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Abstract. In this article, we briefly review the role of the propensity score in
estimating dose–response functions as described in Hirano and Imbens (2004, Ap-
plied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives,
73–84). Then we present a set of Stata programs that estimate the propensity
score in a setting with a continuous treatment, test the balancing property of the
generalized propensity score, and estimate the dose–response function. We illus-
trate these programs by using a dataset collected by Imbens, Rubin, and Sacerdote
(2001, American Economic Review 91: 778–794).
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1 Introduction

Much of the work on propensity-score analysis has focused on cases where the treat-
ment is binary. Matching estimators for causal effects of a binary treatment based on
propensity scores have also been implemented in Stata (e.g., Becker and Ichino [2002]
and Leuven and Sianesi [2003]).

In many observational studies, the treatment may not be binary or even categorical.
In such a case, one may be interested in estimating the dose–response function where
the treatment might take on a continuum of values. For example, in economics, an
important quantity of interest is the effect of aid to firms (e.g., Bia and Mattei [2007]).
In socioeconomic studies, one may be interested in the effect of the amount of a lottery
prize on subsequent labor earnings (e.g., Hirano and Imbens [2004]).

Hirano and Imbens (2004) developed an extension to the propensity-score method
in a setting with a continuous treatment. Following Rosenbaum and Rubin (1983) and
most of the literature on propensity-score analysis, they make an unconfoundedness
assumption, which allows them to remove all biases in comparisons by treatment status
by adjusting for differences in a set of covariates. Then they define a generalization of the
propensity score for the binary case—henceforth labeled generalized propensity score
(GPS)—which has many of the attractive properties of the binary-treatment propensity
score.

c© 2008 StataCorp LP st0150
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In this article, we briefly review the method developed by Hirano and Imbens (2004),
and we provide a set of Stata programs that estimate the GPS, assess the adequacy of
the underlying assumptions on the distribution of the treatment variable, test whether
the estimated GPS satisfies the balancing property, and estimate the dose–response
function. Following Hirano and Imbens (2004), our Stata programs address the problem
of estimation and inference by using parametric models.

We illustrate these programs with a dataset collected from Imbens, Rubin, and Sac-
erdote (2001). The population consists of individuals who won the Megabucks lottery
in Massachusetts in the mid-1980s. We apply our programs to estimate the average po-
tential post-winning labor earnings for each level of the lottery prize (the dose–response
function). Although the assignment of the prize is obviously random, substantial item
and unit nonresponse led to a selected sample where the amount of the prize is no
longer independent of background characteristics. In using these programs, remember
that they only allow you to reduce, not to eliminate, the bias generated by unobservable
confounding factors. As in the binary-treatment case, the extent to which this bias is
reduced depends crucially on the richness and quality of the control variables, on which
the GPS is computed.

2 The propensity score with continuous treatments

Suppose we have a random sample of size N from a large population. For each unit i
in the sample, we observe a p× 1 vector of pretreatment covariates, Xi; the treatment
received, Ti; and the value of the outcome variable associated with this treatment, Yi.
Using the Rubin causal model (Holland 1986) as a framework for causal inference, we
define a set of potential outcomes, {Yi(t)}t∈T , i = 1, . . . , N , where T is a continuous
set of potential treatment values, and Yi(t) is a random variable that maps a particu-
lar potential treatment, t, to a potential outcome. Hirano and Imbens (2004) refer to
{Yi(t)}t∈T as the unit-level dose–response function. We are interested in the average
dose–response function, μ(t) = E{Yi(t)}. Following Hirano and Imbens (2004), we as-
sume that {Yi(t)}t∈T , Ti, and Xi, i = 1, . . . , N , are defined on a common probability
space; that Ti is continuously distributed with respect to the Lebesgue measure on T ;
and that Yi = Yi(Ti) is a well-defined random variable. To simplify the notation, we
will drop the i subscript in the sequel.

The propensity function is defined by Hirano and Imbens (2004) as the conditional
density of the actual treatment given the observed covariates.

Definition 2.1 (GPS) Let r(t, x) be the conditional density of the treatment given the
covariates:

r(t, x) = fT |X(t |x)

Then the GPS is R = r(T,X).
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The GPS has a balancing property similar to that of the standard propensity score;
that is, within strata with the same value of r(t, x), the probability that T = t does not
depend on the value of X:

X⊥I(T = t) | r(t, x)

where I(·) is the indicator function. Hirano and Imbens (2004) show that, in combina-
tion with a suitable unconfoundedness assumption, this balancing property implies that
assignment to treatment is unconfounded, given the GPS.

Theorem 2.1 (Weak unconfoundedness given the GPS) Suppose that assignment to
the treatment is weakly unconfounded, given pretreatment variables X:

Y (t)⊥T |X for all t ∈ T

Then, for every t,

fT {t | r(t,X), Y (t)} = fT {t | r(t,X)}

Using this theorem, Hirano and Imbens (2004) show that the GPS can be used to
eliminate any biases associated with differences in the covariates.

Theorem 2.2 (Bias removal with GPS) Suppose that assignment to the treatment is
weakly unconfounded, given pretreatment variables X. Then

β(t, r) = E {Y (t) | r(t,X) = r} = E (Y |T = t, R = r)

and

μ(t) = E [β{t, r(t,X)}]

3 Estimation and inference

The implementation of the GPS method consists of three steps. In the first step, we
estimate the score r(t, x). In the second step, we estimate the conditional expectation of
the outcome as a function of two scalar variables, the treatment level T and the GPS R:
β(t, r) = E (Y |T = t, R = r). In the third step, we estimate the dose–response function,
μ(t) = E[β{t, r(t,X)}], t ∈ T , by averaging the estimated conditional expectation,
β̂{t, r(t,X)}, over the GPS at each level of the treatment we are interested in.
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3.1 Modeling the conditional distribution of the treatment given the
covariates

The first step is to estimate the conditional distribution of the treatment given the
covariates. We assume that the treatment (or its transformation) has a normal distri-
bution conditional on the covariates:

g(Ti) |Xi ∼ N
{
h(γ,Xi), σ2

}
(1)

where g(Ti) is a suitable transformation of the treatment variable [g(·) may be the
identity function], and h(γ,Xi) is a function of covariates with linear and higher-order
terms, which depends on a vector of parameters, γ. The choice of the higher-order terms
to include is only determined by the need to obtain an estimate of the GPS that satisfies
the balancing property.

The program gpscore.ado estimates the GPS and tests the balancing property ac-
cording to the following algorithm:

1. Estimate the parameters γ and σ2 of the conditional distribution of the treatment
given the covariates (1) by maximum likelihood.1

2. Assess the validity of the assumed normal distribution model by one of the follow-
ing user-specified goodness-of-fit tests: the Kolmogorov–Smirnov, the Shapiro–
Francia, the Shapiro–Wilk, or the Stata skewness and kurtosis test for normality.

a. If the normal distribution model is statistically disapproved, inform the user
that the assumption of normality is not satisfied. The user is invited to use
a different transformation of the treatment variable g(Ti).

3. Estimate the GPS as

R̂i =
1√

2πσ̂2
exp

[
− 1

2σ̂2
{g(Ti) − h(γ̂, Xi)}

]
where γ̂ and σ̂2 are the estimated parameters in step 1.

4. Test the balancing property and inform the user whether and to what extent
the balancing property is supported by the data. Following Hirano and Imbens
(2004), the program gpscore.ado tests for balancing of covariates according to
the following scheme:

a. Divide the set of potential treatment values, T , into K intervals according to
a user-specified rule, which should be defined on the basis of the sample dis-
tribution of the treatment variable. Let G1, . . . , GK denote the K treatment
intervals.

1. The model (1) is specified in the auxiliary ado-file gpscore model.ado.
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b. Within each treatment interval Gk, k = 1, . . . ,K, compute the GPS at a
user-specified representative point (e.g., the mean, the median, or another
percentile) of the treatment variable, which we denote by tGk

, for each unit.
Let r(tGk

,Xi) be the value of the GPS computed at tGk
∈ Gk for unit i.

c. For each k, k = 1, . . . ,K, block on the scores r(tGk
,Xi), using m intervals,

defined by the quantiles of order j/m, j = 1, . . . ,m − 1, of the GPS evalu-
ated at tGk

, r(tGk
,Xi), i = 1, . . . , N . Let B(k)

1 , . . . , B
(k)
m denote the m GPS

intervals for the kth treatment interval, Gk.

d. Within each interval B(k)
j , j = 1, . . . ,m, calculate the mean difference of each

covariate between units that belong to the treatment interval, Gk, {i : Ti ∈
Gk}, and units that are in the same GPS interval, {i : r(tGk

,Xi) ∈ B
(k)
j }, but

belong to another treatment interval, {i : Ti /∈ Gk}.
e. Combine the m differences in means, calculated in step d, by using a weighted

average, with weights given by the number of observations in each GPS in-
terval B(k)

j , j = 1, . . . ,m. Specifically, the following weighted average is
calculated for each of the p covariates Xl, l = 1, . . . , p:

1
N

m∑
j=1

N
B

(k)
j

{xl,j(Gk) − xl,j(Gc
k)}

where N
B

(k)
j

is the number of observations in the B(k)
j GPS interval; xl,j(Gk)

is the mean of the covariate Xl for units i, such that r(tGk
,Xi) ∈ B

(k)
j and

Ti ∈ Gk; and xl,j(Gc
k) is the mean of the covariate Xl for units i′, such that

r(tGk
,Xi′) ∈ B

(k)
j and Ti′ /∈ Gk. The test statistics we use to evaluate the

balancing property are functions of this weighted average.

f. For each Gk, k = 1, . . . ,K, test statistics (the Student’s t statistics or the
Bayes factors) are calculated and shown in the Results window. Finally, the
most extreme value of the test statistics (the highest absolute value of the
Student’s t statistics or the lowest value of the Bayes factors) is compared
with reference values, and the user is informed of the extent to which the
balancing property is supported by the data.

3.2 Estimating the conditional expectation of the outcome given the
treatment and GPS

In the second stage, we model the conditional expectation of the outcome, Yi, given Ti

and Ri, as a flexible function of its two arguments. We use polynomial approximations
of order not higher than three. Specifically, the most complex model we consider is

ϕ {E (Yi |Ti, Ri)} = ψ(Ti, Ri;α)

= α0 + α1 · Ti + α2 · T 2
i + α3 · T 3

i + α4 ·Ri + α5 ·R2
i + α6 ·R3

i + α7 · Ti ·Ri
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where ϕ(·) is a link function that relates the predictor, ψ(Ti, Ri;α), to the conditional
expectation, E (Yi |Ti, Ri).

We assume that the main effects of Ti and Ri cannot be removed so that we have
18 possible submodels. The program doseresponse model.ado defines all these models
and estimates each of them by using the estimated GPS, R̂i. When fitting the selected
model, the program takes into account the nature of the outcome variable—which may
be binary, categorical (nominal or ordinal), or continuous—by choosing the appropriate
link function.

As Hirano and Imbens (2004) emphasize, there is no direct meaning to the estimated
coefficients in the selected model, except that testing whether all coefficients involving
the GPS are equal to zero can be interpreted as a test of whether the covariates introduce
any bias.

3.3 Estimating the dose–response function

The last step consists of averaging the estimated regression function over the score
function evaluated at the desired level of the treatment. Specifically, in order to obtain
an estimate of the entire dose–response function, we estimate the average potential
outcome for each level of the treatment we are interested in as

E{Ŷ (t)} =
1
N

N∑
i=1

β̂ {t, r̂(t,Xi)} =
1
N

N∑
i=1

ϕ−1
[
ψ̂ {t, r̂(t,Xi); α̂}

]
where α̂ is the vector of the estimated parameters in the second stage.

The program doseresponse.ado estimates the dose–response function according to
the following algorithm:

1. Estimate the GPS, verify the normal model used for the GPS, and test the balancing
property calling the routine gpscore.ado.

2. Estimate the conditional expectation of the outcome, given the treatment and the
GPS, by calling the routine doseresponse model.ado.

3. Estimate the average potential outcome for each level of the treatment the user is
interested in.

4. Estimate standard errors of the dose–response function via bootstrapping.2

5. Plot the estimated dose–response function and, if requested, its confidence inter-
vals.

2. Hirano and Imbens (2004) state that asymptotic standard errors of the estimated dose–response
function could be calculated by using expansions based on the estimating equations; these should
take into account the estimation of the GPS as well as the α parameters. For practical reasons,
our program uses bootstrap methods to obtain standard errors and confidence intervals of the
dose–response function that take into account estimation of the GPS and the α parameters.
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Some remarks on step 4 of the algorithm can be useful. When bootstrapped standard
errors are requested, by activating the appropriate option (see sections 4 and 5), the
bootstrap encompasses both the estimation of the GPS based on the specification given
by the user and the estimation of the α parameters. Reestimating the GPS and the α
parameters at each replication of the bootstrap procedure allows us to account for the
uncertainty associated with the estimation of the GPS and the α parameters.

Typically, users would first identify a transformation of the treatment variable and
a specification of the function h in (1), satisfying the normality assumption and the
balancing property, respectively (by using, for instance, the routine gpscore.ado), and
then provide exactly this transformation and this specification in the input to the pro-
gram doseresponse.ado.

4 Syntax

gpscore varlist
[
if

] [
in

] [
weight

]
, t(varname) gpscore(newvar)

predict(newvar) sigma(newvar) cutpoints(varname) index(string)

nq gps(#)
[
t transf(transformation) normal test(test) norm level(#)

test varlist(varlist) test(type) flag(#) detail
]

doseresponse model treat var GPS var
[
if

] [
in

] [
weight

]
, outcome(varname)[

cmd(regression cmd) reg type t(string) reg type gps(type)

interaction(#)
]

doseresponse varlist
[
if

] [
in

] [
weight

]
, outcome(varname) t(varname)

gpscore(newvar) predict(newvar) sigma(newvar) cutpoints(varname)

index(string) nq gps(#) dose response(newvarlist)[
t transf(transformation) normal test(test) norm level(#)

test varlist(varlist) test(type) flag(#) cmd(regression cmd)

reg type t(type) reg type gps(type) interaction(#) tpoints(vector)

npoints(#) delta(#) filename(filename) bootstrap(string) boot reps(#)

analysis(string) analysis level(#) graph(filename) detail
]

In the gpscore and doseresponse commands, the argument varlist represents the
list of control variables, which are used to estimate the GPS. In the doseresponse model
command, the variable list consists of only two variables: the treatment variable
(treat var) and the GPS (GPS var).
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5 Options

We describe only the options for the doseresponse command, because they include all
the options for the gpscore command and the doseresponse model command. There-
fore, all the options described in sections 5.1 and 5.2 apply to doseresponse, and we
specify, if applicable, whether the option also applies to gpscore or
doseresponse model.

5.1 Required

outcome(varname) (doseresponse model) specifies that varname is the outcome vari-
able.

t(varname) (gpscore) specifies that varname is the treatment variable.

gpscore(newvar) (gpscore) specifies the variable name for the estimated GPS.

predict(newvar) (gpscore) creates a new variable to hold the fitted values of the
treatment variable.

sigma(newvar) (gpscore) creates a new variable to hold the maximum likelihood esti-
mate of the conditional standard error of the treatment given the covariates.

cutpoints(varname) (gpscore) divides the set of potential treatment values, T , into
intervals according to the sample distribution of the treatment variable, cutting at
varname quantiles.

index(string) (gpscore) specifies the representative point of the treatment variable at
which the GPS has to be evaluated within each treatment interval. string identi-
fies either the mean (string = mean) or a percentile (string = p1, . . . , p100) of the
treatment.

nq gps(#) (gpscore) specifies that the values of the GPS evaluated at the represen-
tative point index(string) of each treatment interval have to be divided into #
(# ∈ {1, . . . , 100}) intervals, defined by the quantiles of the GPS evaluated at the
representative point index(string).

dose response(newvarlist) specifies the variable name(s) for the estimated
dose–response function(s).

(Continued on next page)
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5.2 Optional

t transf(transformation) (gpscore) specifies the transformation of the treatment vari-
able used in estimating the GPS. The default transformation is the identity function.
The supported transformations are the logarithmic transformation, t transf(ln);
the zero-skewness log transformation, t transf(lnskew0); the zero-skewness Box–
Cox transformation, t transf(bcskew0); and the Box–Cox transformation,
t transf(boxcox). The Box–Cox transformation finds the maximum likelihood
estimates of the parameters of the Box–Cox transform regressing the treatment
variable t(varname) on the control variables listed in the input variable list.3

normal test(test) (gpscore) specifies the goodness-of-fit test that gpscore will per-
form to assess the validity of the assumed normal distribution model for the treat-
ment conditional on the covariates. By default, gpscore performs the Kolmogorov–
Smirnov test (normal test(ksmirnov)). Possible alternatives are the Shapiro–
Francia test, normal test(sfrancia); the Shapiro–Wilk test, normal test(swilk);
and the Stata skewness and kurtosis test for normality, normal test(sktest).

norm level(#) (gpscore) sets the significance level of the goodness-of-fit test for nor-
mality. The default is norm level(0.05).

test varlist(varlist) (gpscore) specifies that the extent of covariate balancing has to
be inspected for each variable of varlist . The default varlist consists of the variables
used to estimate the GPS. This option is useful when there are categorical variables
among the covariates. gpscore, which is a regression-like command, requires that
categorical variables are expanded into indicator (also called dummy) variable sets
and that one dummy-variable set is dropped in estimating the GPS. However, the
balancing test should also be performed on the omitted group. This can be done by
using the test varlist(varlist) option and by listing in varlist all the variables,
including the complete set of indicator variables for each categorical covariate.

3. The problem is whether the treatment variable takes zero value. In such a case, the program
continues, forcing a transformation of the treatment variable to take a suitable value. Specifically,
we assume that ln(0) = 0, t transf(0) = −1/λ if λ > 0, and t transf(0) = ln(0) = 0 if λ = 0, for
t transf = bcskew0 or boxcox. Allowing for zero values of the treatment implies that untreated
units might be included in the study. Because the GPS methods are designed for analyzing the
effect of a treatment intensity, they specifically refer to the subpopulation of treated units. This
implies that including untreated units might lead to misleading results.
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test(type) (gpscore) specifies whether the balancing property has to be tested using
either a standard two-sided t test (the default) or a Bayes-factor–based method
(test(Bayes factor)). The program informs the user if there is some evidence that
the balancing property is satisfied. Recall that the test is performed for each single
variable in test varlist(varlist) and for each treatment interval. Specifically, let
p be the number of control variables in test varlist(varlist), and let K be the
number of the treatment intervals. We first calculate p×K values of the test statistic;
then we select the worst value (the highest t value in modulus, or the lowest Bayes
factor) and compare it with standard values. Table 1 shows the “order of magnitude”
interpretations of the test statistics we consider.

Table 1. “Order of magnitude” interpretations of the test statistics

t value Bayes factor (BF)∗ Evidence for the balancing property (BP)

| t | < 1.282 BF > 1.00 Evidence supports the BP

1.282 < | t | < 1.645
√

0.10 < BF < 1.00 Very slight evidence against the BP

1.645 < | t | < 1.960 0.10 < BF <
√

0.10 Moderate evidence against the BP

1.960 < | t | < 2.576 0.01 < BF < 0.10 Strong to very strong evidence against the BP

| t | > 2.576 BF < 0.01 Decisive evidence against the BP

∗ The order of magnitude interpretations of the Bayes factor we applied were proposed
by Jeffreys (1961).

flag(#) (gpscore) specifies that gpscore estimates the GPS without performing either
a goodness-of-fit test for normality or a balancing test. The default # is 1, meaning
that both the normal distribution model and the balancing property are tested; the
default level is recommended. We introduced this option for practical reasons. Recall
that doseresponse estimates the standard errors of the dose–response function by
using bootstrap methods. In each bootstrap iteration, we want to reestimate the
GPS without testing either the normality assumption or the balancing property.

cmd(regression cmd) (doseresponse model) defines the regression command to be used
for estimating the conditional expectation of the outcome given the treatment and
the GPS. The default for the outcome variable is cmd(logit) when there are two dis-
tinct values, cmd(mlogit) when there are 3–5 values, and cmd(regress) otherwise.
The supported regression commands are logit, probit, mlogit, mprobit, ologit,
oprobit, and regress.
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reg type t(type) (doseresponse model) defines the maximum power of the treatment
variable in the polynomial function used to approximate the predictor for the con-
ditional expectation of the outcome given the treatment and the GPS. The default
type is linear, meaning that the predictor, ψ(T, R̂;α), is a linear function of the
treatment. Alternatively, type can be quadratic or cubic.

reg type gps(type) (doseresponse model) defines the maximum power of the esti-
mated GPS in the polynomial function used to approximate the predictor for the
conditional expectation of the outcome given the treatment and the GPS. The de-
fault type is linear, meaning that the predictor, ψ(T, R̂;α), is a linear function of
the estimated GPS. Alternatively, type can be quadratic or cubic.

interaction(#) (doseresponse model) specifies whether the model for the condi-
tional expectation of the outcome given the treatment and the GPS has the interac-
tion between treatment and GPS. The default # is 1, meaning that the interaction
is included.

tpoints(vector) specifies that doseresponse estimates the average potential outcome
for each level of the treatment in vector. By default, doseresponse creates a vector
with the ith element equal to the ith observed treatment value. This option cannot
be used with the npoints(#) option (see below).

npoints(#) specifies that doseresponse estimates the average potential outcome for
each level of the treatment belonging to a set of evenly spaced values, t0, t1, . . . , t#,
that cover the range of the observed treatment. This option cannot be used with
the tpoints(vector) option (see above).

delta(#) specifies that doseresponse also estimates the treatment-effect function con-
sidering a #-treatment gap, which is defined as μ(t + #) − μ(t). The default # is
0, meaning that doseresponse estimates only the dose–response function, μ(t).

filename(filename) specifies that the treatment levels specified through the
tpoints(vector) option or the npoints(#) option, the estimated dose–response
function, and, eventually, the estimated treatment-effect function, along with their
standard errors (if calculated), be stored to a new file called filename.

bootstrap(string) specifies the use of bootstrap methods to derive standard errors and
confidence intervals. By default, doseresponse does not apply bootstrap techniques.
In such a case, no standard error is calculated. To activate this option, string should
be set to yes.

boot reps(#) specifies the number of bootstrap replications to be performed. The
default is boot reps(50). This option produces an effect only if the bootstrap()
option is set to yes.
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analysis(string) specifies that doseresponse plots the estimated dose–response func-
tion(s) and, eventually, the estimated treatment-effect function(s), along with the
corresponding confidence intervals if they are calculated with bootstrapping. By
default, doseresponse plots only the estimated dose–response and treatment func-
tion(s). In order to plot confidence intervals, string has to be set to yes. If the user
types analysis(no), no plot is shown.

analysis level(#) sets the confidence level of the confidence intervals. The default
is analysis level(0.95).

graph(filename) stores the plots of the estimated dose–response function and the esti-
mated treatment effects to a new file called filename. When the outcome variable
is categorical, doseresponse creates a new file for each category i of the outcome
variable and names it filename i.

detail (gpscore) displays more detailed output. Specifically, this option specifies that
gpscore shows the results of the goodness-of-fit test for normality, some summary
statistics of the distribution of the GPS evaluated at the representative point of
each treatment interval, and the results of the balancing test within each treatment
interval. When this option is specified for doseresponse, the results of the regression
of the outcome on the treatment and the GPS are also shown.

6 Example: The Imbens–Rubin–Sacerdote lottery sam-
ple

We use data from the survey of Massachusetts lottery winners; the data are described
in detail in Imbens, Rubin, and Sacerdote (2001). We are interested in estimating the
effect of the prize amount on subsequent labor earnings (from U.S. Social Security
records). Although the lottery prize is obviously randomly assigned, substantial unit and
item nonresponse led to a selected sample, where the amount of the prize is potentially
correlated with background characteristics and potential outcomes. To remove such
biases, we make the weak unconfoundedness assumption specifying that, conditional on
the covariates, the lottery prize is independent of the potential outcomes.4

The sample we use in this analysis is the “winners” sample of 237 individuals who
won a major prize in the lottery. The outcome of interest is year6 (earnings six years
after winning the lottery), and the treatment is prize, the prize amount. Control
variables are age, gender, years of high school, years of college, winning year, number
of tickets bought, work status after winning, and earnings s years before winning the
lottery (with s = 1, 2, . . . , 6).

We tried to replicate the results produced by Hirano and Imbens (2004) but have
not been able to numerically replicate all their estimates because of restrictions of our

4. In this context, the nonignorability of the assignment mechanism is due to the presence of non-
response. Therefore, saying that the unconfoundedness assumption allows us to remove all biases
associated with differences in the observed covariates means that we are implicitly assuming that
the outcome variable is missing at random (Rubin 1976).
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programs. Specifically, our programs do not allow us to consider a function of the treat-
ment variable or a function of the GPS in the estimation of the conditional expectation
of the outcome, given the treatment and the GPS. However, we get qualitatively similar
results.

6.1 Output from gpscore

We first choose the quantiles of the treatment variable to divide the sample into groups.
Following Hirano and Imbens (2004), we divide the range of prizes into three treatment
intervals, [0–23], (23–80], and (80–485]. Then we run gpscore using the specification
applied by Hirano and Imbens (2004). The output looks like the following:

. use lotterydataset.dta

. qui generate cut = 23 if prize<=23

. qui replace cut = 80 if prize>23 & prize<=80

. qui replace cut = 485 if prize>80

. gpscore agew male ownhs owncoll tixbot workthen yearw yearm1 yearm2 yearm3
> yearm4 yearm5 yearm6, t(prize) gpscore(pscore) predict(hat_treat) sigma(sd)
> cutpoints(cut) index(p50) nq_gps(5) t_transf(ln) detail

Generalized Propensity Score

******************************************************
Algorithm to estimate the generalized propensity score
******************************************************

Estimation of the propensity score

The log transformation of the treatment variable prize is used

T

Percentiles Smallest
1% 1.609438 .1301507
5% 2.283851 .1301507

10% 2.420012 1.609438 Obs 237
25% 2.835211 1.67818 Sum of Wgt. 237

50% 3.45783 Mean 3.558185
Largest Std. Dev. .9553768

75% 4.143008 5.598792
90% 4.875426 5.720607 Variance .9127448
95% 5.128892 5.778643 Skewness -.0165889
99% 5.720607 6.183716 Kurtosis 3.452439

initial: log likelihood = -<inf> (could not be evaluated)
feasible: log likelihood = -4917.4112
rescale: log likelihood = -480.91803
rescale eq: log likelihood = -348.62357
Iteration 0: log likelihood = -348.62357

(output omitted )

Iteration 4: log likelihood = -307.68186
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Number of obs = 237
Wald chi2(13) = 37.22

Log likelihood = -307.68186 Prob > chi2 = 0.0004

T Coef. Std. Err. z P>|z| [95% Conf. Interval]

eq1
agew .0151905 .0048563 3.13 0.002 .0056724 .0247086
male .4379826 .1351124 3.24 0.001 .1731672 .702798
ownhs .0192025 .060835 0.32 0.752 -.1000319 .1384368

owncoll .0372805 .0397666 0.94 0.349 -.0406607 .1152217
tixbot .0043423 .0182546 0.24 0.812 -.031436 .0401206

workthen .1270879 .1645602 0.77 0.440 -.1954442 .44962
yearw -.0014367 .0464566 -0.03 0.975 -.09249 .0896166

yearm1 .0062064 .010379 0.60 0.550 -.014136 .0265488
yearm2 -.0123161 .0162758 -0.76 0.449 -.044216 .0195839
yearm3 .0119446 .0166256 0.72 0.472 -.0206411 .0445302
yearm4 .0242245 .0158217 1.53 0.126 -.0067855 .0552344
yearm5 -.0216437 .0153635 -1.41 0.159 -.0517555 .0084682
yearm6 -.0050021 .0110455 -0.45 0.651 -.0266509 .0166467
_cons 2.315546 .4693959 4.93 0.000 1.395547 3.235545

eq2
_cons .886297 .040709 21.77 0.000 .806509 .9660851

Test for normality of the disturbances

Kolmogorov-Smirnov equality-of-distributions test
Normal Distribution of the disturbances

One-sample Kolmogorov-Smirnov test against theoretical distribution
normal((res_etreat - r(mean))/sqrt(r(Var)))

Smaller group D P-value Corrected

res_etreat: 0.0517 0.281
Cumulative: -0.0420 0.434
Combined K-S: 0.0517 0.550 0.517

The assumption of Normality is statistically satisfied at .05 level

Estimated generalized propensity score

Percentiles Smallest
1% .0131817 .0003053
5% .0869414 .0011738

10% .1272663 .0131817 Obs 237
25% .2255553 .0163113 Sum of Wgt. 237

50% .3536221 Mean .3196603
Largest Std. Dev. .1222106

75% .4343045 .4500003
90% .4481351 .4500911 Variance .0149354
95% .4497166 .450096 Skewness -.7723501
99% .4500911 .4501086 Kurtosis 2.510499

********************************************
End of the algorithm to estimate the gpscore
********************************************
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******************************************************************************
The set of the potential treatment values is divided into 3 intervals

The values of the gpscore evaluated at the representative point of each
treatment interval are divided into 5 intervals
******************************************************************************

***********************************************************
Summary statistics of the distribution of the GPS evaluated
at the representative point of each treatment interval
***********************************************************

Variable Obs Mean Std. Dev. Min Max

gps_1 237 .262852 .0956436 .0583948 .4486237

Variable Obs Mean Std. Dev. Min Max

gps_2 237 .4178101 .0373217 .2433839 .4501224

Variable Obs Mean Std. Dev. Min Max

gps_3 237 .1814998 .088236 .0181741 .4141454

******************************************************************************
Test that the conditional mean of the pre-treatment variables given the
generalized propensity score is not different between units who belong to a
particular treatment interval and units who belong to all other treatment
intervals
******************************************************************************

Treatment Interval No 1 - [1.139000058174133, 22.98200035095215]

Mean Standard
Difference Deviation t-value

agew -.25322 1.814 -.13959

male .04799 .04246 1.1304

ownhs .15044 .156 .96433

owncoll .20765 .23738 .87476

tixbot .33298 .48448 .68729

workthen .00154 .05608 .0275

yearw .00156 .19135 .00813

yearm1 .33117 1.9052 .17382

yearm2 .90872 1.7719 .51284

yearm3 1.2445 1.6756 .74274

yearm4 .74998 1.5625 .47999

yearm5 .96299 1.7175 .5607

yearm6 1.4414 1.7774 .81098
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Treatment Interval No 2 - [23.08799934387207, 79.11299896240234]

Mean Standard
Difference Deviation t-value

agew -.13308 1.8294 -.07275

male -.03419 .0657 -.52041

ownhs -.2294 .13927 -1.6471

owncoll -.20996 .21228 -.98908

tixbot -.26933 .43812 -.61474

workthen .03013 .05266 .57227

yearw -.32817 .17008 -1.9295

yearm1 .51467 1.7741 .2901

yearm2 .23703 1.7038 .13912

yearm3 .41572 1.6656 .24959

yearm4 .46856 1.571 .29826

yearm5 -.00903 1.6242 -.00556

yearm6 -.33587 1.6445 -.20423

Treatment Interval No 3 - [82.98699951171875, 484.7900085449219]

Mean Standard
Difference Deviation t-value

agew -1.7504 2.3202 -.75444

male -.04742 .06211 -.76342

ownhs .34062 .1914 1.7796

owncoll .23199 .28116 .82512

tixbot -.03159 .56716 -.0557

workthen -.07006 .07448 -.94069

yearw .3672 .22613 1.6238

yearm1 -.63678 1.9428 -.32777

yearm2 -.83409 1.8356 -.45441

yearm3 -1.2074 1.7322 -.69707

yearm4 -1.351 1.5982 -.84534

yearm5 -1.6137 1.8792 -.8587

yearm6 -2.2111 1.8615 -1.1878

According to a standard two-sided t-test:

Moderate evidence against the balancing property

The balancing property is satisfied at level 0.05

This output is the most detailed we can have because we specified the detail option.
When this option is not specified, some information is omitted from the output. Specif-
ically, the results of the goodness-of-fit test for normality, the summary statistics of the
distribution of the GPS evaluated at the representative point of each treatment interval,
and the results of the balancing test within each treatment interval are not shown. In
such a case, the program provides only short sentences informing the user whether the
normal distribution model and the balancing property are statistically satisfied.
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6.2 Output from doseresponse

Before running doseresponse, we have to decide about the treatment levels, which
estimate the average potential outcome. Following Hirano and Imbens (2004), we focus
on the values 10, 20, . . . , 100, which we store to a 10-dimensional vector named tp (see
below). The output from running doseresponse is as follows:

. use lotterydataset.dta, clear

. qui generate cut = 23 if prize<=23

. qui replace cut = 80 if prize>23 & prize<=80

. qui replace cut = 485 if prize>80

. matrix define tp = (10\20\30\40\50\60\70\80\90\100)

. doseresponse agew ownhs male tixbot owncoll workthen yearw yearm1 yearm2
> yearm3 yearm4 yearm5 yearm6, outcome(year6) t(prize) gpscore(pscore)
> predict(hat_treat) sigma(sd) cutpoints(cut) index(p50) nq_gps(5)
> t_transf(ln) dose_response(dose_response) tpoints(tp) delta(1)
> reg_type_t(quadratic) reg_type_gps(quadratic) interaction(1) bootstrap(yes)
> boot_reps(100) filename("output") analysis(yes) graph("graph_output") detail

********************************************
ESTIMATE OF THE GENERALIZED PROPENSITY SCORE
********************************************

(output omitted )

The outcome variable ``year6´´ is a continuous variable

The regression model is: Y = T + T^2 + GPS + GPS^2 + T*GPS

Source SS df MS Number of obs = 202
F( 5, 196) = 3.01

Model 2945.92738 5 589.185477 Prob > F = 0.0122
Residual 38378.9633 196 195.811037 R-squared = 0.0713

Adj R-squared = 0.0476
Total 41324.8907 201 205.596471 Root MSE = 13.993

year6 Coef. Std. Err. t P>|t| [95% Conf. Interval]

prize -.2254371 .0748156 -3.01 0.003 -.3729839 -.0778902
prize_sq .0003537 .0001669 2.12 0.035 .0000245 .0006828

pscore -103.3373 48.37076 -2.14 0.034 -198.7312 -7.943281
pscore_sq 131.949 79.40569 1.66 0.098 -24.65021 288.5482

prize_pscore .5499933 .2197661 2.50 0.013 .1165835 .9834031
_cons 31.26845 6.955419 4.50 0.000 17.55138 44.98552

Bootstrapping of the standard errors
...............................................................................
> .....................

The program is drawing graphs of the output
This operation may take a while

(file graph_output.gph saved)

End of the Algorithm
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The estimated coefficients of the regression of the outcome, earnings six years after
winning the lottery, the prize, and the score are shown because we have required a
detailed output. Otherwise, doseresponse provides only a graphic output, such as
that shown in figure 1. Figure 1 shows both the estimated dose–response function and
the estimated treatment-effect function, which can be interpreted as a derivate, because
we have specified a treatment gap equal to 1 (delta(1)). Only information concerning
the GPS estimation is provided when detail is not specified and the analysis() option
is set to no.
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Figure 1. Estimated dose–response function, estimated derivative, and 95% confidence
bands

(Continued on next page)
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The results generated by doseresponse are stored in a new Stata file, which we
have named output. This file has 10 observations and 6 variables: treatment level,
containing the treatment levels, at which we estimate the average potential outcome;
treatment level plus, containing the #-shifted treatment levels, where # is equal
to 1; dose response, the estimated dose–response function; se dose response bs, the
standard errors of the estimated dose–response function; diff dose response, the es-
timated treatment-effect function; and se diff dose response bs, the standard errors
of the estimated treatment-effect function. The graphic output is also stored to a new
file, which we have named graph output.
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