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Abstract. This article describes the implementation of a double-robust estimator
for pretest–posttest studies (Lunceford and Davidian, 2004, Statistics in Medicine
23: 2937–2960) and presents a new Stata command (dr) that carries out the
procedure. A double-robust estimator gives the analyst two opportunities for ob-
taining unbiased inference when adjusting for selection effects such as confounding
by allowing for different forms of model misspecification; a double-robust estima-
tor also can offer increased efficiency when all the models are correctly specified.
We demonstrate the results with a Monte Carlo simulation study, and we show
how to implement the double-robust estimator on a single simulated dataset, both
manually and by using the dr command.

Keywords: st0149, dr, double-robust estimators, causal models, confounding, in-
verse probability of treatment weights, propensity score

1 Introduction

Pretest–posttest studies can be broadly defined and encompass a large number of situ-
ations ranging from prospective observational studies to randomized trials. Any study
that measures outcome at the baseline and follows individuals over time before measur-
ing outcome at the end of follow-up meets our definition of a pretest–posttest study.
This would include longitudinal studies where the intermediate outcomes are not in-
cluded in the analysis. We wish to carry out inference by comparing the final outcome
between the two groups, while allowing for baseline values of the outcome and additional
baseline covariates.

c© 2008 StataCorp LP st0149
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The ability to draw causal conclusions from observational data relies on the groups
under consideration being exchangeable, such that they have identical distributions
of characteristics; this is an immediate consequence from the counterfactual notion of
causal effects. If exchangeability holds, it constrains associational measures (such as
regression parameters) to be equal to the causal measures we wish to investigate.

In summary, the individual-level causal effect of treatment against control is defined
by comparing subject A’s outcome after receiving treatment with the same subject
A’s outcome had the subject received the control (the counterfactual outcome). As is
intuitively obvious, these two outcomes cannot be observed simultaneously for subject
A over the same time period. We therefore seek an alternative subject, subject B,
with the same characteristics, for example, the same age and gender, and observe the
outcome under the control exposure in this subject. We use this as a surrogate outcome
for subject A’s counterfactual outcome, allowing us to calculate an individual causal
effect. We say that subject A and subject B are exchangeable.

Extending this to a group level, we wish to calculate the average causal effect. This
gives the average effect for a randomly selected subject from the sample population.
This is possible provided the two groups are exchangeable, such that the groups have
identical distributions of variables. This is ensured in randomized controlled trials by
randomization and in observational studies by thoughtful selection of the appropriate
control group.

However, selection effects can invalidate the exchangeability assumption, and so the
conclusions drawn from the associational measures are unlikely to be true causal rela-
tionships. Types of selection effect include missing data, nonadherence in a randomized
study, and, the problem that is the focus in this article, confounding. Once the se-
lection effects have been adjusted for, we make a stronger assumption of conditional
exchangeability (conditional on these adjusted variables, exchangeability between the
groups holds), which still allows us to equate the associational measures with the causal
parameters we wish to estimate.

Confounding occurs when there are variables that are risk factors for the outcome
of interest, correlated to the exposure under investigation, but which do not lie on the
causal pathway between them. A variable meeting these criteria is called a confounder.
A simple path diagram of confounding is shown in figure 1, showing the relationship
between the exposure and the primary outcome being confounded by comorbidities.

(Continued on next page)
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Figure 1. Confounding of the causal effect between exposure and the primary outcome

Confounding can be controlled for by using stratification, regression methods, or
inverse probability weighting; we focus on the latter two. Regression analysis includes
both the treatment variables and the confounders in the regression model as covariates,
but we must specify the regression equation correctly for our resulting interpretation to
be accurate. We say we have controlled for confounding while assuming ceteris paribus,
with the coefficient of the treatment variable giving the average treatment effect.

The propensity score is a method that uses stratification, matching, or weighting
to remove confounding. It is defined as the probability of receiving treatment given
the measured covariates. For example, when treatment is binary, we can use a logistic
or probit model with the baseline variables as covariates and take the predicted value
from the regression as the subject’s propensity score. Inverse probability weighting
derives weights from the propensity score, where these are defined by the inverse of
the propensity score if the subject receives treatment and the inverse of 1 minus the
propensity score if the subject receives the control.

Any method that uses the propensity score requires that all relevant confounders
are included in the model and that this model is specified correctly to validate the
conditional exchangeability assumption. As with all observational studies, inference
is only valid under the strong assumption of there being no unmeasured confounders.
This is crucial to allowing the causal interpretation placed on the parameters but is,
unfortunately, untestable.

Robins and colleagues (Bang and Robins 2005; Robins, Rotnitzky, and Zhao 1995;
Robins 2000) introduced the concept of double-robust estimators that require a model
for estimating the propensity score and the outcome model in the same estimator. The
advantage these estimators offer is that they give unbiased estimates of the treatment
effect when either one or both of these constituent models are correctly specified, thus
allowing the analyst two opportunities for obtaining accurate results. The unmeasured
confounders assumption is still required.

Lunceford and Davidian (2004) derived the form of double-robust estimators for
pretest–posttest studies; this is what we implement in this article. The full details of the
theory underpinning these estimators are accessible in the existing statistical literature
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(Tsiatis 2006; Neugebauer and van der Laan 2005; Leon, Tsiatis, and Davidian 2003;
van der Laan and Robins 2003). The theory is not covered in depth in this article, but
there is a brief summary in section 2.

The remainder of this article is organized as follows: Section 2 introduces our no-
tation, explains the concepts outlined in the introduction, and gives the definitions of
the inverse probability of treatment-weighted (IPTW) estimators and the double-robust
estimators. Section 3 explains how these estimators can be implemented manually in
Stata before section 4 introduces the new dr command, which carries out the procedure,
including the syntax and options. Section 5 presents the results of a simple simulation
study demonstrating how the double-robust estimator offers increased protection against
model misspecification, and section 6 offers a discussion of the work, including how these
methods can be used in randomized trials.

2 Estimators

2.1 Notation

We introduce the notation we will use in the remainder of the article when describing
the double-robust and IPTW estimators. We denote a subject, i , from a population, Ω,
of size N to have received a binary exposure, Ai (i = 1 for treatment; i = 0 for control).
Let Yi,1 and Yi,0 be the counterfactual posttest outcomes under treatment and control,
respectively, and the individual causal effect is then defined as Yi,1−Yi,0. Which of these
outcomes is actually observed depends entirely on the treatment variable Ai such that
Yi = AiYi,1 + (1 −Ai)Yi,0, where Yi denotes the observed continuous posttest outcome
variable. We define the vector Xi to include all baseline variables including the pretest
outcome measurement.

The true average causal effect we wish to estimate in this context is τ = E(Yi,1 |Xi)−
E(Yi,0 |Xi) = E(Yi |Xi, Ai = 1)−E(Yi |Xi, Ai = 0), with this last equality connecting
the causal measures to the associational measure only valid under the exchangeability
assumption.

2.2 IPTW estimators

All the estimates outlined in this section use the propensity score, which is defined as the
probability of receiving treatment given the subjects’ characteristics, i.e., πi = πi(Xi) =
Pr(Ai = 1 |Xi). The propensity score was proposed by Rosenbaum and Rubin (1983)
and can be used as a method for eliminating bias due to confounding. We use weighting
by the estimated propensity score to generate inverse probability of treatment weights,
where the estimated scores, p̂i, are predicted values from either a logistic or probit
model.1

1. Further information on computing and using propensity score methods in Stata can be found in
Becker and Ichino (2002) and at http://personalpages.manchester.ac.uk/staff/Mark.Lunt/ (click
the link under Stata software and then go to the Propensity package).
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Using simple inverse weights equal to 1/p̂i if Ai = 1 or 1/(1 − p̂i) if Ai = 0 leads to
the following IPTW estimator (Lunceford and Davidian 2004):

τ̂ = N−1
N∑

i=1

(
AiYi

p̂i

)
−N−1

N∑
i=1

{
(1 −Ai)Yi

1 − p̂i

}

This estimator averages over the total number of subjects in the population, but an
alternative specification of IPTW estimator can be derived that averages over the sum
of the weights for each group while still using the simple inverse weights, i.e.,

τ̂IPTW =

(
N∑

i=1

Ai

p̂i

)−1 N∑
i=1

(
AiYi

p̂i

)
−

(
N∑

i=1

1 −Ai

1 − p̂i

)−1 N∑
i=1

{
(1 −Ai)Yi

1 − p̂i

}

This estimator, denoted by τ̂IPTW, is that produced by the addition of the prob-
ability weight (pweight) in Stata and can be easily implemented, as we demonstrate
in section 3. The following command would implement it within Stata: regress Y A
[pweight=wt], where wt is the inverse of the treatment probability defined using the
propensity score.

To ensure the validity of the standard errors, a bootstrap procedure can be applied
to the whole process including estimation of the propensity score. Alternatively, robust
standard errors (of the Huber/White/sandwich context) are produced in Stata when
weights are specified, and these also provide valid standard errors.

2.3 Double-robust estimators

We begin by briefly outlining the concept behind the double-robust estimators. The
IPTW estimators belong to a class of unbiased estimating functions. By subtracting
any term of expectation zero from the estimating equation, we still obtain unbiased
estimates, and this additional term can be used to increase the efficiency of the estima-
tors and provide protection against model misspecification. The estimator within this
class with the smallest variance is called the semiparametric efficient estimator, and this
is shown to be the double-robust estimator (Tsiatis 2006; Leon, Tsiatis, and Davidian
2003).

Lunceford and Davidian (2004) provide the following formula for a double-robust
estimator in the pretest–posttest context:

τ̂DR =
1
N

N∑
i=1

AiYi − (Ai − p̂i)m1(Xi)
p̂i

− 1
N

N∑
i=1

(1 −Ai)Yi + (Ai − p̂i)m0(Xi)
1 − p̂i

where mA(Xi) = E(Yi |Ai = A,Xi) for A=0 or A=1, i.e., these are the predicted
values from regressions of the outcome on the baseline covariates, including the baseline
outcome measure, where the coefficient estimates and predicted values are obtained
from regressions carried out separately for each group but with the same model.
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This estimator is known to be consistent for τ , the true average causal effect, if one
of the following is true:

• The model for the propensity score is correctly specified, i.e., p̂ is the true propen-
sity score.

• The regression model relating outcome to the baseline covariates is correctly spec-
ified, i.e., mA(Xi) is equal to the true predicted values.

We can derive the robust form of the sampling variances; Lunceford and Davidian
(2004) give this as N−2

∑N
i=1 Î

2
DR,i, where

ÎDR,i =
AiYi − (Ai − p̂i)m1(Xi)

p̂i
− (1 −Ai)Yi + (Ai − p̂i)m0(Xi)

1 − p̂i
− τDR

Alternatively, we can bootstrap the procedure, including the estimation of the propen-
sity scores, to obtain valid standard errors. This is an option in the dr command.

When both of the models are correctly specified, the double-robust estimator is
the semiparametric efficient estimator. If the exposure model is correct, the double-
robust estimator will have a smaller variance than the IPTW estimator. If the outcome
model is correct, it will have a larger variance than the standard regression model,
but it is offering protection against the misspecification of this model. When both the
exposure and outcome models are misspecified, then the resulting estimate will be biased
but, obviously, all alternative methods which also used these models, such as IPTW or
regression, would also exhibit this bias.

3 Implementing double-robust estimators

We have previously introduced the method for calculating the IPTW estimator by using
pweights in the regression command.

The double-robust estimators defined previously can be manually implemented by
following the algorithm outlined below:

1. Fit a logistic (or probit) regression model for treatment conditional on the baseline
variables (time-dependent variables can be included if required for longitudinal
analysis). The predicted value from this regression gives the estimated propensity
scores, p̂i.

2. Fit a regression model for outcome on the baseline variables for the treatment
group only (Ai = 1), and obtain the predicted values for the whole sample. This
gives the value for m̂1(Xi).

3. Fit the same regression model for outcome on the baseline variables for the control
group only (Ai = 0), and obtain the predicted values for the whole sample. This
gives the value for m̂0(Xi).
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4. Substitute the predicted values p̂i, m̂1(Xi), and m̂0(Xi) into the expression for
the double-robust estimator. This can be done by generating a new variable,
which is then regressed as a constant value to ensure the averaging over N .

It is the specification of these models that gives the estimator its double-robust prop-
erties, but once specified, it is clear that the double-robust estimator in the pretest–
posttest setting is simple to compute. The standard errors can be generated by boot-
strapping the procedure, sampling at the level of the whole sequence of regressions, or
by calculating the closed form of the formula in section 2. An example of this procedure
is presented in section 5.

The obvious question when analyzing a real dataset is how the analyst knows whether
his or her models are correctly specified; this is a concern that we emphasize in this
article as essential to generating unbiased estimators. In reality, one cannot know and
hence there is a vast literature on the statistical tests of model specification that can be
applied. These tests and procedures can be used for building the outcome model, for
example, fitting a stepwise glm, with the selected model being substituted into the dr
command itself.

The model for the propensity score has a different purpose: we are interested in
the predicted values from this model, not in making inference about the parameters.
Advice on the propensity score recommends including as many variables as collected,
even if they are not thought to be confounders, because it helps improve the prediction
of the estimated propensity score. For example, Lunceford and Davidian (2004) derive
theoretical results showing that including additional variables will increase the precision
of the double-robust estimators, and they demonstrate this empirically through simu-
lation. Extensions with additional variables to the simulation example in this article
were carried out in Emsley (2007), and these also demonstrated efficiency gains under
some misspecification combinations.

Including all possible variables in the exposure model should ensure that the esti-
mated propensity scores are close to the true propensity score values for each subject,
and it is this property which makes the double-robust estimator unbiased even under
misspecification of the outcome model. When both models are correct, it also attains
status as the most efficient estimator. However, the likely scenario is that both mod-
els are likely to be incorrectly specified, and so attempting to obtain the best possible
estimated propensity scores is vital for the consistency of the estimator.
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4 dr command

4.1 Syntax

dr outcome exposure
[
indepvars

] [
if

] [
in

] [
, ovars(varlist) pvars(varlist)

family(familyname) link(linkname) vce(vce type
[
, vce options

]
) genvars

suffix(string)
]

where exposure is binary and coded 0 for the control group and 1 for the treatment
group. If necessary, use xi to generate exposure.

4.2 Options

ovars(varlist) determines which variables are used in the outcome-model part of the
double-robust estimator. If it is not set, all the variables in indepvars are used.

pvars(varlist) determines which variables are used in the propensity-model part of the
double-robust estimator. If it is not set, all the variables in indepvars are used.

family(familyname) uses the probability distribution of the generalized linear outcome
model. See [R] glm for a list of alternatives.

link(linkname) is the link function of the generalized linear outcome model (see [R] glm
for the options available). This only affects the outcome model: the double-robust
estimator measures the difference between the mean outcome in the treated and the
mean outcome in the untreated. So, if you have a dichotomous outcome, you may
wish to specify logit for the link, but the double-robust estimate given will still be
a risk difference, not an odds ratio.

vce(vce type
[
, vce options

]
) calculates the standard error of the estimator. vce type

can be either robust or bootstrap, with the default being vce(robust). The
vce(bootstrap) option has a number of suboptions to control how the bootstrap-
ping is performed; see [R] bootstrap for details. The options oim and opg, described
in [R] vce option, are not implemented. To reproduce a bootstrap analysis, set the
seed(#) as outlined within vce options. If this option is given, the random-number
seed is set to the given value.

genvars adds the following variables to the dataset:

ptreat Probability of receiving treatment, given indepvars or pvars() (if
specified)

iptwt Inverse probability of treatment weight
mu0 Predicted value of outcome in the untreated, given indepvars or

ovars() (if specified)
mu1 Predicted value of outcome in the treated, given indepvars or

ovars() (if specified)
mudiff Difference between mu1 and mu0 in this observation
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suffix(string) adds the suffix string to the variables produced by genvars to avoid
potential name clashes.

4.3 Saved results

dr saves the following in e():

Scalars
e(dr est) double-robust estimate
e(dr var) variance of double-robust estimate
e(dr0) expected average outcome if no subjects treated
e(dr1) expected average outcome if all subjects treated

Macros
e(properties) "b V"

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

When the vce(bootstrap) option is specified, additional results are returned; these
are described under [R] bootstrap.

5 Simulation study

We performed a Monte Carlo simulation study to examine the ability of the double-
robust estimator to deal with model misspecification and to test for potential efficiency
gains over the IPTW approach.2 We performed 5,500 simulations containing 1,000 sub-
jects, and the results of these are shown in this section. The objectives of the study
were

• to compare the bias of the double-robust estimators against traditional methods
under various combinations of model misspecification, and

• to compare the efficiency of the estimators.

We also include Stata output indicating how to implement the double-robust esti-
mators on one simulated dataset by using the same data-generating models. The causal
diagram of the data structure is shown in figure 2.

2. This simulation study was part of a larger program of simulation work testing double-robust esti-
mators in a variety of study designs and different sample sizes (Emsley 2007) based on simulation
work by Davidian, Tsiatis, and Leon (2005). We present this study here to elucidate the ideas
presented.
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Figure 2. Causal diagram of the data in the simulation study

After generating the baseline binary variable X, which took the value 1 for the first
half of the subjects and 0 for the remaining half, the baseline outcome variable Ybase

was generated from a standard normal distribution. This gives X = (X,Ybase), where

Ybase ∼ N(0, 1) and X =
{

0 if n > N/2
1 if n ≤ N/2

}
.

The model for generating the true propensity score is

π = Pr(A = 1 |X) =
1 −X

1 + exp(−1 + 0.1Ybase)
+

X

1 + exp(−0.9 − 0.1Ybase)

To generate a binary treatment, the probabilities predicted from the exposure model
are compared to values drawn from a uniform (0,1) distribution. A=0 if π is less than
the uniform variable, and A=1 otherwise.

The outcome variable Y is generated by linear and quadratic combinations of the
baseline variables X and the exposure A:

Y = 0.5A− 0.45 + 0.35Ybase + 0.1X + 0.3XYbase + 0.3XY 2
base + 0.25Y 2

base + ε

This model demonstrates that the true effect of the exposure β is the coefficient of A,
in this instance equal to τ=0.5.

We now explain the estimators we will use to compare the bias and efficiency of the
double-robust estimators against the traditional methods. We begin by fitting the true
model for Y , E(Y |X) = α0 +α1A+α2X +α3Ybase +α4XYbase +α5Y

2
base +α6XY

2
base,

where α1 is the causal effect estimator; we denote this as the true effect. A simple
t test comparing Y between the two exposure groups, without accounting for any of
the confounding baseline variables, gives a demonstration of the bias of the most näıve
estimator.

To compute the remaining estimators, we need to specify the models for the propen-
sity score and the outcome models for each group. These are shown below, and table 1
shows how we combine these to assess the effect of model misspecification.
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True outcome: Y = α0 + α1A+ α2X + α3Ybase + α4XYbase + α5Y
2
base + α6XY

2
base

False outcome: Y = α∗
0 + α∗

1A+ α∗
2X + α∗

3Ybase + α∗
4XYbase

True exposure: logit(π) = β0 + β1X + β2Ybase + β3XYbase

False exposure: logit(π) = β∗
0 + β∗

1X + β∗
2Ybase

Table 1. Models for generating predictors in the estimators

Estimator Exposure model Outcome model

True model - True
t test - -
IPTW True -
DR1 True True
DR2 False True

IPTW fal False -
DR3 True False

ANCOVA fal - False
DR4 False False

Wei ANCOVA fal False False

We fit the correct exposure model, which includes the interaction term, and substi-
tute the predicted values into the formula in section 2.2 to generate the IPTW estimator.
We wish to compare this with the double-robust estimator with both exposure and out-
come models, so, in the first double-robust estimator, the correctly specified propensity
model and the true model for the regression are used to give the predicted values.

For the second double-robust estimator, we then misspecify the exposure model by
ignoring the interaction of X and Y , and we take new predicted values as the propensity
score. These values are also substituted into the IPTW formula for comparison, giving
the IPTW fal estimator.

In computing the third double-robust estimator, we use the correct exposure model
and misspecify the outcome model by dropping the quadratic terms as covariates, and
then we substitute the predicted values from this regression into the formula. This
model is also fitted for the whole sample, and the value of α∗

1 is taken as an estimate for
comparison, denoted ANCOVA fal. This then is just a standard regression adjustment
for confounding but with a misspecified regression model.

Finally, we use the values from the misspecified exposure and outcome models to-
gether, substituting into the double-robust formula to give the final double-robust esti-
mator. The theory tells us that this should not give unbiased estimators, and so comput-
ing it allows us to examine the degree of bias. We can compare it to a weighted regression
(wei ANCOVA fal), whereby we fit the misspecified outcome model using pweights with
the incorrect propensity scores.
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The standard errors of all the estimators are generated by bootstrapping the estima-
tion procedures through 200 replications, with all the estimators defined together in one
user-written program. This program is then bootstrapped, which allows for estimation
of the propensity score each time and ensures that the estimators are compared on each
bootstrap sample. Examples of how standard errors can be derived are shown on the
individual simulation later in this section.

Table 2 gives the summary statistics for the 5,500 simulations, with the second col-
umn showing the Monte Carlo average for the estimators and the third column showing
the bias relative to the true value of 0.5.3 We observe the average value of the true
model to be 0.4991, and we see that the first double-robust estimator (DR1) gives the
same value, compared with the IPTW effect estimate of 0.4976. As expected, because
these estimators make use of the correctly specified exposure and outcome models, the
estimates do not display significant bias. The bias of the t test, a näıve approach because
it does not adjust for confounding, is clearly demonstrated.

Table 2. Summary statistics for simulation study

Estimator MC mean RB MCSD Boot SE MSE ratio CP (%)

True model 0.4991 −0.18 0.0702 0.0707 1.00 95.15
t test 0.3352 −32.96 0.0821 0.0817 0.15 47.55
IPTW 0.4976 −0.48 0.0820 0.0815 0.76 94.80
DR1 0.4991 −0.18 0.0705 0.0711 0.99 95.11
DR2 0.4991 −0.18 0.0705 0.0711 0.99 95.11

IPTW fal 0.5120 +2.40 0.0834 0.0830 0.71 94.49
DR3 0.4973 −0.54 0.0836 0.0831 0.73 94.60

ANCOVA fal 0.5135 +2.70 0.0836 0.0831 0.70 94.53
DR4 0.4965 −0.70 0.0833 0.0827 0.74 94.65

Wei ANCOVA fal 0.5131 +2.62 0.0834 0.0830 0.71 94.40

Pairwise comparisons can be made between the double-robust estimators and their
respective standard estimators to assess the effect of model misspecification. The second
double-robust estimator and IPTW fal have a misspecified exposure model when gen-
erating the propensity scores, but we observe that, while the double-robust estimator
gives an unbiased estimate, the relative bias of IPTW fal is shown in column 2. Similarly,
the third double-robust estimator, which has a misspecifed outcome model, performs
better than ANCOVA fal with the same model. The final double-robust estimator and
weighted ANCOVA fal have both exposure and outcome models misspecified, and the
double-robust estimator displays less bias than the standard estimator.

3. In the table, MC mean is the Monte Carlo average; RB is the relative bias (%); MCSD is the Monte
Carlo standard deviation; boot SE is the average of the bootstrapped standard errors (200 reps);
MSE ratio is the mean square error for true divided by the mean square error of the indicated
estimator; and CP is the empirical coverage probability of the 95% confidence interval.
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We are able to produce two measures of the variability from the Monte Carlo sim-
ulations. The first is the Monte Carlo standard deviation, shown in column 3, which
reflects the variability of the 5,500 effect estimates. Column 4 shows the average over
the simulations of the bootstrapped standard errors, which is the error produced when
analyzing one simulated dataset. We can see that the first two double-robust estimators
are close to the most efficient estimator from the true model, as the theoretical results
in section 2 predicted. Crucially, they are also more efficient than the respective IPTW

estimators. When the outcome model is misspecified, the double-robust estimator does
not offer gains in efficiency, but it is unbiased. Efficiency and bias together are assessed
in the MSE ratio column.

Having shown that these estimators have the double-robust property and offer effi-
ciency gains over the IPTW estimators, we now show how they can be implemented on a
single dataset by using the manual procedure outlined in section 3 and the dr command
presented in section 4.

First, we generate the data by using the models described previously and giving a
summary of the dataset:

. summarize x ybase pi a y

Variable Obs Mean Std. Dev. Min Max

x 1000 .5 .5002502 0 1
ybase 1000 -.0251784 1.012985 -3.038522 3.256222

pi 1000 .5104298 .2221019 .2332167 .7864826
a 1000 .509 .5001691 0 1
y 1000 .2704975 1.381972 -2.931211 9.049674

We can plot histograms of the true propensity score, π, over the two treatment groups,
as shown in figure 3:

. histogram pi, by(a)
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Figure 3. Histogram of true propensity scores by exposure group

The histograms show that the distributions of the propensity scores have similar
ranges across the two groups, and the lack of spread across the middle of the range is
because of the simple models used in this example. Importantly, the propensity scores
do not have either extremely high or extremely low values, which can cause problems
when inverse weighting by creating large, weighted outcome values (Kurth et al. 2006;
Emsley 2007).

We now generate the estimates of the propensity score, which we label pihat, by
taking the predicted values from a logistic regression of A on X and then calculating
the inverse weights. For this example, the correctly specified model for the propensity
score is used.

. xi: logit a i.x*ybase
i.x _Ix_0-1 (naturally coded; _Ix_0 omitted)
i.x*ybase _IxXybase_# (coded as above)

Iteration 0: log likelihood = -692.98517
Iteration 1: log likelihood = -579.10163
Iteration 2: log likelihood = -578.37218
Iteration 3: log likelihood = -578.37172

Logistic regression Number of obs = 1000
LR chi2(3) = 229.23
Prob > chi2 = 0.0000

Log likelihood = -578.37172 Pseudo R2 = 0.1654

a Coef. Std. Err. z P>|z| [95% Conf. Interval]

_Ix_1 -2.023358 .1434155 -14.11 0.000 -2.304448 -1.742269
ybase -.1404279 .1029371 -1.36 0.173 -.3421809 .0613251

_IxXybase_1 .021675 .1420704 0.15 0.879 -.2567778 .3001279
_cons 1.054866 .1024294 10.30 0.000 .8541081 1.255624
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. predict pihat
(option p assumed; Pr(a))

. generate invwt=a/pihat + (1-a)/(1-pihat)

We can plot the values of pihat on a histogram to demonstrate the proximity to
the real values of π; see figure 4.

. histogram pihat, by(a)
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Figure 4. Histogram of estimated propensity scores by exposure group

The IPTW estimator can be generated by regressing Y on A with the inverse weights
specified by using pweights.

. regress y a [pweight=invwt]
(sum of wgt is 1.9998e+03)

Linear regression Number of obs = 1000
F( 1, 998) = 26.95
Prob > F = 0.0000
R-squared = 0.0351
Root MSE = 1.3814

Robust
y Coef. Std. Err. t P>|t| [95% Conf. Interval]

a .5263717 .1013958 5.19 0.000 .3273983 .7253452
_cons -.0196615 .0658265 -0.30 0.765 -.1488357 .1095127

This gives the average treatment effect of 0.5264 (SE=0.1014) in this dataset. We can
compare this with the true value by fitting the correctly specified model, which gives
the true effect of 0.5473 (SE=0.0716).
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. regress y a x ybase intxy ysqr intxy2

(output omitted )

We then proceed to fit the correctly specified outcome models, from which we take
the predicted values of mA(X) for A=0 and A=1.

. regress y ybase x intxy ysqr intxy2 if a==1

(output omitted )

. predict mu1
(option xb assumed; fitted values)

. regress y ybase x intxy ysqr intxy2 if a==0

(output omitted )

. predict mu0
(option xb assumed; fitted values)

Finally, we combine the predicted values of the propensity score and outcome values
into the double-robust formula, and we summarize this value to generate the effect
estimate. This is equivalent to the estimator DR1 from the simulation study, i.e., both
the exposure and outcome models are correctly specified; we subsequently find the
double-robust effect estimate is 0.5504, which is close to the value 0.5473 from the true
model.

. generate mdiff1=(-(a-pihat)*mu1/pihat)-((a-pihat)*mu0/(1-pihat))

. generate iptw=(2*a-1)*y*invwt

. generate dr1=iptw+mdiff1

. summarize dr1

Variable Obs Mean Std. Dev. Min Max

dr1 1000 .550427 2.174079 -11.15945 9.278258

The robust variance can be computed by subtracting the double-robust effect esti-
mate from the subject’s individual value, then squaring this and calculating the average,
and finally dividing by the number of subjects.

. local dr_est=r(mean)

. tempvar I dr_var

. generate `I´=dr-`dr_est´

. generate I2=`I´^2

. summarize I2

Variable Obs Mean Std. Dev. Min Max

I2 1000 4.721894 10.78363 5.61e-06 137.1213

. generate `dr_var´=r(mean)/1000

. scalar dr_se=sqrt(`dr_var´)

. display dr_se

.06871604

The bootstrapped standard errors can be generated by bootstrapping the entire pro-
cedure, including the estimation of pihat. This is achieved by encoding the procedure
within a written program and applying Stata’s bootstrap command to this program.
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Alternatively, the dr command we introduce in section 4 of this article will compute
the robust standard errors as routine and the bootstrapped standard errors as an op-
tion. The command simply requires specification of the outcome variable, the exposure
variable, and the exposure and outcome models. It also gives p-values and confidence
intervals as standard. The command for generating the double-robust estimator with
robust standard error is

. dr y a, ovars(ybase x intxy ysqr intxy2) pvars(x ybase intxy)

Doubly Robust Estimate of the effect of a on y
Using sandwich estimator of SE

Coef. Std. Err. z P>|z| [95% Conf. Interval]

a .550427 .068716 8.01 0.000 .4157461 .685108

For the bootstrap with 200 replications, type

. dr y a, ovars(ybase x intxy ysqr intxy2) pvars(x ybase intxy)
> vce(bootstrap, reps(200) seed(1234))

Doubly Robust Estimate of the effect of a on y
(running dr on estimation sample)

Bootstrap replications (200)
1 2 3 4 5

.................................................. 50

.................................................. 100

.................................................. 150

.................................................. 200

Bootstrap results Number of obs = 1000
Replications = 200

Observed Bootstrap Normal-based
Coef. Std. Err. z P>|z| [95% Conf. Interval]

a .550427 .0720839 7.64 0.000 .4091452 .6917088

As expected, the robust standard error is as we calculated manually, and the boot-
strapped standard error is marginally larger. For both forms of standard error, the
double-robust estimator is more efficient than the IPTW estimator. By adding the
genvars option, the estimated propensity-score variable ptreat is added to the dataset.
This can subsequently be used to generate histograms, as we produced earlier in this sec-
tion, to check the distribution of the estimated propensity scores between the treatment
and control groups and assess the region of common support.

We can also assess the degree of model misspecification in this simulated dataset by
comparing the correlations between the predicted values from the correct and misspeci-
fied models. These show that the estimated propensity scores from the exposure model
have a Pearson correlation of 1, indicating that they are identical. The estimate means
of Y when A=1 under both forms of the outcome model have a correlation of 0.6689;
when A=0 it is 0.7471 (both p<0.001). Although this applies only to the individual
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dataset, replication of these values across the 5,500 simulations would account for the
good performance of all the estimators shown in table 2.

6 Discussion

The most important assumption required when implementing the double-robust esti-
mators, as with all observational studies, is that there are no unmeasured confounders.
These are variables related to both exposure and outcome, and so if measured should
be included in the models. Unfortunately, there is no way to empirically validate this
assumption from the data. The emphasis should be on capturing as much information
about potential confounders as possible from the study.

When using standard statistical methods, either for time-independent or time-varying
treatments in a longitudinal setting such as marginal structural models, we would also
require that our statistical models are correctly specified. The key property of the
double-robust estimators is that we can weaken this assumption by giving the ana-
lyst two opportunities for correctly specifying either the exposure or outcome model.
The reward for obtaining correct models for both is the increased efficiency that can
be gained. The double-robust estimators can be used as a sensitivity analysis for as-
sessing the standard statistical models used, because they should provide similar effect
estimates if the standard models are correctly specified.

We propose the double-robust estimators in the context of a pretest–posttest study,
applying the theoretical work of Lunceford and Davidian (2004). We emphasize that
this can actually encompass a number of situations, including longitudinal studies where
only the primary endpoint is being analyzed and the intermediate outcomes are not
considered. For ease of exposition, we also framed the context of the article in an
observational study; there are no statistical reasons for this. Randomized trials can be
analyzed by using the same method, where the variables the analyst wishes to adjust
for are those which, by chance, were not equally distributed between the two groups.

We have illustrated the ideas underpinning recent advances in causal analysis and
highlighted the problem caused by selection effects. The double-robust estimators give
two opportunities for adjusting for the hidden selection effects of confounding by com-
bining inverse probability weighting with regression adjustment. Notably, the double-
robust property is achieved by careful selection of the estimating equations; it is not a
magical property (Molenberghs 2005).

The results of our simulation study clearly demonstrate the ability of the double-
robust estimators to allow for model misspecification and the possible efficiency gains
over IPTW estimators. While these have been established, we should highlight some
limitations of our simulations. First, they reflect only one choice of parameter values
and simple models. Second, because of the simplicity of the models, we used extreme
forms of model misspecification by completely excluding variables known to be related
to either exposure or outcome. Despite this, the predicted values from the exposure
and outcome models, whether correctly or incorrectly specified, were highly correlated
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with each other. Further simulation studies with alternative data-generating models
would assess the extent of misspecification permissible. Application of the double-robust
estimators to data from a clinical trial can be found in Emsley (2007).

We have shown how to implement the double-robust estimators manually through
the simple use of standard Stata commands. The dr command we introduced in this
article simplifies this procedure for the user, specifically with regard to obtaining valid
standard errors for the estimates.
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