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A Comprehensive Evaluation of
USDA Cotton Forecasts

Olga Isengildina-Massa, Stephen MacDonald, and Ran Xie

This study evaluates all USDA cotton supply and demand estimates for the United States
and China (including unpublished price forecasts) from 1985/86 through 2009/10 for accuracy
and efficiency. Results reveal that at every stage of the forecasting cycle forecast smoothing
was the most widespread and persistent type of inefficiency observed in most U.S. variables.
Correlation with past errors indicated the tendency to repeat past errors in most cases. Tendency
to overestimate growth was also found. Bias was uncommon and limited to several cases of
overestimation of China’s exports and U.S. price and underestimation of China’s domestic use.
While forecasts of China’s imports and endings stocks improved, U.S. price and ending stock
forecast errors became larger toward the end of the study period.

Key words: cotton, forecast accuracy, forecast efficiency, forecast evaluation, forecast smoothing,
USDA forecasts

Introduction

Many agricultural market participants and analysts share a common belief that USDA forecasts
function as a benchmark for other private and public forecasts, which is not surprising given the
classic public goods problem of private underinvestment in information and the critical role that
public information plays in coordinating the beliefs of market participants. As a result, there is
a vast body of literature devoted to analyzing the accuracy and efficiency of USDA forecasts,
which focuses mainly on production (e.g., Gunnelson, Dobson, and Pamperin, 1972; Sanders and
Manfredo, 2002; Isengildina, Irwin, and Good, 2006a) and price (e.g., Irwin, Gerlow, and Liu, 1994;
Sanders and Manfredo, 2003; Isengildina, Irwin, and Good, 2004) forecasts. The accuracy of most
other USDA forecasts describing supply and demand forces has been largely overlooked. To the
best of our knowledge, only one previous study investigated the accuracy of all supply, demand and
price forecasts for U.S. corn and soybeans published within WASDE (World Agricultural Supply
and Demand Estimates) reports (Botto et al., 2006).

Price forecast accuracy depends heavily on the accuracy of supply and demand forecasts. The
USDA’s commodity forecasting follows a balance sheet approach, accounting for each component
of supply and utilization in the countries for which the USDA creates a commodity forecast (see
Vogel and Bange (1999) for a detailed description of the USDA crop forecast generation process).
For each country’s commodity forecast the USDA forecasts all variables included in a balance
sheet, including beginning stocks, production, and imports on the supply side and domestic use
(or consumption), exports, and ending stocks on the demand side. The balance sheet approach
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requires internal consistency among the variables as a group. In other words, “total supply must
equal domestic use plus exports and ending stocks. Prices tie both sides of the balance sheet together
by rationing available supplies between competing uses” (Vogel and Bange, 1999, p. 10). WASDE
price estimates describe the marketing year average prices received by farmers, which are averages
of monthly prices weighted by the amounts marketed at these prices. While the USDA’s WASDE
reports affect markets (e.g. Fortenbery and Summer, 1993; Isengildina, Irwin, and Good, 2006b;
Isengildina-Massa et al., 2008), little is known about the accuracy of forecasts beyond production
and price. Even less is known about the accuracy and efficiency of WASDE forecasts of the foreign
supply and demand categories that may affect U.S. markets through trade.

The objective of this study is to provide a comprehensive examination of the accuracy and
efficiency of all supply and demand categories of the USDA’s WASDE cotton forecasts for the
United States and China. The United States is one of the largest cotton producers and exporters in
the world, with average production of 18% and exports of 31% of world totals during the study
period. China is the world’s largest producer, consumer, and importer of cotton. China accounts
for about 40% of the world consumption and 30-40% of world trade. Sound forecasts of supply
and demand for both countries are therefore crucial for policy-makers, farmers, and other decision-
makers in the United States and around the world. However, only a few studies have investigated
a subset of USDA forecasts for cotton (MacDonald, 2002) or included cotton in studies of USDA
export forecasts for a number of commodities (MacDonald, 2005). This study will use the data
from monthly WASDE balance sheets for cotton for the U.S. and China between 1985/86 through
2009/10, including unpublished price forecasts.1

The analysis is comprehensive as it does not focus on a single aspect of forecast evaluation,
but incorporates multiple tests of forecast performance including: 1) accuracy, 2) bias, 3) efficiency
with respect to forecast levels, 4) efficiency with respect to past errors, 5) efficiency in forecast
revisions, and 6) forecast improvement over the study period. Understanding various aspects of
WASDE cotton forecast performance will help USDA analysts identify areas that need improvement
and will assist forecast users in efficient interpretation and application of the information contained
in these forecasts.

Data

This study focuses on monthly WASDE cotton forecasts for the U.S and China from 1985/86 through
2009/10 (U.S. Department of Agriculture, Office of the Chief Economist, 1985-2010). Means of
forecast levels of these variables shown in table 1 demonstrate that both China and the United
States are major cotton producers, jointly producing over 43% of cotton in the world. All quantities
are measured in million 480-pound bales of cotton, including both upland and extra-long staple
varieties. Price is measured in cents per pound of upland cotton (which accounts for 96% of U.S.
cotton). China is also a major consumer of cotton, with the growing textile sector supported by
domestic production and increasingly supplemented by imports since the early 2000s. The demands
of China’s textile sector are also facilitated by relatively high levels of stocks. In contrast, the
U.S. textile industry has been shrinking since the mid-1990s, as reflected in declining domestic
use and growing exports. The nominal U.S. cotton price averaged about 56.19 cents/lb. during the
study period. Similar to other major U.S. farm commodities, cotton’s price was supported by U.S.
farm programs prior to 1985, but U.S. programs and price determination have become more market
oriented since. Due to the increased export orientation of the U.S. cotton industry, the price of U.S.
cotton has been increasingly affected by international market forces (Isengildina and MacDonald,
2009). While price forecasts have been published in interval form since 2008, earlier, unpublished

1 Although cotton price forecasts were not published, the USDA’s Interagency Commodity Estimates Committee (ICEC)
for cotton calculated unpublished price forecasts each month. The accuracy of these unpublished forecasts should be evaluated
as the USDA moves forward with its cotton price forecasting mission.
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Table 1. Descriptive Statistics for WASDE Cotton Forecasts, 1985/86-2009/10 Marketing
Years

Category Production Imports Domestic
Use Exports Ending

Stocks Price

U.S.
Mean level (yI

t ), mil. bales and c/lba 16.77 7.93 8.93 5.09 56.19
Std Deviation (yI

t )
a 3.49 2.42 3.77 2.17 10.38

Coefficient of variation (yI
t )

a 0.21 0.30 0.42 0.43 0.18
Mean absolute percent forecast ( f i

t )
b 13.85 5.60 22.65 31.84 16.20

Mean absolute percent error (ei
t)

b 3.69 5.49 10.98 20.63 6.63
Max percent error ( f i

t )
b 27.84 24.69 29.48 72.31 20.39

Min percent error ( f i
t )

b −19.76 −20.35 −93.65 −80.35 −45.56
RMSPEb 5.37 6.44 14.27 23.35 8.53

China
Mean level (yI

t ), mil. bales and c/lba 23.30 4.01 27.72 0.73 12.66
Std Deviation (yI

t )
a 6.16 4.87 11.40 0.90 4.78

Coefficient of variation (yI
t )

a 0.26 1.21 0.41 1.23 0.38
Mean absolute percent forecast ( f i

t )
b 11.29 67.16 5.00 63.84 16.59

Mean absolute percent error (ei
t)

b 6.33 52.45 4.71 62.89 22.59
Max percent error ( f i

t )
b 25.53 519.30 18.23 128.09 81.59

Min percent error ( f i
t )

b −23.36 −230.26 −18.23 −299.57 −85.91
RMSPEb 7.70 56.90 5.34 82.26 25.30

Notes: a Level statistics are calculated using the final November (I=19) estimate for each category.
b Forecasts and forecast errors are measured in log percent form. Statistics calculated using data for stages 1-4.

price forecasts were point estimates. To overcome this inconsistency and keep the analysis consistent
across all forecasts, midpoints of the price forecast intervals published since 2008 are used.

Coefficients of variation of the forecast levels shown in table 1 demonstrate that ending stocks
and exports are the most volatile categories on the U.S. balance sheet and exports and imports are the
most volatile on the Chinese balance sheet. High variability of China’s forecasts relative to all other
forecasts illustrates challenges associated with obtaining reliable data from China. As described by
Skelly, Colby, and Johnson (2010, p. 415):

Until 2007, USDA and most other cotton forecasting agencies relied mainly on
statistics released by the NBS (National Bureau of Statistics) to estimate China’s cotton
production . . . However, by mid-2007, sources in China were examining information on
rail shipments of cotton from Xinjiang to eastern China and concluded that the NBS
production estimates for Xinjiang were too low. In late September 2007, the high-level
National Development and Reform Commission (NDRC), an agency under China’s
State Council, confirmed higher production estimates for the 2006 and 2007 crops.

These challenges also resulted in an important data reporting change that affected production and
indirectly influenced other categories in the Chinese balance sheet. Since NDRC estimates were
deemed more realistic, the USDA switched to forecasting NDRC rather than NBS production
estimates in 2007. This switch resulted in “adjustments in monthly releases for July and October
of 2007 which raised estimates for the 2004/05 through 2007/08 crops by a cumulative total of 14.4
million bales” (Skelly, Colby, and Johnson, 2010, p. 415).

Typically, WASDE reports are released between the 9th and the 12th of each month and contain
forecasts of supply and demand for most major crops. Supply and demand estimates are forecasted
on a marketing year basis (August through July for U.S. cotton). The first forecast for a marketing
year is released in the May preceding the U.S. marketing year. USDA forecasts for China were
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Figure 1. WASDE Forecasting Cycle for Cotton Relative to the 2010/11 U.S. Marketing Year

historically not released until the July preceding the U.S. marketing year.2 Estimates for the United
States are largely finalized 18 months later, by November after the marketing year (figure 1). U.S.
production forecasts are an exception as they are finalized by May (month 13 of the forecasting
cycle). The 19 month schedule is also adopted for the analysis of China variables. Revisions of non-
U.S. variables’ estimates are common through the 25th month, but are small enough to justify the
simplification of choosing a common forecast horizon for both U.S. and non-U.S. variables. The
USDA’s WASDE forecasts are usually viewed as fixed-event forecasts, since during each year (t)
there are a series of forecasts related to the same terminal event occurring in year t (yI

t ), where I is
the release month of the final estimate. The forecasted value of the year t terminal event published
in month i of year t is denoted as yi

t , where i = 1, . . . , I, and I = 19. Thus, each subsequent forecast
is an update of the previous forecast describing the same terminal event. Based on our definition of a
19 month forecasting cycle, WASDE generates 18 updates for each U.S. variable except production
(12 updates) within each marketing year. The years covered in this study are t = 1(1985/86), . . . , 25
(2009/10). Historical series of WASDE forecasts also have rolling-event characteristics as 18 (I − 1)
different horizon forecasts are available for all 25 target dates (marketing years) for all U.S. variables
and 16 (I − 3) different horizons for China variables.

Forecast evaluation is derived from accuracy tests based on the size and direction of forecast
errors and optimality tests based on the idea of forecast error and revision unpredictability (Diebold
and Lopez, 1998; Nordhaus, 1987). To standardize for changing forecast size over time, errors,
revisions, and forecasts are examined in log percentage form.3 The forecast error ei

t is calculated as:

(1) ei
t = 100× ln

(
yI

t

yi
t

)
i = 1, . . . , I − 1; t = 1, . . . ,25.

and forecast revision is measured as:

(2) ri
t = 100× ln

(
yi

t

yi−1
t

)
i = 1, . . . , I − 1; t = 1, . . . ,25.

Percent forecasts, f i
t , were computed as percent changes in forecasted values from the previous

year’s values. Since the forecasting cycle spans 19 months, the final estimate for the previous

2 The USDA began publishing June forecasts for China in 2004 and May forecasts in 2005.
3 Unit errors (yI

t − yi
t) and revisions (yi

t − yi−1
t ) were also included in the original analysis. Results are available from the

authors upon request.
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Figure 2. WASDE Cotton Forecasts, Percent Forecasts and Revisions for Stages 2 (i = 4− 6)
and 3 (i = 7− 10) of the Forecasting Cycle
Notes: Percent Forecast ( f i

t ) measures a change between previous year’s final (y19
t−1) or most recently available (yy+12

t−1 )
estimate and the current year forecast (yi

t ): f i
t = [ln(yi+12

t−1 )− ln(yi
t)]× 100.

marketing year is not known during the first six months of the forecasting cycle and the most recently
available estimate is used:

f i
t = 100× ln

(
yi

t
yi+12

t−1

)
where i = 1, . . . ,6; t = 1, . . . ,25,

(3)

f i
t = 100× ln

(
yi

t
yI

t−1

)
where i = 7, . . . , I; t = 1, . . . ,25,

The layout of fixed event forecasts and corresponding revisions and percent forecasts are illustrated
for stages 2 and 3 in figure 2.

Figure 3 shows changes in forecast errors over the forecasting cycle using box-and-whisker plots.
For each month, the distance from the top of the upper whisker to the bottom of the lower whisker
captures the entire range of forecasting errors over the past 25 years. The box reflects the middle
50% of the errors and the upper and lower whiskers show the upper and lower 25% quantiles. These
graphs demonstrate that the variability of the forecast error generally declines during the forecasting
cycle as more information becomes available, thus satisfying this forecast efficiency criteria outlined
by Diebold and Lopez (1998). Difference between means (marked with an x) and medians (marked
with a line) of forecast error distributions suggest that distributions are asymmetric. For example,
negative outliers in the errors for China’s export forecasts pull the mean below the median, and
positive outliers have the opposite effect on mid-cycle U.S. ending stock forecast errors.

This illustration of how forecast errors change within the forecasting cycle reflects the
differences in information sets available at the time the forecasts are made (as illustrated in figure
1). May-July forecasts are largely based on historical information as limited information about the
development of new crop is available and the previous marketing year estimates are not finalized.
August marks better information from NASS about U.S. crop progress (NASS is not responsible for
the May-July U.S. production forecasts) and the onset of the marketing year. November marks the
end of the northern hemisphere harvest and finalized information about the previous marketing year.
Forecasts between February and July are a combination of the observed marketing year activities
to date (e.g., actual U.S. consumption and export data for the first several months of the marketing
year) and forecasts for the later months. China’s forecasts follow a similar pattern, with generally
longer lags representing greater difficulty acquiring timely, sound data. Thus, the forecasts may
be largely differentiated into highly uncertain stage 1 forecasts during May-July (i =1, 2, 3), less
uncertain stage 2 forecasts during August-October (i =4, 5, 6), mid-cycle stage 3 forecasts during
November-February (i =7, 8, 9, 10), stage 4 estimates during March-June (i =11, 12, 13, 14), and
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Figure 3. USDA Errors in Forecasting U.S. and China Cotton Variables, 1985/86-2009/10
Marketing Years.
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Table 2. Forecast Accuracy Tests for WASDE Cotton Forecasts, 1985/86-2009/10 Marketing
Years

Country/ Stage of
forecasting cycle

Test Production Imports Domestic
Use Exports Ending

Stocks Price

U. S.
Stage 1 Theil’s U 0.68 1.05 0.78 0.84 0.70

Directional χ2 3.55∗ 3.38∗ 9.15∗∗∗ 0.50 9.24∗∗∗

Stage 2 Theil’s U 0.39 0.26 0.65 0.78 0.61
Directional χ2 9.15∗∗∗ 9.15∗∗∗ 11.53∗∗∗ 3.38∗ 7.17∗∗∗

Stage 3 Theil’s U 0.08 0.22 0.47 0.53 0.27
Directional χ2 21.42∗∗∗ 15.37∗∗∗ 12.09∗∗∗ 4.97∗∗ 17.78∗∗∗

Stage 4 Theil’s U 0.19 0.21 0.25 0.10
Directional χ2 15.37∗∗∗ 15.64∗∗∗ 14.64∗∗∗ 25.15∗∗∗

China
Stage 1-2 Theil’s U 0.71 0.77 0.77 0.84 1.03

Directional χ2 4.97∗∗ 5.42∗∗ 1.62 3.38∗ 0.21

Stage 3 Theil’s U 0.47 0.60 0.56 0.64 0.80
Directional χ2 11.92∗∗∗ 11.70∗∗∗ 4.97∗∗ 2.10 6.94∗∗∗

Stage 4 Theil’s U 0.26 0.19 0.42 0.54 0.49
Directional χ2 21.29∗∗∗ 18.19∗∗∗ 10.62∗∗∗ 9.15∗∗∗ 9.92∗∗∗

Notes: All tests are based on the average forecasts for each stage across years, thus N=25. Directional χ2 test of independence of actual and
forecasted direction uses Yates-corrected χ2 statistic.

stage 5 estimates during July-November (i =15, 16, 17, 18) (figure 1). This study focuses on stages
1-4 of the forecasting cycle.

Accuracy Analysis

Descriptive statistics shown in table 1 demonstrate that, in absolute terms, errors were the largest
for the categories that are the most variable: China’s exports, imports, and ending stocks, and U.S.
exports and ending stocks. When forecasts are measured as a rate of change from the previous
year, the largest average magnitude of change is observed in China’s imports and exports and the
U.S. ending stocks. Large maximum and minimum errors in China’s imports and exports should be
interpreted with care as they represent changes from near-zero levels. RMSPE and MAPE provide
consistent signals about the relative accuracy of forecasts. Ending stocks forecasts are the least
accurate among U.S. categories and exports, imports, and ending stocks are the least accurate
forecasts on the Chinese balance sheet. Comparison of similar categories across countries highlights
inaccuracy in forecasting China’s trade variables.

Forecast accuracy evaluation relative to a naïve alternative was conducted using a Theil’s U
statistic, calculated as the ratio of the mean squared error (MSE) of a variable’s forecast relative to
the MSE of a random walk for the variable U = ∑

T
t=1(y

I
t − yi

t)
2/∑

T
t=1(y

I
t − yI

t−1)
2. Interpretation

of Theil’s U is based on a value of 0 for perfect forecasts and a value of 1 for forecasts with
accuracy equivalent to that of naïve, “no-change” forecasts (Leuthold, 1975). Statistics shown in
table 2 indicate that USDA was most successful with U.S production and price and China production
forecasts. On the other hand, early U.S. domestic use and China’s ending stocks forecasts seem most
problematic. These problems were likely due to challenges with forecasting structural change in
these categories as described in Isengildina and MacDonald (2009).

The evaluation of directional accuracy shown in table 2 is based on the timing test developed
by Henriksson and Merton (1981) and applied by McIntosh and Dorfman (1992) and Schnader and
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Stekler (1990), among others. The test is based on 2 x 2 contingency tables, reflecting the direction of
year-to-year change in each variable forecast for each stage’s average forecast. The frequency with
which forecasts and actual realizations of the variable decrease or increase together is compared
with the expected frequency of independent directional changes using a χ2-statistic. Our findings
highlight the difficulty the USDA faces in forecasting ending stocks of cotton: both China’s and the
United States’ stage 1 ending stock forecasts fare poorly, failing to provide information about the
direction of change in the coming year. The only other variable faced with similar challenges was
China’s domestic use. Directional accuracy improves for virtually every variable as the forecasting
cycle progresses, but at different rates. By stage 2, all the U.S. forecasts provide information
about direction, but problems persist in the China’s ending stock forecasts into stage 2 and in the
export forecasts into stage 3. A surprising result was found for China’s export forecasts directional
accuracy, with the null hypothesis of independence not rejected for stage 3 while rejected (although
marginally) for stage 1-2 forecasts, thus demonstrating the only violation of the efficiency condition
that accuracy should improve across the forecast horizon found in this study. This finding likely
illustrates challenges with obtaining and analyzing data for this highly variable category.

Forecast Optimality Evaluation Framework

Theil (1958) pioneered the framework for rolling-event forecast efficiency testing, which was
extended by Mincer and Zarnowitz (1969) and Pons (2000). Nordhaus (1987) introduced the
utilization of these tests into a fixed-event framework, and Clements (1997) and Isengildina, Irwin,
and Good (2006a) extended this to the pooling of rolling sets of fixed-event forecasts. Following
Elliott and Timmermann (2008), this study assumes the forecaster’s loss function is of the mean
squared error (MSE) type, so that the forecasts minimize a symmetric, quadratic loss function.

The fundamental measures of optimal forecasts are bias and efficiency (Diebold and Lopez,
1998). Traditionally the test of bias is conducted with a regression of forecast errors on an intercept
term. Changes in the direction of bias during a study period are captured in this study by a trend
term. The test of bias is performed here using the following regression:

(4) ei
t = α0 + α1T + ε

i
t where i = 1, . . . , I − 1; t = 1, . . . ,25,

where α0 is a constant and T is a centered linear time trend. The null hypothesis for an unbiased
forecast is α0 = 0,α1 = 0. If α0 > 0, then forecasts will consistently underestimate the final estimate.
If α0 < 0, forecasts consistently overestimate the final estimate. If α1 6= 0, the direction of bias has
changed over time.

Using absolute errors as the dependent variable in the above test of bias allows testing for forecast
improvement over time as suggested by Bailey and Brorsen (1998) and Sanders and Manfredo
(2003):

(5) |ei
t |= β0 + β1T + ε

i
t where i = 1, . . . , I − 1; t = 1, . . . ,25,

In this equation, β0 measures average absolute forecast error. The null hypothesis is β1 = 0, which
indicates that there is no systematic change in the size of forecast error. If β1 > 0, the forecasts
become less accurate over time as evidenced by larger errors. If β1 < 0, the forecasts improve over
time as demonstrated by smaller errors.

Weak efficiency tests evaluate whether forecast errors are orthogonal to forecasts themselves and
to prior forecast errors (Nordhaus, 1987). This study tests weak efficiency with respect to forecast
levels using the basic approach of (Pons, 2000) and (Sanders and Manfredo, 2002, 2003), with a
trend term:4

(6) ei
t = γ0 + γ1 f i

t + γ2T + ε
i
t where i = 1, . . . , I − 1; t = 1, . . . ,25,

4 This equation can be easily traced back to the standard Mincer-Zarnowitz formulation:
1. f I

t = β0 + β1 f i
t + ε i

t
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The null hypothesis for efficient forecasts is γ1 = 0. If γ1 > 0, the absolute value of the forecast is
smaller than the actual realization. Since the forecasts here are stated in terms of change from the
previous year, γ1 > 0 means that change is underestimated, in either direction. If γ1 < 0, the change
is overestimated.

Forecast efficiency with respect to past errors is measured as:

(7) ei
t = ρ0 + ρ1ei

t−1 + ρ2T + ε
i
t where i = 1, . . . , I − 1; t = 2, . . . ,25,

For fixed event forecasts, the forecast error for the previous event (marketing year) should be used
for this test. The null hypothesis for efficient forecasts is ρ1 = 0. If ρ1 6= 0, there is a systematic
component in forecast errors that can be predicted using past errors.

Weak form efficiency of fixed-event forecasts implies independence of forecast revisions
(Nordhaus, 1987). According to Nordhaus, if forecasts are weak form efficient, revisions should
follow a random walk. This property is tested using the approach outlined in Isengildina, Irwin, and
Good (2006a), with a time trend:

(8) ri
t = λ1ri−1

t + λ2T + ε
i
t where i = 2, . . . , I; t = 1, . . . ,25,

For (i = 3), λ1 represents the slope coefficient of all October revisions made from 1985/86 to
2009/10 regressed against the September revisions (i− 1 = 2) for the same respective years. The
null hypothesis for efficiency in forecast revisions is λ1 = 0. If λ1 > 0, the forecasts are “smoothed,”
as they are partially based on the previous revision. If λ1 < 0, the forecasts are “jumpy,” as they tend
to over-adjust the previous revision.

All equations were estimated for each of stages 1-4 using data pooled across all marketing years
and the 3 to 4 months of the forecasting cycle contained in each stage. A dummy variable with the
value of 1 for all forecast months in 2006 and the beginning of 2007 (through September, i = 5)
was added to the evaluation of China’s production and ending stock forecasts to account for the
USDA’s October 2007 shift from forecasting production as estimated by China’s National Bureau of
Statistics (NBS) to targeting the estimate from the National Development and Reform Commission
(NDRC). Regressions were estimated using panel least squares method with White cross-section
correction in standard error calculation. The White cross-section method treats the pooled regression
as a multivariate regression (with an equation for each cross-section) and computes White-type
robust standard errors for the system of equations. The coefficient covariance matrix is estimated as:

(9)
(

N∗

N∗ − K∗

)(
∑

t
X ′t Xt

)−1(
∑

t
X ′t ε̂t ε̂

′
t Xt

)(
∑

t
X ′t Xt

)−1

where N∗ is the number of cross sections (months of the forecasting cycle), K∗ is the number of
estimated parameters and Xt is a vector of regressors. This estimator is robust to contemporaneous
correlation as well as different error variances in each cross-section (Wooldridge, 2002, p. 148-153).

Forecast Optimality Evaluation Results

Table 3 shows the results of the test of bias in equation (4) , which suggest that on average none of
the U.S. cotton forecasts were biased. However, the U.S. domestic use forecast errors have a strong
negative time trend, demonstrating a tendency for underestimation prior to 1997 and overestimation
beginning in 1997/98. This finding demonstrates difficulties with forecasting structural changes in
the domestic textile industry; in particular, the USDA underestimated the speed of contraction in
the U.S. textile sector beginning in the late 1990s. While the bias in China’s export forecasts was
very large in percentage terms–averaging 42% overestimation in the first stage–its importance is

2. f I
t − f i

t = β0 + β1 f i
t − f i

t + ε i
t = β0 + (β1 − 1) f i

t + ε i
t ,

which restates the test in terms of the forecasted variable ( f i
t ) rather than forecast error ( f I

t − f i
t ).
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Table 3. Test of Bias for WASDE Cotton Forecasts, 1985/86-2009/10 Marketing Yearsa

Country/ Stage of
forecasting cycle Coeff. Production Imports Domestic

Use Exports Ending
Stocks

Average
Price N

U. S.
Stage 1 α0 1.31 0.66 −1.35 −3.59 −4.21 75

α1 −0.03 −1.00∗∗∗ 0.72 0.76 −0.49

Stage 2 α0 0.49 0.01 0.95 −5.09 −1.82 75
α1 0.02 −0.82∗∗∗ 0.55 0.62 −0.38

Stage 3 α0 −0.01 0.51 1.15 −6.73 −0.49 100
α1 −0.02 −0.49∗∗∗ 0.43 0.06 −0.16

Stage 4 α0 0.75 0.48 −2.12 −0.89∗∗ 100
α1 −0.22∗∗ 0.22∗ −0.19 −0.06

China
Stage 1-2 α0 −0.06 6.70 2.16 −41.86∗∗ 4.14 100

α1 0.48 −2.58 −0.07 −0.70 1.70
α2 14.65∗∗∗ 18.39∗

Stage 3 α0 1.84 −0.22 2.05∗ −30.66 6.59 100
α1 0.30 −0.73∗ −0.07 −1.18 0.90
α2 10.56∗∗∗ 7.62

Stage 4 α0 0.66 −9.04 1.10 −25.39∗ 0.99 100
α1 0.13∗ 1.48 0.02 −0.74 0.77
α2 12.09∗∗∗ 18.83∗∗∗

Notes: e is forecast error, T is a trend, and 2006 is a dummy variable. Stage 1 includes forecasts released in months 1-3, Stage 2 includes
months 4-6, Stage 3 includes months 7-10, Stage 4 includes months 11-14 of the forecasting cycle. Regressions estimated using panel least
squares with White heteroscedasticity correction. N is the number of observations. Single, double, and triple asterisks (∗, ∗∗, ∗∗∗) denote
statistical significance at 10%, 5%, and 1% levels, respectively.
a ei

t = α0 + α1T + α22006 + ε i
t

likely limited due to generally small forecast levels (0.72 million bales) during the study period.
Overestimation in China’s export forecasts is similar to the pattern previously found in broiler prices
by Sanders and Manfredo (2003). More important was a downward bias of 2.05% in the forecasts of
China’s consumption during the third stage. Since China is the world’s largest consumer of cotton,
this finding suggests that third stage China consumption forecasts have been on average about
562,000 bales below actual. This tendency to underestimate China’s consumption is reminiscent of
previous evidence of underestimation in forecasts of U.S. beef, pork, and broiler production (Bailey
and Brorsen, 1998; Sanders and Manfredo, 2002).

Table 4 illustrates forecast improvement test results derived from equation (5), which
demonstrate significant evidence of forecast improvement in China’s ending stocks, production,
and import forecasts. China’s ending stocks forecast errors became 1.58% and 1.31% smaller each
year during the first/second and third stage of the forecasting cycle, respectively. China’s import
forecast errors were reduced by 4.51% and 3.75% each year in the first/second and the third
stage, respectively. The improvement in China’s production forecasts measured 0.38% a year in
the first/second and third stage. These findings are likely associated with better data regarding the
Chinese cotton industry that have become available toward the end of the study period. Forecast
improvement results are similar to Bailey and Brorsen’s (1998) findings in beef and pork production
forecasts and Sanders and Manfredo’s (2003) findings in broiler price forecasts. In contrast, U.S.
price forecasts became significantly worse, with error increasing by 0.53% per year in the first
stage and 0.08% per year in the fourth stage. This finding likely reflects challenges with forecasting
price in an increasingly internationally-oriented market (Isengildina and MacDonald, 2009). Note,
however, that this finding refers to unpublished forecasts. U.S. ending stock forecasts in stage 3
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Table 4. Test of Forecast Improvement for WASDE Cotton Forecasts, 1985/86-2009/10
Marketing Yearsa

Country/ Stage of
forecasting cycle Coeff. Production Imports Domestic

Use Exports Ending
Stocks

Average
Price N

U. S.
Stage 1 β0 9.51∗∗∗ 8.93∗∗∗ 17.26∗∗∗ 30.11∗∗∗ 12.08∗∗∗

β1 0.00 −0.11 −0.27 −0.05 0.53∗∗ 75

Stage 2 β0 5.66∗∗∗ 6.68∗∗∗ 14.75∗∗∗ 28.43∗∗∗ 10.04∗∗∗

β1 0.11 −0.05 −0.20 0.66 0.09 75

Stage 3 β0 1.32∗∗∗ 4.60∗∗∗ 10.61∗∗∗ 19.63∗∗∗ 4.73∗∗∗

β1 0.02 0.00 −0.16 0.51∗∗ 0.06 100

Stage 4 β0 2.89∗∗∗ 3.82∗∗∗ 8.69∗∗∗ 1.89∗∗∗

β1 −0.03 0.05 0.03 0.08∗∗∗ 100

China
Stage 1-2 β0 9.53∗∗∗ 77.05∗∗∗ 6.00∗∗∗ 72.51∗∗∗ 27.74∗∗∗

β1 −0.38∗∗∗ −4.51∗ 0.15 1.08 −1.58∗∗ 100
β2 13.21∗∗∗ 25.65∗∗∗

Stage 3 β0 5.95∗∗∗ 52.93∗∗∗ 4.90∗∗∗ 66.56∗∗∗ 23.04∗∗∗

β1 −0.38∗∗ −3.75∗∗ 0.06 1.16 −1.31∗∗∗ 100
β2 12.54∗∗∗ 11.07∗∗∗

Stage 4 β0 1.58∗∗∗ 27.36∗∗∗ 3.25∗∗∗ 49.60∗∗∗ 14.20∗∗∗

β1 −0.03 −2.33 0.06 0.04 −0.16 100
β2 12.53∗∗∗ 13.97∗∗∗

Notes: e is forecast error, T is a trend, and 2006 is a dummy variable. Stage 1 includes forecasts released in months 1-3, Stage 2 includes
months 4-6, Stage 3 includes months 7-10, Stage 4 includes months 11-14 of the forecasting cycle. Regressions estimated using panel least
squares with White heteroscedasticity correction. N is the number of observations. Single, double, and triple asterisks (∗, ∗∗, ∗∗∗) denote
statistical significance at 10%, 5%, and 1% levels, respectively.
a |ei

t |= β0 + β1T + β22006 + ε i
t

also saw a significant increase in absolute error over time. Since β0 in equation (5) equals the
forecast mean absolute percent error (MAPE), table 4 shows that MAPE improves (declines) as
the forecasting cycle progresses from stages 1 to 4.

Table 5 reports results of the forecast efficiency tests from equation (6). Errors of early U.S.
domestic use and ending stocks forecasts and China’s exports forecasts were significantly negatively
correlated with forecast levels, indicating that the USDA tends to overestimate change in these
variables early in the forecasting cycle. For example, for each 10% change from the previous year’s
forecast in U.S. ending stocks, we expect first stage forecast error to grow by 3.2%; hence the
forecast should be adjusted by that amount. Based on the γ1 coefficient of -0.32 for stage 2 ending
stocks forecasts, the forecasts should be scaled down by a factor of 0.68 (1 + γ1). In other words, if
USDA forecasts ending stocks to rise or fall by 10% in their May-July forecasts, a better estimate
of the actual change is 6.8%. A similar pattern of overestimation of change was previously found in
livestock production forecasts by Sanders and Manfredo (2002). The opposite pattern was observed
in stage 4 U.S. price and China ending stocks forecasts, where positive correlation with forecast
levels signals underestimation of change. Thus, U.S. price and China ending stocks forecasts should
be scaled up by 4% and 29% (1 + γ1), respectively. Note that the magnitude of forecast levels should
be taken into account in interpreting the relative impact of this inefficiency. For example, since
average forecasts for stage 2 U.S. ending stocks are 5.23 million bales, a 3.2% overestimation is
170,000 bales, which is greater in absolute terms than the 4.6% overestimation in China’s stage 1
average export forecasts of 0.78 million bales (equivalent to 36,000 bales). The magnitude of average
annual variation is also a factor to be taken into account when ranking the impact of inefficiency in
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Table 5. Estimated γ1 for the Test of Efficiency with Respect to Forecast Levels for WASDE
Cotton Forecasts, 1985/86-2009/10 Marketing Yearsa

Country/ Stage of
forecasting cycle Production Imports Domestic

Use Exports Ending
Stocks

Average
Price N

U. S.
Stage 1 0.04 −0.66∗∗ 0.24 −0.16 0.08 75

Stage 2 0.06 −0.41∗∗∗ 0.14 −0.32∗∗ −0.12 75

Stage 3 0.03 −0.21 0.09 −0.10 0.01 100

Stage 4 −0.10 0.01 −0.07 0.04∗∗ 100

China
Stage 1-2 −0.06 −0.16 −0.11 −0.46∗∗ 0.18 100

Stage 3 0.10 0.13 0.10 −0.31∗1 0.35 100

Stage 4 0.03 0.06 −0.05 −0.24 0.29∗∗∗ 100

Notes: e is forecast error, T is a trend, and 2006 is a dummy variable. Stage 1 includes forecasts released in months 1-3, Stage 2 includes
months 4-6, Stage 3 includes months 7-10, Stage 4 includes months 11-14 of the forecasting cycle. Regressions estimated using panel least
squares with White heteroscedasticity correction. N is the number of observations. Single, double, and triple asterisks (∗, ∗∗, ∗∗∗) denote
statistical significance at 10%, 5%, and 1% levels, respectively.
a ei

t = γ0 + γ1 f i
t + γ2T + γ32006 + ε i

t

different variables. Thus, the challenges associated with predicting the rate of change were the most
pronounced in the U.S. and China ending stocks forecasts.

Table 6 shows the pattern of positive annual serial correlation of errors (equation 7) for several
China forecasts: stage 3-4 production, stage 1-2 domestic use, and stage 1 and 4 exports.5 This
finding suggests a tendency to repeat previous errors. Thus, a 10% error in stage 4 production
forecasts last year will be followed by a 2.2% error in the same direction this year. In other words, if
2008 stage 4 China’s production forecast error was 2.48%, the production forecast during the same
period for 2009 should be adjusted by subtracting 0.55% (0.22 times 2.48). A similar tendency was
observed in U.S. livestock price forecasts (Sanders and Manfredo, 2003) and broiler production
forecasts (Sanders and Manfredo, 2002). On the other hand, negative correlation of errors was
observed in stage 1 U.S. price forecasts, stage 3 U.S. domestic use and China’s imports forecasts,
and stage 4 China’s domestic use forecasts. This pattern suggests a tendency to offset previous years’
errors rather than repeat them. Thus, a 10% overestimation in a stage 1 U.S. price forecast will be
followed by a 3% underestimation next year, and the forecast should be adjusted accordingly.

Table 7 demonstrates the most frequently observed evidence of inefficiency in U.S. forecasts:
positive correlation in forecast revisions, which was present in forecasts in all stages and for all
variables but price. This pattern was also observed in early forecasts of China’s production, imports,
and domestic use and suggests that the affected forecasts are ”smoothed,” since the new information
is not fully incorporated in the forecasts as it becomes available and is carried over into subsequent
revisions (Nordhaus, 1987; Isengildina, Irwin, and Good, 2006a). This finding implies that revisions
in one month help predict revisions in the subsequent month. Most estimated values of λ1 in equation
(8) range from about 0.23 to 0.37, indicating that a 10% revision to the forecast in month i is
associated with a 2.3 to 3.7% revision in the subsequent month (i + 1). For example, an April 2009
(stage 4) 6.45% downward revision from March U.S. ending stocks forecast represented an actual
change of 8.45% (6.45 + 6.45× 0.31), if the expected component in the next revision (6.45× 0.31)
is also taken into account. These findings resemble the evidence of smoothing in corn and soybean
production forecasts shown by Isengildina, Irwin, and Good (2006a).

5 In addition to this test, the Ljung-Box Q-statistic was calculated for each variable’s forecasts for each month i across
years t out to 5 lags. U.S. domestic use stands out in this test with rejections of the null hypothesis of white noise errors with
at least 0-2% significance for the first 5 months of forecasts, and 10% in the 6th month. The U.S. use errors follow an AR(3)
process, an initial sign of inefficiency. For other variables, virtually every forecast error satisfied the conditions for white
noise.
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Table 6. Estimated ρ1 for the Test of Efficiency with Respect to Past Errors for WASDE
Cotton Forecasts, 1985/86-2009/10 Marketing Yearsa

Country/ Stage of
forecasting cycle Production Imports Domestic

Use Exports Ending
Stocks

Average
Price N

U. S.
Stage 1 0.14 −0.16 −0.04 −0.05 −0.31∗ 72

Stage 2 0.11 −0.16 0.00 0.08 −0.10 72

Stage 3 0.11 −0.36∗ 0.07 0.10 0.24 96

Stage 4 −0.32 −0.06 −0.19 −0.03 96

China
Stage 1-2 −0.02 0.12 0.25∗∗ 0.38∗∗∗ −0.11 96

Stage 3 0.16∗ −0.29∗∗∗ 0.08 0.16 −0.14 96

Stage 4 0.22∗∗∗ 0.04 −0.31∗∗∗ 0.48∗∗∗ −0.12 96

Notes: e is forecast error, T is a trend, and 2006 is a dummy variable. Stage 1 includes forecasts released in months 1-3, Stage 2 includes
months 4-6, Stage 3 includes months 7-10, Stage 4 includes months 11-14 of the forecasting cycle. Regressions estimated using panel least
squares with White heteroscedasticity correction. N is the number of observations. Single, double, and triple asterisks (∗, ∗∗, ∗∗∗) denote
statistical significance at 10%, 5%, and 1% levels, respectively.
a ei

t = ρ0 + ρ1ei
t−1 + ρ2T + ρ32006 + ε i

t

Table 7. Estimated λ1 for the Test of Independence of Forecast Revisions for WASDE Cotton
Forecasts, 1985/86-2009/10 Marketing Yearsa

Country/ Stage of
forecasting cycle Production Imports Domestic

Use Exports Ending
Stocks

Average
Price N

U. S.
Stage 1-2 0.23∗∗ 0.36∗∗∗ 0.25∗∗∗ 0.12∗ 0.11 100

Stage 3 0.34∗∗∗ 0.37∗∗ 0.35∗∗∗ 0.29∗∗ 0.11 100

Stage 4 0.27∗∗∗ 0.37∗∗∗ 0.31∗∗∗ 0.03 100

China
Stage 1-2 0.31∗∗∗ 0.11 0.32∗∗ −0.03 0.03 50

Stage 3 0.02 0.11∗∗ 0.37∗∗∗ 0.02 −0.08 100

Stage 4 0.01 0.09 0.05 0.16 0.04 100

Notes: r is forecast revision and T is a trend. Stage 1 includes forecasts released in months 1-3, Stage 2 includes months 4-6, Stage 3 includes
months 7-10, Stage 4 includes months 11-14 of the forecasting cycle. Regressions estimated using panel least squares with White
heteroscedasticity correction. N is the number of observations. Single, double, and triple asterisks (∗, ∗∗, ∗∗∗) denote statistical significance at
10%, 5%, and 1% levels, respectively.
a ri

t = λ1ri−1
t + λ2T + ε i

t

By including all supply and demand categories from the U.S. and China’s balance sheets,
the above results demonstrate the relative performance of the forecasts across categories. In this
respect, the USDA appears most successful in forecasting production in both the United States and
China. U.S. exports were also fairly well forecast: while MAPE was higher than for the production
forecasts, inefficiency was limited to smoothing. Ending stocks forecasts in both regions failed to
detect the direction of change early in the season. U.S. ending stocks forecasts were smoothed
and showed a tendency to overestimate change. Chinese ending stocks forecasts were more
successful and showed significant improvement over time with inefficiency limited to conservative
forecasts of change. Larger challenges were found in the domestic use forecasts, with evidence of
underestimation in the early part of the sample and overestimation in the later part of the study
period; smoothing and correlation with past errors were found in both U.S. and China forecasts and
overestimation of change was seen in the U.S. forecasts.
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Summary and Conclusions

The goal of this study was to provide a comprehensive examination of the accuracy and efficiency
of all supply and demand categories of USDA cotton forecasts using data from monthly WASDE
balance sheets for U.S. and Chinese cotton from 1985/86 through 2009/10, including unpublished
price forecasts. Global cotton markets underwent considerable structural change during our study
period, with China realizing significant growth in its textile sector and the U.S. shrinking its domestic
use and becoming mostly export oriented.

Overall, results demonstrate that USDA cotton forecasts were not optimal during the period of
study. Forecast smoothing was the most widespread and persistent type of inefficiency, observed in
most U.S. variables at every stage of the forecasting cycle. Correlation with past errors was more
common in China forecasts and indicated both the tendency to repeat past errors in most cases as
well as to offset them in some cases. Some evidence of a tendency to overestimate growth was also
found in several U.S and China cotton forecasts. Bias was uncommon and limited to several cases
of overestimation in China’s exports and U.S. price and underestimation of China’s domestic use.
While forecasts of China’s imports and endings stocks have improved, U.S. price and ending stock
forecast errors became larger toward the end of the study period.

Separating the forecasting cycle into several stages allowed us to examine how forecast
performance progressed during the forecasting cycle. While the size of the forecast errors declined
as more information became available during the forecasting cycle, inefficiencies found in stage 4
highlight challenges associated with rationally incorporating this information into forecasts. This
evidence suggests that the USDA needs to re-examine the procedures it uses to analyze information.

Published USDA forecasts are always the Department’s best estimate of expected future
realizations of the variables, but this study shows that these forecasts have several limitations in
terms of both accuracy and efficiency. Over the years the USDA has periodically made an effort
to improve its forecasting capability, including a series of annual interagency conferences from the
mid-1990’s to 2002. In recent years, the USDA’s Economic Research Service has pursued additional
funding to upgrade its market analysis program and has occasionally been successful (Office of
Management and Budget, 2008; Allred, Gouge, and Maw, 2008; Office of Management and Budget,
2009). However, it appears that there is no continuous process to monitor and adjust forecasts based
on their performance. This study provides background for developing such a system.

Another issue is access to information. While the same analysts are involved in providing
forecasts for both the United States and China, the U.S. data collection system is one of the best
in the world with respect to both resources and transparency of the process. In contrast, access
to information from China has historically been difficult to obtain, despite marked improvements
in recent years. This issue is particularly important in an environment where G-20 countries are
working to set up an agricultural market information system (AMIS) in response to growing price
volatility that will improve access to data on production and stocks of most food commodities
(Boschat and Moffett, 2011). The differences in mean absolute errors between the U.S. and China
forecasts and the relative prevalence of serially correlated forecast errors for the China forecasts
shown in this study indicate that such efforts may significantly improve trade-related forecasts.

The findings of this study can be used by market participants to help interpret USDA information.
If market participants are fully aware of the flaws and inefficiencies in USDA forecasts and adjust
for them in their decision making process, limited or no economic losses would result (Orazem and
Falk, 1989). The degree to which market participants anticipate and adjust information contained in
USDA forecasts is outside the scope of this study and presents an interesting area for future research.

[Received July 2011; final revision received October 2011.]
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