

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

The Stata Journal (2008)
8, Number 2, pp. 299-303

Stata tip 63: Modeling proportions

Christopher F. Baum
Department of Economics
Boston College
Chestnut Hill, MA
baum@bc.edu

You may often want to model a response variable that appears as a proportion or fraction: the share of consumers' spending on food, the fraction of the vote for a candidate, or the fraction of days when air pollution is above acceptable levels in a city. To handle these data properly, you must take account of the bounded nature of the response. Just as a linear probability model on unit record data can generate predictions outside the unit interval, using a proportion in a linear regression model will generally yield nonsensical predictions for extreme values of the regressors.

One way to handle this for response variables' values strictly within the unit interval is the logit transformation

$$
y=\frac{1}{1+\exp (-X \beta)}
$$

which yields the transformed response variable y^{*}

$$
y^{*}=\log \left(\frac{y}{1-y}\right)=X \beta+\epsilon
$$

where we have added a stochastic error process ϵ to the model to be fitted. This transformation may be performed with Stata's logit() function. We can then use linear regression ([R] regress) to model y^{*}, the logit transformation of y, as a linear function of a set of regressors, X. If we then generate predictions for our model ($[\mathrm{R}]$ predict), we can apply Stata's invlogit() function to express the predictions in units of y. For instance,

```
. use http://www.stata-press.com/data/r10/census7
(1980 Census data by state)
. generate adultpop = pop18p/pop
. quietly tabulate region, generate(R)
. generate marrate = marriage/pop
. generate divrate = divorce/pop
. generate ladultpop = logit(adultpop)
```

Source	SS	df	MS		$\begin{array}{lr} \text { Number of obs } & = \\ F(5, & 43) \\ F(& 49 \end{array}$		
Model	. 164672377	5.03	34475				
Residual	. 327373732	43.00	13343		R -squared		0.3347
Total	. 492046109	48.01	50961		Adj R-squared Root MSE		$\begin{aligned} & 0.2573 \\ & .08725 \end{aligned}$
ladultpop	Coef.	Std. Err	t	$P>\|t\|$	[95\% Conf.		Interval]
marrate	-18.26494	7.754941	-2.36	0.023	-33.90427		2.625615
divrate	8.600844	12.09833	0.71	0.481	-15.79777		32.99946
R1	. 1192464	. 0482428	2.47	0.017	. 0219555		. 2165373
R2	. 0498657	. 042209	1.18	0.244	-. 0352569		. 1349883
R3	. 0582061	. 0357729	1.63	0.111	-. 0139368		. 130349
_cons	. 999169	. 093568	10.68	0.000	. 8104712		1.187867

- predict double ladultpophat, xb
- generate adultpophat = invlogit(ladultpophat)
. summarize adultpop adultpophat

| Variable | Obs | Mean | Std. Dev. | Min | Max |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| adultpop | 49 | .7113268 | .0211434 | .6303276 | .7578948 |
| adultpophat | 49 | .7116068 | .0120068 | .6855482 | .7335103 |

Alternatively, we could use Stata's grouped logistic regression ([R] glogit) to fit the model. This command uses the same transformation on the response variable, which must be provided for the number of positive responses and the total number of responses (that is, the numerator and denominator of the proportion). For example,

Source	SS	df	MS		Number of obs	$=49$
Model	. 129077492	5.02	15498		Prob > F	$=0.0032$
Residual	. 261736024	43.00	86884		R -squared	$=0.3303$
Total	. 390813516	48.00	41948		Adj R-squared Root MSE	$\begin{aligned} & =0.2524 \\ & =\quad .07802 \end{aligned}$
pop18p	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf.	Interval]
marrate	-22.82454	8.476256	-2.69	0.010	-39.91853	-5.730537
divrate	18.44877	12.66291	1.46	0.152	-7.088418	43.98596
R1	. 0762246	. 0458899	1.66	0.104	-. 0163212	. 1687704
R2	-. 0207864	. 0362001	-0.57	0.569	-. 0937909	. 0522181
R3	. 0088961	. 0354021	0.25	0.803	-. 062499	. 0802912
_cons	1.058316	. 0893998	11.84	0.000	. 8780241	1.238608

These results differ from those of standard regression because glogit uses weighted least-squares techniques. As explained in $[\mathrm{R}]$ glogit, the appropriate weights correct for the heteroskedastic nature of ϵ has zero mean but variance equal to

$$
\sigma_{j}^{2}=\frac{1}{n_{j} p_{j}\left(1-p_{j}\right)}
$$

By generating those weights, where n_{j} is the number of responses in the j th category and p_{j} is the predicted value we computed above, we can reproduce the glogit results with regress by using analytic weights, as verified with the commands:

```
. generate glswt = adultpophat * (1 - adultpophat) * pop
. quietly regress ladultpop marrate divrate R1-R3 [aw=glswt]
```

In the case of these state-level census data, values for the proportion y must lie within the unit interval. But we often consider data for which the limiting values of zero or one are possible. A city may spend 0% of its budget on preschool enrichment programs. A county might have zero miles of active railway within its boundaries. There might have been zero murders in a particular town in each of the last five years. A hospital may have performed zero heart transplants last year. In other cases, we may find values of one for particular proportions of interest. Neither zeros nor ones can be included in the strategy above, as the logit transformation is not defined for those values.

A strategy for handling proportions data in which zeros and ones may appear as well as intermediate values was proposed by Papke and Wooldridge (1996). At the time of their writing, Stata's generalized linear model ([R] glm) command could not handle this model, but it has been enhanced to do so. This approach makes use of the logit link function (that is, the logit transformation of the response variable) and the binomial distribution, which may be a good choice of family even if the response is continuous. The variance of the binomial distribution must go to zero as the mean goes to either 0 or 1 , as in each case the variable is approaching a constant, and the variance will be maximized for a variable with mean of 0.5.

To illustrate, consider an alternative dataset that contains zeros and ones in its response variable, meals: the proportion of students receiving free or subsidized meals at school.

. use http://www.ats.ucla.edu/stat/stata/faq/proportion, clear						
. summarize meals						
Variable		Obs	Mean	Std. Dev.	Min	Max
meals						

. glm meals yr_rnd parented api99, link(logit) family(binomial) vce(robust) nolog note: meals has noninteger values

Generalized linear models	No. of obs	=	4257
Optimization : ML	Residual df		4253
	Scale parameter		1
Deviance $=395.8141242$	(1/df) Deviance		. 093067
Pearson $=374.7025759$	(1/df) Pearson	=	. 0881031
Variance function: $\mathrm{V}(\mathrm{u})=\mathrm{u} *(1-\mathrm{u} / 1)$	[Binomial]		
Link function : $\mathrm{g}(\mathrm{u})=\ln (\mathrm{u} /(1-\mathrm{u})$)	[Logit]		
	AIC	=	. 7220973
Log pseudolikelihood $=-1532.984106$	BIC		-35143.61

	Robust					
meals	Coef.	Std. Err.	z	$\mathrm{P}>\|\mathrm{z}\|$	[95\% Conf. Interval]	
yr_rnd	.0482527	.0321714	1.50	0.134	-.0148021	.1113074
parented	-.7662598	.0390715	-19.61	0.000	-.8428386	-.6896811
api99	-.0073046	.0002156	-33.89	0.000	-.0077271	-.0068821
_cons	6.75343	.0896767	75.31	0.000	6.577667	6.929193

The techniques used above can be used to generate predictions from the model and transform them back into the units of the response variable. This approach is preferred to that of dropping the observations with zero or unit values, which would create a truncation problem, or coding them with some arbitrary value ("winsorizing") such as 0.0001 or 0.9999 .

Some researchers have considered using censored normal regression techniques such as tobit ([R] tobit) on proportions data that contain zeros or ones. However, this is not an appropriate strategy, as the observed data in this case are not censored: values outside the $[0,1]$ interval are not feasible for proportions data.

One concern was voiced about proportions data containing zeros or ones. ${ }^{1}$ In the context of the generalized tobit or "heckit" model ([R] heckman), we allow for limit observations (for instance, zero values) being generated by a different process than noncensored observations. The same argument may apply here, in the case of proportions data: the managers of a city that spends none of its resources on preschool enrichment programs have made a discrete choice. A hospital with zero heart transplants may be a facility whose managers have chosen not to offer certain advanced services.

In this context, the glm approach, while properly handling both zeros and ones, does not allow for an alternative model of behavior generating the limit values. If different factors generate the observations at the limit points, a sample selection issue arises. Li and Nagpurnanand (2007) argue that selection issues arise in numerous variables of interest in corporate finance research. In a forthcoming article, Cook, Kieschnick, and

[^0]McCullough (2008) address this issue for proportions of financial variables by developing what they term the "zero-inflated beta" model, which allows for zero values (but not unit values) in the proportion and for separate variables influencing the zero and nonzero values. ${ }^{2}$

References

Cook, D. O., R. Kieschnick, and B. D. McCullough. 2008. Regression analysis of proportions in finance with self selection. Journal of Empirical Finance. In press.

Li, K., and R. Nagpurnanand. 2007. Self-selection models in corporate finance. In Handbook of Corporate Finance: Empirical Corporate Finance, ed. B. E. Eckbo, chap. 2. Amsterdam: Elsevier.

McDowell, A., and N. J. Cox. 2001. FAQ: How do you fit a model when the dependent variable is a proportion? http://www.stata.com/support/faqs/stat/logit.html.

Papke, L. E., and J. M. Wooldridge. 1996. Econometric methods for fractional response variables with an application to $401(\mathrm{~K})$ plan participation rates. Journal of Applied Econometrics 11: 619-632.

[^1]
[^0]: 1. See, for instance, McDowell and Cox (2001).
[^1]: 2. Their approach generalizes models fit with the beta distribution; user-written programs for that purpose may be located by typing findit beta distribution.
