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Abstract. Productivity is often computed by approximating the weighted sum of
the inputs from the estimation of the Cobb–Douglas production function. Such
estimates, however, may suffer from simultaneity and selection biases. Olley and
Pakes (1996, Econometrica 64: 1263–1297) introduced a semiparametric method
that allows us to estimate the production function parameters consistently and thus
obtain reliable productivity measures by controlling for such biases. This study
first reviews this method and then introduces a Stata command to implement it.
We show that when simultaneity and selection biases are not controlled for, the
coefficients for the variable inputs are biased upward and the coefficients for the
fixed inputs are biased downward.
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1 Introduction

Productivity is often estimated as the deviation between observed output and out-
put predicted by a Cobb–Douglas production function estimated by ordinary least
squares (OLS). Such estimates, however, may suffer from simultaneity and selection
biases. Olley and Pakes (1996) introduced a semiparametric method that controls for
these biases, allowing us to estimate the production function parameters consistently
and thus obtain reliable productivity estimates.

Simultaneity arises because productivity is known to the profit-maximizing firms
(but not to the econometrician) when they choose their input levels (Marschak and
Andrews 1944). Firms will increase their use of inputs as a result of positive productivity
shocks. OLS estimation of production functions will yield biased parameter estimates
because it does not account for the unobserved productivity shocks. A fixed-effect
estimator would solve the simultaneity problem only if we are willing to assume that
the unobserved, firm-specific productivity is time-invariant. Other methods, including
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222 Production function estimation

instrumental-variables approaches, have also been proposed to control for this bias when
estimating the parameters of production functions.1

Another issue that one needs to address when estimating production function param-
eters is selection bias. Selection bias results from the relationship between productivity
shocks and the probability of exit from the market. If a firm’s profitability is positively
related to its capital stock, then a firm with a larger capital stock is more likely to stay
in the market despite a low productivity shock than a firm with a smaller capital stock,
because the firm with more capital can be expected to produce greater future profits.
The negative correlation between capital stock and probability of exit for a given pro-
ductivity shock will cause the coefficient on the capital variable to be biased downward
unless we control for this effect.

Olley and Pakes (1996) proposed a novel approach to address the simultaneity and
selection problems while estimating the production function parameters and firm-level
productivity.2 The simultaneity problems are addressed by using investment to proxy
for an unobserved time-varying productivity shock, and the selection problems are ad-
dressed by using survival probabilities.

This paper first reviews this methodology and then introduces a Stata command to
implement it.

2 Estimation

The Olley and Pakes (1996) approach assumes that incumbent firms decide at the be-
ginning of each period whether to continue participating in the market. If the firm exits,
it receives a liquidation value of Φ dollars and never appears again. If it does not exit, it
chooses variable inputs (such as labor, material, and energy) and a level of investment,
Iit. The firm also realizes profits conditional on the beginning-of-period state variables:
a productivity indicator or shock, Ωit; the capital stock, Kit; and the age of the firm,
ait. We further assume that expected productivity is a function of current productivity
and capital, E[Ωi,t+1 |Ωit,Kit], and that the firm’s profit is a function of Ωit and Kit.

Firm i’s decision to maximize the expected discounted value of net future profits is
then characterized by the Bellman equation:

1. See Arellano and Bond (1991), Arellano and Bover (1995), Blundell and Bond (1998, 2000),
Griliches and Mareisse (1998), Levinsohn and Petrin (2003), Pavcnik (2002), and Wooldridge
(2005) for further information.

2. Levinsohn and Petrin (2003) proposed a similar approach, which uses intermediate inputs in-
stead of investment to control for correlation between inputs and the unobserved productivity
shock, and thus limits the problems associated with lumpy investment. Petrin, Poi, and Levinsohn
(2004) introduced a Stata program, levpet, to implement the methodology proposed by
Levinsohn and Petrin (2003) that controls for simultaneity bias (but not for selection bias).
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Vit(Kit, ait,Ωit) =

Max[Φ,SupIit≥0Πit(Kit, ait,Ωit) − C(Iit) + ρE{Vi,t+1(Ki,t+1, ai,t+1,Ωi,t+1) |Jit}]

where Πit(·) is the profit function (current profits as a function of the state variables),
C(·) is the cost of current investment, ρ is the discount factor, and E[ · |Jit] is the
firm’s expectations operator conditional on information Jit at time t. The Bellman
equation implies that a firm exits the market if its liquidation value, Φ, exceeds its
expected discounted returns. The solution to this equation results in a Markov perfect
equilibrium strategy defining rules for exit and for investment decisions.

Specifically, firm i will decide to stay in the market (χit = 1) or exit the market
(χit = 0) if its productivity is greater than or less than some threshold subject to the
firm’s current capital stock and age, Kit and ait. This exit rule is written as follows:

χit =

{
1 if Ωit ≥ Ωit(Kit, ait)
0 otherwise

}
(1)

We assume the state variable Ωit follows a first-order Markov process.

The firm’s decision to invest in further capital, Iit, depends on Ωit, Kit, and ait:

Iit = I(Ωit,Kit, ait) (2)

This investment decision equation implies that future productivity is increasing in the
current productivity shock, so firms that experience a large positive productivity shock
in period t will invest more in period t+ 1.

Based on these exit and investment decision rules, Olley and Pakes (1996) specify
a production function (OP) to estimate the parameters consistently. Assume that the
production technology is represented by a production function that relates output to
inputs and the productivity residual or shock:

Yit = F (Lit,Mit, Eit,Kit, ait,Ωit)

For estimation purposes, we assume Cobb–Douglas technology

yit = β0 + βllit + βmmit + βeeit + βkkit + βaait + uit (3)

uit = Ωit + ηit (4)

where yit is log output for firm i in period t; lit, mit, eit, and kit are the log values
of labor, material, energy, and capital inputs; ait is the age of the firm; Ωit is the
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productivity shock that is observed by the decision-maker in the firm but not by the
econometrician; and ηit is an unexpected productivity shock that is unobserved by
both the decision-maker and the econometrician. Thus ηit has no effect on the firm’s
decisions, but Ωit is a state variable that does affect the firm’s decision-making process.

Given the assumptions of the model, standard econometric models provide biased
and inconsistent estimates of (3) for two reasons: simultaneity between output and
variable inputs, and selection bias resulting from the exit of inefficient firms. Specifically,
the assumption that Ωit is seen by the firm but not by the econometrician implies that
inputs are correlated with the realization of the productivity shock (this argument was
first formalized by Marschak and Andrews [1944]). If the firms’ higher variable input use
resulting from a positive productivity shock (Ωit) is not accounted for in the production
function, the OLS estimates for these inputs will be biased upward because of this
simultaneity issue. In addition, if profitability is positively related to Kit, then a firm
with a higher capital stock will expect larger future profitability at current productivity
levels, and thus will survive lower productivity realizations that cause small firms to
exit the market. This selection effect will cause expected future productivity to be
negatively related to Kit and, thus, the capital coefficient to be biased downward.

Unlike standard estimation methods such as OLS, OP accounts for these issues. Ap-
plying this method first involves using the investment decision rule, (2), to control for
the correlation between the error term and the inputs. This is based on the assumption
that future productivity is strictly increasing with respect to Ωit, so firms that observe
a positive productivity shock in period t will invest more in that period, for any Kit

and ait. Provided that Iit is strictly positive, we can write the inverse function for the
unobserved shock, Ωit, as

Ωit = I−1(Iit,Kit, ait) = h(Iit,Kit, ait) (5)

which is strictly increasing in Iit.

This function can thus be used to control for the simultaneity problem. Substituting
(4) and (5) into (3) yields

yit = βllit + βmmit + βeeit + φ(iit, kit, ait) + ηit (6)

where φ(iit, kit, ait) = β0 +βkkit +βaait +h(iit, kit, ait), and we approximate φ(·) with a
second-order polynomial series in age, capital, and investment. The partially linear (6)
can be estimated by OLS. The coefficient estimates for variable inputs (labor, material,
and energy) will be consistent because φ(·) controls for unobserved productivity, and
thus the error term is no longer correlated with the inputs.

Equation (6) does not identify βk and βa, so more work is required to disentangle
the effects of capital and age on the investment decision from their effect on output.
Achieving this requires a second step to estimate survival probabilities, which will then
allow us to control for selection bias. Recall the exit rule, (1), which implies that a firm
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will choose to stay in the market if its productivity is greater than some threshold, Ωit,
that depends on Kit and ait. The probability of survival in period t thus depends on
Ωi,t−1 and Ωi,t−1, and in turn on age, capital, and investment at time t − 1. In our
implementation, we estimate the probability of survival by fitting a probit model of χit

on Ii,t−1, Ki,t−1, and ai,t−1, as well as on their squares and cross products.3 Call the

predicted probabilities from this model P̂it.

In the third step, we fit the following equation by nonlinear least squares:

yit − β̂llit − β̂mmit − β̂eeit =

βkkit + βaait + g(φ̂t−1 − βkki,t−1 − βaai,t−1, P̂it) + ξit + ηit (7)

where the unknown function g(·) is approximated by a second-order polynomial in

φ̂t−1 − βkki,t−1 − βaai,t−1 and P̂it.
4 The function g(·) is similar in spirit to the inverse

of Mills’ ratio that is included in two-step sample selection models, but it is complicated
by the fact that here the sample selection bias depends on two unknown variables (Ωit

and Ωit) rather than on just one (the probability of being in the selected subsample).

Because the estimation routine involves three steps, deriving the appropriate analytic
standard errors is nontrivial.5 Our command, therefore, uses the clustered bootstrap,
treating all observations for a single firm as one cluster. Fitting (7) tends to be somewhat
slow with large datasets, so patience is required.

3 Stata Implementation

3.1 Syntax

opreg depvar
[
if
] [

in
]
, exit(varname) state(varlist) proxy(varname)

free(varlist)
[
cvars(varlist) vce(bootstrap, bootstrap options) level(#)

]

3.2 Options

exit(varname) specifies a dummy variable indicating whether firm i exited from the
market in year t. A value of 1 indicates the firm exited.

state(varlist) specifies the state variables that appear in the production function.
Typical state variables are age and the log of capital.

3. One can, alternatively, use a kernel estimator for the second stage (see page 1278 in Olley and Pakes
[1996] for an explanation).

4. One can, alternatively, use a kernel estimator for the third stage (see page 1279 in Olley and Pakes
[1996] for a discussion).

5. Wooldridge (2005) shows how to obtain standard errors for the two-step Levinsohn and Petrin
(2003) method based on the generalized method of moments. A similar argument could be used
here, though implementing such an estimator in Stata would be challenging.
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proxy(varname) specifies the variable that proxies for unobserved productivity. Typi-
cally this variable is the log of investment.

free(varlist) specifies the freely variable inputs, such as the logs of materials, energy,
and labor.

cvars(varlist) specifies any additional independent variables that will be used in the
first and second stages of estimation. Examples include year, size of firm, and region
dummy variables.

vce(bootstrap, bootstrap options) allows specification of options to control the boot-
strap process. The most commonly used bootstrap option is reps(#), which controls
the number of replications performed; the default is reps(50).

level(#) sets the confidence level; the default is level(95). See [R] estimation

options.

3.3 Description

opreg implements the production function estimator of OP. The command works with
Stata versions 9.2 and higher. A panel variable and a time variable must be specified.
Use xtset to declare a variable as panel data; see [XT] xtset.

3.4 Remarks

Our implementation approximates the unknown functions φ(·) and g(·) by using poly-
nomial expansions. If two state variables x and y are specified along with the proxy
variable z, then we use

φ(x, y, z) ≈ c0 + c1x+ c2y + c3z + c4x
2 + c5y

2 + c6z
2 + c7xy + c8xz + c9yz

where the c’s are parameters estimated along with the other model parameters. When
a single state variable x is specified, we use

φ(x, z) ≈ c0 + c1x+ c3z + c4x
2 + c6z

2 + c8xz
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4 Example

We illustrate our command with an unbalanced panel of firms in the COMPUSTAT North
America database during the period 1995–2002. The dataset consists of 3,772 firms and
19,710 observations for which output is available. We divided sales and nominal values
of inputs by their corresponding deflators to obtain constant-dollar quantities. The
deflators are taken from the Bartelsman and Gray (2001) productivity database. In
this sample, nearly 98% of the observations include nonzero levels of investment, so
we suspect that sample selection biases will be modest. Here we show how to use our
command. For those who are interested in the details of the computations, turn to the
appendix; there we show the steps opreg performs behind the scenes.

In our dataset, the variable lny represents log output; exit is a dummy variable with
1 indicating the firm exited in the current period and 0 otherwise; t is the trend; age is
the age of the firm; and lnkop, lnm, lnl, and lninv are the logs of capital, materials,
labor, and investment, respectively. We treat age and lnkop as state variables, lnl and
lnm as freely variable inputs, and lninv as the proxy variable. We type

. set memory 96m

. use opreg

. xtset gvkey year
panel variable: gvkey (unbalanced)
time variable: year, 1995 to 2002, but with gaps

delta: 1 unit

. gen firmid = gvkey

. sort firmid year

. by firmid: gen count = _N

. gen survivor = count == 8

. gen has95 = 1 if year == 2002

. sort firmid has95

. by firmid: replace has95 = 1 if has95[_n-1] == 1

. replace has95 = 0 if has95 == .

. sort firmid year

. by firmid: gen has_gaps = 1 if year[_n-1] != year-1 & _n != 1

. sort firmid has_gaps

. by firmid: replace has_gaps = 1 if has_gaps[_n-1] == 1

. replace has_gaps = 0 if has_gaps == .

. by firmid: generate exit = survivor == 0 & has95 == 0 & has_gaps != 1
> & _n == _N

. replace exit = 0 if exit == 1 & year == 2002

. opreg lny, exit(exit) state(age lnkop) proxy(lninv) free(lnl lnm) cvars(t)
> vce(bootstrap, seed(1) rep(250))

Bootstrap replications (250)
1 2 3 4 5

.................................................. 50
(output omitted )

.................................................. 250



228 Production function estimation

Olley-Pakes productivity estimator Number of obs = 19710
Group variable (i): gvkey Number of groups = 3722
Time variable (t): year

Obs per group: min = 1
avg = 5.3
max = 8

(Replications based on 3722 clusters in gvkey)

Observed Bootstrap Normal-based
Coef. Std. Err. z P>|z| [95% Conf. Interval]

lny
age -.0049433 .9959707 -0.00 0.996 -1.95701 1.947123

lnkop .1608403 .0570089 2.82 0.005 .0491049 .2725758
lnl .1573041 .0270405 5.82 0.000 .1043058 .2103024
lnm .7243997 .0284511 25.46 0.000 .6686366 .7801628

t -.016153 .0032608 -4.95 0.000 -.0225441 -.009762

State: age lnkop
Free: lnl lnm
Control: t
Proxy: lninv

Table 1 compares the OP results with OLS to examine whether controlling for these
biases makes a difference in estimating the parameters of the production function. The
estimated results follow our a priori expectations regarding the bias caused by simul-
taneity and selection problems. When these biases are not controlled for, the coefficients
associated with variable inputs (e.g., labor and materials) are expected to have an up-
ward bias, and the coefficients associated with quasi–fixed inputs (e.g., capital) are
expected to be biased downward (Olley and Pakes 1996). As illustrated in table 1, the
coefficients on variable inputs and quasi–fixed inputs move in a direction suggesting
the elimination of these biases. Thus controlling for the biases from simultaneity and
selection seems to be important because differences in the magnitudes of the coefficients
arise.

Table 1. Production function estimates: OLS and OP estimation results

Variable OP OLS

Materials 0.724 0.739
(0.028)*** (0.009)***

Labor 0.157 0.182
(0.027)*** (0.010)***

Capital 0.161 0.141
(0.057)*** (0.008)***

Age −0.005 −0.006
(0.996) (0.001)***

Trend −0.016 −0.017
(0.003)*** (0.003)***

Standard errors in parentheses. Standard errors in OP model are
bootstrapped using 250 replications. *** Significant at 1% level.
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5 Conclusion

Researchers often estimate a production function to obtain a measure of firm productiv-
ity. Such estimates, however, may suffer from the presence of selection and simultaneity
biases in the estimates of the input coefficients needed to construct a productivity mea-
sure. Olley and Pakes (1996) introduce a semiparametric estimator that controls for
these biases when estimating production function parameters. This methodology allows
us to obtain consistent estimates of the input coefficients and thus to obtain reliable
productivity measures.

In this paper, we have provided a brief review of this methodology and have described
the Stata command, opreg, that implements it. We have illustrated our code by using
unbalanced panel data for firms in the COMPUSTAT North America database during the
period 1995–2002. Our results show that, when simultaneity and selection biases are
not controlled for, the coefficients associated with variable inputs are biased upward
and the coefficient for the capital input is biased downward.

The findings indicate that, in order to obtain consistent estimates of the production
function parameters and thus to obtain reliable productivity measures, one should not
ignore the selection and simultaneity issues in the estimation of the production function.

6 Saved results

In addition to various results set by bootstrap, opreg saves in e():

Scalars
e(Nprobit) number of observations used in first (probit) stage
e(Nreg) number of observations used in second (regress) stage
e(Nnl) number of observations used in third (nl) stage

Macros
e(cmdname) opreg
e(title) Olley–Pakes regression
e(dv1) stage 1 dependent variable
e(dv2) stage 2 dependent variable
e(free) variables specified in free()
e(cvars) variables specified in cvars()
e(proxy) variable specified in proxy()
e(state) variables specified in state()

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix

7 Appendix

Because the Olley and Pakes (1996) procedure involves three steps and different imple-
mentations may differ in how each step is carried out, here we present a do-file that
illustrates the version implemented by opreg. Running this do-file will yield the same
point estimates that our command reports:
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begin do-file
use opreg

xtset gvkey year

drop if missing(lninv)

// Create terms for polynomial in (i,k,a)
gen double lninvlnkop = lninv*lnkop
gen double lninvage = lninv*age
gen double lnkopage = lnkop*age
gen double lninvsq = lninv^2
gen double lnkopsq = lnkop^2
gen double agesq = age^2

// Step I - regress lny on variable inputs and
// polynomial in i, a, k
regress lny lnl lnm lninv lnkop age t lninvlnkop lninvage lnkopage ///

lninvsq lnkopsq agesq
predict double lny_hat if e(sample), xb
scalar b_lnl = _b[lnl]
scalar b_lnm = _b[lnm]

// Step II -- Estimate probability of survival
probit exit L.(lninv lnkop age t lninvlnkop lninvage lnkopage ///

lninvsq lnkopsq agesq)
predict phat if e(sample), pr

// Step III -- Nonlinear regression of y - lnl*b_lnl - lnm*b_lnm
// on age, capital, and the polynomial to control for selection

// First, get phi_hat
generate double phi_hat = lny_hat - lnl*b_lnl - lnm*b_lnm

// Next, generate the depvar for the nonlinear equation
// Output minus the contributions of the variable inputs
generate double lhs = lny - lnl*b_lnl - lnm*b_lnm

// mark out missing observations
generate useme = 1
gen l1phi = L.phi_hat
gen l1lnkop = L.lnkop
gen l1age = L.age

foreach var of varlist lhs lnkop age l1phi l1lnkop l1age {
replace useme = 0 if `var´ >= .

}

gen double phat2 = phat^2

// Finally, fit the nonlinear model to get capital and age coefs.
nl ( lhs = b0 + bk*lnkop + ba*age + ///

t1*(l1phi - bk*l1lnkop - ba*l1age) + ///
t1sq*(l1phi - bk*l1lnkop - ba*l1age)^2 + ///
t2*phat + t2sq*phat^2 + ///
t1t2*(l1phi - bk*l1lnkop - ba*l1age)*phat ) ///
if useme

end do-file
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