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Abstract. Ronald Aylmer Fisher suggested transforming correlations by using
the inverse hyperbolic tangent, or atanh function, a device often called Fisher’s z
transformation. This article reviews that function and its inverse, the hyperbolic
tangent, or tanh function, with discussions of their definitions and behavior, their
use in statistical inference with correlations, and how to apply them in Stata.
Examples show the use of Stata and Mata in calculator style. New commands
corrci and corrcii are also presented for correlation confidence intervals. The
results of using bootstrapping to produce confidence intervals for correlations are
also compared. Various historical comments are sprinkled throughout.
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1 Introduction

A friend wanted to attach confidence intervals to his correlations. My first reaction
was skeptical: why do you want to do that? Correlations, meaning Pearson or product-
moment correlations, are not such a big deal in the first part of the twenty-first century as
they were when Karl Pearson (1857–1936) introduced the modern way to estimate them.
Good introductory texts now typically lead off on correlations as descriptive statistics,
are firm in that you should always look at a scatterplot too, and point emphatically
in the direction of regression as a way to quantify what the relationship is. No doubt
many statisticians would want to go much further in downplaying correlations.

As an experiment, imagine a bizarre reform of physics teaching (say, Physics Lite
or Physics for Dummies) in which basic laws such as Hooke’s law or Ohm’s law were
introduced by statements like, “We find that there is a very close relationship between
y and x”. The reaction would be immediate: these statements miss out on the key
point, saying what the relationship is. Thus there is also a steadily increasing emphasis
in statistical science on the importance of regression as trying to summarize what the
relationship is.

Even granting all that, there can be good reason to put a magnifying glass on an
estimated correlation. More frequently than regression texts imply, researchers may have
a clutch of response variables all more or less on the same footing. Consider psychologists
with bundles of measures of intelligence, biologists with measures of organism size, or
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414 Speaking Stata

geomorphologists, such as my friend and me, with measures of landform size. When
quantifying relationships between such variables, correlations are natural parameters.
Yet again, correlations can seem to be the most interesting parameters whenever the
units of measurement are arbitrary, but the strength of agreement between them is of
central concern. Psychology (again), medicine, and ecology offer many examples. The
point need not be labored strongly, because looking at correlation matrices is a standard
starting point in multivariate analysis. An even stronger argument for correlations is
that sometimes, as in genetics, they feature in theoretical treatments, so that comparing
predicted and actual correlations is then required.

My second reaction was to review how to find such confidence intervals in Stata.
Official Stata commands stop short. correlate does no inference, while pwcorr offers
only a p-value from the standard t test of whether the population correlation ρ is really
zero. See [R] correlate or the online help for more details. The latter t test cannot
be converted into useful confidence intervals, because once the population correlation
is really not zero, the sampling distribution of estimates r is substantially skewed, even
for large sample sizes. That should not seem surprising, given that correlations are
constrained to fall within [−1, 1]. Getting at the form of the distribution is a messy
problem with, for the most part, only complicated exact solutions, but for practical
data analysts an attractive way forward is offered by a suggestion of Ronald Aylmer
Fisher (1890–1962): even though r usually has an awkward skewed distribution, the
inverse hyperbolic tangent, or atanh, of r is much better behaved. This transform,
within statistics often labeled Fisher’s z, is said to be normally distributed to a good
approximation. The basic tactic is now evident: apply standard normal-based technique
on the z scale, and then back-transform using its inverse transform, the hyperbolic
tangent, or tanh.

Even though official Stata stops short, user programmers have been there before.
Gleason (1996) and independently Seed (2001, 2004) have published Stata commands
for correlation confidence intervals using Fisher’s z transform. (See also Goldstein [1996]
on a related problem not treated here.) Two by-products of writing this column are
the new commands corrci and corrcii, which are more up to date in Stata style
and, in most respects, more versatile than their predecessors. The new commands will
be discussed later in the column, but they are not its main theme. The problem of
correlation confidence intervals is an example of a problem that Stata users frequently
face: how far can you get with as little effort as possible in implementing something
just beyond official Stata’s functionality? This theme will itself be explored by showing
how Stata, including Mata, can be used as a calculator for problems for which there
are, so far, no canned commands.

My third reaction was, simply, to bootstrap. Correlations lend themselves well to
bootstrapping and feature strongly as examples in the instant classic text of Efron
and Tibshirani (1993). As always, bootstrapping requires care and caution even for
a relatively simple statistic such as the Pearson correlation. A key question is clearly
whether Fisher’s z and bootstrapping yield similar answers.
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2 Correlations from Pearson to Fisher and beyond

The idea of correlation is protean. Rodgers and Nicewander (1988) detailed 13 ways to
look at the correlation coefficient, Rovine and Von Eye (1997) added another, and no
doubt yet other perspectives could be added. Two of these perspectives appear espe-
cially important. Karl Pearson, his predecessors, and contemporaries almost all focused
on the correlation as a key parameter in a bivariate normal distribution. Statistically
minded people a century later are more likely to focus on the correlation as a measure
of linear association, for which normality, whether joint or marginal, is not required. (In
fact, George Udny Yule, Pearson’s assistant at the time, took up the linear association
viewpoint right away.)

Either way, the boundedness of correlations within [−1, 1] eases interpretations but
complicates formal inference. We learn early that correlations of 1 and −1 arise from
exact linear relationships, and we can use that fact in thinking about observed corre-
lations in between. But the bounds impart skewness to the sampling distribution of
correlations whenever the population correlation is not zero. (Even when it is zero, the
bounds must apply to the sampling distribution as well, but that is, in practice, of little
concern.)

Common terminology (Pearson’s r, Fisher’s z) credits Pearson with the method for
calculating correlation that is now standard and Fisher with the transformation com-
monly used to produce confidence intervals. The actual history was, not surprisingly,
more complicated. See Stigler (1986, 1999) and Hald (1998, 2007) for much more detail.
The idea of a bivariate normal distribution goes back to Lagrange, Laplace, and Gauss.
What Pearson did (Pearson [1896] and many other articles) included putting the calcu-
lation of correlation on a systematic basis and promoting its application and extension,
but the underlying idea of correlation was very much the earlier child of Francis Galton.
Fisher’s work on inference with correlation was the culmination of a series of articles
wrestling with the problem, including other contributions by Edgeworth, Yule, Filon,
Sheppard, Student, and Soper. The assumption of bivariate normality was central in
that thread. What happens when some other distribution applies received little atten-
tion until more recently. Rank correlation methods solve that problem by replacing
it with another. It deserves more attention than we will give it directly, except that
bootstrapping takes most of the sting out of the question.

The first mention of the atanh transformation in Fisher’s work was as a closing aside
in his first article on correlation (Fisher 1915). Then he made use of the transformation
in an article on the genetics of twins (Fisher 1919). The formal development of the
idea came later in a longer statistical article (Fisher 1921). More important than any of
these for the spread of the transformation was its discussion within the text Statistical
Methods for Research Workers (Fisher 1925) and later editions (Fisher 1970, 1990).
Fisher had the chutzpah not only to invent new methods but promptly to include them
as standard within his own textbook. That text was the ancestor of many other textbook
accounts (e.g., Snedecor and Cochran [1989]; Altman [1991]; Zar [1999]; Bland [2000];
van Belle et al. [2004]).
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3 The art of hyperbole

If atanh is an old friend to you, skim your way through to the next section, unless one
of your concerns is how to explain all this to colleagues or students.

atanh is the notation used here for the inverse hyperbolic tangent function. A good
reason for that notation is that Stata (from Stata 8) and Mata (from Stata 9) both
have atanh() functions, as indeed do many other mathematical and statistical software
packages, including R and Microsoft Excel. More pedantic comments on names and
notation will follow in due course, but first I will explain how the atanh function arises
from the tanh function. That, in turn, requires an introduction of the sinh and cosh
functions.

3.1 Hyperbolic sinh and cosh functions

To understand atanh, it helps to know a little about hyperbolic functions in general.
Good accounts in varying styles are available within many introductions to calculus
(e.g., Abbott [1940]; Hardy [1952]; Gullberg [1997]; Banner [2007]). The account here
presumes familiarity with basic ideas on logarithmic, exponential, and trigonometric
functions. For more under those headings, the books just referenced are fine possibilities.
I set aside discussion of these functions for complex arguments and instead focus on the
special case of real arguments, all that is needed for our purpose.

Although they appeared earlier in various forms, the hyperbolic functions were first
examined systematically by Johann Heinrich Lambert (1728–1777) and Vincenzo Ric-
cati (1707–1775). Barnett (2004) gives a splendid historical survey. Among several
other contributions to mathematics and science, Lambert proved that π is irrational
and conjectured that e is transcendental. More statistically, he was an early proponent
of what we now call maximum likelihood (Hald 1998). Riccati came from a talented
mathematical family: Riccati equations are named for his father Jacopo or Giacomo.

The three main hyperbolic functions are called the hyperbolic sine, cosine, and
tangent, or sinh, cosh, and tanh. The names and notations should suggest a strong
analogy with the trigonometric sin, cos, and tan functions: the “h” naturally stands for
hyperbolic, to be explained in a moment.

Stata itself has no sinh() or cosh() function, although Mata does, but this matters
not at all. sinh and cosh can be calculated in Stata through their definitions:

sinhx =
exp(x) − exp(−x)

2

and

coshx =
exp(x) + exp(−x)

2
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Here and usually elsewhere, I spell out the exponential function ex as exp(x), partly
to underline subliminally that exp() is the Stata function name to use in computations.
The choice between, say, sinh x or sinh(x) as notation is purely a matter of convenience;
no nuance is implied by the difference. See what those definitions imply by considering
the exponential functions in terms of infinite series:

exp(x) = 1 + x+
x2

2!
+
x3

3!
+ · · ·

and

exp(−x) = 1 − x+
x2

2!
− x3

3!
+ · · ·

Then sinh is the sum of terms in odd powers of x and cosh is the sum of terms in
even powers of x:

sinhx = x+
x3

3!
+
x5

5!
+ · · ·

and

coshx = 1 +
x2

2!
+
x4

4!
+ · · ·

Thus sinh is an odd function, such that sinhx = − sinh(−x), and cosh is an even
function, such that coshx = cosh(−x). It is easy to draw the function graphs on the
fly in Stata (Cox 2004). Plotting for a short interval around x = 0 suffices to give a
good idea of overall behavior, because both functions explode toward one or the other
infinity as x becomes arbitrarily large in magnitude; see figure 1.

. twoway function (exp(x) - exp(-x)) / 2, ra(-3 3) || function (exp(x) +
> exp(-x)) / 2, ra(3 -3) lp(dash) legend(order(1 "sinh" 2 "cosh")) xla(-3(1)3)
> ytitle("") yla(, ang(h))

(Continued on next page)
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Figure 1. sinh x and cosh x for x near 0

The similarity—and equally crucial, the difference—of sine and cosine can be seen
by comparing their series representations:

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ · · ·

and

cosx = 1 − x2

2!
+
x4

4!
− x6

6!
+ · · ·

The term hyperbolic is explained by the geometry implied by the hyperbolic func-
tions. Among many beautiful identities satisfied by sinh and cosh is

cosh2 x− sinh2 x = 1

which defines a hyperbola with the locus (cosh x, sinh x). Compare and contrast the
key identity for trigonometric functions,

cos2 x+ sin2 x = 1

which defines a circle. Barnett (2004) expands on the geometric motivation for the orig-
inal work on hyperbolic functions. Maor (1994) gives further historical and geometrical
orientation.
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3.2 tanh and atanh

Neither sinh nor cosh is needed directly for our purpose, but we do need their ratio,
tanh, that is, tanh = sinh / cosh. That definition should remind you of a definition of
tangent as the ratio of sine and cosine. From the definitions, various forms are possible:

tanhx =
sinhx
coshx

=
exp(x) − exp(−x)
exp(x) + exp(−x) =

exp(2x) − 1
exp(2x) + 1

From figure 1, we could guess that tanh is bounded by 1 and −1, and this guess is
supported by a direct graph; see figure 2.

. twoway function tanh(x), ra(-3 3) xla(-3(1)3) ytitle(tanh x) yla(, ang(h))

−1

−.5

0

.5

1

ta
nh

 x

−3 −2 −1 0 1 2 3
x

Figure 2. tanh x for x near 0

As positive x becomes very large, exp(−x) approaches 0 and tanh approaches 1.
Similarly, as negative x becomes very large, exp(x) approaches 0 and tanh approaches
−1. So tanh maps any finite argument to the interval (−1, 1).

tanh is single valued, and so its inverse function, atanh, is easy to define. If r =
tanhx, then x = atanh r. Here the notation r, although not customary in calculus,
honors the focus in this column on correlations. atanh is important enough in the story
to deserve a separate graph; see figure 3.

. twoway function atanh(x), ra(-1 1) || function x, lp(dash) ra(-1 1)
> ytitle(atanh r) yla(, ang(h)) xtitle(r) legend(order(1 "atanh" 2 "equality"))
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Figure 3. atanh r; note how atanh r ≈ r for r near 0

Thus tanh is an odd function that maps the interval (−1, 1) to (−∞,∞). The
reference line shows how atanh leaves values in the middle little changed but bites
strongly in the tails near ±1. An explicit definition is given by

x = atanh r =
1
2
ln

{
(1 + r)
(1 − r)

}
=

1
2
{ln(1 + r) − ln(1 − r)}

If you want to see that derived, set r = (e2x − 1)/(e2x +1), so 1+ r = 2e2x/(e2x +1)
and 1 − r = 2/(e2x + 1). Then e2x = (1 + r)/(1 − r) and 2x = ln{(1 + r)/(1 − r)}.

atanh also has a very neat series expansion:

atanh r = r +
r3

3
+
r5

5
+ · · ·

From that we can tell that for r ≈ 0, tanh r ≈ r, which matches what is seen in
figure 3.

3.3 An aside on names and notations

Other names and notations for the inverse hyperbolic tangent are commonly used. Arc-
hyperbolic tangent is a common name. arctanh, argtanh, artanh, arth, and tanh−1 are
other notations I have seen, with or without extra spacing (e.g., arg tanh).

An objection to the name arc-hyperbolic tangent—or the notation arctanh—is that
use of the word “arc” is based on an improper analogy with terminology for inverse
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trigonometric functions, such as arctangent. In the latter case, “arc” means the arc of
a circle, or equivalently angle, as is proper for circular functions. But the inverse of a
hyperbolic function is geometrically interpreted not as an arc but as an area. This point
is argued in detail by Saler (1985). Various minor misunderstandings in this territory
may arise partly from the linguistic coincidence that arc, area, and argument have the
same initial characters.

Some people object to notations such as tanh−1 because of possible ambiguity be-
tween inverse and reciprocal.

It is fortunate that using tanh and atanh as mathematical function names, partly
because they are used as Stata function names, also avoids using a name and some
notations that are widely regarded as objectionable.

3.4 Mapping back and forth

The key point for us is simple: atanh and tanh offer ways of mapping back and forth
between the interval (−1, 1) and the entire real line. There are other pairs of functions
that do that, but it turns out that this pair is especially suitable for dealing with corre-
lations, which usually fall in that interval. We can work as we wish in the unconfined,
but equivalent, space of the real line after using that transformation and then transform
back again.

Notice the small print, and the usually. The limiting values −1 and 1 are excluded.
This exclusion does not bite in practice. If you have a correlation with a magnitude of
1, then you have made a mistake over which variables to correlate, or you are testing
a program, or you do have an exact relationship and are presumably unconcerned with
attaching a confidence interval.

Some statistical accounts of the atanh transformation cut out the background of
hyperbolic functions and present it directly as (1/2)ln{(1+r)/(1−r)}. That is charitable
to any readership with limited calculus but wrenches the function out of its proper
context. It was helpful to practitioners over several decades in which logarithmic tables
were more widely accessible than hyperbolic function tables. Either way, we can see by
looking at the definition that the function has the behavior of stretching the tails of
correlation distributions indefinitely. As r approaches 1, the result becomes arbitrarily
large and positive, while as r approaches −1, it becomes arbitrarily large and negative.

Here is yet another benefit in understanding. Put r = 2x − 1, or x = (r + 1)/2.
Hence as r varies between −1 and 1, so x varies between 0 and 1, and

atanh r =
1
2
ln

{
2x

2(1 − x)

}
=

1
2
logit x

So we see that atanh and logit are just sisters under the skin.

All that said, once you know that you can use tanh() and atanh() in Stata or Mata,
you need never type out any definitions in terms of exp() or ln().
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4 Precise recipes for Fisher’s z

Suppose we have an estimate of the Pearson correlation, r, for a sample of size n and seek
confidence intervals for the population correlation, ρ. Fisher recommended working with
atanh r. A first approximation from his work is that z = atanh r is normally distributed
with a mean of atanh ρ and a variance of 1/(n − 3). A closer approximation is that z
is normal with a mean of atanh ρ + 2ρ/(n − 1) and the same variance. So atanh is a
variance-stabilizing and, indeed, normalizing transformation.

A direct derivation of atanh as a variance-stabilizing transformation follows from the
observation, attributed to Pearson and Filon (1898), that the variance of the sampling
distribution of r varies as (1− ρ2)2. See, for example, Bartlett (1947), Hotelling (1953),
or Hoyle (1973). The pivot of the argument is that

∫
dr/(1−r2) is atanh r, as tabulated

in any substantial mathematical reference work. In short, there is a direct route from
the Pearson and Filon result to atanh, although it does not feature in Fisher’s writings.

Variance-stabilizing does not necessarily bring normalizing in its own wake, although
roughly that is often true in practice and is being claimed here. However, Winterbottom
(1979) showed that choosing the transformation that best produces approximate nor-
mality also yields atanh. Thus atanh exhibits both of these two distinct virtues, at least
in principle.

The bias on the z scale, 2ρ/(n − 1), clearly increases with ρ, which we naturally
estimate by r, but decreases with n; several authors rely on the latter fact, at least
implicitly, and neglect it. It is easy to include a correction for this bias in calculation,
say, as an option in a program. Fisher himself ignored the bias when he judged it
unimportant, as will be seen by reading Fisher (1925, sec. 35 and 36) or any later
edition. The effect of the bias correction is to impart caution by shrinking estimates of
correlation toward zero.

An independent suggestion was made by Jeffreys (1939, 139–144; 1961, 174–179),
who put forth the approximation that z is normal with a mean of atanh ρ−5ρ/2n and a
variance of 1/n. Box and Tiao (1973, 465–470) give a detailed derivation in a different
style. Lee (2004, 159–164) offers a different and more complicated approximation for the
variance. These authors all write in a Bayesian spirit, but their results are comparable
with those discussed earlier, so any difference of philosophy need not detain us.

Again it is easy to program Jeffreys’ procedure, if only as a matter of curiosity to see
how it compares. As with Fisher’s correction, the effect is to shrink estimates slightly
toward zero, except a little more so. Jeffreys’ intervals are typically a little narrower
than Fisher’s, although it takes a very small sample size to make this really obvious.

Yet further possibilities can be found in the literature. Hotelling (1953) published
a substantial survey of the correlation problem, including small corrections to Fisher’s
algebra and a detailed exploration of alternative approaches. None is especially simple
and none seems to have had much impact on statistical practice (see Sokal and Rohlf
[1995] for an exception).
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All these procedures are based on 1) bivariate normality, 2) large sample sizes, and
3) independence of observations. One, or two, or even all three of these assumptions
are left implicit by many authors. Equally, one, or two, or even all three may not
be satisfied, even roughly, by actual data. The bootstrap offers salvation in respect
to the first two, but emphatically not the last. Different authors give different signals
on the consequences of nonnormality. Duncan and Layard (1973) reported simulation
results for various distributions, showing that Fisher’s z can give some very poor results.
Evidently, caution is imperative.

We can be precise about very small sample sizes. Only for n > 4 is the sampling
distribution even unimodal, so the problem for smaller sample sizes is not even quali-
tatively similar to that of normalizing (or even symmetrizing) a skewed but unimodal
sampling distribution. See Cramér (1946, 398–399) or Stuart and Ord (1994, 564) for
careful explanations.

5 Applying Fisher’s z in Stata

New commands corrci and corrcii have already been promised, but let us first look
at how you could do it for yourself from what has already been explained. Fisher (1925,
sec. 34 and 35) quotes an analysis of wheat yield and autumn rainfall for eastern England
for the 20 years 1885–1904, which yielded a correlation of −0.629. We will revisit that
analysis. Our main tool, other than inbuilt functions, will be the display command.
Even many experienced Stata users underestimate the scope for using display as a
quick calculator (Ryan 2004). See [P] display or the online help for more details.

Two standard Stata features prove their worth for this kind of work. You can keep
a log of a sequence of calculations that is completely explicit about what was done.
Further, you can retrieve previous commands and use them as a template for similar
calculations.

A 95% confidence interval based on a normal sampling distribution would use
invnormal(0.975) as a multiplier. You may already know that 1.96 is very close:

. di invnormal(0.975)
1.959964

Without using a bias correction, we get (−0.838,−0.258) as the interval:

. di tanh(atanh(-0.629) + invnormal(0.975)/sqrt(17))
-.25840515

. di tanh(atanh(-0.629) - invnormal(0.975)/sqrt(17))
-.83820901

The interval is quite broad, as is reasonable for a fairly small sample size. It does
at least exclude zero. Note also how the interval is asymmetric around −0.629. With
Fisher’s bias correction, the interval is shunted toward zero and a little changed in shape:
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. di tanh(atanh(-0.629) - (2 * -0.629)/19 + invnormal(0.975)/sqrt(17))
-.19563344

. di tanh(atanh(-0.629) - (2 * -0.629)/19 - invnormal(0.975)/sqrt(17))
-.81739277

Jeffreys’ procedure is most notable here for giving a narrower interval, because the
difference between 1/n and 1/(n− 3) registers as n becomes small.

. di tanh(atanh(-0.629) - (5 * -0.629)/(2 * 20) + invnormal(0.975)/sqrt(20))
-.21925514

. di tanh(atanh(-0.629) - (5 * -0.629)/(2 * 20) - invnormal(0.975)/sqrt(20))
-.80028197

We could also do this in Mata. That lets us get both limits at the same time:

. mata : tanh(atanh(-0.629) :+ invnormal(.975) * (-1,1)/sqrt(17))
1 2

1 -.8382090146 -.258405146

. mata : tanh(atanh(-0.629) - ((5 * -0.629)/40) :+ invnormal(.975) *
> (-1,1)/sqrt(20))

1 2

1 -.8002819748 -.2192551437

The little thing that bites most commonly, unless you have internalized Mata’s
conformability rules, is that you may need to spell out that you want an elementwise
operator, indicated by a colon prefix (e.g., :+).

Let us look at some other standard problems by using Stata or Mata calculator-style.
From van Belle et al. (2004, 295–297, 322), data on the adenosine triphosphate (ATP)
levels of n = 17 pairs of oldest and youngest sons yield r = 0.5974. Genetics theory
predicts ρ = 0.5.

A standard normal deviate for a hypothesis test is thus

. di (atanh(0.5974) - atanh(0.5)) * sqrt(14)

.52304027

Note the use of n − 3 = 14 in calculating the standard error. A formal calculation
of a p-value is hardly needed, except for publication. If it were, the result just needs to
be wrapped by normal().

From Snedecor and Cochran (1989, 188–189), two methods are being compared. For
the first method, two independent measurements have a correlation of r1 = 0.862 for
n1 = 60. For the second, we have r2 = 0.720, n2 = 49. Is there a difference in reliability,
as measured by the correlation? Once correlations are mapped to the atanh scale, this
is a standard normal-theory test.
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. di (atanh(0.862) - atanh(0.720))/sqrt((1/57) + (1/46))
1.9850285

The numerator is a difference of z values. The denominator is the root of the sum
of the variances. We will get a p-value too:

. di 2 * normal(-(atanh(0.862) - atanh(0.720))/sqrt((1/57) + (1/46)))

.0471413

Note the trick of negating the positive argument of normal() to get a result in
the left tail of the distribution. The result qualifies as significant at the 5% level in a
two-tailed test. You can get the corresponding one-tailed test by omitting the factor of
2.

From Sokal and Rohlf (1995, 580–582), the correlation between length of wing and
width of band on wing in females of the butterfly Heliconius charitonius was measured in
10 populations (biological sense) from different places in the Caribbean. A quick Google
search elicits a correction of name to Heliconius charithonia, with the English name
zebra longwing, and some very pretty photographs. First, we test the null hypothesis
of homogeneity, implying that the several values of r estimate the same ρ. Then, if we
fail to reject that, we combine the estimates to get the corresponding overall estimate.
(The presumption is that the original data are not available.)

One tactic is to put the sample correlations and sizes into vectors in Mata. Within
Mata, we put the sample sizes in one vector and the correlations in another, which we
promptly transform.

: n = (100, 46, 28, 74, 33, 27, 52, 26, 20, 17)
: z = atanh((0.29, 0.70, 0.58, 0.56, 0.55, 0.67, 0.65, 0.61, 0.64, 0.56))

Let j index samples. We need a weighted mean, z, of the zj using the reciprocals of
the separate variances 1/(nj − 3) as weights.

: zmean = sum((n :- 3) :* z)/sum(n :- 3)

Then the test statistic is a chi-squared statistic,
∑

j{(zj −z)/sej}2, for the standard
error sej =

√
1/(nj − 3). There are 10 − 1 = 9 degrees of freedom.

: chisq = sum((n :- 3) :* (z :- zmean):^2)
: chisq

15.26351671
: chi2tail(9, chisq)

.0839473192

With this p-value, 0.084, we fail to reject a null hypothesis of homogeneity at con-
ventional levels, and so move on to get an overall estimate:

: tanh(zmean)
.547824694
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The overall correlation we take as 0.548. Data snoopers might wonder about the
deviant correlation of 0.29 and want to know if there is some story to tell. It is based
on the largest sample size, which is worrying.

6 Comparison with the bootstrap

6.1 Fisher’s (?) wheat yield and rainfall data

Fisher (1925, 1970) did not give the data for wheat yield and autumn rainfall for eastern
England for the 20 years 1885–1904 for which he gave a correlation of −0.629. Some de-
tective work identifies the likely data source as Shaw (1905, 286). A data file, shaw.dta,
is included in the electronic media for this column.

The first step, as always, is a scatterplot (figure 4).

. use shaw

. scatter yield rainfall, yla(, ang(h))
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Figure 4. Scatterplot of wheat yield and autumn rainfall for eastern England 1885–1904;
data from Shaw (1905) are presumably those used by Fisher (1925, 1970)

The units of measurement may well seem bizarre. They naturally wash out when we
get a correlation, but for those curious, the bushel is a unit of volume here and about
36.37 liters; the acre is a unit of area and about 0.47 hectare; and the inch is a unit of
length and is 25.4 mm.

Naturally, these data are time series, so you should be wondering about trend and
serial correlation. Fisher ignored those questions, but they can be examined and indicate
no strong patterns in either case. Successive years appear close to independent.
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Why is high autumn rainfall bad for wheat yield? The main story appears to be
that the more rainfall, the more nutrients are washed out of reach of the growing crop.

We move straight to a Pearson correlation with alternative confidence intervals using
the new command corrci. A formal specification follows in the next section.

. corrci yield rainfall

(obs=20)

correlation and 95% limits
yield rainfall -0.616 -0.832 -0.238

. corrci yield rainfall, fisher

(obs=20)

correlation and 95% limits
yield rainfall -0.616 -0.811 -0.176

. corrci yield rainfall, jeffreys

(obs=20)

correlation and 95% limits
yield rainfall -0.616 -0.793 -0.201

The first small surprise is that we get −0.616. Either we are wrong somewhere or
Fisher himself made a small mistake. (He would have achieved so much more had he
used Stata.) The intervals are all quite wide, as befits a small sample size, but they do
exclude zero.

Because we have the data, we can examine whether there is normality. Normal
probability plots produced by using qnorm show a little skewness in the case of rainfall,
but nothing that seems pathological (figure 5).
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Figure 5. Normal probability plots for wheat yield (left) and rainfall (right)
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summarize gives a moment-based skewness for rainfall of 0.901 and a kurtosis of
3.567. A test attributed to Doornik and Hansen (1994) for bivariate normality, im-
plemented in the Stata command omninorm by Christopher F. Baum and myself and
downloadable by using ssc, yields a marginal p-value of 0.0631. So, the data are not in
perfect condition for Fisher’s z, but they could be much worse.

Let’s bootstrap. Using correlate directly will always be faster than using corrci,
which carries interpretive overhead and does extra work.

. bootstrap correlation = r(rho), nodots nowarn reps(10000) seed(1921)
> saving(shaw_r, replace): correlate yield rainfall

Bootstrap results Number of obs = 20
Replications = 10000

command: correlate yield rainfall
correlation: r(rho)

Observed Bootstrap Normal-based
Coef. Std. Err. z P>|z| [95% Conf. Interval]

correlation -.6160026 .1112054 -5.54 0.000 -.8339612 -.3980439

. estat bootstrap, all

Bootstrap results Number of obs = 20
Replications = 10000

command: correlate yield rainfall
correlation: r(rho)

Observed Bootstrap
Coef. Bias Std. Err. [95% Conf. Interval]

correlation -.61600258 -.0130758 .11120543 -.8339612 -.3980439 (N)
-.8440725 -.4089272 (P)
-.8218457 -.3796614 (BC)

(N) normal confidence interval
(P) percentile confidence interval
(BC) bias-corrected confidence interval

The agreement of Fisher-type intervals and bootstrap intervals is not good. The
Fisher-type intervals are wider and closer to zero than the bootstrap intervals.

Let’s look at the sampling distribution:

. use shaw_r, replace

. gen z = atanh(corr)

The density traces (figure 6) and normal probability plots (figure 7) indicate that the
standard advertisement oversells Fisher’s z here. The bootstrap sampling distribution
of r is not expected to be close to normal, but that of z is not really better. So although
it is now easy to calculate several different confidence intervals, it is not clear for this
example whether any is really well based. Those who thought that this was predictable
for n = 20 can be especially comfortable with the interpretation that they were right
and R. A. Fisher wrong here.
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Figure 6. Kernel density estimate of the sampling distribution of the sample correlation
(left) and its z transform (right)
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(Continued on next page)
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6.2 Efron’s law school data

Bradley Efron (born 1938) never met R. A. Fisher (Efron 1998, 96). But just as we can
use Efron’s bootstrap on Fisher’s datasets, we can also apply Fisher-type intervals to
one of Efron’s datasets.

Efron and Tibshirani (1993, 21) give data for average LSAT scores (a national law
test) and undergraduate grade-point averages (GPAs) for the entering classes of 82 Amer-
ican law schools in 1973. A data file, law school.dta, is included in the electronic media
for this column.

. use law_school, clear

A scatterplot shows a well-behaved relationship (figure 8). There is one moderate
outlier, but it appears wholly consistent with the main trend.

. scatter GPA LSAT, yla(2.6(0.2)3.4, ang(h))
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Figure 8. Relationship between GPA and LSAT for Efron and Tibshirani’s law school
data

Univariate and bivariate analyses not given here support the impression of good
behavior.
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. corrci GPA LSAT

(obs=82)

correlation and 95% limits
GPA LSAT 0.760 0.650 0.839

. corrci GPA LSAT, fisher

(obs=82)

correlation and 95% limits
GPA LSAT 0.760 0.639 0.833

. corrci GPA LSAT, jeffreys

(obs=82)

correlation and 95% limits
GPA LSAT 0.760 0.639 0.830

. bootstrap correlation = r(rho), nodots nowarn reps(10000) seed(1921)
> saving(law_school_r, replace): correlate GPA LSAT

Bootstrap results Number of obs = 82
Replications = 10000

command: correlate GPA LSAT
correlation: r(rho)

Observed Bootstrap Normal-based
Coef. Std. Err. z P>|z| [95% Conf. Interval]

correlation .7599978 .0517114 14.70 0.000 .6586453 .8613503

. estat bootstrap, all

Bootstrap results Number of obs = 82
Replications = 10000

command: correlate GPA LSAT
correlation: r(rho)

Observed Bootstrap
Coef. Bias Std. Err. [95% Conf. Interval]

correlation .75999782 -.003048 .0517114 .6586453 .8613503 (N)
.6465373 .8484399 (P)
.6456656 .8478602 (BC)

(N) normal confidence interval
(P) percentile confidence interval
(BC) bias-corrected confidence interval

This time, the intervals do appear to be marching almost to the same tune. The
atanh-based intervals are closer to zero.

The results can be reproduced and analyzed in detail by any interested reader.
(Note the practice of setting the seed, here 1921.) The final graph can convey a positive
message. The atanh transformation does a nice job with the sampling distribution of
correlations (figure 9).
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Figure 9. Normal probability plots of the sampling distribution of the sample correlation
(left) and its z transform (right)

7 Commands corrci and corrcii

A formal specification of the new commands corrci and corrcii follows. Compared
with the commands of Gleason (1996) and Seed (2001, 2004), the main differences are
the fisher and jeffreys options for Fisher’s bias correction and Jeffreys’ procedure,
and more flexibility in output as provided by the format(), abbrev(), and saving() op-
tions. Indeed, for some circumstances, corrci might prove more flexible and amenable
in output than correlate itself.

Gleason (1996) gives a command, z rplt, for an original graphical display, which
I have not tried to emulate. The fact that corrci allows output to be saved to a file
should greatly ease preparation of users’ own alternative displays. Several pertinent
ideas were covered in my last column (Cox 2008). Seed (2001, 2004) also addresses
Spearman rank correlation, which I have not considered here.
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7.1 corrci

Syntax

corrci varlist
[
if

] [
in

] [
weight

] [
, level(#) matrix format(%fmt)

abbrev(#)
[
fisher | jeffreys

]
saving(filename

[
, postfile options

]
)
]

varlist may contain time-series operators; see [U] 11.4.3 Time-series varlists.

aweights and fweights are allowed; see [U] 11.1.6 weight.

Description

corrci calculates Pearson correlations for two or more numeric variables specified in
varlist together with confidence intervals calculated by using Fisher’s z transform.

For sample size n, correlation r, and confidence level level , the default procedure sets
d = invnormal(0.5 + level/200)/sqrt(n - 3) and z = atanh(r) and then calculates
limits as tanh(z − d) and tanh(z + d).

corrci handles missing values through listwise deletion, meaning that the entire
observation is omitted from the estimation sample if any of the variables in varlist is
missing for that observation.

Remarks

Although varlist may contain time-series operators, no allowance is made for correlation
structure or trend or any other time-series aspect in calculation, so interpretation is the
user’s responsibility.

corrci requires at least 5 nonmissing observations in varlist. With very small
samples—or even very large ones—interpretation remains the user’s responsibility.

Options

level(#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95) or whatever is set by set level; see [U] 20.7 Specifying the
width of confidence intervals.

matrix specifies that correlations and confidence intervals be displayed as matrices. The
default is to display them in a list. Whether matrix is specified has no effect on the
saving of results in r-class matrices, which is automatic.

format(%fmt) specifies a numeric format, %fmt, for the display of correlations. The
default is format(%9.3f). See [D] format.
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abbrev(#) specifies that variable names be shown abbreviated to # characters. This
option has no effect on output under the matrix option. It affects the saving of
variable names under saving().

fisher specifies that a bias correction attributed to Fisher (1921, 1925) be used. This
sets z′ = z−2r/(n−1) and then calculates limits as tanh(z′−d) and tanh(z′ +d).
There is no consequence for the display or saving of r itself.

jeffreys specifies that a procedure attributed to Jeffreys (1939, 1961) be used. This
sets d = invnormal(0.5 + level/200) / sqrt(n) and z′′ = z − 5r/2n and then
calculates limits as tanh(z′′ − d) and tanh(z′′ + d). There is no consequence for
the display or saving of r itself.

Only one of the fisher and jeffreys options can be specified.

saving(filename
[
, postfile options

]
) specifies that results be saved to a Stata data

file, filename, using postfile. postfile options are options of postfile. The data
file will contain the string variables var1 and var2 and the float variables r, lower,
and upper. This is a rarely used option but could be useful if the correlations were
to be displayed graphically or to be analyzed further.

Saved results

Matrices
r(corr) matrix of correlation
r(lb) matrix of lower limits
r(ub) matrix of upper limits
r(z) matrix of z = atanh r

7.2 corrcii

Syntax

corrcii #n #r
[
, level(#) format(%fmt)

[
fisher | jeffreys

] ]
Description

corrcii calculates confidence intervals for Pearson correlations using Fisher’s z trans-
form given a sample size of #n and a sample correlation of #r.

For sample size n, correlation r, and confidence level level, the default procedure sets
d = invnormal(0.5 + level/200)/sqrt(n − 3) and z = atanh(r) and then calculates
limits as tanh(z − d) and tanh(z + d).

corrcii is an immediate command. See [U] 19 Immediate commands for more
detail.
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Remarks

corrcii requires n to be at least 5. With very small samples—or even very large
ones—interpretation remains the user’s responsibility.

Options

level(#), format(%fmt), fisher, and jeffreys options are the same as for corrci,
specified above.

Saved results

Scalars
r(corr) scalar with correlation
r(lb) scalar with lower limit
r(ub) scalar with upper limit
r(z) scalar with z = atanh r

8 Conclusion

The problem of estimating confidence intervals for correlation can be approached in two
quite distinct ways. The classic method based on atanh transformation was originated
by R. A. Fisher. The modern method based on bootstrapping was originated by Bradley
Efron. As it happens, the latter has been better supported in Stata than the former,
although user-written commands for the former have been available for several years. I
have underlined how the availability of atanh() and tanh() functions in Stata makes
calculator-style work much easier than might be supposed. That applies not just to
confidence intervals but also to tests on the fly of a null hypothesis of nonzero correlation,
or of whether two or more correlations are different, and to pooling correlations to get an
overall estimate. I have also introduced two new confidence interval commands, corrci
and corrcii, for separate use.

As with any statistical method, this problem raises questions about how far the
underlying assumptions are satisfied in practice and how well the methods work with real
data. At a minimum, the existence of easy-to-use commands for both methods allows
comparison between them. It would be foolish to generalize from just two substantial
examples, but there is some mild irony in the thought that one of Fisher’s examples
was probably based on too small a sample for any confidence interval procedure to work
well, even by conveying uncertainty through its width. Similarly, one of Efron’s example
datasets is sufficiently well behaved that the classical method works just about as well.
However, the thoughts that sample size is important and that it is crucial to be careful
about your analyses are much, much older than any of the work discussed here.
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