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Optimizing whole-farm management considering price and 

climate risks 

Lehmann, N. and Finger, R.  
 

Abstract 
We investigate impacts of climate change (CC) and likely increases in price risks on income, 
income variability, utility and on adaptation responses in crop production in Western 
Switzerland. To this end, a bio-economic model is used that combines a crop growth model with 
an economic decision model non-parametrically using genetic algorithms. Our analysis focuses 
on the farm-level, which enables us to integrate a much wider set of potential adaptation 
responses in our analysis. The model is applied to four scenarios that represent likely changes 
in environmental conditions due to CC as well as increasing price risks due to market 
liberalization, and combinations thereof. It shows that CC has the larger influence on farm-
level income and utility as well as on management decisions. In contrast, the increasing price 
variability has only small impacts on input use. However, both CC and increasing price 
volatility contribute to an increasing farm-level income risk. 
 
Keywords: Genetic Algorithms, Agricultural Modeling, Climate Change, Price risks 
 
JEL classification: Q12  

1. INTRODUCTION  

Agriculture is a risky business. Besides production risks coming from unpredictable 

nature of weather, price and markets risks and institutional risks (e.g. changes in agricultural 

laws, changes in the agricultural policy) also technological risks play an important role in 

agriculture.  

Typically, farmers have several self-insuring options and risk-mitigation potentials to 

protect against income volatility. Probably the most important risk reducing measure is the 

diversification of farm activities. Such diversification strategies do not only mitigate price risks 

but also fluctuations in outputs due to production risks (e.g. Mishra and El-Osta, 2002). 

Diversification options of an agricultural enterprise include on-farm diversification strategies 

(e.g. range of crops, livestock and other natural resource based activities undertaken) as well as 

off-farm diversification strategies like non-farm activities (Cramb et al., 2004). If returns from 

different activities are negatively correlated with each other, they provide a so called natural 

hedge for the farmer (cp. Finger and El Benni, 2012). Furthermore, also the chosen input 

intensity (nitrogen fertilization amount, irrigation intensity, pesticides, etc.) has an effect on the 

production risks and thus on the farmer’s income volatility. For instance, higher nitrogen 

fertilization amounts tend to increase the yield variability (see Finger, 2012 for discussions and 

examples). In contrast to the nitrogen fertilization amount, a higher irrigation intensity is 

expected to decrease the variability in crop yields, i.e. production risks (e.g. Lehmann et al., 

2011; Finger et al., 2011). Thus, farmers can avoid production risks by adjusting their 
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management schemes. Besides their influence on the allocation of on-farm resources to different 

activities, price risks are also expected to influence input decisions (e.g. Sandmo, 1971). More 

specifically, risk-averse decision makers are expected to invest less in inputs if the returns from 

these investments are more uncertain, e.g. due to highly uncertain output price levels, and thus 

reduce profit variability. 

In summary, farmers have several simple and cheap - but efficient - options to reduce the 

influence of price and production risks on their farm income. This is in particular the case if risk 

mitigation potentials are jointly analyzed at the whole-farm level, and not at the level of specific 

activities. However, most studies investigating production and price risk effects on management 

decision in cropping systems do not focus to more than one crop simultaneously (e.g. Finger, 

2012; Rajsic et al., 2009; Rosegrant and Roumasset, 1985). Nevertheless, the full potential of 

adjusting crop specific management schemes to changing production and price risks is only 

tapped if all activities of a farm are considered simultaneously. This also affects the impact of 

specific constraints that are relevant at the farm-level and have to be considered in agricultural 

modeling approaches. In a whole-farm model, it is possible to reduce resource allocation (e.g. 

fertilizer, workload, machinery) for a single activity which offers potentials for (or even gives 

incentives to) an increasing use of these resources in other activities, while balances of nutrient, 

working time, etc. at the farm-scale are still balanced. However, if only one crop is considered, 

such tradeoffs cannot be taken into account. Furthermore, not the interannual variation in 

returns of a single farm activity but of the whole-farm income is essential from the farmer’s 

perspective. The variability in the whole-farm income, however, is always lower than for the 

most risky farm activity, if the farm has more than one type of business activities. Thus, single-

crop investigations may over-estimate the role of production and price risks in agricultural 

decision making. 

Our analysis addresses the case of Swiss agriculture. This example provides interesting 

insights and is relevant even though interannual income variability at farm-level is currently 

rather small if compared with other countries, because significant changes in risk exposure are 

expected. On the one hand, climate-related production risks and price risks are much smaller 

than in other European countries (e.g. Finger, 2012). On the other hand, governmental direct 

payments make up a large percentage of the farm revenue and thus stabilize the farmer’s income 

(e.g. El Benni and Finger, 2012). Nevertheless, Swiss farmers are expected to be exposed to 

higher production and markets risks in the next decades: First, climate change (CC) is expected 

to increase yield variability in Swiss crop production (e.g. Torriani et al., 2007). Second, further 

market liberalization measures are assumed to increase the price volatility of agricultural 

outcomes (Mahul, 2003). More specifically, crop price volatility in the neighboring countries of 

the European Union is markedly higher, which may cause a sharp increase in price risks in 

Switzerland for market integration (e.g. Finger, 2012). Because changes in production and price 

risks may not affect all crops homogenously (e.g. Lehmann, 2010), taking a whole farm 

perspective may offer interesting insights in potential risk mitigation options.  
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First, different sets of decision variables (i.e. nitrogen fertilization amount, irrigation 

strategy, crop acreage, see upper-right panel of Figure 1) are generated for each crop. These sets 

of variables are considered as potential solutions for an optimal (i.e. maximizing the farmer’s 

utility) farm management scheme. The decision variables are then passed to CropSyst (middle 

panel of Figure 1), where they are used as management input variables for climate specific crop 

yield simulations. The weather input files for CropSyst are generated by the stochastic weather 

generator LARSWG (left panel of Figure 1). To represent production risks due to uncertain 

weather conditions, the yield simulation procedure for a specific set of decision variables is 

executed 25 times, using different weather states generated with LARSWG. The simulated (25) 

crop yields are then fed into the economic model in order to compute the whole-farm return of a 

specific set of management decisions and the related costs (e.g. fertilization amount, drying 

costs) (bottom-right panel of Figure 1). Note that this step already includes information on 

production risks, as 25 different yield levels are input for the economic calculation steps. In 

order to take additionally price risks into account, all yield events are combined with price 

levels generated from multivariate distribution of crop prices in Switzerland (details are 

presented below). Finally, values for farm-level mean revenues as well as values for interannual 

revenue variation are used to calculate utility levels (representing a risk-averse decision maker) 

at farm-scale. This entire modeling structure is embraced by GAs. GAs are an optimization 

technique which aims to find the set of decision variables that maximizes farmers’ utility. To 

this end, the most promising sets of decision variables are used to create subsequent generations 

(e.g. by crossover and mutation) that lead potentially to higher utility levels. Thus, the starting 

point described above initiates a loop structure that approaches the final solutions. Technical 

details on the GAs are presented at the end of this section. GAs work non-parametrically, i.e. 

avoid any estimation of production and yield variability functions. Thus, this approach allows to 

fully represent the highly complex and nonlinear relations between target variable (utility) and 

the decision variables, which cannot be represented by mathematical functions. 

This proposed modeling approach is applied to an exemplary arable farm in Western 

Switzerland, located in the Broye catchment (see Lehmann et al., 2012, for details). The farmer 

as decision maker in the model can choose between 6 production activities: winterwheat, 

winterbarley, winter rapeseed, grain maize, potatoes or sugarbeets. These are the most important 

crops in Swiss agriculture. For each of these crops, the developed whole-farm model optimizes 

crop acreage, as well as crop specific nitrogen fertilization amounts and irrigation strategies. All 

considered management strategies are summarized in Table 1. To account for restrictions with 

regard to crop specific agronomic limitations as well as with regard to limitations imposed by 

the agricultural policy in Switzerland (i.e., cross-compliance requirements) and farm structure in 

the study region, we impose the following constraints in the model:  

 The total farm acreage amounts to 30 hectares, corresponding to a representative crop 

producer in the study region. 

 The cross compliance obligations of the direct payment system in Switzerland limit the 

maximum share of several crops: Winterwheat is limited to a maximum acreage of 50%, 
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the sum of all cereals (without grain maize) is limited to 66% of the total arable surface, 

the maximum crop share of grain maize is 40% and the maximum crop share of winter 

rapeseed, potatoes and sugarbeets is 25% of the total surface of arable land (BLW, 2011).  

 The farm has to comply with a balanced nitrogen supply and demand at farm level as 

revealed by the official Swiss nutrient balance method “Suisse Bilanz” (BLW, 2011). In 

this nutrient balance approach a maximum nitrogen amount is specified for each crop 

whereas the nitrogen demand and supply has to be balanced at farm-level. 

 The farmer is obliged to cultivate a minimum of four different crops in order to receive 

governmental direct payments (BLW, 2011). 

 The farmer’s maximum available work time per season amounts to 2800 hours. We 

assume a total workload for winterwheat, winterbarley and winter rapeseed of 41 hours 

per hectare, for grain maize the working time per hectare is assumed to amount to 37 

hours and for potatoes and sugarbeets the total workload is set to 258 and 94 hours per 

hectare, respectively (AGRIDEA and FIBL, 2010).  

 The nitrogen fertilization amount of potatoes and sugarbeets is restricted to a maximum 

quantity of 150 and 130 kg·ha-1, respectively. Higher nitrogen fertilization dosages have a 

negative influence on the quality of the potato and sugarbeet harvest and are therefore not 

reasonable. 

 

Table 1: Considered management variables 
Decision 
Variable 

Crop Management variable 
and unit1 

Range (min-max) 
considered in the 
modeling 
approach 

Variable 
increment 
(possible steps 
considered in the 
model) 

Number of 
Alternatives 

1 Winterwheat Crop acreage in % of 
total arable surface 

0-50 1 51 

2 Winterwheat Nitrogen fertilization 
amount in kg·ha-1 

0-200 10 21 

3 Winterwheat Irrigation strategy 
(trigger point of 
irrigation)1 

0-1 0.1 11 

4 Winterbarley Crop acreage in % of 
total arable surface 

0-66 1 67 

5 Winterbarley Nitrogen fertilization 
amount in kg·ha-1 

0-200 10 21 

6 Winterbarley Irrigation strategy 
(trigger point of 
irrigation)1 

0-1 0.1 11 

7 Winter rapeseed Crop acreage in % of 
total arable surface 

0-25 1 26 

8 Winter rapeseed Nitrogen fertilization 
amount in kg·ha-1 

0-200 10 21 

9 Winter rapeseed Irrigation strategy 
(trigger point of 
irrigation)1 

0-1 0.1 11 

10 Grain maize Crop acreage in % of 
total arable surface 

0-25 1 26 
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11 Grain maize Nitrogen fertilization 
amount in kg·ha-1 

0-200 10 21 

12 Grain maize Irrigation strategy 
(trigger point of 
irrigation)1 

0-1 0.1 11 

13 Potato Crop acreage in % of 
total arable surface 

0-25 1 26 

14 Potato Nitrogen fertilization 
amount in kg·ha-1 

0-150 10 16 

15 Potato Irrigation strategy 
(trigger point of 
irrigation)1 

0-1 0.1 11 

16 Sugarbeet Crop acreage in % of 
total arable surface 

0-25 1 26 

17 Sugarbeet Nitrogen fertilization in 
kg·ha-1  amount 

0-150 10 16 

18 Sugarbeet Irrigation strategy 
(trigger point of 
irrigation)1 

0-1 0.1 11 

1 The trigger point of irrigation represents the level of soil moisture that automatically triggers irrigation, and ranges 
from 0 (permanent wilting point) to 1 (field capacity). 
 

In the following paragraphs each sub-model in the bioeconomic model is briefly 

described and its settings are presented.  

2.1. Crop Growth Model 

We use CropSyst (Version 4.13.09) in order to simulate climate and management 

dependent yields for each of the six crops. CropSyst is a process-based crop growth model that 

simulates biological and environmental above- and belowground processes of a single land 

block fragment using daily weather data, information of soil and crop characteristics as well as a 

specific management scheme at a daily scale. Stöckle et al. (2003) provide a detailed overview 

on the model and its components as well as on applications of the model CropSyst was already 

applied for Swiss crop production under current and future climatic conditions (e.g. Torriani et 

al. 2007; Finger et al., 2011). For this study, a CropSyst calibration for the study region of Klein 

et al. (2011) was used (details on specific assumptions made are also available upon request 

from the authors). 

2.2. Stochastic Weather Generator 

Daily weather input variables required for CropSyst simulations (daily minimum and 

maximum temperature, rainfall occurrence and amount and daily total solar radiation) of present 

and future expected climate conditions at the climate station Payerne (PAY, 6°57’E, 46°49’N, 

490 m a.s.l.), which is located in the Broye catchment, are generated by the stochastic weather 

generator LARSWG (Semenov and Barrow, 1997; Semenov et al., 1998). The Baseline 

scenario, representing current climatic conditions, refers to the period 1990-2009. In addition, 

we also employ a scenario for future climate (CC scenario ETHZ-CLM) that represents the 

nominal time frame 2036-2065 assuming the A1B emission scenario and is based on the global 
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circulation model HadCM3 and the regional climate model CLM. The resulting changes in 

temperature, precipitation and radiation regimes are summarized in Table A1 in the Appendix. 

Most importantly, this climate scenario indicates higher temperatures throughout the year (with 

particular increases in mid-summer) as well as marked decreases of summer precipitation (e.g. 

precipitation in the months July and August decreases by up to 30%). Further information on 

the employed climate scenarios and downscaling approach are presented in Lehmann et al. 

(2011, 2012).  

2.3. Economic Model 

The simulated crop yields are integrated in the economic model where for each crop the 

profit margin – depending on the simulated crop yields and chosen management decisions – 

 is calculated. Accordingly, the profit margin at farm level is the result of all crop specific profit 

margins multiplied by the crop acreage. To represent the utility maximization problem of a risk-

averse decision maker, information on both mean and variability of profit margins are combined 

in a certainty equivalent (CE) maximization approach. The CE denotes the non-random level of 

payoff which is rated by the farmer (in terms of utility) equivalent to an uncertain (i.e. random) 

level of payoff. 

This farm-level CE, which is the final objective variable in our model, is computed as 

follows:  

  RPECE      (1) 

Where E(π) is the expected profit margin at farm level and RP is the risk premium, both 

expressed in CHF. The RP is the sure amount of money the decision maker is willing to pay to 

eliminate risk exposure (Di Falco et al., 2007). According to Pratt (1964), the RP can be 

approximated by Equation 2: 

2

)(2

1





E
RP    (2) 

Where   is the coefficient of relative risk aversion and 2
  is the variance (CHF) of the profit 

margin at farm level   (CHF). For this study, we assume   to be 2 which corresponds to a 

moderate risk-averse decision maker and implies decreasing absolute risk aversion (Di Faclo 

and Chavas, 2006).  

The expected profit margin )(E  and the variance of the profit margin at farm level 2
  is 

derived from the annual profit margins at farm level. The profit margin at farm level is defined 

as follows: 

 



N

i
iiirrigifixiii cccDPa

1
var,,,   (3) 

Where  is the profit margin (CHF · ha-1) at farm level, ia  is the cultivated surface of crop I 

(ha), i  is the revenue of the crop i (CHF · ha-1) and iDP  are the governmental direct payments 
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(CHF · ha-1) for the crop i. ifixc , stands for the fixed costs (CHF · ha-1) (excluding irrigation 

systems), iirrigc , for the fixed costs of the irrigation systems (CHF · ha-1) and icvar,  for the 

variable costs (CHF · ha-1) of the crop i. Note that iirrigc , = 0 if no irrigation is applied. More 

details of the here employed assumptions on revenues and costs are given in Table 2. 

 

Table 2: Revenue and costs  

Revenue 
Winter-

wheat 
Winter-

barley 
Winter 

rapeseed 
Grain 
maize 

Potato Sugarbeet 

Crop price levels (in CHF · t-1). Averages for 
the period 2002-2009 (Standard deviation in 
parentheses)1 

0.514 
(0.034) 

0.379 
(0.036) 

0.787 
(0.104) 

0.379 
(0.052) 

0.454 
(0.030) 

0.054 
(0.006)2 

Direct payment       

Direct payment (CHF · ha-1)2 1680 1680 2680 1680 1680 3580 

Fixed costs       

Seed (CHF · ha-1)3 218 143 108 268 3585 407 

Plant protection (CHF · ha-1)3 265 265 250 220 800 525 

Plant growth regulant (CHF · ha-1)3 41 41 0 0 0 0 

Contract work and machinery costs (CHF · 
ha-1)3 

783 783 787 844 2591 1409 

Fixed irrigation costs       

Irrigation system costs (CHF · ha-1)4 447 447 447 447 447 447 

Variable costs       

Nitrogen fertilizer (CHF · kg-1 · N-1 )3 1.4 1.4 1.4 1.4 1.4 1.4 

Other fertilizer costs (CHF · kg-1 · N-1 )3 0.72 0.73 0.94 1.54 3.49 1.41 

Hail insurance (% of Crop Yield Revenue)3 2.4 2.4 5.6 3.6 2.4 2.4 

Cleaning, drying costs (CHF · t-1)3,5 39.5 32.5 58.5 71.3 1.5 0 

Other costs (CHF · t-1)3 6.7 1.2 16.3 0 0.5 12 

Variable irrigation costs (CHF · mm-1 · ha-1 )4 1.00 1.00 1.00 1.00 1.00 1.00 

Interest rate (%)3 3.0 3.0 3.0 3.0 3.0 3.0 
1 Source: FAOSTAT 2002-2009. 2Since in Switzerland in the year 2009 the reference sugarbeet price decreased by 
more than 30%, we used German sugarbeet prices. In order to account for higher prices levels of agricultural products 
in Switzerland we multiplied the German prices by a factor of 1.3. This procedure ensures that mean prices and 
coefficients of variation remain as observed in Switzerland. 3Source: AGRIDEA and FIBL (2010). 4Source: Spörri 
(2011). 5Note that the cleaning and drying costs depended on the yield levels at harvest which have a higher water 
content than the final yields. 

2.4. Price risks 

Besides different climate scenarios, we also consider two different scenarios with regard 

to the volatility in crop prices. For both scenarios, the means, variances and covariances of the 

crop prices in Switzerland of the period 2002-2009 obtained from the FAOSTAT database are 

used as basis. By means of the R package MASS 7.3-16 available from CRAN (http://cran.r-

project.org), crop prices are generated by a multivariate normal distribution (Ripley, 1987). This 
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approach ensures that correlations between prices of the different crops are represented in the 

decision process. The scenario Vol0 represents current price risks, i.e. crop prices for the 25 

simulation years are generated assuming identical means and covariances of the prices as 

observed in the period 2002-2009. For the scenario Vol+, representing potential future price 

risks, all values in the covariance matrix of crop prices are quadrupled whereas the average crop 

prices are kept at the observed levels. Therefore, Vol+ can be seen as scenario where the 

volatility (expressed as standard deviation) in crop prices is twice high as observed in the period 

2002-2009. The doubling of price standard deviations represents the currently observed 

difference between price volatilities in Switzerland and, for instance, the European Union for 

most crops considered (e.g. Finger, 2012). The average prices and the correlation patterns 

between the prices of different crops, however, are in both scenarios similar. Thus, we focus on 

impacts of more volatile prices only, and do not address changes in mean price levels that are 

beyond the scope of this paper.  

In summary, we run 4 different scenarios with the above presented modeling approach to 

represent two different climatic and two different price volatility scenarios, which are presented 

in Table 3. 

 
Table 3: Overview of the applied scenarios 

 Observed price volatility 
Doubled price volatility (higher price risk, 
e.g. due to market liberalization) 

Baseline scenario Baseline - Vol0 Baseline - Vol+ 

ETHZ-CLM scenario 
(changing production risk 
due to climate change) 

ETHZ-CLM - Vol0 ETHZ-CLM - Vol+ 

 

2.5. Genetic Algorithms 

We use GAs as optimization technique since the relations between the CE and the 

decision variables cannot be represented by mathematical functions, as these relations have a 

highly complex and nonlinear nature. GAs, on the other hand, which are based on the biological 

concept of genetic reproduction (Mayer et al., 1999) and belong to the heuristic optimization 

techniques, can handle any kinds of objective functions and constraints defined on discrete, 

continuous, or mixed search spaces (Gen and Cheng, 1997). For this work, we use the C++ 

based GA package Galib (Wall,1996) and apply a steady-state GA. We set the control 

parameters to the GAs as follows: genome size = 8 bits; population size = 500; proportion of 

replacement = 0.5; selection routine = roulette wheel; mutation probability = 0.05; crossover 

probability = 0.5; and a sigma truncation scaling (Wall, 1996) is used as fitness function. The 

GA stops when a generation’s best fitness value does not change anymore after a sequence of 

1500 generations. 
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prices and therefore also more vulnerable to the volatility of the market prices. Furthermore, we 

assumed in our analysis that price variability increases occur homogenously across crops, i.e. 

for Swiss agriculture at large. However, we are aware that some crops may face higher increases 

in price volatility than others, which could and should be reflected in future research. 

Our results critically depend on the different model components and the assumptions 

made. Thus, a wider set of scenarios is needed to validate the expected farm-level responses to 

CC and increasing price risks. More specifically, our finding that CC will induce a comparative 

advantage of winter rapeseed compared to winterwheat contrasts the findings of Torriani et al. 

(2007) who indicate contrary results for Swiss winter rapeseed and winterwheat production. 

Their results, however, were focused on a different location in Switzerland and use different 

climate scenarios, which underlines the importance of site specific CC impacts and adaptation 

analyses (i.e. including site specific model calibrations as well as soil and weather information). 

This conclusion is further supported by our finding that CC may not necessarily increases 

production risks. In contrast, decreasing yield variability has been found in our study for most 

crops. In the here assumed study region, winterwheat benefits (in terms of production risks) 

from CC, and for spring sown crops higher irrigation intensities are used by the farmer to 

mitigate increasing production risks. Large spatial heterogeneities across Switzerland with 

regard to responses of mean yields and yield variability to CC have been also highlighted by 

Lehmann (2010). 

Our results also show that grain maize production is not profitable in any of the 

considered scenarios. The here considered Broye catchment suffers already under current 

climate frequently from too dry climate in mid-summer (e.g. Mühlberger de Preux, 2008), a 

critical period for maize production. Thus, maize production may be too risky (compared to the 

relatively low mean profit margins) for the here considered crop producing farm.  

 

5. SUMMARY AND CONCLUSION 

In this paper, we developed a bio-economic model that combines a crop growth model 

and an economic decision model non-parametrically using GAs. In contrast to many other 

studies, our analysis focuses on the farm-level. This modeling approach was used to investigate 

impacts of CC and likely increases in price risks on income, income variability and utility in 

crop production in Western Switzerland. Furthermore, adaptation responses to these changes in 

the market and climatic environment have been analyzed. The farm-level modeling approach 

enabled us to integrate a much wider set (if compared to single crop studies) of potential 

adaptation responses in our analysis. The model is applied to in total, four scenarios that 

represent likely changes in environmental conditions due to CC as well as increasing price risks 

due to market liberalization, and combinations thereof.  

It shows that CC has the larger influence on farm-level income and utility as well as 

management decisions than a higher crop price volatility. More specifically, CC induces smaller 

income levels and an increasing irrigation intensity for spring-sown crops such as potatoes and 
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sugarbeets. In contrast, our results indicate that an increasing price variability has only small 

impacts on crop choice and input use. However, both CC and increasing price volatility 

contribute to an increasing farm-level income risk.  

Our results thus indicate that policy makers, farmers and environmental planners have to 

take likely increases in agricultural water need into account if planning for the future. In 

addition, the increases in (relative) farm-level income volatility due to CC and/or increasing 

price variability show that risk management options such as insurance based instruments, which 

are poorly developed in Swiss agriculture (Finger and Calanca, 2011, Finger and Lehmann, 

2012) will become much more important in the future. In order address these needs, policy 

makers and other stakeholders have to assist farmers in making the necessary steps in the future. 
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APPENDIX 

Table A1: Applied changes in climate variables for the ETHZ-CLM scenario 
Month Δ Tmin (°C) Δ Tmax (°C) Δ Rad (%) Δ Precip (%) 
Jan +2.51 +2.51 -3 -4 
Feb +1.82 +2.00 -4 -2 
Mar +1.91 +2.14 -4 -2 
Apr +2.06 +2.15 -2 -3 
May +1.85 +2.07 +2 -6 
Jun +2.18 +3.08 +7 -18 
Jul +2.82 +4.23 +9 -30 
Aug +3.11 +4.39 +8 -28 
Sept +2.78 +3.41 +3 -11 
Oct +2.29 +2.36 +0 -1 
Nov +2.28 +2.23 +0 -4 
Dec +2.69 +2.60 -2 -4 
Table A1 shows the absolute applied changes in the monthly mean minimum temperature (Δ Tmin), in the monthly 
mean maximum temperature (Δ Tmax), and the relative changes in the monthly mean radiation (Δ Rad) and in the 
monthly mean precipitation sum (Δ Precip) for the used CC scenario ETHZ-CLM.  


