the chains.

Example 10: Resulting dataset after merging the original dataset (figure 9a) with
the temporary dataset (figure 9b), using clone as the key identifier

. use testfileSJ, clear

. keep in 1/5
(5 observations deleted)

. generate clone=updated

. generate str1 terminal = "C" in 1
(4 missing values generated)

. replace terminal = "D" in 2
(1 real change made)

. list old updated clone terminal

old updated clone terminal

1. A B B C
2. B C C D
3. C D D
4. E F F
5. G H H

W. Vanlaar 551

Example 11: Resulting dataset after replacing the values of updated with the corre-
sponding values of terminal after the first iteration

. use testfileSJ, clear

. keep in 1/5
(5 observations deleted)

. replace updated = "C" in 1
(1 real change made)

. replace updated = "D" in 2
(1 real change made)

. list old updated

old updated

1. A C
2. B D
3. C D
4. E F
5. G H

3.4 mapch versus repeated merging

Both approaches were tested on the previously mentioned dataset, containing approxi-
mately 86,000 changes, and were found to perform equally well: both solutions mapped
all chains in a matter of seconds. One advantage of the repeated merging solution is
that it does not start by doubling the dataset, unlike mapch, which uses appending.
While this did not affect the performance of mapch with 86,000 changes, it may do so
with datasets that contain many more changes.

While doubling the dataset may be less efficient with very large datasets, mapch does
have the advantage of automatically leading to a verification of the number of changes
per case per unit of time. If time of change is used, the mapch algorithm is not stable
when more than one change for the same case takes place at the same time, and this will
be noticed, even if you are not intentionally looking for such an anomaly. For example,
in the dataset of changes in driver license numbers that was originally provided, it was
found—because of the doubling—that several hundreds of drivers allegedly had changed
their driver license number more than once on the same day. It is very unlikely that
someone would change his or her driver license number twice on the same day, but these
anomalies would probably not have been identified if the repeated merging approach
was applied to this particular problem instead of the doubling approach of mapch.

Depending on the context that you are working in, checking for the number of
changes per case per unit of time may or may not be crucial. For this reason, mapch can
be run with or without an indication of the time when the changes took place; with an
indication of time, mapch automatically checks whether this condition is violated and
issues an error message, if necessary.

552 A shortcut through long loops

A combination of both approaches (mapch and repeated merging)—allowing the user
to avoid doubling the dataset at the beginning of every loop yet still ensuring that no
two changes for the same case take place at the same time—may be beneficial when
dealing with extremely large datasets in a context where two such changes would be
indicative of an anomaly with the data.

4 The mapch command

4.1 Syntax

mapch begin end
[
time

] [
if
] [

in
]

4.2 Description

mapch maps chains of events. A chain consists of at least one event; an event in this
context is a change of the information contained in the variable begin into the information
contained in the variable end. Optionally, the time at which the event took place can
be stored in the variable time and used to map the chains chronologically. It is assumed
that both begin and end contain unique information, i.e., each value in both variables
can appear only once. It is also assumed that events in a chain cannot occur at the
same time and that chains are not circular, i.e., the begin value of a chain must not be
the same as the end value of that chain.

mapch creates a dataset called mapping that contains maps of each chain and two or
three additional variables: recent, whose value is equal to the end value of the chain for
each step in that chain; date (only in case real time is not available), a fictitious time
when the event took place, allowing the user to sort the information; and NoOfEvents,
the number of events per chain. mapch also tabulates the frequency of n-step chains,
with 1 ≤ n ≤ N (N = total number of events in your dataset).

5 Conclusion

It is well known that looping over observations is slow and should be avoided. This
article illustrated two alternative solutions to looping over observations in the specific
context of a—perhaps somewhat peculiar—data-management problem related to unique
key identifiers that had changed over time. While the alternative solutions may have
some advantages and disadvantages compared to one another, they both work really
well in this particular context and solve the problem much more rapidly compared to
looping over observations. The central ideas in this article—creating a “link” variable
by appending and then using the resulting data patterns in combination with indexing
and merging on the one hand, or repeated merging on the other hand—convincingly
show that some dataset-type manipulations are worth considering as part of a solution,
given their efficient performance. Using dataset-type manipulations may be useful to
overcome other data-management problems as well.

W. Vanlaar 553

More generally speaking, the need for a viable, efficient alternative to looping over
observations is probably quite common. As such, this article bears on the importance
of balancing the costs of developing an efficient solution with the benefits accruing from
that solution. It could be argued that applying the central idea of mapch or the repeated
merging approach may be regarded as a detour to solving the problem, while, concep-
tually, looping over observations is probably more straightforward. However, it was
illustrated that investing some time into looking for an efficient albeit less straightfor-
ward solution was worth the effort. Eventually, it all comes down to cost/benefit ratios,
which may turn out surprisingly favorably, given the vast difference in performance of
different solutions, as illustrated in this article.

6 Acknowledgments

I am grateful for the helpful feedback that was provided by Kerry Kammire, a technical
services representative at StataCorp, when developing mapch. I also extend my gratitude
to a reviewer who provided useful comments to improve this article and who suggested
another alternative solution to the problem discussed in this article.

7 Reference
Cox, N. J. 2005. Suggestions on Stata programming style. Stata Journal 5: 560–567.

About the author

Ward Vanlaar is a research scientist with the Traffic Injury Research Foundation. He teaches
quantitative methods in criminology as a part-time professor at the University of Ottawa.
Before working at the Traffic Injury Research Foundation, he worked for the Behaviour and
Policy Department of the Belgian Road Safety Institute, where he served as Head of Research
from 2001 to 2005. His main fields of interest are traffic enforcement issues, the effects of
alcohol and drugs on driving, safety performance indicators, risk perception, multilevel/mixed
modeling, complex sampling designs, multidimensional scaling, and data management.

