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Abstract. This article proposes a memory-saving decomposition of the design
matrix to facilitate the estimation of a linear model with two high-dimensional
fixed effects. A common way to fit such a model is to take into account one of
the effects by including dummy variables and to sweep out the other effect by
the within transformation (fixed-effects transformation). If the number of panel
units is high, creating and storing the dummy variables can involve prohibitively
large computer-memory requirements. The memory-saving procedure to set up the
moment matrices for estimation presented in this article can reduce the memory
requirements considerably. The companion Stata ado-file felsdvreg implements
the estimation method, takes care of identification issues, and provides useful
summary statistics.
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1 Introduction

Fixed-effects models are popular in applied econometric work because they allow us to
take into account time-constant unobserved heterogeneity that may be correlated with
observed characteristics. In recent years, large-scale linked employer–employee data,
linked student–teacher data, and other types of linked data have become available. Such
data allow us to include at least two fixed effects into the analysis, for example, person
and firm effects or student and teacher effects. Because the datasets involved usually
include high numbers of observations, these fixed effects are often high dimensional, i.e.,
there is a high number of panel units (workers, firms, teachers, students). Applications of
such models can be found in the fields of labor economics and educational economics. For
example, Abowd, Kramarz, and Margolis (1999); Abowd, Creecy, and Kramarz (2002);
and Andrews, Schank, and Upward (2006) estimate wage equations including person
and firm effects, and Harris and Sass (2007) fit a model of student achievement including
student, teacher, and school effects. However, the problem is not confined to matched
datasets. For example, in a panel dataset with a high number of individuals and many
geographical regions, the two high-dimensional fixed effects may consist of individual
effects and region dummies.

c© 2008 StataCorp LP st0143
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Because of the size of the datasets involved, the researcher often encounters com-
puter restrictions in terms of memory space and computing time. This article and the
companion Stata command, felsdvreg, deal with the first restriction, the limitation
of computer memory. I present a memory-saving way to fit a fixed-effects model with
two high-dimensional fixed effects. It relies on the idea that a typical dummy-variable
matrix of fixed effects, such as firm or teacher effects, is a sparse matrix. Sparse ma-
trices can be stored efficiently in compressed form. The method is implemented in a
ready-to-use Stata ado-file. This program solves the identification problem, computes
the estimates, and provides useful summary statistics.

The article is organized as follows: Section 2 presents the model. Section 3 points
out the computer restrictions and describes how the estimation can be organized in
a memory-efficient way. Section 4 summarizes the steps of the estimation. Section 5
presents the implementation of the method in a Stata ado-file and comments on the
output of the program. Section 6 concludes the article.

Throughout the article, I refer to linked employer–employee datasets, calling the two
effects to be estimated person and firm effects. I refer to “stayers” as those individuals
who are observed in only one firm and to “movers” as those who are observed in several
firms. Despite the terminology used, the method can be directly transferred to other
types of datasets.

2 A linear fixed-effects model with two high-dimensional

fixed effects

Consider the following model, which can be applied to linked employer–employee panel
data containing data about individuals and firms. The model is

ỹ = X̃β + D̃θ + F̃ψ + ǫ̃ (1)

where X̃ (N∗ ×K) is the design matrix of time-varying characteristics; D̃ (N∗ ×N) is

the design matrix for the person effects; and F̃ (N∗ × J) is the design matrix for the
firm effects. N∗ is the number of person-years in the dataset, J is the number of firms,
N is the number of persons, and K is the number of time-varying regressors. The ˜
reflects that (1) is the untransformed model.

Further effects, such as fixed time effects, are subsumed in X̃ together with the
other time-varying regressors. In a student–teacher context, further effects subsumed
in X̃ might be school effects. But any fixed effects remaining in X̃ should not be high
dimensional (relative to the computer memory available), because only the effects in D̃

and F̃ are, in the following, treated as high dimensional.

A common way to fit such a model is to include one of the effects (here the firm
effect) as dummy variables and to sweep out the other effect (here the person effect) by
the within transformation or fixed-effects transformation. This transformation consists
of subtracting the group mean (here the person mean) for all observations. The D̃
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matrix becomes the null matrix, and the person effects are eliminated from the model.
Write the transformed model as

y = Xβ + Fψ + ǫ (2)

where ǫ is an error term satisfying the assumptions of the classical linear regression
model. Abowd, Kramarz, and Margolis (1999) note that this procedure is algebraically
equivalent to the full dummy-variable model. Andrews, Schank, and Upward (2006)
call this procedure the “FEiLSDVj” method in order to emphasize that the model
combines the classical fixed-effects (FE) model and the least-squares dummy-variable
model (LSDV), because one effect is eliminated by the fixed-effects transformation and
the other is included as dummy variables. This procedure is adequate for balanced and
unbalanced panels alike1 (Greene 2003, 293).

The system of normal equations is

A

(
β

ψ

)
= B

with

A =

(
X′X X′F
F′X F′F

)
(3)

B =

(
X′y
F′y

)
(4)

Solving this system of equations delivers the coefficient estimates.

3 Creating the moment matrices in a memory-efficient

way

In big datasets, the design matrix (X,F) can be too large to fit into memory, because
most software packages such as Stata require the design matrix be stored in memory.
To illustrate the memory requirement with the explicit creation of all dummy variables,
consider the following example: A dataset contains N∗ = 2, 000, 000 observations, N =
100, 000 persons, J = 20, 000 firms, and K = 50 further right-hand-side regressors.
Assume that one cell of the data matrix consumes 8 bytes (which is the case when
working in high-precision mode). The creation of the time-demeaned firm dummies
implies storing the design matrix (X,F) in the computer memory. The size of this
matrix is N∗ · (K + J) · 8 bytes = 320.8 gigabytes. This is far more than the computer
memory available at present to most researchers. It therefore seems that the estimation
of person and firm effects by using the “FEiLSDVj” method with several millions of
observations and several thousands of firms would be impossible because of restricted
memory resources.

1. For a more general treatment of the matrix algebra involved in representing multiple-way error-
components models with unbalanced data structures, see Davis (2001).
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However, while the design matrix (X,F) is of dimension N∗ × (K + J), the cross-
product matrices A and B, given in (3) and (4), are of dimension (K + J) × (K + J)
and (K + J)× 1 only. They require much less storage space. In the above example, the
memory requirement for A = (X,F)′(X,F) is only (K + J)2 · 8 bytes = 3.21 gigabytes,
which is considerably smaller.2

In fact, A and B can be computed without explicitly creating the full design matrix
(X,F). A solution for that problem lies in the fact that each element of A and B is a
cross-product sum of no more than two regressors. This implies that for computing one
element of A or B, only two regressors need to be stored in memory. While the X part
of the design matrix is provided as a dataset, the F part of the cross-product matrix
can be created during the estimation process without actually generating the F part of
the design matrix, i.e., the dummy variables. The information needed for that purpose
is condensed in the group identifiers. In other words, the group identifiers provide
a compressed storage format of the sparse dummy-variable matrices. The following
decomposition is based on the fact that the F matrix is a sparse matrix, i.e., large parts
of it are null submatrices, which deliver no contribution to A or B. Therefore, in the
process of the formation of A and B, only certain parts of the F matrix need to be
created, and time and memory can be saved.

Let the persons in the dataset be indexed by i (i = 1, . . . , N) and the time periods
for each individual be indexed by t (t = 1, . . . , Ti). Ti is the number of time periods
that individual i is observed. The total number of observations is then N∗ =

∑
i

Ti.

The vector y and the design matrices X and F in (2) have row dimension N∗, and rows
are indexed by the index it. The columns of X are indexed k (k = 1, . . . ,K), and the
columns of F are indexed j (j = 1, . . . , J).

The memory-saving way to create A and B starts from the idea that these matrices
can be decomposed by observations or subsets of observations.3 For example, A (B)
can be represented as a sum of matrices Ai (Bi) for each individual:

A =
∑

i

Ai =
∑

i

(
X′

iXi X′
iFi

F′
iXi F′

iFi

)

B =
∑

i

Bi =
∑

i

(
X′

iyi

F′
iyi

)

where Xi is (Ti ×K), Fi is (Ti ×J), and yi is (Ti × 1). The matrices involve only those
observations that are associated with individual i. For the current purpose, it makes
sense to do the individual-wise decomposition only for those parts of the matrices where
the F matrix is involved, that is,

2. The cross-product matrix B = (X,F)′y is negligibly small compared to the matrix A.
3. The possibility of an observation-wise computation of a cross-product matrix is usually presented

in econometrics textbooks by two alternative ways of writing the ordinary least-squares estimator.
For example, in Wooldridge (2002, 53) it is stated that X′X =

P

i

x′

ixi, where xi are the rows of

X.
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A =

(
X′X 0

0 0

)
+
∑

i

(
0 X′

iFi

F′
iXi F′

iFi

)
(5)

B =

(
X′y
0

)
+
∑

i

(
0

F′
iyi

)
(6)

The decomposition continues with the idea that the F matrix has a different structure
for stayers and for movers. In this context, movers are defined as workers who change
employers at least once during the whole observation period, and stayers are those
workers who never change employers.

Recall that the model is a transformed model. Group means by person have been
subtracted (“time-demeaning”/“within-transformation”). Because stayers never change
firms, the time-demeaned firm dummies are all zero. The F matrix for stayers is the
null matrix.

Therefore, we get

A =

(
X′X 0

0 0

)
+

∑

i∈ Movers

(
0 X′

iFi

F′
iXi F′

iFi

)
(7)

B =

(
X′y
0

)
+

∑

i∈ Movers

(
0

F′
iyi

)
(8)

Equations (7) and (8) are important simplifications of (5) and (6). Because the F

matrix is the null matrix in the subsample of stayers, the cross-product submatrices
X′F, F′F, and F′y need to be computed only for movers.4 As these matrices can be
computed individual by individual, the F matrix does not need to exist completely at
any point of time. For example, it suffices to create the matrix Fi for one individual
and to compute X′

iFi, F′
iFi, and F′

iyi. Fi is of dimension (Ti × J) so it should fit into
memory. However, by analyzing the structure of Fi more precisely, the matrix can be
reduced further, and more memory space can be saved.

Look at Fi∗ for a worker i∗ who is observed at Ti∗ = 3 different points in time and
changes firms once. The non–time-demeaned matrix F̃i∗ is

F̃i∗ =




1 0 0 0 0 . . . 0
1 0 0 0 0 . . . 0
0 0 0 1 0 . . . 0




Worker i∗ is employed during two time periods in firm 1 and during a third time
period in firm 4. He is never employed in any other firm, which means that to the right
the individual F matrix is filled up with zeros.

4. The matrix F′X is the transpose of X′F, and so in what follows it is not discussed separately.
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The corresponding time-demeaned design matrix of the firm effects for individual i∗

is

Fi∗ =




1/3 0 0 −1/3 0 . . . 0
1/3 0 0 −1/3 0 . . . 0

−2/3 0 0 2/3 0 . . . 0




For each worker, only very few columns of Fi∗ will be different from null vectors,
because a given worker is employed in very few firms relative to the total set of firms.
Consequently, many elements of the cross-product matrices X′

iFi, F′
iFi, and F′

iyi are
equal to zero.

In the appendix (section 7), (X′
i∗Fi∗), (F′

i∗Fi∗), and (F′
i∗yi∗) are computed for the

above example. In (F′
i∗Fi∗), the only nonzero elements are those where both row and

column indices refer to a firm where worker i was employed at some moment of time.
In (X′

i∗Fi∗), only the columns that are indexed with reference to a firm where worker
i was employed are nonzero. In (F′

i∗yi∗), only the rows that are indexed with reference
to a firm where worker i was employed are nonzero.

A typical worker is usually employed in very few firms and thus contributes to only
a very few elements of the cross-product matrices. Fi is a sparse matrix, and so are
(X′

i∗Fi∗), (F′
i∗Fi∗), and (F′

i∗yi∗). One can write Fi more compactly by leaving out the
zero columns. Call this reduced matrix FS

i . This is a Ti × s matrix, where s is the
number of firms in which individual i was employed. In the above example, FS

i would
be a (3 × 2) matrix that reads

FS
i∗ =




1/3 −1/3
1/3 −1/3

−2/3 2/3




Instead of computing (X′
iFi), (F′

iFi), and (F′
iyi), one can compute (X′

iF
S
i ), (FS′

i FS
i ),

and (FS′
i yi), which saves memory and time. However, one needs the information to

which firm the columns of FS
i refer, because once the cross products are computed, the

results need to be added to the correct elements of the A and the B matrix, which
is not a problem because this information is stored in the group identifiers. The next
section summarizes the algorithm for the fixed-effects estimation of the linear three-way
error-components model in a memory-saving way.

4 The algorithm to compute the least-squares solution

The memory-saving way to compute the matrices A and B of the normal equations uses
the information in which firm a given worker is employed. This allows us to compute
only those elements of A and B to which the worker contributes. The zero elements of
the sparse matrices involved are dropped from the computations.
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Use the following steps:

1. Create null matrices A of dimension (K + J) × (K + J) and B of dimension
(K + J) × 1.

2. Compute X′X and X′y on the combined sample of movers and stayers. Fill in
these cross products at the appropriate submatrices of A and B as shown in (5)
and (6).

3. For each mover i(i ∈ Mover), create the time-demeaned matrix Fi but omit
columns that are zero; call this reduced matrix FS

i . This is a Ti × s matrix, where
s is the number of firms in which individual i was employed. Now,

a. form FS′
i FS

i and update the A matrix by adding the resulting cross products
to the appropriate elements of A,

b. form X′
iF

S
i , as well as its transpose, (X′

iF
S
i )

′
= FS

i
′
Xi, and update the A

matrix by adding the resulting cross products to the appropriate elements of
A, and

c. form FS′
i y and update the B matrix by adding the resulting cross products

to the appropriate elements of B.

4. Once A and B are completed, solve for the coefficient vector (β,ψ).

5 Implementation in Stata

The method is implemented in Stata in the ado-file felsdvreg, the core of which is
programmed in Mata. Using Mata in the context of large datasets is an advantage.
First, provided that there is enough computer memory, Mata can handle matrices of a
dimension of up to 2 billion × 2 billion compared with only 11,000 × 11,000 in the Stata
environment (Stata/SE). Second, Mata provides computer routines with high numerical
precision, which is more important in large datasets than in small datasets.5

Other ways to handle the estimation problem are the approximate procedures, as
well as two-step and iterative solutions to the exact problem, presented in Abowd,
Kramarz, and Margolis (1999), Abowd, Creecy, and Kramarz (2002), Andrews, Schank,
and Upward (2006), and Grütter (2006).6 If the sole aim is to control for unobserved
heterogeneity and not to compute the person and firm effects explicitly, the “spell fixed-

5. In addition to using high-precision routines, cross-checking the results obtained with those obtained
in similar but smaller datasets is another way to test whether the size of the dataset poses problems
of numerical precision. Helpful comments about that topic can be found under the thread “dataset
larger than RAM” on the Statalist discussion board, at http://www.stata.com/statalist/archive/.

6. The classical minimum-distance estimator proposed by Andrews, Schank, and Upward (2006) de-
livers the same coefficient estimates as the “FEiLSDVj” method, but it delivers different standard
errors because it is based on separate estimations for movers and stayers, and the error-term vari-
ance of both estimations is not constrained to be equal.
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effects” method proposed in Andrews, Schank, and Upward (2006) is a good alternative
to the “FEiLSDVj” method.7

In the following, a small simulated linked employer–employee dataset is used to
illustrate the Stata implementation of the estimation method presented in the previous
sections. The dataset used for the illustration has 100 observations. It comprises 20
workers, for which the dummy variables p1, . . . , p20 have been created, and 15 firms,
for which the dummy variables f1, . . . , f15 have been created. The dependent variable
is called y, and the two independent time-varying regressors are called x1 and x2. The
pattern of worker mobility between firms is important because it determines whether
person and firm effects can be identified. The firms with movers can be divided into
groups (shown in table 1) within which there is worker mobility, but between which
there is no mobility.8

Table 1. Group that the firms with movers belong to

Group Firms
1 3, 4, 5
2 6, 7, 8, 9
3 10, 11, 12
4 13, 14, 15

Within each group, one effect is not identified and serves as the reference; for exam-
ple, if the firm with the smallest firm ID is chosen as the reference firm in each group,
the effects of firms 3, 6, 10, and 13 are not identified. The effects of firms without
movers (firms 1 and 2) are not identified because they can be thought of as forming
single groups with only one firm per group.

A common way to fit a model with person and firm fixed effects is to include the
firm effects as dummies and to eliminate the person effects by the within transformation
(the “FEiLSDVj” method). Knowing that the effects of firms 1, 2, 3, 6, 10, and 13 are
not identified in the given example, this can be implemented as follows, where i is a
variable containing the person identifier:

7. An alternative Stata command to compute a model with two high-dimensional fixed effects is a2reg
by Amine Ouazad, based on Abowd, Creecy, and Kramarz (2002). Ouazad’s two-way fixed-effects
regressions are available at http://vrdc.ciser.cornell.edu/guides/cg2/html/index.html or by typing
net from http://repository.ciser.cornell.edu/viewcvs-public/cg2/branches/stata/ in the
Stata command line. This command solves for the coefficient estimates by using a solver algo-
rithm suitable for sparse matrices. More generally, all mathematics or statistics packages that
include sparse-matrix functions could be used as alternatives to the method described here.

8. An algorithm to determine the groups is derived in Abowd, Creecy, and Kramarz (2002).
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. use felsdvsimul

. tabulate i, generate(p)

(output omitted )

. tabulate j, generate(f)

(output omitted )

. xtset i
panel variable: i (unbalanced)

. xtreg y x1 x2 f4-f5 f7-f9 f11-f12 f14-f15, fe

Fixed-effects (within) regression Number of obs = 100
Group variable: i Number of groups = 20

R-sq: within = 0.6518 Obs per group: min = 1
between = 0.0015 avg = 5.0
overall = 0.0913 max = 9

F(11,69) = 11.74
corr(u_i, Xb) = -0.5330 Prob > F = 0.0000

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

x1 1.029258 .2151235 4.78 0.000 .6000987 1.458418
x2 -.709482 .2094198 -3.39 0.001 -1.127263 -.2917009
f4 13.2617 3.258081 4.07 0.000 6.762004 19.76139
f5 13.95499 2.818964 4.95 0.000 8.331314 19.57867
f7 8.559977 3.882525 2.20 0.031 .8145504 16.3054
f8 5.433107 3.908214 1.39 0.169 -2.363566 13.22978
f9 11.44951 4.792492 2.39 0.020 1.888749 21.01027
f11 16.76837 3.245567 5.17 0.000 10.29364 23.2431
f12 10.01551 3.407205 2.94 0.004 3.218319 16.8127
f14 -10.19694 3.074528 -3.32 0.001 -16.33046 -4.063427
f15 2.526721 3.844219 0.66 0.513 -5.142287 10.19573

_cons -6.044057 1.03021 -5.87 0.000 -8.09927 -3.988844

sigma_u 10.169633
sigma_e 5.4861156

rho .77458273 (fraction of variance due to u_i)

F test that all u_i=0: F(19, 69) = 8.64 Prob > F = 0.0000

The estimated firm effects appear in the regression output. The estimates of the
person effects can be displayed by
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. predict peffxt, u

. table i, contents(m peffxt)

i mean(peffxt)

1 -9.345165
2 -3.751444
3 12.98728
4 -4.665943
5 -3.879235
6 1.137969
7 -.4461367
8 .4524156
9 -16.23423
10 -12.18615
11 -.4041495
12 -3.953967
13 -11.94854
14 -4.272363
15 1.732473
16 -11.58673
17 -13.57038
18 21.66491
19 14.42718
20 11.0613

As described in the previous section, the explicit creation of all firm dummies, com-
bined with the use of xtreg (let alone the creation of all person and firm dummies
with the use of regress), can require more computer memory than is available. In the
case where there is a large number of firms, it can therefore be necessary to apply a
memory-saving way to the solution of the “FEiLSDVj” estimator. I have programmed
the algorithm presented in the preceding section as a Stata ado-file called felsdvreg.
This routine can be applied to the present dataset as follows:

. felsdvreg y x1 x2, ivar(i) jvar(j) feff(feffhat) peff(peffhat) xb(xb) res(res)
> mover(mover) group(group) mnum(mnum) pobs(pobs)

The options are the following: The ivar() option is used to pass the variable name
of the person ID, and the jvar() option does the same for the firm ID. The feff()

and peff() options define the names of new variables to be created to store the firm
and person effects after estimation. The xb() and res() options store the linear com-
binations x′β̂ and the residual ǫ̂. The remaining options define the names of the new
variables that store a dummy variable indicating a person who is a mover, mover(); a
group variable indicating the groups of firms connected through mobility, group(); a
variable containing the number of movers per firm, mnum(); and a variable indicating
the number of observations per persons, pobs(). The output is
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. felsdvreg y x1 x2, ivar(i) jvar(j) feff(feffhat) peff(peffhat) xb(xb) res(res)
> mover(mover) group(group) mnum(mnum) pobs(pobs)
Memory requirement for moment matrices in GB:

2.17600e-06

Computing generalized inverse, dimension: 11
Start: 6 Mar 2008 18:06:02
End: 6 Mar 2008 18:06:02

N=100

Coef. Std. Err. t P>|t| [95% Conf. Interval]

x1 1.029258 .2151235 4.78 0.000 .6000987 1.458418
x2 -.7094819 .2094198 -3.39 0.001 -1.127263 -.2917009

F-test that person and firm effects are equal to zero: F(28,69)=9.81 Prob > F = 0
F-test that person effects are equal to zero: F(19,69)=8.64 Prob > F = 0
F-test that firm effects are equal to zero: F(9,69)=9.97 Prob > F = 0

In big datasets, the crucial steps of the estimation concerns the question of whether
the moment matrices fit into memory, and how much computing time is required when
solving for the coefficients (computing the inverse). The above default output contains
information on these points. The firm and person effects can be displayed as follows:

. table j, contents(m feffhat)

j mean(feffhat)

1 0
2 0
3 0
4 13.2617
5 13.95499
6 0
7 8.559977
8 5.433106
9 11.44951
10 0
11 16.76837
12 10.01551
13 0
14 -10.19694
15 2.526721
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. table i, contents(m peffhat)

i mean(peffhat)

1 -15.38922
2 -9.795502
3 6.943222
4 -10.71
5 -9.923292
6 -4.906089
7 -6.490194
8 -5.591642
9 -22.27829
10 -18.23021
11 -6.448206
12 -9.998024
13 -17.99259
14 -10.31642
15 -4.311584
16 -17.63079
17 -19.61444
18 15.62085
19 8.383124
20 5.017239

The firm effects of the firms without movers and the reference firm in each group are
set to zero. The firm effects are exactly the same as in the xtreg estimation (p. 178).
The person effects differ from the effects of the xtreg regression only by the constant
−6.044057 of the xtreg model, because felsdvreg does not, by default, normalize the
sum of the person effects to zero.9

Using the option noisily allows us to generate the following additional output:

. felsdvreg y x1 x2, ivar(i) jvar(j) feff(feffhat) peff(peffhat) xb(xb) res(res)
> mover(mover) group(group) mnum(mnum) pobs(pobs) noisily

Unique worker-firm combinations: 41

Number of firms workers are employed in:

Number of
firms Freq. Percent Cum.

1 7 35.00 35.00
2 7 35.00 70.00
3 4 20.00 90.00
4 2 10.00 100.00

Total 20 100.00

9. If the option cons is chosen in felsdvreg, it does normalize the sum of the person effects to zero
and displays a regression constant.
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Number of movers (0=Stayer, 1=Mover):

Mover Freq. Percent Cum.

0 7 35.00 35.00
1 13 65.00 100.00

Total 20 100.00

Number of observations per person:

Obs. per
person Freq. Percent Cum.

1 3 15.00 15.00
2 3 15.00 30.00
4 3 15.00 45.00
5 1 5.00 50.00
6 4 20.00 70.00
7 1 5.00 75.00
8 2 10.00 85.00
9 3 15.00 100.00

Total 20 100.00

Number of movers per firm:

Movers per
firm Freq. Percent Cum.

0 2 13.33 13.33
1- 5 7 46.67 60.00
6- 10 5 33.33 93.33
11- 20 1 6.67 100.00

Total 15 100.00

This output provides additional tables, which are interesting. For example, in the
context of matched employer–employee or student–teacher data, the tables give details
on the mobility pattern in the dataset. The first table summarizes in how many firms
the workers are employed. The 7 workers employed in only one firm are stayers. Out
of the remaining 13 workers, 7 are observed in two firms; 4, in three firms; and 2, in
four firms. The second table is a summary of the first and gives the total number of
stayers and movers. The third table indicates the number of observations per person.
For example, 3 workers are observed at only one point in time, 3 workers are observed
nine times, etc. The fourth table shows the distribution of the number of movers per
firm. The purpose of this table is to get an impression of the quality of the estimation
of the firm effects. The estimation of the firm effects is better the more movers there
are, and one might think of the firm effects that are identified by few movers as effects
that are poorly estimated. In this example dataset, two firms have no movers, and all
15 firms have less than 20 movers.
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The 15 firms can be divided into groups within which there is worker mobility,
but between which there is no mobility. Within each group, one firm effect is not
identified, i.e., one firm effect has to be taken as the reference, and all other firm effects
are expressed as differences from the reference. The felsdvreg program goes on by
defining these groups:10

Groups of firms connected by worker mobility:

Person-years Persons Movers Firms

group N(__000000) N(__000009) sum(__00000D) N(__000008)

0 10 5 0 2
1 26 5 3 3
2 15 2 2 4
3 24 5 5 3
4 25 3 3 3

Total 100 20 13 15

Note: Group 0 in the table regroups firms without movers.

No firm effect in group 0 is identified.
15-2-4 = 9 firm effects are identified.
(number of firms - number of firms without movers - number of groups excl. group 0)

The two firms without movers are gathered in group 0. The remaining firms of the
sample are divided into 4 groups. The table shows the number of person-years, persons,
movers, and firms in each of the groups. As indicated, only 9 of the 15 firm effects are
identified: 2 firms have no movers and their firm effects cannot be identified, and 4 more
firm effects are not identified because they serve as reference in their groups.11

The option noisily also generates the following output:

If the covariances are positive, the following may indicate the importance in
> explaining the variance of y:

Cov(y, xb) / Var(y): .10029458
Cov(y, peffhat) / Var(y): .56511312
Cov(y, feffhat) / Var(y): .15341486
Cov(y, res) / Var(y): .18117743

This variance decomposition gives an indication of how strongly the four components
(i) observed time-varying characteristics, (ii) person effects, (iii) firm effects, and (iv)
the residual contribute to explaining the variance of the dependent variable. The shares
sum to 1; however, the covariances indicated can become negative, and then it becomes
difficult to interpret the numbers as shares.

10. The grouping algorithm incorporated in felsdvreg draws heavily on a2group, which is a Stata
command by Amine Ouazad of the original FORTRAN code written by Robert Creecy and Lars
Vilhuber (see footnote 7 for a link to access Ouazad’s two-way fixed-effects regression package).

11. One of the simplest configurations of that table would be that there is only one group, because
all panel units of the second effect are connected by mobility of the units of the first effect. For
example, if the second effect cover’s geographical regions of a country, which might all be connected
by worker mobility, then they would all belong to a single mobility group.



184 The Stata command felsdvreg

After the estimation, the researcher may be interested in correlating the person and
firm effects with each other or with other regressors. However, what is actually identified
are relative person and firm effects within each group, and person and firm effects of
different groups can be compared only if one is willing to make certain assumptions.
This can be illustrated by computing the correlation of person and firm effects over all
groups with different normalizations. The first command correlates the person and firm
effects over all groups, while the second command correlates only the effects of group 1:

. correlate feffhat peffhat
(obs=100)

feffhat peffhat

feffhat 1.0000
peffhat -0.5645 1.0000

. correlate feffhat peffhat if group==1
(obs=26)

feffhat peffhat

feffhat 1.0000
peffhat -0.2006 1.0000

Now the firm and person effects are normalized so that they sum to zero within each
group by subtracting the average group firm effect and the average group person effect.
A new variable, gmean, captures the sum of the mean firm and the mean person effect
of each group. After this normalization, the person and firm effects are deviations from
the group means. After this, the correlation over all groups and the correlation using
only the effects of group 1 are again computed:

. sort group

. by group: egen pmean=mean(peffhat)

. by group: egen fmean=mean(feffhat)

. generate peffnorm=peffhat-pmean

. generate feffnorm=feffhat-fmean

. generate gmean=pmean+fmean

. table group, contents(m gmean)

group mean(gmean)

0 -7.385707
1 -1.236314
2 -2.610044
3 -7.291342
4 4.825048
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. correlate feffnorm peffnorm
(obs=100)

feffnorm peffnorm

feffnorm 1.0000
peffnorm 0.0227 1.0000

. correlate feffnorm peffnorm if group==1
(obs=26)

feffnorm peffnorm

feffnorm 1.0000
peffnorm -0.2006 1.0000

The normalization has changed the result from the correlation over all groups.12 It is
now 0.0227 whereas before it was −0.5645. The result of the correlation within the group
of −0.2006 is unchanged. One could argue that the normalization of person and firm
effects to an equal group mean makes comparison across groups more appropriate, and,
therefore, the correlation over all groups after normalization is appropriate, whereas the
one before normalization was not. However, it seems difficult to argue that a deviation
of +1 from a group mean of −7.29 of group 3 means the same as a deviation of +1 from
the group mean of 4.83 in group 4. The normalization does not change the fact that
relative firm effects within groups are identified but relative firm effects between groups
are not identified. It is therefore preferable to correlate only effects of the same group.

Andrews et al. (2008) show that the correlation between worker and firm effects is
biased and that the bias is greater the lower the observed worker mobility between firms.
After estimation, one may therefore want to select firm and person effects that fulfill
certain minimum requirements with respect to the minimum number of movers per firm
or the minimum number of observations per person. This is possible with the variables
defined in the mnum() and pobs() options and returned by felsdvreg.

Even though the algorithm described above is memory saving, some applications in
large datasets will still reach the limit of available memory. It is therefore important
to observe the following remarks: The memory-intensive part of the program runs in
Mata. Mata can use only memory which is not allocated to Stata by the set memory

command. The user should therefore not allocate too much memory to Stata. The
error message “unable to allocate real” indicates that Mata is running out of memory;
in this case, memory allocated to Stata by set memory should be reduced. The error
message “no room to add more observations/variables” indicates that Stata is running
out of memory; in this case, the memory allocated to Stata by set memory should be
increased. If there is not enough memory available to run felsdvreg on the complete
sample, it might be worthwhile to run it on a subsample. To maximize the number of

12. This normalization is not exactly implemented in felsdvreg, but the program has two options for
normalization: The option normalize normalizes the firm effects to mean zero within each group
and adds to the person effects the mean firm effects that are subtracted in each group. The option
cons normalizes the person effects to sum to zero over all observations and displays the overall
mean person effect as the regression constant. Both options can be combined.
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identified firm effects in a subsample, one could choose subsamples so that the mobility
groups remain intact. For example, one might choose a large mobility group as a
subsample and remove the remaining groups. In this case, felsdvreg should first be
run with the option grouponly. This runs only the grouping algorithm, creating the
group variable. This variable can be used to choose a subsample of the original sample
on which felsdvreg can then be run.

The program felsdvreg can also be used for instrumental-variable (IV) estimation
to cope with endogenous regressors. To produce IV estimates, the two stages of the two-
stage least-squares (2SLS) estimation have to be carried out manually. In the second-
stage estimation, felsdvreg needs to be told the names of the regressors, which have
been predicted from a first stage, as well as which original regressors belong to the
predicted regressors. For example, say that in a regression of y on z1, x2, x3, and
two-way fixed effects, the variables x2 and x3 are to be instrumented by the IVs z2 and
z3. A 2SLS estimation can be carried out in the following way:

1. Run a first-stage regression for x2, and generate its prediction x2hat:

. felsdvreg x2 z1 z2 z3, ivar(i) jvar(j) xb(xb) feff(fhat) peff(phat) ...

. generate x2hat=xb+fhat+phat

2. Run a first-stage regression for x3, and generate its prediction x3hat:

. felsdvreg x3 z1 z2 z3, ivar(i) jvar(j) xb(xb) feff(fhat) peff(phat) ...

. generate x3hat=xb+fhat+phat

3. Run the second-stage regression:

. felsdvreg y z1 x2hat x3hat, ivar(i) jvar(j) xb(xb) feff(fhat) peff(phat)
> hat(x2hat x3hat) orig(x2 x3) ...

In the second-stage regression, hat(x2hat x3hat) and orig(x2 x3) tell felsdvreg
that x2hat and x3hat are first-stage predictions of x2 and x3. This allows felsdvreg to
adjust the residual sum of squares and the standard errors of the second-stage regression
(see, for example, Greene [2003, 400]).

The program felsdvreg includes the options of computing robust and clustered
standard errors. However, the memory-saving design of the estimation is especially
costly in terms of computing time when robust or clustered standard errors are com-
puted. Therefore, computing robust or clustered standard errors may, in some cases,
be prohibitively time consuming.

The program felsdvreg checks for collinearity between the explicit right-hand-side
regressors right at the start. But collinearity between regressors and fixed effects also
poses a problem. Sometimes it is easy to avoid regressors that are collinear with the
fixed effects. For example, one can easily avoid including time-constant variables like
gender in a model with individual fixed effects. But other cases are more difficult. For
example, if school dummies are added as explicit right-hand-side regressors to a model
including teacher and student fixed effects, it is hard to know a priori which school
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effects are collinear with the teacher and student effects. Such collinearity will only
be detected by felsdvreg at the moment when the inverse of the moment matrices
is computed to solve for the coefficient vector. At that step, the program uses the
Mata function invsym(), which automatically drops collinear regressors. This is the
advantage of using invsym() at that stage. However, felsdvreg provides the option
cholsolve to use the Mata solver cholsolve(). Using a solver has advantages in terms
of precision, but the disadvantage would here be that it does not simply drop collinear
regressors but instead fails and issues the error message “matrix has missing values”.13

Another option is feffse(varname), which allows you to pass a name of a new
variable to store the standard errors of the fixed effects of the second effect (firm effect).
All options are also described in detail in the help file accompanying felsdvreg.

6 Conclusion

This article has proposed a memory-saving decomposition of the design matrix to fa-
cilitate the estimation of a linear model with two high-dimensional fixed effects. This
is applicable, for example, to linked employer–employee datasets, but it is also applica-
ble to other data that allow us to fit multiple-way fixed-effects models, such as linked
student–teacher data, etc.

A common way to fit such a model is to take into account one of the effects by in-
cluding dummy variables and to sweep out the other effect by the within transformation
(the fixed-effects transformation). If the number of panel units is high, creating and
storing the dummy variables can require a lot of computer memory. The decomposition
of the design matrix presented in this article reduces the storage requirements. The ar-
ticle also described the Stata ado-file felsdvreg, which implements the memory-saving
estimation method.

13. felsdvreg uses the currently available Mata functions to solve for the coefficient estimates. This
is not the most efficient procedure for the present problem because, not only is the design matrix
(X,F) sparse, but so is the moment matrix A. A has zero entries in all cells where there is no
direct worker mobility between the row firm and the column firm. For the solution of systems of
linear equations involving sparse matrices, there are more-efficient algorithms than the standard
algorithms used here. However, as explained above, the advantage of using invsym() is that
regressors collinear with the fixed effects can be handled.
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7 Appendix

In the example in section 3, X′
i∗Fi∗ , F′

i∗Fi∗ , and F′
i∗yi∗ are

F′
i∗Fi∗ =




1/3 1/3 −2/3
0 0 0
0 0 0

−1/3 −1/3 2/3
0 0 0
...

...
...

0 0 0







1/3 0 0 −1/3 0 . . . 0
1/3 0 0 −1/3 0 . . . 0

−2/3 0 0 2/3 0 . . . 0




=




φi11 0 0 φi14 0 . . . 0
0 0 0 0 0 . . . 0
0 0 0 0 0 . . . 0
φi14 0 0 φi44 0 . . . 0
0 0 0 0 0 . . . 0
...

...
...

...
...

...
0 0 0 0 0 . . . 0




(9)
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3

)2

+

(
1

3

)2

+
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3

)2
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3

)(
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3

)
+

(
1

3

)(
−1

3

)
+

(
−2

3

)(
2

3

)

φi44 =

(
−1

3

)2

+

(
−1

3

)2

+

(
2

3

)2

X′
i∗Fi∗ =




xi11 xi21 xi31

xi12 xi22 xi32

...
...

...
xi1K xi2K xi3K







1/3 0 0 −1/3 0 . . . 0
1/3 0 0 −1/3 0 . . . 0

−2/3 0 0 2/3 0 . . . 0




=




ξi11 0 0 ξi14 0 . . . 0
ξi21 0 0 ξi24 0 . . . 0
...

...
...

...
...

...
ξiK1 0 0 ξiK4 0 . . . 0


 (10)

ξij1 =

(
1

3

)
xi11 +

(
1

3

)
xi21 +

(
−2

3

)
xi31

ξij4 =

(
−1

3

)
xi11 +

(
−1

3

)
xi21 +

(
2

3

)
xi31
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F′
i∗yi∗ =




1/3 1/3 −2/3
0 0 0
0 0 0

−1/3 −1/3 2/3
0 0 0
...

...
...

0 0 0







yi1

yi2

yi3


 =




υi1

0
0
υi4

0
...
0




(11)

υi1 =

(
1

3

)
yi1 +

(
1

3

)
yi2 +

(
−2

3

)
yi3

υi4 =

(
−1

3

)
yi1 +

(
−1

3

)
yxi2 +

(
2

3

)
yi3
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