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REVIEW OF MARKETING AND AGRICULTURAL ECONOMICS
VoL 49, No. 3 (December, 1981)

An Alternative Method for Deriving
Optimal Fertilizer Rates:

Comment and Extension
John O. S. Kennedy*

1 Introduction

There has been recently renewed interest in decision rules for fertilizer
application which take account of the carryover of some fertilizer beyond the period of
application (see, e.g., Stauber er al. 1975; Dillon 1977; Godden and Helyar 1980;
Lanzer and Paris 1981; Maling and McKinlay 1981). As with any time-dependent
decision problem, two issues arise in the derivation of optimal rules. One concerns the
length of the planning horizon, and the other the process of determining the optimal
decision. This note shows how inductive reasoning based on dynamic programming
can be used to address both issues. The results are helpful in two ways. First, they may
help to resolve an apparent misunderstanding on the part of Godden and Helyar
(1980) of the dynamic programming results obtained by Kennedy et al. (1973).
Godden and Helyar, in commenting on the results, state (p. 86):

- . . the dynamic programming formulation avoids the issue of the ecosystem’s
movement towards a steady state by specifying the existence of a final period in
the fertilizer decision horizon beyond which fertilizer residuals can be ignored.
However, specification of the appropriate period beyond which these residuals
are negligible requires a model by which that time period may be determined.

In this note further results are presented which emphasize that, given the
assumptions of the model described by Kennedy et al., the rule for optimal fertilizer
application is not dependent on parameters relating to periods beyond the next period.
In other words, the relevant decision horizon beyond which further fertilizer carryover
effects and price information can be ignored is known, and is the end of the next
decision period.

Secondly, the results indicate the ease with which a computer pro-
gramme can be devised for solving the fertilizer application problem for the
fertilizer-carryover function hypothesized by Godden and Helyar. Such a programme
would be more efficient than the heuristic algorithm used by Godden and Helyar.
Computational efficiency is an important consideration when on-farm applications are
being contemplated, as discussed by Maling and McKinlay (1981). In addition, the
results provide an insight into the structure of the problem, without the need for
experimentation with an heuristic algorithm. They help to answer the questions posed
by Godden and Helyar in footnote 12 (1980, p.93), which they answered themselves
but, from their comment, only after significant computational effort.

2 Alternative Carryover Hypotheses

Let us consider two hypotheses (H1 and H2) for the fertilizer-carryover function.
The first was suggested by Kennedy et al. (1973) and the second (in slightly more
restricted form) by Godden and Helyar (1980).

(i) Carryover proportional to fertihizer available: HI

Fertilizer carryover to period t + [ is a fixed proportion (V) of total fertilizer
available in period ¢ only, for all 1. Total fertilizer available in period ¢ is defined as
fertilizer carryover to period ¢ plus fertilizer applied in period r.

*Department of Economics, La Trobe University. Without any adverse implications, thanks are due to John
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(i1} Carryover proportional to fertilizer applied: H2
Fertilizer carryover to period ¢ + 1 is a fixed proportion (V;) of fertilizer applied

in period ¢, plus a fixed proportion (V) of fertilizer applied in period¢ — 1, . . ., plus a
fixed proportion (V,,) of fertilizer applied in period t — m + 1.
HI is a special case of H2, with V, = V, V, = V2, . . . and in general ¥, = V'

Godden and Helyar assumed V; = b/(i+b), where b is a constant specific to the
production situation.

We can use inductive reasoning to obtain an analytical solution if H2 applies,
which also provides the solution if H1 applies. First, let us write the optimal condition
for period ¢ if the most commonly used hypothesis (HO) applies — that there are zero
carryover effects:

(1) dpy,dY,/dQ, = P

where a is the discount factor; p,, is the price of the crop produced; Y, is the yield of
crop produced which is a function of Q,, the fertilizer available; and py, is the price of
fertilizer net of per-unit application costs.

If there is carryover of fertilizer, and fertilizer prices do not change, it will be
shown that the optimal condition is:

(2) ap,dY/dO, = psvom
where v,, < I depends on the discount factor and carryover paramaters relating to m
periods after period ¢, and may be termed a reduction factor for fertilizer prices. If the
yield function Y,{Q,} shows diminishing returns to Q,, then v, < I leads to a higher
optimal Q, than for %, = 1. One interpretation of this rule is that with carryover,
higher yields are optimal because carryover effectively reduces the cost of access to
one unit of fertilizer in any period.

We now derive the value of 7, for the most general hypothesis, H2, using
induction.

3 Derivation of Optimal Rules

We adopt the backward recursion method of dynamic programming. Stage
subscripts denote the number of periods remaining in the planning horizon. The state
of the system at any stage is defined by carryover from all possible fertilizer
applications in previous periods. Let m denote the number of stages for which
carryover persists after an initial application. The state variables at any stage n are

Villman, - - -, Vians,, where a, is the application of fertilizer at stage n. Fertilizer
carryoVer to stage nis %, Via,.,. Total fertilizer available to the crop at stage n (Q,) is

therefore a, = E‘, Viai o

The objective is to determine the optimal sequence a; to a, or equivalently, the
optimal sequence Q; to Q) such that the present value of net revenue over the N
stages in the planning horizon is maximised. Let us define f,, § Vol - Vi, | as
the optimal return at stage n. For the final stage in the planning horizon n = o, further
carryover effects are ignored and

Sy Vol - - - Via, | =maxfapy X, {0l — Ppa))

where ay = Oy —1‘:"1 V. 0
Differentiating the RHS of equation (3) with respect to Qg and setting the
derivative equal to zero gives an optimal value Q7 such that

(4) 2Dy dYydQy = pu.

fo{.} can be rewritten substituting Q% for Oy in equation (3). For n = 1,f){.} equals the
net returns in the penultimate period, plus the present value of the return from
optimal fertilizer management in the final period given the vector of fertilizer
carryovers consequent on previous fertilizer decisions.
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That is

) filViamar, - . Viat = max [ep,,Y,{Q,} - Prra,;
i

+eafo Vot - . .. Via,l]
where a;, = O, — §£ Va4,
ta]

Again first-order conditions for a maximum give an optimal value Q% for
which

(©) apyt dY,dQ, = p;y — aV,p,
Optimal return with one stage to 20 becomes
D S} = apuYH{QI} ~ pu(Q) - EVa,.,
talap,YolQ3) — pu(QF — ézvz'“i - Vo7 - 1% Viai 1) ).

Ecluation (5) is recursive, and may be employed iteratively to determine L) O
and a; for n = | to N. For example, Qf is found to be the Q; for which

(8) apy3dYs;/dQ; = P = PpeV; — puai(Vo-V7) — Proc’(V3=2V,V,+V))

- . m
which gives a} = QF — z Viais.
=

For simplicity, assume the price of fertilizer is the same at all stages. Then
equation (8) can be written

(9) epysdYydQ; = p{l — a8 — a’B, — a’8,)
where the #; coefficients take the values shown in Table 1.

Table 1: Recursive derivation of the 8 coefficients

B Derivation
v = 8
2 Vz - V]Z = Vz - VI ﬁ]
3 Vi = 2V,V, + V) =V - V8, - V,8
4

Vi = 2V3Vi + 3V,ViP = VP = Vi'= V, — V8 — ViB, — Vi 8

Continued application of the recursive equation shows that the general rule for
stage n is to set Q, = QF such that

(10) apy, dY,/dQ, = pm — Z o' 8Dm—
or, for constant fertilizer prices
(11) "'pyndYn/dQn = p_f{l - iz‘;ulﬂi) = prm-

As the third column in Table 1 indicates, 8, can be determined recursively given
B; = V; using
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, =1
(12) 8, = V, - ifl BV

This makes for easy programming of the solution process for solving equation
(10).

In the results presented above, it has been assuméd that solutions give a, = O for
all n, i.e ., that optimal application rates arc non-negative. This seems to be a
reasonable assumption although it may not always hoid. As a referee has pointed out,
it may not hold if the initial carryover is large, or if prices change dramatically. For
example, a drastic reduction in the price of the crop (p,,) would greatly reduce a; and
might even cause a;; to be negative. Clearly, in such cases a;, must be constrained to be
non-negative. If a}; did have to be constrained, the optimal rule would be more
complex than the one given by equation (10). Boundary and interior solutions for ay
would need to be recorded at each iteration of the solution process, in order to be able
to determine the sequence of a;; across all stages.

At the same time, it may be noted that Godden and Helyar (1980) make a more
restrictive assumption in their heuristic approach to a solution. They assume (p.93)
that all application rates are at least as large as the maintenance fertilizer rates, an
assumption they find to be valid for their examples.

4 Conclusions

4.1 Determination of the planning horizon and the steady-state solution

Godden and Helyar implicitly assume in their examples that m, the number of
periods over which residual fertilizer effects occur, is at least as large as 7, the number
of periods in the decision horizon. They determine the decision horizon according to
the rule that it should be long enough for the present value of net revenue from an
additional period to be negligible.

If a limiting value of 7, in equation (11) could be determined for m — =, then
equation (11) could be used to specify the steady-state solution. However, the author

has failed to find a limit for 2_:1 &;, and hence has not found one for ¥,. For « </, and

¢, reducing as i increases, there must however be a limit for 2, a8, and hence for
vm.In the absence of any known analytical limit for ¥, resort must be made to
numerical procedures.

For the values of b used by Godden and Helyar for New England pasture and
Northern Territory sorghum (1.6 and 0.8}, v,, does not coverge rapidly (see Table
2.) Assuming here that m = n. calculation of a practical steady-state solution requires
the determination of n sufficiently large that.a} for v is not appreciably different
from a*_; for v.-;. Five does not appear to be sufficiently large for n for the
example applications studied by Godden and Helyar for which m = 30. Values of a?
are 84.9, 54.6 and 61.0 (kg P/ha/year) compared with optimal maintenance rates
calculated by Godden and Helyar of 86.2, 57.6 and 66.3 for New England fat lambs
(Basalt), New England fat lambs (Granite) and Northern Territory sorghum
respectively. This experience suggests that to obtain accurate estimates of the optimal
steady-state rates of fertilizer application, n may have to be considerably larger than 5,
and the solution procedure computerized.

4.2 The nature of the optimal rule when H2 applies
From equation (10) the following may be deduced:

(i) The appropriate planning horizon is m stages.
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Table 2: Convergence of the reduction factor for fertilizer price'

Ym
m
b =16 b=08

1 .4406 .5950
2 .3863 5231
3 .3609 4898
4 .3461 4705
5 3365 4570

' based on V,=b/(i + b)and a=1/1.1.

(ii) ©On and hence Y, { O} } are independent of fertilizer carried over from previous

_ stages (though this is not true of a% ).

(iii) For constant crop and fertilizer prices, and constant carryover coefficients V,,
there exists a steady-state yield, which applies from the first production period
onwards, regardless of whether initial carryover is zero.

(iv) Neither Q7 nor a7 are dependent on the prices of the crop or the crop response

functions in periods beyond the current period.

4.3 The nature of the optimal rule when H1 applies

The optimal rule turns out to be surprisingly simple when it is hypothesized that
fertilizer carryover is a proportion of fertilizer available. Calculation of the 8;
coefficients using V; = V' in equation (9) gives £, = V' — VV*/ = 0 for all i > 1. The
general rule given in equation (10) collapses to

(13) apyndYn/dQn = Pm — a VP fn—1
or, for constant fertilizer prices
(14) “PvndYn/don = an (1 - a V)

which was the rule originally derived by Kennedy et al. (1973). The optimal Q,
depends only on: the current discount factor, price of the crop and the price of
fertilizer; the crop response function; the carryover coefficient; and next period’s price
of fertilizer. Whatever the value of n, and parameter values for stages n — 2 to 0, the
rule remains the same. The rule given in equation (13) differs from that given in
equation (10) only by the exclusion of any effect of fertilizer price beyond that at stage
n — I, Under both H1 and H2 the rule is to top up fertilizer available to the relevant
O level, regardless of the residual level at the start of stage n before application.
However, for the special hypothesis H1, the optimal carryover level from stage n to
stage n—1 is always Q7V, regardless of the residual level at the start of stage n
(though this also is predetermined if the optimal rule is followed — it is Q}, , V). This
makes the current decision independent of fertilizer prices in periods beyond the next
period.’

1. It should be str‘esscd again that these conclusions depend on the assumption that solutions to the fertilizer
problem with 4, unconstrained give a}, =2 o. This caveat was also made by Kennedy er al. (1973, p. 106.)
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An issue raised by Godden and Helyar (1980, p.86) — that the opportunity cost
of maintenance fertilizer stocks in the ecosystem is not accounted for by Kennedy et
al. — can also be dealt with here. The general formulation of the problem
encapsulated in the recursive equation (5) accounts for all fertilizer costs and returns
across all periods in the decision horizon. In other words, under H2. the opportunity
cost of maintaining fertilizer stocks is accounted for. Likewise under HI, being a
special case of H2, opportunity costs are not ignored.

4.4 Final comments

Assuming that: a) the fertilizer carryover process suggested by Godden and °
Helyar is a reasonable representation of reality; b) the b values they applied are not
untypical of values for other crops in other localities; and ¢) a 10 per cent real discount
rate is not too low (probably a very plausible assumption). then the economic
implications of carryover for the fertilizer decision need to be recognized more widely.
Even for planning horizons extending to only two or three stages, Table 2 indicates
that with carryover the appropriate reduction factor to apply to fertilizer price in
equation (2) is of the order of 0.5.

Although this note has explored the analytical solution to the fertilizer decision
problem if hypotheses H1 or H2 hold, further research may suggest many more
complex hypetheses. For example, fertilizer carried over may be a quadratic function
of fertilizer applied or available. That is, carryover to stage n might be specified as

Iz (U, +V,a,,+ Wa,,) where U, V and W, are carryover parameters. Another

1= X N .
1s that tertilizer carryover from any period may be dependent not only
on fertilizer applied in that period. but as well on fertilizer applied in other periods.

i+n i+n

- P J m
For example carryover to stage n might be specified as Z Vi(@+n @i4n»1)- In either
.z

I

case, the dynamic programming approach would still be applicable without further
conceptual problems. In the latter case the problem would be reformulated with
fertilizer applied in each of the previous m periods instead of fertilizer carried over to
period n from each of the previous m periods. Given these state variables, the
contribution of fertilizer application at stage n to subsequent stages could be
determined. It should be noted that whilst dynamic programming problems to be
solved numerically are restricted to a few state variables because of limitations in
computing capacity, dynamic programming problems to be solved analytically are not
subject to the curse of dimensionality. There is no particular limit of the value of m,
the number of state variables, that can be worked with in the fertilizer-carryover
problem.

Further realism could be incorporated by characterizing the carryover process as
stochastic rather than deterministic, and by accounting for the application costs of
fertilizing. A stochastic dynamic programming approach incorporating application
costs has been reported by Stauber et al. (1975). They obtained solutions numerically,
and assumed carryover to any stage to be dependent only on carryover to the previous
stage, application at the previous stage, and rainfall in the previous period. To have
allowed for a stochastic version of the more complex carryover process suggested by
Godden and Helyar very likely would have made infeasible the numerical solution
procedure described by Stauber et al.

It may be concluded that if further realism in dynamic programming approaches
necessitates numerical instead of analytical solution procedures, alternative solution
techniques such as the type of heuristic algorithm suggested by Godden and Helyar
should be considered. However, at this stage, a prerequisite for greater realism is
more knowledge of the biology of the carryover process.

208



KENNEDY: OPTIMAL FERTILIZER RATES: COMMENT

5 References

DiLLon, J. L. (1977), The Analysis of Response in Crop and Livestock Production, 2nd edition, Pergamon
Press, Oxford.

Goppen. D. P. and HeLyar. K. R. (1980). “An alternative method for deriving optimal fertilizer rates”,
Review of Marketing and Agricultural Economics 48(2). 83-97.

KennveDy. J. O.S.. Whan 1. F.. Jackson. R, and DiLLon. J. L. (1973). »Optimal fertilizer carryover and crop
recycling policies for a tropical grain crop™. Australian Journal of Agricultural Economics 17(2).
104-113,

Lanzer E. A. and Paris. Q. (1981), A new analytical framework for the fertilization problem™. American
Journal of Agricultural Economics 63(1). 93-103.

MaviNG. R. and McKinLay. J, (1981), “Computerized optimal fertilizer rates’. Computers in Farming 1(3).
13-17.

STaUBER. M. S.. Burt. O. R. and Linse. F, (1975). " An economic cvaluation of nitrogen fertilization of grass
where carry-over is significant™, American Journal of Agricultural Economics 57(3). 463-471.

209



