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REVIEW OF MARKETING AND AGRICULTURAL ECONOMICS
VouL. 49. No. 3 (Deccmber. 1981)

Applications of Dynamic Programming
to Agriculture, Forestry and Fisheries :
Review and Prognosis

John O. S. Kennedy*

Farmers are faced with many decision problems in crop and livestock production which are multistage and
stochastic. There have been many applications of dynamic programming (DP) to such decision problems,
many primarily for illustrative purposes. It is argued that the advent of farmer access to computers will lead
to on-farm use of DP. Applications of DP to forestry, fisheries and agricultural policy are also reviewed.
The scope and limitations of DP are discussed, and the close relationship between DP and control theory is
examined.

1 Introduction

Dynamic programming (DP) is a technique ideally suited for use in finding the
optimal sequencing of injection of inputs and harvesting of outputs in many types of
agricultural production. It has ready application to cropping decisions involving
irrigation and the use of fertilizers and pesticides. It can be used in livestock decision
making for determining optimal feeding-and replacement strategies. To date DP has
been little used for such decision making in an operational way on the farm, but
various recent developments indicate that the decision-making environment on farms
in the future may be more amenable to the use of DP than in the past. The purpose of
this article is to comment on these developments, to explain the method of DP, and to
examine the scope of DP for aiding in the management of agricultural and other
growing resources, with reference to some of the many research applications.

2 Recent Developments Favouring DP Applications

Many of the concepts of modern decision theory now firmly established in the
literature of agricultural decision making (see, e.g., Halter and Dean 1971; Agrawal
and Heady 1972; Anderson et al. 1977) are easily incorporated in the DP approach.
Such concepts include decision trees with stochastic events, revision of parameter
estimates of probability distributions based on operating experience, and the more
general idea of maximising utility instead of profit over time. An understanding of
these concepts at the farm level is becoming more prevalent as more farmers and farm
managers are exposed to them through extension, management literature and formal
education in agricultural colleges.

The use of such decision aids, including DP, increases the demand for the
acquisition and handling of data on the environment in which the farm operates,
technical relationships and prices. As computing power in the form of either periodic
centralised processing, on-line processing or on-farm microprocessing becomes more
readily available to farmers, the scope for the use of decision aids for optimal control
of farm production increases. The potential of on-farm computers has been discussed
recently by various authors (e.g., Blackie and Dent 1979; Nix 1979; Nuthall 1979,
Sargent 1980). However, a conclusion from their views must be that whilst the
potential exists, it exists in the long run rather than the immediate future, and coexists
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with the potential for many failures through applications lacking farm relevance or
based on inadequate data.

DP problems are particularly suited to solution by computer. Whilst the DP
algorithm typically requires a vast number of calculations, the computer programme is
usually concise because of the repetitive nature of the algorithm. For example, in the
typical DP problem, the same optimization procedure is followed across all states for
all stages of the system. However, the fact that a complex farm DP problem
necessitates the writing of a computer programme has probably been one of the
stumbling-blocks to the on-farm use of DP. Until recently there were no readily
available general-purpose DP computer programmes as there are for linear
programming.’ Even so, the number of students enrolled in management courses who
also learn a computer programming language such as FORTRAN centinues to
expand, and the widespread use of simple languages such as BASIC makes computer
programming easier in any case. However, there now exist several computer packages
for solving a wide range of DP problems, including stochastic and infinite-stage
problems. One package is known as DYNACODE (Hastings 1975) and has already
been applied in agriculture to the marketing and grazing of beef cattle (Clark and
Kumar 1978). Hazen and Morin (1980) describe other packages.

Another development which increases the potential of DP applications to farm
management is the interest in planning coupled with control, or the continual
monitoring of planned versus actual results (see, e.g., Kennedy 1973 and forthcoming;
Barnard and Nix 1979; Blackie and Dent 1979, Ch. 4). If explicit recognition is to be
given to the planning environment being uncertain then stochastic or adaptive DP
formulations of the farm problem are relevant. However, even if the DP formulation
is deterministic, information from the DP solutions can be used in a planning and
control framework. Embedded in the solution to a particular problem with a particular
initial state and time horizon are the solutions to the same type of problem but with
other initial states and time horizons. If unexpected factors lead to things not going
according to plan, the new optimal plan is available as part of the original solution.
Indeed, for those problems satisfying the conditions for the application of the certainty
equivalence proposition of Theil (1958), the implementation each period of the
optimal first-period decision rule for the deterministic model with stochastic variables
set at their mean values is an optimal strategy under uncertainty. For first-period
certainty equivalence to apply, the objective function must be quadratic, the state
transformation function linear, and random disturbances additive (see Rausser and
Hochman 1979, Ch. 4).

3 The Method Of DP

Bellman is credited with the formal conceptualizing of what he termed ‘dynamic
programming’. His many papers and books (e.g., Bellman 1957 and 1961; Bellman
and Dreyfus 1962; Bellman and Kalaba 1965; Bellman et ai. 1970) have done much to
point out the very great practical scope of the technique and to place the DP approach
on a rigorous mathematical basis. Initial DP applications were to inventory control in
the 1950s. Since then DP has been an established part of the tool kit of operations
research (OR). Early examples of DP applications to agriculture are storage policies
for U.S. grains (Gustafson 1958) and replacement policies for egg-laying flocks (White
1959). Most OR books devote a chapter or two to DP. Examples of specialist texts
with an economics or management orientation are Hadley (1964), Nemhauser (1966),
Jacobs (1967), Kaufmann and Cruon (1967), Beckmann (1968). White (1969), Gluss
(1972), Hastings (1973). Norman (1975), Bertsekas (1976), Dore (1977). Dreyfus and
Lawi(.l977). Hastings and Mello (1978} and White (1978). The interested reader
requiring a full account of the technique is referred to these texts. An introduction to

' Note, however, footnote 4.
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DP with agricultural examples is given by Throsby (1964a), Agrawal and Heady (1972)
and Hanf and Schiefer (forthcoming). See also Burt and Allison (1963) and Burt
(1965) for other early considerations of DP applications in farm management. An
insight into the basic ideas of DP is given below.

Nemhauser (1966) and Jacobs (1967) have pointed out that the term ‘dynamic
programming’ is not the best name for describing the concept and relevance of DP.
Although DP is usually applied to a problem of sequential decision making through
time, it can be applied to static allocation problems. Instances of applications to
allocation problems in agriculture are land allocated to pasture improvement (Throsby
1964b) and investment in methods of flood control (Thampapillai 1980). As well, DP
is not a programming algorithm for solving a specific type of problem, but rather an
approach to solving a multistage decision problem by converting it to a problem
requiring the solution of sequential single-period problems. A more revealing term for
the technique is recursive optimisation (Nemhauser 1966) or the theory of multistage
decision processes (Jacobs 1967).°

3.1 Bellman’s Principal of Optimality

The fundamental concept which is the basis of DP formulations is the Principle of
Optimality formulated by Bellman (1957, p.83): *An optimal policy has the property
that, whatever the initial state and optimal first decision may be, the remaining
decisions constitute an optimal policy with regard to the state resulting from the first
decision’.

At first sight the principle appears to be a recursive truism, and yet it is only a step
away from being a guide as to how to solve efficiently multistage decision problems. A
simple illustration may help. Suppose we can describe our present state by A, and
have to reach one of three destinations, H, I or J at least cost. Decisions must be
made, one after the other, at stages 1, 2 and 3. Each decision consists of selecting one
of three alternative states to go to for the following stage, the decision incurring a cost
dependent on the two states connected. The number of feasible decision paths
amongst which to choose the optimal path is 3° or 27. A schematic representation of
this decision problem is shown in Figure 1. Suppose the least-cost path over all stages
turns out to be ABFJ. Bellman’s Principle of Optimality states that if ABFJ is the
optimal path with respect to A, then so also must BFJ be an optimal path with respect
to B, and so also FJ with respect to F.

Stage
1 2 3 4
B E H
D G J

Figure 1: A three-stage problem

By reversing the order of analysis of the optimal path, the original three-stage
problem can be converted to a sequence of three single-stage problems. Consider the
states at the penultimate stage represented by the points E, Fand G. For each point,
the least-cost decision out of three possible decisions can be made. Moving back a
stage towards A, the desirability of moves from B, Cand D to E, For G depend on the
subsequent costs of moving from E, Fand G just noted, and the state transition costs
from stage 2 to stage 3.

? A commentator on this article has pointed out that neither of these terms is without problems. **Recursive
optimization” could be confused with “‘recursive programming”. “The theory of multistage processes’ is
inappropriate in that not all multistage decision processes arc amenable to solution by DP.
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Moving back to stage 1 at A, the solution to the problem may now be completed
by selecting the best move to B, C or D. Minimum costs subsequent to B, Cor D are
already known, so to these all that have to be added are the transition costs between
stages 1 and 2.

The problem could have been solved by calculating the costs of all 27 possible
paths and identifying the least cost path. Using backward induction, however,
required consideration of 3 + 9 + 9 = 21 single-stage paths. A comparison between
the calculations involved in total enumeration as against those in the DP approach
appears more dramatic as the number of stages in the decision sequence is increased.
For example, if two more decision stages were added to the above problem, the DP
approach would require consideration of only 39 single-stage paths compared with the
243 possible multistage paths. As a rule of thumb, the amount of calculation involved
in solving a multistage decision problem increases linearly with number of stages if DP
is used, exponentially if total enumeration is used.

Whilst the DP approach generally saves a substantial amount of computation
compared with total enumeration, there is nevertheless inevitably much additional
information generated which may be considered redundant to the original problem.
This is because as we proceed with the process of backward induction, an optimal path
is discovered for each possible state of the system but only up to that stage. We have
no way of knowing which of these paths will be incorporated in the optimal paths for
the complete decision process until we have moved all the way back to the initial stage.
A DP strategy keeps all possible options open until a decision must be made.
However, the additional information generated may not be redundant, if we are
interested in an analysis of the sensitivity of the objective function to alternative initial
states of the system, or use DP in a control framework as mentioned earlier.

3.2 The Recursion Equations

The DP approach of backward induction applied to an N-stage decision process
can be formally specified by a recursion equation. Because backward induction is
normally used, it is usual to have stage subscripts denote the number of stages
remaining in the process. To be applicable, the decision process must have the
following three properties. First, at any stage n, a decision d, is to be made, which
together with the current state of the system, x,, determines x,_;, the state of the
system at the next stage. In other words, there is a transformation function,
Xn.1=ty1(Xy,dy). Secondly, the decision d, and state x, also determine the stage return

n

I,. A typical objective of the N-stage process is to maximise ,Z, r,(x,,d, )
with respect to d,, n=1,...,N. Thirdly, the objective function must be separable, and is
usually additive. An example of a multiplicative function is given by Hall and Butcher
(1968), which enables overall crop yield to be zero if crop production fails at any stage.
Another agricultural example of a non-additive function is in a multistage stochastic
utility analysis by Hardaker (1979).

An important point is that the process must be fully described at any stage n by x,.
That is, x, ; and r, must only depend on d,, x, and any exogenous variables. Only to
this extent must the behaviour of the system be dependent on the history of the system
prior to stage n. In other words, the process must possess the Markov property. In
principle, any process may be made to satisfy the Markov property by suitable
definition of state variables. Often the DP practitioner has to settle for formalising a
process which has the Markov property to a reasonable degree of approximation.
Otherwise the number of possible states the system may assume may be too large for
practical solution. Bellman terms this problem ‘“‘the curse of dimensionality” and is
referred to again in section 5.1.
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Basic to the recursion equation is the optimal return function, f,(x,), defined as
the optimal return from following the optimal sequence of decisions from the current
stage nto the final stage 1. The recursion equation is:

fn(xn) = max (rn(xmdn) + fn-I (xn-l)) n= Ir ’N (1)
dy

subject to x,.; = t,; (x,,d,) and known fy(x).

If the DP problem is to be solved numerically, a discrete range of values must be
chosen for x, and d,. Working through equation (1) recursively fromn= 1ton= N
gives an optimal return value f, and an optimal decision d} for every state of every
stage. This information is required for determining the optimal path d,....df given any
initial state of the system, xn.

For the backward induction process, knowledge of the terminal return function,
fo(xp), 1s essential to start the recursive process. Equation (1) may be solved for n=1,
giving fi(x,), which in turn gives f2(X2) and so on fN(xN) For some determlmstlc
problems an alternative procedure is forward induction. It is useful if the time horizon
for the problem is unknown but is dependent on the state of the system, for example
replacement of a capital item. It may be necessary for the solution of the multistage
control of flow processes which involve feedback or feedforward flows between stages.
The recursion equation (1) still applies with a change in the interpretation of stage
subscripts. Subscripts denote stage number in normal temporal order. The initial
return function is fy(x,). Instead of determining at each stage n the decision d,, the
optimal state to go to, the d, refers to the optimal state to have come from. For the
forward induction process the inverse transformation function is required, but may not
always be readily computed. For most DP applications backward induction is used. A
forestry example of the use of forward induction is Risvand (1969).

3.3 Extensions

The basic DP method can be extended to the following more complex multistage
decision processes: processes for which the stage return and the transformation
depend not only on x, and d,, but also the occurrence of the random event k, with
known probability p; (the stochastic case); stochastic processes for which the
probability distribution of k, is unknown (the adaptive case); and processes consisting
of a large number of stages, and for which at some stage the optimal decision d,(x,) is
a steady-state decision d(x) (the infinite-stage case). These extensions are briefly taken
up In turn.

3.3.1 Stochastic DP

Reference has already been made in section 2 to how the certainty equivalence
theorem may be exploited for solving a certain class of stochastic problem. The
method relies on a deterministic DP formulation. The more general type of stochastic
DP problem is formulated with the value of the objective function an expected value,
and a recursion equation

fultn) = max (2 pe(ta(xn.dnk) + for(ttmdnk))) ) n=l, .. . N  (2)

w k=1

m
subject to Z p = I,
k=1

showing the return and transformations to depend on the random event k, which could
also be shown with a stage subscript. In the stochastic case, an optimal path for the
multistage process cannot be specified because it depends on the k which eventuate at
each stage. Only optimal one-stage decision rules dependent on x, and k can be given.
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3.3.2 Adaptive DP

The probability distribution of k may be unknown, but if the class of the
distribution is known and is defined by say one sufficient statistic 8 (as in the case of
the Poisson distribution) then the adaptive case may be formulated by introducing 6
as a state variable. In the adaptive case 8 is not known with certainty, but is thought to
be one of a discrete range of possibilities. At each subsequent stage the estimate of 0
is revised to take account of the most recently revealed values of the stochastic
element. The recursion equation for the adaptive case is equation (2) modified to show
the optimal return function as f,,(x,,e,) and the probability of the k-th random event
as p( 8., ). For all stages up to the last stage (n = 1) the optimal single period stage
for each state must be determined for all possible vajues of 6, the range of 0 reflecting
all possible combinations through time of values of the random element. The revision
of the estimate of at each stage may be based on statistical procedures, such as
Bayes' principle or exponential weighting. 8 may be an m-element vector if m
sufficient statistics describe the probability distribution of k. In practice DP
formulations for m > 2 are rarely contemplated because the resulting increase in
dimensionality places solution beyond present computing bounds.

3.3.3 Steady-state DP

For a steady-state DP problem the stage return and transformation functions
must be stationary or independent of time. For example, in agricultural applications,
constant real prices and costs, and technology, must be assumed. For sufficiently large
n, f.(x,) is identical to f, ,(x,.;), and the relevant recursion equation is equation (1)
without stage subscripts. In this case f(x) appears on both sides of the recursion
equation, but generally it is difficult or impossible to solve for f(x) analytically. Burt
(1964b) has suggested an analytical method of obtaining approximate solutions for f(x)
which is discussed further in section 5.2. In the remainder of this subsection we
consider methods of successive approximations used for obtaining numerical
solutions.

The formulation of the infinite-stage problem is dependent on whether, as n — o,
fa(x) tends towards a finite value or towards infinity. The limit will be a finite
magnitude for most cases in which stage returns are discounted. In this case the
problem can be formulated as one of maximizing f,(x), n — . There are two basic
methods of successive approximation. One is approximation in return or function
space. Equation (1) is solved iteratively, using trial values of f,, ;(x,,_;) on the right hand
side. The procedure is initiated by guessing fy(x,). After any iteration, f,(x,) becomes
fni(xq) for the following iteration. The procedure continues until values of
fn(xp)-fua(x,1) are sufficiently small. The alternative method is approximation in
policy space. Given any policy d(x) it is possible to find f(x) by solving a set of
simultaneous equations. Values for f(x) may be substituted for values of £, {(x,.) in
equation (1) at the n-th iteration, and a revised optimal policy. d,(x) determined. The
policy is used to find the revised return function, and the process is repeated. The
process is initiated using a guess at the optimal policy, d,(x). The optimal policy has
been found once there is no change in policy from one iteration to the next. The
method of approximation in policy space is often preferred because the optimal
solution is usually found after a few iterations, and the optimal return function is found
exactly compared with only to some degree of approximation when approximation in
function space is employed. The main drawback of the method compared with
approximation in return space appears for problems with a large number of discrete
states. The number of simultaneous equations to be solved in such problems is likewise
large, and may be computationally prohibitive.

Burt and Allison (1963) and Burt (1966) favour the combined use of both
methods: iteration in return space is pursued until optimal policies at each successive
iteration do not change and it appears that the optimal steady-state policy has been
found; the policy-iteration equation is then used to check if this is actually the case by
finding the present values of pursuing the test policy over an infinite number of stages.
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The present values are used in another round of the return-iteration method. If this
round results in the same recommended policy, the policy is the optimal steady-state
policy. If not, further iteration in return space is pursued, and the whole process
repeated. The main advantage of this approach over the use of policy iteration alone is
for those problems in which over an initial planning horizon the problem is not
stationary, so that return iteration is required at least for the initial planning horizon.

Many dynamic agricultural problems require discounting, so that f(x) is finite for
the infinite-stage problem. However, in some cases, discounting can be ignored. For
example, if the problem were one of determining the optimal daily feed rations for
laying hens over a year, and the biological transformations and prices could be
assumed constant from day to day, then the problem might be more satisfactorily
viewed as an infinite-stage problem without discounting. For such cases f(x) cannot be
defined. Instead the problem is formulated in terms of maximizing a linear function
v(x) + ng, where g is the average gain per stage once an optimal repetitive decision
rule has been reached. Any system with a large number of stages, n , and finite stage
possibilities for x, must have a repetitive optimal policy. The function v(x) represents
the returns from starting at state x before reaching the optimal cycle. Recursive
equations can be formulated which involve just v(x) , g and r(x,d), and these can be
solved by various methods of successive approximation. Stochastic infinite — stage
problems can be solved by this method with various extensions (see in particular
Howard 1960; and extensions by Hastings 1973; White 1978).

4 Applications

A categorized list of many of the DP applications to agriculture, forestry and
fisheries may be found in the Appendix, Table . Farm management applications are
listed by enterprise type, and inventory applications by product stored. Studies are
listed under the following headings in chronological order. Numbers of studies
reported are shown in brackets below.

A) Biological systems

(i) beef and/or sheep grazing (5)
(1) beef feedlot or feedlot/grazing (5)
(i) dairy (6)
(iv) broilers (2)
(v) laying hens (3)
(vi) cropping 9
(vil) water management (16)
(viii) pesticide management (2)
(ix) forestry (11)
(x) fisheries (3)
B) Farm machinery (8)
C) Financial : (4)
D) Storage — regional, national or world levels
(i) grains (8)
(i) wool (1
(ili) butter (1)
(iv) fodder (1)
(v) apples (1)

Before referring further to Table 1 it is useful to delineate two types of application
of DP to agriculture, the distinction being the nature of the transformation function,
t(x,d). Often the transformation function, in deterministic cases, can be specified from
first principles or is axiomatic. That is, the state of the system at the next stage follows
as a matter of logic from the current state and decision. For example, in inventory
problems, the stock at the next stage equals stock at this stage plus any incomings, less
any outgoings between this stage and the next. In replacement problems, a current
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decision to keep or replace an asset automatically specifies the age of the asset at the
next stage. Problems with axiomatic transformations are the traditional DP problems
dealt with in OR texts. There are many examples in the literature of DP applications in
agriculture to problems with axiomatic transformations, ranging from farm to sector
level. Some of these are reviewed below. The early agricultural DP applications
referred to above (Gustafson 1958; White 1959) were inventory and replacement
problems respectively. However, there are many other agricultural applications in
which the transformation is less transparent and depends on a biological process. For
example, empirical information is required to predict the biomass of a crop at the next
stage given current biomass and a decision to irrigate.

DP applications involving biological transformations are generally at the farm
level in agriculture, but may be at a more aggregate level as in the case of forest or
fishery management. We now turn to DP applications involving biological transforma-
tions.

4.1 DP Applications with Biological Transformations

Because agriculture is the management of biological processes for gain to
humans, and humans are generally interested in efficient or optimal management, the
discipline of agriculture provides fertile ground for the marrying of the studies of
biological response and OR techniques. However, the decision-making environment is
generally complex. Typically, the agricultural process involves decisions on the timing
and composition of one or more input injections and one or more subsequent harvests.
The response of yield to input may be non-linear, dependent on the time interval
between injection and harvest, and also dependent on time of the year. Yield
functions are generally stochastic: there is considerable variation in input-output
relationships between plants and animals of the same species; and control is imperfect
— livestock exercise choice in their intake, and plant growth depends on many factors
which may be uncontrollable such as the incidence of solar energy. Prices of outputs
and inputs may not be constant, but may be stochastic and discontinuous functions of
time, subject to seasonal and other variations,

Optimal sequencing of inputs for deterministic, continuous biological processes
can be determined by various methods. Dillon (1977, Ch. 3) reviews a range of
methods, including DP, but concentrates on the calculus approach for exposition. A
further approach, which has received relatively little attention in the agricultural
economics literature on biological management, is optimal control theory® (but see
Rausser and Hochman 1979). Control theory approaches have been more widely
considered in analysing problems in fisheries (e.g., Clark 1976; Anderson 1977),
forestry (e.g.. Schreuder 1971) and natural resources (e.g., Smith 1977a. b). A simple
example of a control theory formulation for livestock production is given here. The
formulation leads on naturally to the DP approach, a numerical solution method often
resorted to for solving control theory problems, particularly problems involving
stochastic and discontinuous functions.

Suppose the aim is to feed an animal from time t = O to t = T'so as to maximize
the present value of net returns. The animal is to be sold at t = T for a per-unit
liveweight return of Py. The state of the system through time is represented by
liveweight x , and the control variable through time by feed level, u . Let g(x,u,t) be
the liveweight gain function, ¢ be the per unit cost of feed, and ¢ be the continuous
rate of discount. The control problem is to maximize with respect to u the function:

T
Z= [ (-cu+Prg(xut)erdt + Prx,e™ (3)
0

subject to X = g(x,u,t)

where x, is initial liveweight.

* The term “control theory’ refers in this article to the use of the maximum principle to solve continuous time
problems. It is sometimes, perhaps more correctly, used in a generic sense to include DP and other methods.
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Necessary conditions for a local maximum can be obtained using the maximum
principle (Intriligator 1971, Ch.14) by formulating the current-value Hamiltonian

H = —c.u + Pr.g(x,u,t) + ».g(x,u,t) (4)

where » is referred to as a costate variable or a dynamic Lagrange multiplier.
The necessary conditions for an interior solution are

oH/ou = 0, (5)
oH/ox = — 1. 6)

The first two terms of the Hamiltonian in (4) describe the current contribution of
x and u to net return. The final term is the value of the future contribution of x and u to
net return, : indicating by how much the present value of the animat would increase if
liveweight increased by an additional unit. Condition (5) stipulates that at any point in
time, feeding should continue to the point at which an extra unit of feeding would add
less to the net return (Pr.og/ou — c) than would be gained from the future
management of a heavier animal (7.0 g/ou). Condition (6) stipulates that at any point in
time liveweight should be brought to the point beyond which a one-unit increase in
liveweight would bring returns exactly offset by the fall in value of the marginal unit of
liveweight. Whilst liveweight x is not directly a control variable, it is indirectly in that it
is a function of the history of the control variable u.

A useful way of viewing the results from control theory is as a limiting case of the
results obtained for discrete-time problems with Lagrange multipliers (see, e.g.,
Dorfman 1969; Benavie 1970). In turn, DP can be viewed as closely related to the
control theory approach. Intriligator (1971, Ch. 14) discusses the relationship. For the
discrete DP formulation of the liveweight gain example, we can keep the previous
notation with the following changes: rreplaces » and is the discrete rate of interest for
discounting; subscripts denote number of stages 1o go to the beginning of period T;
and f,(x,) is the return from following the optimal policy over the next n stages given
that current liveweight is x,. The recursion equation is

falxn) = max [—c,.u, + (1+1) " fri(Xutg(xy.upn))] n=1, ... N (7)
un

with fo(xg) = poxo.

Similarities can be seen between (7) and maximizing H in equation (4) with
respect to u. In both cases, assuming an interior solution, maximizing entails selecting
u to find a balance between marginal current return and the marginal future return of
opposite sign. Note that af,(x)/ax is the counterpart of 7 in the control theory
framework. Burt and Cummings (1977) suggest that these terms be referred to as the
marginal present value of current resource stocks (here, current liveweight).

The problem just considered involves the optimal sequencing of inputs to
promote growth for harvesting at a predetermined date. Calculus, control theory and
DP are all suitable techniques to use for solving such a problem. The comparative
strength of DP as a solution technique becomes evident when the more realistic
problems encountered in practice are considered. The harvesting date is generally a
variable to be determined, depending on input and output prices which may vary
discontinuously with time. The harvesting process may be followed by subsequent
harvesting from other biological units (as in beef and crop production) in which case
the problem can be viewed as an optimal input-sequencing problem superimposed on
an optimal replacement problem. Alternatively, the problem may be one of finding
optimal input-sequencing within production periods, together with the optimal
number of harvests from the same biological unit, before replacement of that unit (as
in milk and fruit production). Growth rate is generally a stochastic function of inputs.
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Mortality is always a possibility for a living system. Future output and input prices are
seldom known with certainty,

Such real-world complications beyond the simple input-sequencing problem can
be handled relatively easily in a DP framework compared to calculus or control theory
frameworks. We now look at some of the ways DP models have been used for the
management of living systems, as well as for replacement and inventory problems,

4.2 The Range of DP Applications

Delineation of suitable stages, states, decisions and return functions are basic to
the formulation of any DP model, and for this reason a brief description of these is
given in Table 1 for each DP study. Such information together with comments are
meant to give some idea of the scope of each study. Remarks here are confined mainly
to a description of the range of DP applications reported.

Some DP applications at the farm level determine the optimal sequencing of
inputs and harvesting of output only, and do not consider the wider problem of
optimal sequencing of inputs and outputs together with optimal replacement of a
biological or capital unit. In such applications the planning horizon may be reasonably
constrained to the growing season. Examples are the determination of optimal
irrigation and pesticide management, and maintenance operations on farm machinery.
DP may also be used at the farm level as a network-analysis tool for finding the
optimal sequencing of different production and marketing activities (Boyce et al.
1971).

Most farm enterprise and farm machinery applications of DP are at least partly
replacement problems. Explicit recognition is given to the fact that optimal
management of current biological or capital units is dependent on the timing and
management of replacement units. For example, the following are interdependent: the
thinning schedule for a forest and the rotation length; the maintenance schedule for a
combine harvester and how long it is kept; and the feeding of cattle and the timing of
their marketing.

Whilst the farmer provides feed in all livestock enterprises, in many DP
applications to livestock management it is unnecessary to formulate the problem with
feed as an input to be optimally sequenced. This is the case for ad libitum feeding
applications in general, and grazing applications in particular. Such applications may
still have to deal with the determination of best ration mixes or grazing strategies.
However, in many intensive livestock production applications, such as in beef
feedlotting or broiler production, next-period liveweight gain is a decision variable
additional to the decision of whether to keep or replace. The one-period liveweight
gain can generally be achieved through a range of possible mixes of feeds, which
means there is scope for employing techniques such as linear programming (LP) for
determining the best mix of feeds for a particular liveweight gain. Studies combining
DP and LP models in this way have been mainly applied to beef production and are
listed under A(ii) in Table 1. Meyer and Newett (1970) in an early and perhaps little
noticed article state (p.419) ““It should be recognised that this solution technique is a
sophisticated mathematical tool, and represents a significant and, to date, the most
inclusive contribution to feedlot enterprise optimization™. The technique would have
helped with some problems which have been reported difficult to solve using a calculus
approach. For example, Heady et al. (1976) explain the problem of determining the
optimal sequencing of rations with different possible protein rations in each of three
weight gain intervals in pig management. The objective was to maximize profit per
day, and the problem was simplified by specifying a required final liveweight. A
solution was obtained by total enumeration. The same problem could have been
solved by DP, but in this case, because of the small number of stages (3), without any
saving in computation. However, it is possible that the authors were constrained in the
formulation of their problem given their solution technique. Another example is a
similar study by Melton et al. (1978) into feedlot rations for beef steers given
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alternative objectives. One problem was that gain isoquants were not convex over the
whole range of feed-input combinations, and another was how to maximize profit per
unit of time given five weight-gain intervals. DP would probably have proved a more
satisfactory technique than the approximation technique adopted.

A particular advantage of DP is that problems can be formulated to tackle
stochastic processes with relative ease. In the case of livestock management, stochastic
DP models have been used for determining: feeding strategies in droughts of unknown
length (Toft and O’Hanlon 1979); replacement strategies for dairy herds in which
progression to the subsequent lactation is uncertain (Jenkins and Halter 1963; Smith
1973; McArthur 1973; Stewart et al. 1977); and replacement timing when output prices
are uncertain for beef production (Yager et al 1980); for broiler production
(Hochman and Lee 1972); and for egg production (Pouliquen 1970).

The group with the largest number of reported applications is water management.
This probably reflects the importance of water as an agricultural input and the fact that
water management involves high levels of capital investment for the benefit of many
users. DP applications in this area may be treated as inventory, input-sequencing and
multi-harvesting types of application. The DP problem may be subsumed within a
hierarchy of decision levels. Other decision levels involve the optimal area to crop, the
type of crops, and the long-run level of investment in reservoirs. Integrating a DP
model into a hierarchy of decision levels poses interesting challenges (Burt 1964a:
Dudley et al. 1971a; Dudley and Burt 1973).

Whereas there appears to have been greater emphasis in solving agricultural
problems with numerical DP rather than with analytical DP or control theory, the
reverse seems to be the case for fisheries. There may be two reasons for this. One may
be the lack of quantitative data on populations, reproduction rates, migration rates,
life expectancy and interaction between species which may be necessary for a
numerical approach. Another reason may be that fishery authorities and other
research bodies stimulate more interest in models predicting qualitative equilibria with
implications for species survival than do commercial fishing enterprises primarily
concerned with solving day-to-day management problems. Be that as it may, three
numerical DP applications are referred to in Table 1. Lewis (1977) and Smith and
Silvert (1977) describe how numerical DP may be applied to stochastic fishery
problems. Sancho and Mitchell (1975) use DP to obtain an analytical solution to the
problem of determining fishing effort subject to a fishing quota.

Another fertile ground for DP applications is the determination of storage
policies for grains at the national and international levels, given the stochastic
production and prices of grains. Applications were few after the pioneering work of
Gustafson (1958) until the concern over the instability of grain prices and historically
low grain reserves of the 1970s. The recent application of optimizing models seems to
have been stimulated by earlier work based on qualitative analysis or simulation.
Blandford and Lee (1979) conclude in their article on stabilization policies:

Empirical modelling undoubtedly will continue to prove a major medium for the
analysis of alternative stabilization policies in international commodity markets.
In the past, simulation has proved the most popular technique, but optimal
control theory seems to possess a number of distinct advantages. Most
important is the way in which appropriate decision rules for market intervention
are directly derived from underlying policy objectives, and the ability of the
method to deal with multiple, and sometimes conflicting, aims.

A comprehensive treatment of DP applied to optimal policy for grain storage at
the world and national levels may be found in the book by Gardner (1979). Extensions
of the basic model are placed in a practical context. Particular consideration is given to
the interaction between public and private stockpiling.

This brief overview of DP applications to the management of biological systems is
suggestive of the technique’s scope and potential. We conclude by considering some of
the limitations of the technique, and likely developments in future applications.
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5 Evaluation and Prognosis

Whilst the scope of DP has been examined in the previous section, its restriction
to solving particular types of problems should be stressed as well. Though it is possible
to solve problems with DP that are solvable with other techniques such as calculus, LP
and quadratic programming (QP), the application of DP would often be relatively
quite inefficient. DP gains a comparative advantage over other techniques whenever it
can be used to solve multistage, stochastic, non-linear problems.* To this extent, DP
assumes something of the status of “a technique of last resort” which applies to
simulation. In practice the question of whether DP should be applied as against some
other approach is often answered by considering the loss in the precision of results
from using a less expensive, more powerful technique subject to more restrictive
structural assumptions.

5.1 Limitations

Barnard and Nix (1979) introduce the topic of DP in their book on farm planning
and control with the following: “While fascinating intellectually, dynamic program-
ming has little significance for practical farm planning at the present time and so will
be dealt with relatively briefly”. If by “‘farm planning” is meant planning for the whole
farm, we would have to agree that DP has little to contribute compared with other
programming methods. This may be one reason why, apart from the study by Larson
et al. (1974), there has been little use of DP for extending the theory of the firm or
studying farm-firm growth as earlier envisaged by Johnson (1965), Minden (1968) and
Throsby (1968). However, the potential of DP for aiding planning and control in single
enterprises requiring intensive management should not be overlooked.

DP applications to feedlot management have already been described. However, a
problem noted by several authors (e.g., White 1959; Bonnieux 1969; Kennedy 1973;
Smith 1973) is the variation between animals in response of liveweight gain to feeding.
A separate feeding and marketing policy applied to each animal in a group is seldom
likely to be economic, except perhaps for stud animals. Kennedy (1973) suggested a
method of attempting to identify the gain potential of animals over time by comparing
periodic liveweight gains with feed inputs, and on this basis assigning animals to one of
three groups for separate management. An alternative put forward by Bonnieux
(1969) is to specify the state of the livestock system by the number of animals in a
range of liveweight categories, and to treat state transitions as a stochastic Markov
process. .

Usually numerical solution of DP problems involves the selection of a grid of
discrete feasible values for the state variables which are in reality continuous variables.
The use of a grid of discrete values makes it likely that the recommended DP path will
be suboptimal to some extent compared to the true optimal path. This can be
overcome at the expense of extra computation by expanding the grid, or by successive
redefinition of the grid on the state variables based on what previous DP runs have
shown to be the ranges of interest (Nemhauser 1966, Ch. 4).

A further approximation is introduced if the range of decisions from each state do
not exactly reach the discrete values of the state variables at the next stage. Kao and
Brodie (1979) overcame the resulting rounding error problem in a forestry application
of DP by devising a system of “‘neighbourhood storage locations”. The system is only
applicable if forward recursion is used. Rather than exactly prespecifying the discrete
values of states at each stage, feasible areas are specified around each discrete value or
node. The best approach into the area from alternative states in the previous stage are

4 This may not always be true. For example, Hadley {1964) and Kislev and Amiad (1968) have pointed out that
infinite-planning-horizon Markov decision processes may be solved by LP as well as by DP. However the LP
matrix would likely be large. One LP activity column is required for cach feasible decision coupled with each
state.
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evaluated. The node is then defined as the state value exactly reached by the best
approach.

An important restriction on problems that can be solved with DP is the
requirement that the decision process possess the Markov property, referred to
earlier. This is not a property which strictly holds for some formulations of DP
problems. Consider the example of livestock feeding, in which the optimal sequence of
liveweight gains is to be determined. At any stage it may be convenient but not strictly
correct to assume that the rate of gain for the next period is dependent only on current
liveweight and the feed decision, and that the feeding history of the animal is
otherwise irrelevant. The type of prior feeding is likely to affect conversion of feed to
gain in ways other than through its impact on current liveweight. The fat/lean-meat
composition of any gain is likely to be a function not just of current liveweight but also
of previous feeding, so that the return is not just a function of liveweight. Another
example is applications in which price is a stochastic state variable, described by
econometric equations with explanatory variables having lags of more than one time
period. Conceptually such processes can be modelled so as to obey the Markov
requirement, but at the expense of specifying additional state variables. This brings us
to the much-quoted ““curse of dimensionality”. It is often pointed out that the capacity
of current computers limits the number of state variables which can be handled in DP
to a maximum of about three. The limitation on the number of state variables is
especially restricting in fishery applications. In the case of long-lived migratory species
it would be desirable to specify as state_variables population, age, fishing ground and
species. With some ingenuity, the curse can be partly exorcised. If the problem
involves maximizing, for example, the sum of quadratic stage returns subject to
equality constraints, then control theory solutions based on DP may be obtained, as
Dalton (1976) demonstrated for a problem with 10 state variables. Details of the
approach may be found in Chow (1975). For other problems it may be possible to
solve approximately a DP problem with many state variables by using the results of a
DP sub-problem with a subset of the state variables in an iterative process (see, eg.,
Burt et al. 1980, in which an approximate solution is obtained for a DP problem with
15 state variables). Morin and Esogbue (1974) have shown how computation can be
reduced in some DP problems by exploiting discontinuities of the optimal return
function. Storage of optimal returns and decisions can be reduced if certain dominance
conditions hold (see Morin and Marsten 1976). Notwithstanding these possibilities,
the statement by Throsby (1974) referring to DP requiring numerical solution that
“. . . the technique stands to gain more than most from the arrival of new generations
of bigger and faster computers” remains true today. However, not all DP problems
need to be solved by a numerical procedure. Some can be solved using DP as an
analytical device, in which case problem formulation may not be limited by the
number of state variables. The analytical use of DP is further discussed in the next
section.

5.2 New Horizons

Candler and Musgrave (1960) stated: “It is anticipated that just over the horizon
there are a host of new applications of dynamic programming”. There undoubtedly
are still many now. We end with some thoughts on likely future developments.

At the farm level, three stimuli can be seen for farm-management applications.
One is improved information on technical response functions in agriculture. For
example, a limiting factor in applying DP to feedlot management has been the
imprecise knowledge of the determinants of the appetite constraint of cattle. Another
stimulus is the diffusion of knowledge of DP through courses on OR techniques in
agriculture. Thirdly, there is the growing computing capacity on the farm.

Areas of DP application in farm management which appear to have received little
attention to date are the feeding and marketing of pigs® and the storage of perishable

% However, Professor K. Riebe of the University of Kiel, West Germany, has achicved successful results in
applying DP to hog fattening in Schleswig-Holstein (Personal communication, December 1979.)
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commodities. Perhaps there could be more investigation of DP formulations of the
complex of decisions involved in integrated pasture and livestock management, as
identified, for example, by Dillon and Burley (1961). Another area which remains to
be exploited at the farm level is adaptive DP. For example, adaptive DP could be
applied to milk production. To date, the decision to be made in dairy applications has
been limited to “keep or replace™ (see Table 1, section A(iii) ). Adaptive DP models
could be formulated which included supplementary feeding decisions for individual
cows, dependent on periodically-revised estimates of the milk-yield performance of
each milking cow.

As Table 1 indicates, there have been numerous applications of DP to thinning
and rotation decisions in forestry. Brodie and Kao (1979) enthusiastically endorse the
potential of DP:

The interaction of silviculture techniques — precommercial thinning, fertiliza-
tion, commercial thinning and rotation — and size-dependent costs and
revenues can be analyzed simultaneously, not just partially or singly for
particular situations. Numerical analysis with dynamic programming is one of
the simplest optimization techniques for nonlinear problems with complex cost
and revenue functions. It will likely become the dominant tool for economic
optimization of even-aged stands.

However, Kao and Brodie (1980) use another nonlinear programming technique,
the modified flexible polyhedron method, for solving the same type of problem. They
stress that the method has the advantage over numerical DP models of treating time
and stocking variables as continuous. However, DP does not appear to have been
much used for solving stochastic forestry problems. This is surprising because there are
many uncertainties in forestry, such as future prices and costs over long planning
horizons, weather and climate effects on growth, and the risks of attack by disease and
fire.

At the agricultural sector level, besides scope for investigating stock-holding
policies, there is much potential for applying control theory and adaptive control
theory models to problems of agricultural policy. Possibilities in this area have been
discussed by Burt (1969), Tintner (1969), Freebairn and Rausser (1974), Rausser
(1978) and Rausser and Hochman (1979).

On the research front, continued developments can be seen in three areas. One is
the interest in further reducing the dimensionality problem already referred to. One
possibility which .remains to be further exploited is the use of DP as an analytical
device. For some multistage problems it is possible to solve the final stage analytically,
and to use the final-stage solution to solve the penultimate stage analytically, and so
on. It may further be possible to observe a pattern in the sequence of optimal decision
rules for successive stages, and thus to determine the decision rule for any stage by
induction. This approach was followed by Kennedy et al. (1973) and Kennedy (1981)
in the case of the fertilizer decision for which fertilizer carryover is a relevant
consideration. Any number of state variables, in this case previous periods of fertilizer
application, could be incorporated. Another approach to the analytical use of DP has
been suggested and tested by Burt (1964b and 1981) and Burt and Cummings (1977).
It results in an approximately optimal decision rule for the problem described by the
steady-state version of equation (1). The method involves approximating f(t(x,d)) on
the right-hand side of equation (1) by the first few terms of the Taylor’s series
evaluated at x, and finding the conditions for optimality for the revised problem
analytically. The optimality conditions for the revised problem have been found to
give a decision rule which is a good approximation to the optimal decision rule for the
original problem derived numerically, provided the state variables do not approach
zero (Burt 196456 and 1981). The method has various advantages: analytical solutions
can be derived for any number of state variables; and unlike the continuous control
theory approach based on the maximum principle, the optimal decision path is defined

154



KENNEDY: APPLICATIONS OF DYNAMIC PROGRAMMING

for discrete stages and is therefore operational, and is readily extended to stochastic
problems.

A second area is the specification of objective functions in terms other than the
present value of expected net revenue. Already there have been applications in which
variance of net returns as well as their expected value have been treated as an
additional indicator of performance (e.g., Burt and Johnson 1967) or included in a
utility function to be maximized (e.g., Hudson 1976; Hardaker 1979). Objectives in
terms of net social welfare and price variability have also been specified for inventory
applications. However, we are likely to see in future the traditional goal in agricultural
production of efficiency tempered by environmental and ecological considerations.
For example, optimal forest rotations may be assessed by criteria other than
maximization of net return, such as aesthetic or wildlife considerations. DP is an ideal
technique for solving problems in which multiattribute utility functions, additive or
multiplicative such as those suggested by Keeney and Raiffa (1976), have to be
maximized. It is also suitable for determining efficient frontiers of tradeoff between
objectives, an application termed multiobjective DP by Tauxe et al. (1979a,b).

A third area of likely further development is the integration of DP models with
other models such as simulation, LP and QP. As Table 1 shows, there have been
applications of stochastic DP to grazing, milk production, water management,
fisheries and farm machinery in which transition probabilities have been estimated
from the results of a simulation model. Kingma (1974) has incorporated a DP model
for determining policy for harvesting a forest within a timber-livestock simulation
model. Some applications employ linear or nonlinear programming for stage
optimization within the DP framework (e.g., Nelson 1969; Burt and Cummings 1970;
Thampapillai 1980). Finally, the method suggested and employed by Sondakh and
Hardaker (1981) of using parametric LP recursively to optimize at each stage across all
states is likely to be further exploited. In the notation of equation (1). at each stage na
linear segmented approximation of f, (x, ) is incorporated in a LP matrix, and f,(x,)
is obtained from the optimal values of the LP objective function for all values of x
after parametizing x,,.

In summary, the decision environment at the farm and policy levels appears
favourable for greater real-world use of DP in areas which research has shown to be
amenable to the DP approach. As for further research, progress to date suggests that
new methods of DP will continue to be applied to the management of agriculture and
natural resources.
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REVIEW OF MARKETING AND AGRICULTURAL ECONOMICS

syjuow

sajdde uenwlope]) 10} €1
sains Sunayiew Ajodouow sounuIldg  ¥N JO Ad sajdde jo safeg sajdde jo yooig S alqeE A (I/,6]) UPWLIED) PUE UOAUSY
sqddy (A)a
apuie Aronsodxa
ue w 9dwexo [esudwnu Jdwis v UNI yiuow ayi Suunp pay yIo1§ (*42015) 13pPO} JO HDOI§ S yiuow [ (21961) 4£qsolyl
+appo4 (a1
UMOUY PIWINSSE YIUOW YdE3 I0j $3[es oIeW Y Yl
194)0 pue S3[es PUB[BIZ MIN [RI0L MN U0 $a[BS 191INQ PUB[EIZ MAN  SI0]S Ul I31INQ PUBJEIZ MIN JO [9Ad7] u Juow | (+961) A3Isumo].
saung (Wa
slutenNsSu0d se pajejndus apidyools [oopm (1)
suonpuny &lddns pur puewsp Iesuy uoi} {*yoo1s) uononpoid joopy (1)
pue uonouny 9an33[qo sneipenb e yim  -eueA 201d (" yo0Is)
uoneIWIe) 410341 [01U00 [ewnde Uy joom SAUIN ope1} o} pjos [oop sadud [oom spouad g snotaslg (1) 0z sjuow ¢ (9461) uoiEQ
oo (N
fupgerea 2oud 10} uouOUNY 3AN
-35[go ay1 01 pappe Aieuad e yim Ing
[apour Iejiuns Jo siynsal 1o} (pg61) 1ung
puUE 00OY| OS] 335 *J(] Ul pajpuey Ajjew
-10U 3Q UBD URL[} SI|(BLIBA 2)BIS dloW
Auew ypm wsjqord B aajos o3 pasn
sem poylaw uoninjos ewixord 3 piog (1)
-g13y1 ue ‘suotjenba puewap pue A|ddns ‘sn (D s}201s jeaym (1)
a4yl ur sojqeues padde| jo junodde 10} {"ys2015) 1eak dors Buipaoaid
Juiyml pauizjqo osje alam synsay  ONA Jo Ad suodxa 1eaym ‘g Juunp 1eaym jo 2oud aFeraay (1) 0z 1834 | (0861) tr 12 ung
10} pamo[le si ssasord uon
-onpoid qamgod e tuonnadwod vajrad  ONA JO Ad
1apun pue Asuade sfeiols Kjodouow pue (-yooss) uond>npoid 1eaym prop (1)
e Aq pansind sanjod aBerois sisenuoy  YNT Jo Ad asesjal 1o afeioig $)201s 1eaym pprop (1) x 162k | (6L61) Apauuasy
EEBIVE]
-nbas 2oud pajemmuwis jo afues e o
PawWEIqo SI[NI 1oNSL[2 A[a11unyul suodxa (yoois)
1eays UBleNSRY 10) PUBWIAP Uim uononpoid 1edaym uelensny (1)
uodxa 10 pIos $1 PlOs 1eAm SIWNSSY  YUNT JO Ad aseajal 10 3deiols $Y001s eaym uerensny (1) s 1834 | (6L61 '8L6I) [P 12 3znoe|y
pazIWXew sadeis
STUAWIWO)) votuny (s)uorsag (s)aeig 1 sadeis u23M13q (s)roqny uonesddy
3a193[qQ jo ‘oN [BAIIU] ApiS

(panunuos) suouvonddy Jq fo Livwung

I 219v1L

172



KENNEDY: APPLICATIONS OF DYNAMIC PROGRAMMING

SNUIAA J3U JO DUBLIEA — YNA
SNUIAAI AN — YN
angea ammg — Aq

anuaAdl 12U padadxg — YNA
(£13100s 01) wes 1ou papadxg — ONTF
1500 pawadxg — Hy

POZIWIXRW UONIUN} 2aN32[q()

I 219v1 o1 43y

sajqetea snowadoxa uredIaoun £q pautiap Apued pouad 1xsu s1eIg — (y20is)

(symerg

173



