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Minimizing geographical basis risk of weather derivatives 

using a multi-site rainfall model  

Ritter M., Mußhoff O. and Odening M.  

 

Abstract 

Weather risk is one of the main causes for income fluctuation in agriculture. Since 1997, the 

economic consequences of weather risk can be insured with weather derivatives, which are of-

fered for many different weather events, such as temperature, rainfall, snow or hurricanes. It is 

well known that the hedging effectiveness of weather derivatives is interfered by the existence of 

geographical basis risk, i.e., the deviation of weather conditions at different locations. In this 

paper, we explore how geographical basis risk of rainfall based derivatives can be reduced by 

regional diversification. Minimizing geographical basis risk requires knowledge of the joint dis-

tribution of rainfall at different locations. For that purpose, we estimate a daily multi-site rain-

fall model from which optimal portfolio weights are derived. We find that this method allows to 

reduce geographical basis risk more efficiently than simpler approaches as, for example, in-

verse distance weighting. 

 

Keywords: Risk management, weather risk, regional diversification, portfolio weights 

 

JEL classification: G11, Q14, G32.  

1. INTRODUCTION  

Since the start of trading weather derivatives at the Chicago Mercantile Exchange in 

1999, these new financial instruments have become more and more popular to insure weather 

risk. Opposite to usual insurances, their payoff does not depend on the actual damage, but on a 

specific weather event. Examples of weather indices, which are used as an underlying of 

weather derivatives, are cumulative temperature, heating degree days, cumulative rainfall, as 

well as the occurrence of snow or hurricanes. All weather derivatives have in common that the 

underlying weather event has to be reported by an independent weather station. Consequently, 

the payoff of weather derivatives cannot be influenced by buyers or sellers and thus moral haz-

ard and adverse selection that plague conventional insurance are curbed (cf. Jin et al., 2005). As 

many sectors are weather sensitive (Lazlo et al., 2011; Nadolnyak and Hartarska, 2012), one 

would expect that weather derivatives are widely used for insuring weather risk. However, the 

acceptance of these risk management tools, for example, in agriculture as well as in other sec-

tors, has fallen short of expectations so far. A major obstacle for the use of weather derivatives 

in practice is the existence of basis risk (Vedenov and Barnett, 2004; Chen and Roberts, 2004; 

Woodard and Garcia, 2008; Mußhoff et al., 2011), i.e. “the payoff of the derivative does not 

perfectly correspond to the shortfalls of the underlying exposure” (Berg and Schmitz 2008: 

123). The deviation between actual losses and insurance payoff reduces the hedging effective-

ness of weather derivatives and lowers the willingness to pay for these instruments. Basis risk 

can be distinguished in production basis risk and geographical basis risk. The former is caused 
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by a low correlation between the weather variables relevant for the insurance payoff and the 

economic losses, while the latter arises from the difference between the weather conditions at 

the reference station of the derivative and the weather conditions at the buyer's location. Produc-

tion basis risk is specific to a particular business and varies between sectors. Private energy con-

sumption, for example, is closely related to outside temperature and thus the stochastic demand 

for electricity can be replicated fairly well by temperature indices. Hence, production basis risk 

is relatively low for electricity companies. In contrast, the agricultural sector is usually exposed 

to pronounced production basis risk because the functional relation between crop yields and 

weather conditions is very complex and cannot be captured by simple weather indices. 

In this paper, we focus on geographical basis risk, which is unavoidable, also because 

weather derivatives are not provided for every existing weather station. The severity of geo-

graphical basis risk mainly depends on two factors. First, the density of reference weather sta-

tions is important. To increase liquidity of the market for weather derivatives, only a selection 

of standardized contracts is offered. The CME, for example, offers trading of different tempera-

ture derivatives for 24 cities in the USA, six in Canada, eleven in Europe, three in Australia and 

three in Japan. Moreover, it started trading standardized rainfall derivatives for ten selected US 

cities in 2011. Second, the geographical basis risk depends on the kind of weather variable. 

While temperature shows a high spatial correlation, this is not the case for precipitation, which 

is a local phenomenon (Xu et al., 2010). To cope with this problem, we follow Berg and 

Schmitz (2008) who suppose that geographical basis risk can be reduced by using a portfolio of 

derivatives for different locations. Identification of an optimal regional portfolio, however, re-

quires the determination of weights for all portfolio components which reflect the correlations 

between their payoffs. An intuitive approach would be to weight the derivatives according to the 

inverse distance between the reference weather station and the buyer's location. Unfortunately, 

there is empirical evidence that the correlation between rainfalls at different locations frequently 

is not a simple decreasing function of the distance (Odening et al., 2007), which is particularly 

true for mountainous regions (Salsón and Garcia-Bartual, 2003). This finding suggests a statisti-

cal approach for the determination of the portfolio weights. The objective of this paper is to 

provide a statistical model supporting this task. For that purpose, we employ a daily multi-site 

rainfall model, which estimates the joint probability distribution of rainfall occurrence and rain-

fall amounts at different places. From that model, any rainfall based index can be derived and 

simulated. A daily modelling approach is sophisticated, but it has the advantage that estimation 

can be based on a much richer data set compared to a direct estimation of weather indices. 

The contribution of our paper is twofold. First, we analyse to what extent geographical 

basis risk of rainfall based weather derivatives can be mitigated by optimal regional diversifica-

tion. We analyse this problem for two exemplary regions in Germany. Second, to our best 

knowledge this is the first time that a multi-site rainfall model is utilized in the context of de-

signing weather derivatives. We compare this approach with two simpler methods to determine 

optimal portfolio weights. These are historical simulation, where the optimal weights of the 
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payoffs in the past are assumed to be the best for the future, and inverse distance weighting, 

where the weights just depend on the distance to the reference station. 

The paper is organised as follows. In the next section, we describe the problem of optimal 

regional diversification in greater detail. Thereafter, we introduce the daily rainfall model and 

explain how it can be used to determine optimal portfolio weights. Section 3 describes the data 

used in this study and reports measures of the model validity. Section 4 applies the rainfall 

model to the diversification problem and compares the results with two benchmark methods. In 

Section 5, we conclude with some further discussion. 

2. METHODS  

2.1. Economic background 

The revenue kR0,  of a rainfall-dependant producer at location k  at time 0 can be 

modelled as the product of the rainfall-dependant production function )( ,kTT IQ , the product's 

market price P  and the discount factor tre   (cf. Mußhoff et al., 2011):  

 tr
kTTk ePIQR )(= ,0,  (1) 

 where kTI ,  denotes a rainfall index measured at time T  at location k . 

The producer can hedge his/her rainfall risk by buying a weather derivative whose 

payoff depends on a rainfall index lTI ,  measured at location l . At time 0 , the buyer pays 

)( ,0 lTIF  for this derivative to get a payoff )( ,lTT IF  at time T , which has to be considered in 

the revenue function (1). With the derivative with reference weather station l , the revenue kR ,0'  

becomes:  

 )()(=' ,0,0,,0 lT
tr

lTTkk IFeIFRR    (2) 

 Ideally, the location of the production k  and the reference weather station of the derivative l  

are the same. If lk  , the problem of geographical basis risk appears: The production )( ,kTT IQ  

depends on the rainfall at the buyer's place k , but the derivative has a different reference station 

l  with payoff )( ,lTT IF . 

Instead of buying only one derivative for location l , the buyer can combine derivatives 

of the K  nearest reference stations. For this combination, he/she would pay a compound 

premium )(0 T
K IF  with  

 )(:=)( ,0

1=

0 iTi

K

i

T
K IFIF   (3) 

 and i  being the weight for the i th derivative. At time T , the buyer would receive a 

compound payoff )( T
K

T IF ,  
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 )(:=)( ,

1=

iTTi

K

i

T
K

T IFIF   (4) 

 with the same weights i  and TI  denoting the same weather index as before, measured at K  

reference stations. Consequently, the revenue with K  derivatives becomes:  

 )()(=' 00,,0 T
Ktr

T
K

Tk
K

k IFeIFRR    

If, hypothetically, derivatives were offered for location k , so lk =  in Equation (2), the 

revenue would be:  

 )(
~

)(
~

='
~

,0,0,,0 kT
tr

kTTkk IFeIFRR    

 with „~ ‟ denoting the hypothetical case. 

Our aim is to identify the best approximation of the hypothetical revenue kR 0,'
~

 by 

means of the compound revenue K
kR ,0' . This can be achieved by minimizing the (quadratic) 

difference between kR 0,'
~

 and K
kR ,0' :  

  2'
,0

'
,0

~
min

K
kk

K

RR  with 

))()(())(
~

)(
~

(=''
~

sderivativeK  ofn combinatio

00,

derivative alhypothetic

,0,0,,0,0     
T

Ktr
T

K
TkkT

tr
kTTk

K
kk IFeIFRIFeIFRRR    

 ))()(())(
~

)(
~

(= 0,0, T
Ktr

T
K

TkT
tr

kTT IFeIFIFeIF    

 ))()(
~

())()(
~

(=

prices

0,0

payoffs

,
    
T

K
kT

tr
T

K
TkTT IFIFeIFIF    (5) 

The first part of Equation (5) describes the difference between the payoffs from the hypothetical 

derivative and the compound derivative. The second term measures the difference between their 

prices. Note that this equation is independent of kR0, , the revenue without a derivative. Hence, 

the results do not need a specification of the production function as long as the production 

depends on the same weather index as the derivative. The prices in Equation (5) are difficult to 

obtain, especially for the hypothetical derivative, which is not offered on the market. In order to 

avoid further assumptions on the pricing methods, we neglect the difference between the prices 

and concentrate on the difference between the payoffs, i.e. the approximation of )(
~

,kTT IF  by 

)( T
K

T IF . 

As it can be seen from Equation (3) and Equation (4), the weights i  affect the results 

of the approximation, too. To get a good approximation, the optimal weights have to be 

determined. In the next section, a multi-site rainfall model is proposed that supports the 

determination of these weights. Afterwards, two benchmark approaches for calculating the 

weights are introduced. 
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2.2. Multi-site rainfall model 

 In the multi-site rainfall model approach (MRM), a rainfall model is adjusted to the 

historical daily rainfall at all locations where derivatives are offered. This model is able to 

simulate future rainfall paths and the optimal weights are determined on the basis of these 

simulations. 

The model used in this study is based on the Wilks model (Wilks, 1998) as this is a 

widely accepted model and outperformed the hidden Markov model (Hughes et al., 1999) and 

the non-parametric K -nearest neighbour model (Buishand and Brandsma, 2011) in the 

generation of multi-site precipitation occurrence processes (Mehrota et al., 2006). In the multi-

site rainfall model, the daily rainfall amount ktY ,  at time t  at location k  is described as the 

product of a rainfall amount process ktr ,  and a rainfall occurrence process ktX , .  

 
 

occurrence

,

amount

,,  = ktktkt XrY   (6) 

These two processes are modelled separately for each station (single-site) and used later for 

multi-site modelling. 

 Occurrence process. The single-site daily occurrence process ktX ,  for location k  is 

modelled as a zero-one process for rain (1) or no rain (0).  

 




kt

kt
X kt

locationatwetisdayif1

location atdryisdayif0
=,  

ktX ,  is assumed to follow a first-order, two-state Markov process implying that the probability 

of rainfall occurrence just depends on the weather condition of the previous day (cf. Roldán and 

Woolhiser, 1982; Wilks, 1998). The process is described by the transition probabilities 01
,ktp  and 

11
,ktp , which capture the probability of rain if it rained on the previous day or not.  

 
1}=|1={Pr=

0}=|1={Pr=

1,,
11
,

1,,
01
,

ktktkt

ktktkt

XXp

XXp



  (7) 

In the following, we write 01/11
,ktp  as an abbreviation for 01

,ktp  and 11
,ktp .  

Wilks (1998) models these probabilities as monthly constants. In this paper, however, 

we model them as daily changing values within a year and approximate them by truncated 

Fourier series. Between years, transition probabilities stay constant, i.e. 01/11
365,

01/11
, = ktkt pp  . The 

coefficients of the Fourier series are estimated by maximizing log-likelihood functions 

(Woolhiser and Pegram, 1979). The order of the Fourier series is determined by means of the 

Akaike information criterion (AIC). 
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Following Wilks (1998), the single-site occurrence process can be simulated step by 

step by using standard normally distributed random numbers1 )1,0(~, Nkt  and a starting value 

kX 0, :  

 




 

otherwise0

][if1
=

01/11
,,sim

,
ktkt

kt

p
X


 (8) 

 Amount process. The single-site daily rainfall amount process ktr ,  for location k  is 

assumed to follow a mixed exponential distribution (cf. Woolhiser and Roldán, 1982; Wilks, 

1998):  

 

























kt

kt

kt

kt

kt

kt

kt

kt

kt

rr
rf

,

,

,

,

,

,

,

,

, exp
1

exp=][







 (9) 

with 0>,, ktkt    and 1<<0 ,kt  for all t . It is the sum of two exponential distributions, one 

with a higher mean kt ,  and one with a lower mean kt , , mixed by the parameter kt , . 

Wilks (1998) also models these parameters as monthly constant, whereas in this paper, 

they are approximated by truncated Fourier series. Again, the coefficients of the Fourier series 

were estimated by maximizing log-likelihood functions (Woolhiser and Pegram, 1979) and their 

orders are determined by the AIC. For simplicity, we here assumed that the orders of the Fourier 

series for kt , , kt ,  and kt ,  are equal. Otherwise, the computational effort would increase 

cubically. When the parameters kt , , kt ,  and kt ,  are estimated for location k , the amount 

process for location k  can be simulated via:  

   ktktkt zrr ,,min
sim
, ln=   (10) 

Here, minr  describes the minimal amount that is detected as rain (0.1 mm), and kt ,  is given by  

 


 

kttkt

kttkt

kt u

u

,,

,,

, >if

if
=




  

with a uniform [0,1]  random variable tu  deciding which exponential distribution is chosen. The 

variate ktz ,  in Equation (10) follows a standard normal distribution and is independent of kt , . 

Multi-site modelling. After the single-site occurrence processes and the single-site 

amount processes are estimated for every location, these processes can be used for the multi-site 

modelling. Similar to the single-site occurrence process (8), the multi-site occurrence process is 

simulated by  

                                                      

 

 
1 Instead of using standard normally distributed random numbers, a uniform random variable ktu ,  could be com-

pared with )(01/11 kpt  (rain if 
01/11
,, ktkt pu  ) in Equation (8). However, the notation with the standard normal cu-

mulative distribution function   was chosen because it is more practical for the multi-site modelling. 
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otherwise0

][if1
=

01/11
,,sim

,
ktkt

kt

p
X



 (11) 

for all locations k  simultaneously. The kt ,  are again temporally independent, but now 

spatially correlated random variables: ),(~ 1 Σ0ε Kt N . The entries ),( lk  of the covariance 

matrix Σ  describe the spatial correlations between the random variables for location k  and l , 

 ltktlk ,, ,Corr=),(  . 

Computing these correlations separately for each pair of stations leads to a large number 

of parameters that have to be estimated2 as well as to the problem of a possibly not positive 

semidefinite matrix Σ . We overcome these problems by defining ),( lk  by a function of the 

distances between the stations:  

  2),(exp=),( 1
d

lkDdlk   (12) 

with ),( lkD  being the distance between locations k  and l  (Wilks, 1998). The correlation 

),( lk  decreases with increasing distance ),( lkD . The parameters 1d  and 2d  are estimated so 

that they minimize the summarized quadratic difference between the resulting correlation 

),( lk  and the historical correlation ),(0 lk  for all pairs ),( lk , i.e.  20

,
),(),( lklk

lk
  . 

If the single-site parameters kt , , kt ,  and kt ,  and the covariance matrix Σ  are 

estimated for every location, the multi-site amount process is - similar to the single-site amount 

process in Equation (10) - determined for all locations k  simultaneously by  

 )]([ln= ,,min
sim
, ktktkt zrr   (13) 

 Here, minr  describes again the minimal amount that is detected as rain, and t  is given by  

 

 

 

















kt

kt

kt

kt

kt

kt

kt

kt

kt

p

p

,01/11
,

,

,

,01/11
,

,

,

,

>if

if

=











  (14) 

 In the case of rainfall occurrence,  kt ,  is always smaller than or equal to 01/11
,ktp  (see 

Equation (8)). Assuming that there is no rain at the nearest neighbours of location k , so that 

01/11
,, >][ ltlt p  for location l  being close to location k . Because the correlations of the kt ,  are 

                                                      

 

 
2The correlations ),( lk  cannot be derived directly from the data as only the correlations between the 

historical occurrence processes are observable,  0
,

0
,

0 ,Corr=),( ltkt XXlk . The correlation of the ran-

dom variables  ltktlk ,, ,Corr=),(   can be obtained via trial and error by guessing ),( lk  for every 

pair of locations and comparing the resulting ),( lk  with the historical ),(0 lk . By using an adequate 

algorithm, this procedure can be repeated until ),( lk  and ),(0 lk  match. 
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high for near neighbours,  kt ,  is then close to 01/11
,ktp , thus 

 
kt

kt

kt

p
,11/01

,

,
> 


. This leads to the 

smaller parameter kt ,  in Equation (14), so only little rainfall is expected if location k  is in the 

center of a dry area. If there is rain at the nearest neighbours, however, ][ ,kt  is quite small, so 

that 
 

kt

kt

kt

p
,01/11

,

,






, which leads to the higher mean kt ,  in Equation (14). 

In fact, a modified version of Equation (14) is used, where kt ,  is replaced by the 

following term as it better reflects the rainfall at the margins of wet regions (see Wilks (1998) 

for details):  

 

 
 

 




































kt

kt

kt

kt

kt

kt

kt

ktkt

kt

ktktkt

kt

p

pp

,01/11
,

,

,

,01/11
,

,

01/11
,,

,

,,,

,

>if

if
)(

12

=














  

As for the occurrence process, the kt ,z  in Equation (13) are temporally independent, but 

spatially correlated random variables: ),(~ 1, Ζ0z Kkt N . The entries of Z  describe the 

correlations between the random variables,  ltkt zzlk ,, ,Corr=),( , but only the historical 

correlations between the amounts are observable,  0
,

0
,

0 ,Corr=),( ktkt YYlk . Similar to Equation 

(12), the ),( lk  are obtained by a function of the distance between locations:  

  4
3 ),(exp=),(

d
lkDdlk   (15) 

 with 3d  and 4d  minimizing  20

,
),(),( lklk

lk
  . 

With all parameters at hand, the multi-site precipitation process can be simulated for all 

locations k  - following Equation (6) - as the product of the simulated multi-site occurrence 

process (Equation (11)) and the simulated multi-site amount process (Equation (13)). This 

multi-site model can be used to simulate future rainfall MRM
,ktY  for all locations simultaneously 

resulting in future rainfall indices MRM
,kTI  and future payoffs of the derivative )( MRM

,kTT IF . Then, 

the optimal weights 
MRM
i  are obtained by linear regression depending on the number of 

derivatives K  used for the combination. The equation system used for the regression consists of 

MRMn  equations of the form  

   )()()(=)(
~ MRM

,
MRMMRM

,2
MRM
2

MRM
,1

MRM
1

MRM
, KTTKTTTTkTT IFIFIFIF   

   )(= MRM
,

MRM

1=

iTTi

K

i

IF   (16) 

for MRMn  years of simulated rainfall data.   denotes the error term. 
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2.3. Benchmark approaches 

Historical simulation. The first benchmark approach is historical simulation (HS), 

which is actually based on the empirical rainfall distribution. It analyzes how the derivative 

would have performed in the past and assumes that the best weights for the historical payoffs 

will perform best in the future. The optimal weights HS
i  are obtained by linear regression with 

HSn  equations of the form  

   )()()(=)(
~

,
HS

,2
HS
2,1

HS
1, KTTKTTTTkTT IFIFIFIF   

   )(= ,
HS

1=

iTTi

K

i

IF  

 for HSn  years of historical rainfall data.   denotes again the error term. 

The advantage of this method is that it is easy to implement. The results, however, 

strongly depend on the length HSn  of the used dataset. If the index is calculated only once a 

year, many years are needed. In particular, if the strike level of a put (call) option is set quite 

high (low), the derivative rarely leads to a payoff and the weights depend on very few 

observations. 

Inverse distance weighting. The inverse distance weighting (IDW) approach does not 

depend on any historical weather data, but only on the location of the weather stations and their 

distance to the reference station. It is based on the observation that the correlation between 

weather events decreases by increasing distance, so that the weights p
i
IDW  are determined by 

the inverse of the distance )(0, iD  between locations 0  and i  to the power of p , 1,2,3=p , 

normalized by the sum of the weights (Shepard, 1968):  

 
pi

i
w

)(0,D

1
=  

 
i

i

ip
i

w

w


=IDW  (17) 

It is important to note that this approach in contrast to the two other methods does not 

depend on any weather data. For the two other approaches, a weather station close to the 

production place is needed to calculate the dependency on the neighbours' weather stations 

where derivatives are offered. This restriction is not necessary for the inverse distance 

weighting, so this approach is much more flexible and can be used for any location. Another 

advantage of this method is its simplicity. No historical data is needed, the weights just depend 

on the geographical distances. This in turn is also the disadvantage: Any spatial dependency 

beyond the distance is neglected. 
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3. DATA 

3.1. Rainfall data 

The dataset used in this study is provided by the German Meteorological Service (DWD). 

It contains daily rainfall data for 49 German weather stations (see Fig. 1) from 01/01/1973 to 

31/12/2010 (38 years). 47 stations are situated all over Germany and represent most of the 

stations where weather derivatives are available from the private supplier of weather derivatives 

„Celsius Pro‟ 3. The other two of the 49 stations represent farms as they are stations in small 

towns: one is in Koßdorf, a town in the south of Brandenburg (eastern Germany), the other one 

is situated in Nordhausen in the south of the mountain range Harz in the center of Germany. 

Those two locations were chosen because of different geographical conditions: Brandenburg is a 

plain region, whereas the Harz is a mountainous area. Agriculture plays an important role in 

both regions. 

 

Figure 1. Map of the stations used in this study; Koßdorf and Nordhausen (gray) represent 

two farms, the other stations (white) represent those places where derivatives are available 

 

Source: own picture 

 

So far, the notation was very general, neither the rainfall index nor the payoff function 

were specified in Section 2. For the rainfall index kTI ,  at location k , we will use exemplarily 

the sum of rainfall in May (in mm),  

                                                      

 

 
3 Celsius Pro: http://www.celsiuspro.com/ 
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 May
,

1=

, = kt

T

t

kT YI   

and for the derivative a put option on this index with payoff  

  kTkkkTT IIF ,, Strike0,max=)(   (18) 

k  describes the tick size which converts the index outcome into a monetary amount. It 

can be set differently for every location k , but for simplification we assume 1== k . 

kStrike  is set to the historical average of rainfall in May at location k . So this option has 

positive payoff if the rainfall in May is lower than the historical average. The month May was 

chosen because rain is very important for farmers in Germany in this period. 

3.2.    Validation   

To examine the performance of the different approaches in predicting the portfolio 

weights, we use an out-of-sample prediction, i.e., we split the whole dataset into a training and a 

testing dataset. The training dataset includes the rainfall data from 1973 to 2000, which is used 

to calculate the weights. Then, it is analyzed how these weights perform in the testing phase 

from 2001 to 2010. For these ten years, the hypothetical payoffs at the buyer's place, )(
~

,kTT IF , 

and the compound payoffs, )( T
K

T IF , are calculated and compared using the root mean square 

error (RMSE):  

     2
,

1=

, )()(
~1

=)(),(
~

RMSE
n

T
K

Tk
n

TT

N

n

T
K

TkTT IFIF
N

IFIF   (19) 

with 10=N  years of testing data. 

4. RESULTS 

4.1. Ex post analysis 

At first, the whole dataset (1973-2010) is analyzed for examining the assumption that a 

linear combination of several neighbours represents the rainfall ktY ,  at a place k  better than just 

the nearest neighbour. For this purpose, we calculate the RMSE (Equation (19)) between the 

actual rainfall at the buyer's place (Koßdorf or Nordhausen) and the rainfall at the nearest station 

by distance (Dresden and Brocken, respectively), i.e. 1=K . Then, using linear regression, we 

calculate the optimal combination of the two nearest stations to approximate the actual rainfall 

( 2=K ). The aggregated rainfall is again compared with the actual rainfall at the buyer's place4. 

This procedure is repeated for more and more stations, sorted by their distance to the buyer's 

                                                      

 

 
4Another way of sorting the neighbours is the correlation of the historical payoffs of the put option. The 

RMSE for the daily rainfall, however, almost does not change if the neighbours are sorted by correlation 

instead of distance. 
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place. The results for Koßdorf and Nordhausen are depicted in the first part of Table 1 for 

101  K . Apparently, the error decreases about 20% if more stations are used than only one, 

but for more than about five stations, the error remains almost constant. 

The buyer, however, is not primarily interested in mimicking the daily rainfall ktY ,  but 

rather in approximating the hypothetical payoff )(
~

,kTT IF  that he/she would get from a 

derivative without geographical basis risk. Therefore, the calculations of the RMSE are repeated 

with the payoffs from a put option on cumulative rainfall in May defined in Equation (18). 

Table 1 shows that for the payoff from the put option, the approximation error decreases by 

29% (Koßdorf) and 17% (Nordhausen) with an increasing number of included derivatives5. 

However, for the payoff from the put option, there are only 38 (yearly) values, while for the 

daily rainfall, there are 365 [days] x 38 [years] = 13870 values available. Because of the low 

number of observations, the calculation of the RMSE is stopped at 7=K  to avoid overfitting 

caused by too many parameters relative to the number of observations6. 

The findings of an decreasing RMSE motivate that using several stations instead of the 

nearest one better replicates the payoff the buyer needs and reduces the geographical basis risk. 

 

Table 1. Root mean square error (RMSE) for the daily rainfall and for the payoff from the 

put option in May for Koßdorf and Nordhausen in dependence of the number of K  nearest 

neighbours used for linear combination (sorted by distance), data 1973-2010 

  1K  2K  3K  4K  5K  6K  7K  8K  9K  10K  

Daily rainfall           

RMSE 

(Koßdorf)  

 2.73   2.44   2.34   2.30   2.26   2.25   2.25   2.25   2.24   2.24 

RMSE  

(Nordhausen)  

 2.75   2.47   2.34   2.22   2.20   2.20   2.19   2.19   2.19   2.19 

Put option            

RMSE 

(Koßdorf)  

 7.16   6.69   6.04   5.78   5.39   5.38   5.05 - - - 

RMSE  

(Nordhausen) 

 8.02   7.05   6.88   6.86   6.85   6.75   6.68 - - - 

Source: own calculation 

 

4.2. Out-of-sample prediction   

In the previous section, the whole dataset was used to determine the best weights for the 

combination via regression from an ex post perspective. In this part, the multi-site rainfall model 

and the two benchmark approaches for predicting the best weights are used to compare their 

performance. For this purpose, we split the dataset into training data (1973-2000, 28 years) and 

                                                      

 

 
5The neighbours are again sorted by distance. For the payoff from the put option, the difference between 

sorting the neighbours by distance or by correlation is larger than for the daily rainfall. However, the way 

of sorting does not change the overall message so that we will continue with sorting by distance only.  
6Bentler and Chou (1987) set a minimal ratio of the sample size to the number of free parameters of 5:1. 
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testing data (2001-2010, 10 years). The training data is used to determine the weights using the 

multi-site rainfall model and using historical simulation (The inverse distance weighting is 

independent of the weather data.). The performance of these weights is then checked for the 

testing data. 

For the multi-site rainfall model, the parameters are adjusted to the training data for each 

location. The empirical transition probabilities 01
,ktp  and 11

,ktp  (see Equation (7)) for Koßdorf and 

Nordhausen as well as the fitted Fourier series are shown in Fig. 4 in the appendix. The 

parameters for the mixed exponential distribution for the rainfall amount kt , , kt ,  and kt ,  

(see Equation (9)) for the two places are depicted in Fig. 5 in the appendix. The results for the 

decorrelation function (Equation (12)) describing Σ  are 0.0012=1d  and 1.0022=2d , so that 

the correlations of the rainfall occurrence between two different locations range from 0.3610 to 

0.9855. For Equation (15) describing Z , the estimated parameters are 0.0075=3d  and 

0.9373=4d  and the resulting correlations vary between 0.0143 and 0.9230. With the 

parameters estimated for all places and the covariance matrices Σ  and Z , the multi-site rainfall 

model is specified and used to forecast the rainfall in May in Koßdorf, Nordhausen and all other 

places 10000 times. A linear regression provides the optimal weights for the simulated data. 

After all the weights were determined with different methods, they are used to combine the test 

data of the K  nearest neighbours. These compound payoffs are then compared with the 

hypothetical payoff in the testing phase by the RMSE. 

As an example, Table 2 shows the optimal weights for replicating the payoff of the 

derivative for Koßdorf with 5=K  nearest neighbours, i. e. Dresden, Leipzig/Halle, Cottbus, 

Lindenberg and Potsdam, according to the different calculation methods. It can be seen that the 

historical simulation puts more weight on Lindenberg (0.555) and Potsdam (0.254) than on 

Cottbus (0.019) even though Cottbus is nearer. The negative weight for Leipzig/Halle (-0.420) 

indicates that the farmer should sell this contract. The results for the multi-site rainfall model 

differ significantly: The highest weight is put on Leipzig/Halle (0.350), followed by Dresden 

(0.268). By definition, the weights from inverse distance weighting decrease with increasing 

distance and the decline is stronger for higher p . 

These weights describe how the nearest neighbours have to be combined to approximate 

the hypothetical payoff in Koßdorf. The resulting compound payoff for these weights for 

Koßdorf and 5=K  from 2001 to 2010 are shown in Fig. 2 in comparison with the hypothetical 

payoff the farmer would receive if this option was offered for Koßdorf. The compound and the 

hypothetical payoff for different weights are compared using the RMSE, which is shown in the 

last column of Table 2. In this application, the historical simulation performs worst and the 

multi-site rainfall method outperforms the other approaches. 
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Table 2: Optimal weights for replicating the payoff in Koßdorf, 5=K , calculated by 

different methods and the resulting RMSE when comparing the compound with the hypothetical 

payoff (neighbours sorted by their distance to Koßdorf) 

 Dresden Leipzig/Halle Cottbus Lindenberg Potsdam RMSE 

Multi-site rainfall model  0.268 0.350 0.130 0.154 0.057 5.33 

Historical simulation  0.288 -0.420 0.019 0.555 0.254 8.25 

Inverse distance ( 1=p )  0.277 0.221 0.190 0.156 0.156 5.63 

Inverse distance ( 2=p )  0.364 0.233 0.172 0.116 0.115 5.53 

Inverse distance ( 3=p )  0.456 0.233 0.148 0.082 0.081 5.59 

Source: own calculation 

 

Figure 2. Hypothetical and compound payoff for Koßdorf 2001-2010, 5=K  

 
Source: own calculation 

 

When changing the value of K , different weights and different values of the RMSE are 

obtained. The results of the RMSE for Koßdorf and Nordhausen for different K  are shown in 

Fig. 3 and Table 3. For Koßdorf, we can see that the error decreases for the multi-site rainfall 

model and the IDW models by using more than one place. For the multi-site rainfall model, a 

decline of around 40% is achieved. As before, the error stays constant for 5>K  (MRM) or 

increases again (IDW). The historical simulation obviously performs poorly in predicting the 

weights. The values for the historical simulation for 5>K  are unstable as they are the result of 

overfitting caused by not enough observations for the regression (28). The graphs for 

Nordhausen show that the historical simulation can arbitrarily outperform the other approaches 

for a large K . Also the IDW shows a varying performance: The IDW1 model offers the best 

results for Nordhausen, while it was the IDW3 model for Koßdorf. The error for the IDW 

method for Nordhausen is notably high for 1=K . This is due to the fact that this method puts a 

weight of 1 if there is only one neighbour, as it can be seen in Equation (17), whereas the other 

approaches also allow for weights different from 1. Nordhausen's nearest neighbour Brocken is 

situated much higher (1142 m AMSL) than Nordhausen (185 m AMSL) leading to different 

rainfall. 
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Figure 3. Root mean square error for Koßdorf (left) and Nordhausen (right) for the out-of-

sample prediction, test data 2001-2010; the values for the historical simulation for 5>K  (gray) 

are the result of overfitting 

 
Source: own calculation 

 

Table 3. Reduction of weather risk and Geographical Basis Risk (GBR) for Koßdorf and 

Nordhausen, weights from multi-site rainfall model  

  Koßdorf Nordhausen 

   Change of   Change of 

 RMSE  weather risk   GBR  RMSE  weather risk  GBR 

0K   16.66  -   -  17.59  - - 

1K    8.77  -47%  -  11.90  -32%  - 

2K   6.01  -64%  -31%   9.14  -48%  -23% 

3K   5.27  -68%  -40%   9.18  -48%  -23% 

4K   5.06  -70%  -42%   9.34  -47%  -21% 

5K   5.33  -68%  -39%   9.57  -46%  -20% 

Source: own calculation 

 

All in all, the weights obtained by the multi-site rainfall model appear to be the most 

reliable ones and lead to a reduction of the geographical basis risk of between 20% and 40%, 

even though this method can be outperformed by the two models in some cases. Furthermore, 

the results indicate that a small number of derivatives is sufficient: For the multi-site rainfall 

model, the increase is the highest for 4=K  (Koßdorf) or 2=K  (Nordhausen). 

Table 3 also exhibits the approximation error for 0=K . This describes the deviation if 

no derivative is bought, i. e. if all weights are set to zero. We can assume that the weather-

dependant producer from Section 2 with production site l  could perfectly hedge his/her weather 

risk by buying a weather derivative with a rainfall-dependant payoff )( ,lTT IF  with reference 

station l , i. e. the production basis risk and the geographical basis risk are zero in this case. 

Then, the RMSE for 0=K  represents a measure for the producer's weather risk. However, the 

derivative is not provided for place l , so that the producer has to buy derivatives for other 

reference stations. As it can be seen from Table 3, buying one derivative reduces his/her 
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weather risk by 47% (Koßdorf) or 32% (Nordhausen). With the weights from the multi-site 

rainfall model and the optimal value K , the weather risk decreases up to 70% (Koßdorf) or 

almost 50% (Nordhausen). The remaining 30% to 50% describe the geographical basis risk that 

can not be hedged. 

5. DISCUSSION AND CONCLUSION 

In this article, we showed that geographical basis risk inherent to rainfall based weather 

derivatives can be reduced by combining derivatives of adjacent reference stations. By 

approximating the payoff of a hypothetical derivative by the weighted combination of the K  

nearest neighbours, the error decreases about 20% when using more than one neighbour. 

For calculating the optimal weights for the portfolio, a multi-site rainfall model was 

proposed, which is calibrated to the historical data and then simulates future rainfall. The 

performance of this model was compared to two benchmark approaches: An intuitive one, 

where those weights are chosen which performed best in the past, and a very easy one just 

depending on the difference to the reference station. It turned out that the multi-site rainfall 

model leads to a reduction of the geographical basis risk between 20% and 40% and in general 

outperforms the other methods, which, however, sometimes also perform well. 

One crucial point of our analysis is that we neglected transaction costs. If the buyer had 

to pay transaction costs for every single contract, the advantage of the better approximation 

would vanish. The intention of this research was rather that the seller offers this portfolio of 

weather derivatives to the buyer, so the transaction costs incurred only once. It is also much 

easier for the supplier of the derivatives to carry out this analysis. 

Without increasing transaction costs, there is no reason why the number of stations used 

for the combination should be constrained. The results show, however, that the error is minimal 

if about 5 stations are used. This makes sense as the correlation decreases with increasing 

distance, so that stations which are located further away do not make any difference in the 

approximation. 

This study provides first evidence for the reduction of geographical basis risk by 

combining weather derivatives with different reference stations. It has to be examined, however, 

if the results can be generalized and transferred to other geographical regions or indices. As the 

network of rainfall measuring weather stations in Germany is quite tight, it would be interesting 

to elaborate if these results can be transferred to other regions, where the distance to the nearest 

neighbours would amount to several hundred kilometres. 
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APPENDIX 

 

 

Figure 4. Empirical and estimated rainfall probabilities for Koßdorf (left) and 

Nordhausen (right), data 1973-2000 

 
 

 

 

 

Figure 5. Estimated parameters for the mixed exponential distributions for Koßdorf 

(left) and Nordhausen (right), data 1973-2000 

 
 


