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Analysis and Evaluation of Ecosystem Resilience: An Economic 
Perspective 
 
Summary 
This paper focuses on the analyses and evaluation of resilience anchored in an economic 
perspective. Resilience, as well as most of the benefits provided by ecosystems, is not 
priced on current markets. However, this does not mean that resilience is of no value for 
humans. On the contrary, the interest of using an economic perspective, and the 
respective scientific methodology, will be put forward in terms of resilience relevance 
for ecosystems’ life and functioning, and its impact on human welfare. The economic 
perspective is anchored in an anthropocentric analysis meaning that resilience is 
evaluated in terms of provision of natural capital benefits. These, in turn, are interpreted 
as an insurance against the risk of ecosystem malfunctioning and the consequent 
interruption of the provision of goods and services to humans. For this analysis, we 
make use of a conceptual framework so as to identify and describe the different value 
components of resilience. Finally, we present an illustration that tackles the economic 
analysis and discussion of resilience benefits in the context of the Venice Lagoon. 
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1. Introduction  

Ecosystems are identified in the ecological literature as ‘biological communities that interact 

with the physical and chemical environment, with adjacent ecosystems and with the 

atmosphere’ (Holling et al., 1995, p. 54). From an economic perspective, ecosystem 

functioning and stability are responsible for the provision of a wide range of benefits to 

humans. Such benefits include, inter alia, the maintenance of the genetic library, the direct 

provision of food, watershed protection and waste assimilation (Folke et al., 1996). 

In the recent years, anthropogenic pressures are increasingly threatening ecosystem 

functioning and stability, and thus environmental quality. Increasing rates in the urbanisation 

trend and demanding land use management regimes, such as intensive monoculture 

agricultural practices, have contributed to unprecedented impacts on ecosystems. These, in 

turn, create additional uncertainty with respect to the inter-temporal guarantee in the provision 

of goods and services and in the buffering against environmental change. As a result, we have 

been assisting to a growing interest in the identification and definition of policy oriented 

strategies, ranging from prevention to adaptation measures, so as to deal with such pressures.   

In order to guarantee the success of such policies, today, and more than ever, both 

natural and social scientists focus their attention on the study of ecosystems’ life and 

functioning. On one hand, natural scientists analyse the conditions for ecosystems’ 

persistence stressing the relevance of resilience in terms of the capacity of a natural system to 

maintain its functioning. In other words, resilience is here interpreted as a buffer against 

environmental changes or disturbances. On the other hand, economists allocate particular 

effort in exploring a set of tools so as to identify and assess the value of resilience, measured 

in terms of its impacts on human welfare. In this context, resilience is interpreted as a natural 

insurance capital against the risk of ecosystems’ malfunctioning, and the consequent damages 

associated to a potential interruption of the ecosystems’ ability to provide goods and services. 
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This paper focuses on the analyses and evaluation of resilience anchored in an economic 

perspective. 

The paper is organized as follows. Section 2 introduces the concept of resilience as 

originally put forward in the ecological literature. Section 3 presents and discusses the 

motivations to perform economic valuation, in general, and non-market valuation of 

ecosystems’ resilience, in particular. Section 4 defines and explains the concept of economic 

perspective, which will serve as the platform for the discussion and evaluation of resilience. 

Section 5 presents an illustration. Section 6 concludes. 

 

2. A natural science perspective on resilience 

2.1 Introduction 

The concept of resilience has found application in many different fields. In physics, for 

instance, it identifies the resistance of building materials to collision, by providing an 

indicator of materials’ fragility: a material poorly resilient is more fragile and vice versa. In 

the ecological literature, resilience, firstly defined by the theoretical ecologist Holling (1973), 

refers to the understanding of ecosystems’ dynamics, in general, and its conditions for 

persistence, in particular (Gunderson, 2000). Abandoning the traditional equilibrium-centred 

ecological view, which has been focusing on the static analysis of ecosystem’s equilibrium, 

Holling proposes a dynamic approach to the analysis of ecosystem functioning. From 

Holling’s perspective, resilience is then defined as the amount of disturbance that can be 

absorbed before the system redefines its structure and respective processes without moving 

the system from the current state to another state. This perspective is referred to in the 

literature as ecological resilience (Holling, 1986; 1996).  

Since the pioneering work of Holling, other versions with respect to the concept of 

resilience have been put forward by natural scientists. Among them, we can find the definition 



 3

proposed by Pimm (1984). According to Pimm, resilience is identified as the time necessary 

for a system to return to an equilibrium once the system has been the target of an 

environmental change or disturbance. The respective amount of time gives an indication of 

the ecosystem ability to assimilate the change, which is in turn inferred as a measurement of 

resilience. The faster is the recovery, the minimum is the time to return to equilibrium and 

therefore the stronger the resilience of the system. This perspective is referred to in the 

literature as engineering resilience (Holling, 1986; 1996). 

We can discuss in more detail each approach by exploring the use of Figure 1, as 

originally proposed by Scheffer et al. (1993) and Carpenter et al. (1999).  

 

  

Figure 1 – Ecological and engineering resilience 

Source: Scheffer (1993), Carpenter et al. (1999). 

 

The ball represented in Figure 1 depicts the system state, the convex set represents the 

stability domain and the arrows represent the disturbances that the system is subject to. An 

equilibrium exists whenever the ball lies down, after having experienced other positions 

induced by disturbances. In this setting, ecological resilience can then be defined as the 

maximum size of the ripples before the ball reach the new equilibrium after perturbations 
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occurred. On the other hand, engineering resilience can be thought as the return time of the 

ball to the initial equilibrium, i.e. to the bottom of the convex set, depending on the slope of 

the sides of the convex set. In both cases, resilience depends on the shape of the convex set, 

which is, as shown by the three slices represented in Figure 1, subject to changes. These 

changes result from the alteration, often human induced, of parameters, such as birth rates, 

death rates, carrying capacity, migration or per capita predation, governing interactions 

between ecosystems (Beisner et al., 2003).  

As recently pointed out by Gunderson (2000), both perspectives, i.e. ecological 

resilience and engineering resilience, have in common the fact that both deal with aspects of 

stability of system equilibrium. In other words, both investigate the persistence of a system, 

which is supposed to operate near or close to an equilibrium state, concentrating on the self-

organized behaviour of that natural system over time. On the contrary, the definitions differ 

because they offer alternative measures of the capacity of a system to maintain its functioning 

and stability. 

Such differences reflect alternative assumptions about the existence of either single or 

multiple ecosystem’s equilibrium. The ecological resilience perspective, which focuses on 

conditions far from any steady state, where instabilities can flip a system into another stability 

domain, implicitly assumes the existence of multiple locally stable equilibria and the 

tolerance of the system to perturbations that facilitate transitions among stable states. The 

lower the natural system’s capacity to adapt to changes, the higher is the risk for the system to 

shift into a qualitatively different state. When such new state is undesirable, restoring the 

system to its previous state can be complex, expensive and sometimes it reveals to be 

impossible. In case of uncertainty and potential irreversibility of the change, the interplay 

between stabilizing and destabilizing forces is then particularly relevant for the maintenance 

of ecosystems’ functioning. When destabilizing forces are predominant, the natural system 
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could be unable in the new qualitatively state to guarantee to humans the provision of the 

same goods and benefits as in the previous state. From the ecological resilience perspective, 

particular attention is then focused on maintaining the existence of ecosystem’s functions 

relevant to human welfare. The engineering resilience perspective instead assumes the 

existence of a global stability, meaning that the behaviour of a system remains within the 

stable domain containing a single steady state. Then, from this perspective resilience does not 

impact on which equilibrium the ecosystem will reach, but rather on how it will reach its 

equilibrium. As a consequence, the main emphasis is put on the efficiency of the path to reach 

the single best equilibrium steady state. The more resilient the ecosystem, the faster is the 

process of returning to the original equilibrium state, i.e. the higher is the probability of 

maintaining the efficiency in ecosystems’ functioning. This indirectly implies that the 

variability of natural systems can be to a certain extent effectively controlled by humans and 

its consequences are, at least up to a certain point, predictable.    

In order to analyse and value resilience, next sub-section will be devoted to the 

identification, and definition, of resilience relationship with species diversity and natural 

systems’ functioning. In doing so, we will refer to the notion of ecological resilience: 

ecosystems’ complexity and their unknowable and unpredictable evolution over time 

(Deutsch et al., 2002) seem to be more realistically consistent with the existence of multiple 

local equilibria. 

 

2.2 Resilience, system functioning and species diversity 

Species diversity refers to the variety of species on earth, or in any other given geographical 

area. Such diversity is associated with a large degree of uncertainty. In fact, estimates of the 

total number of species on earth range from 5 to 300 million, of which about 1.5 million have 

been described, and less than 0.5 have been analyzed for potential economic benefit properties 
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(Miller et al. 1985; CBD 2001). The best-catalogued species groups include vertebrates and 

flowering plants, with other groups, such as lichens, bacteria, fungi and roundworms, 

relatively under-researched (Wilson 1988a; Pimm et al. 1995). A long-standing theoretical 

paradigm has predicted that species diversity is important because it enhances the productivity 

and stability of ecosystems (Odum 1950). In this stream of thought, some authors distinguish 

species according to their impact in ecosystem stability and resilience. In particular, Walker 

(1992) distinguishes two types of species, drivers and passengers. Drivers correspond to the 

species that directly, or indirectly, influence the ability of the ecosystem to function, to 

provide goods and services as well as to buffer against changes or disturbances in the future. 

Passengers correspond to the set of species that do not have a significant role in altering the 

states of the ecosystem. In this context, while removing passengers usually induces little 

effect in the system performance and absorption capacity, removing drivers may cause a large 

impact, threatening system resilience by reducing its buffer ability to absorb disturbances. The 

plant Banksia prionotes well illustrates the Walker’s notion of driver (Walker, 1995). In the 

wheatbelt in Western Australia, during a certain period of the year this plant is the only source 

of nectar. The loss of such a species would probably induce the loss of all the honeyeaters of 

the region and all the plants for which honeyeaters are vectors for pollen. The overall impact 

of Banksia prionotes loss on plant-species diversity in that area would then be consistent. In 

other areas, the effect would instead not be so critical. In the coastal regions of Western 

Australia, for instance, honeyeaters can find alternative sources of nectare in other Banksia 

species flowering at the same time. As a consequence, there the Banksia prionotes does not 

identify a driver species: its functional role is easily substitutable by other species.  

Some recent studies, however, acknowledge that no pattern, or deterministic 

relationship needs to exist between species diversity and the stability of ecosystems (Johnson 

et al. 1996). Others instead suggest that the stability of ecosystems, and thus resilience, may 
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be linked to the prevalence of a rather limited number of organisms and groups of organisms 

that seem to drive or control the critical processes necessary for ecosystem functioning – 

known as keystone species (Paine 1969; Folke et al. 1996). The extinction of these species 

reduces the ecosystem’s capacity to accommodate external shocks, like climatic and human 

influences, and ultimately results in the loss of spatial variety in ecosystem types. Therefore, 

analyzing keystone species is about determining the minimum range of species within which 

the different state variables can be disturbed without flipping from the current ecosystem to 

another regime of behaviour (Perrings and Opschoor, 1994, Holling et al. 1995; Reggiani et 

al. 2002, Christianou and Ebenman, 2005). 

The ability of an ecosystem to maintain its self-organization and integrity, without 

undergoing the evolving, and possibly irreversible, change is associated with crossing the 

thresholds between stability domains. This notion is closely linked to the guarantee of the 

variety of ecosystem functions (De Leo and Levin 1997, Turner et al. 1998). Ecosystem 

functions, including interconnections between hydrological and geomorphological systems, 

photosynthesis and food web support, are the result of interactions between its structure and 

processes. Ecosystem structure refers to the tangible biotic and abiotic items such as plants, 

animals, soil, air and water of which an ecosystem is composed. Ecosystem processes refer 

instead to the dynamics of transformation of matter or energy between living and abiotic 

systems. These processes, in turn, are responsible for the provision of life support services, 

e.g. resilience benefits, such as assimilation of pollutants, cycling of nutrients, soil generation 

and preservation, pollination of crops, and maintenance of the balance of gases in the air 

(Maltby et al. 1996a and 1996b). Furthermore, they also enable the development and 

maintenance of the ecosystem structure that is, in turn, the basis for the continued provision of 

goods and services.  
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Natural and human systems coexist and are mutually interrelated. Arrows in Figure 2 

show the different interactions existing among them.  

 

 

Figure 2 - Linkages between system’s resilience and anthropogenic behaviour 
 

Source: Batabyal et al. (2003), adapted. 
 

 

As a matter of fact, humans share with other species a fixed amount of natural resources. If 

economic activities depend on the flow of goods and services provided by ecosystems, 

ecosystems are in turn dependent on the economy, due to the complexity of the 

interconnections between human and natural systems. Shocks to the joint economic-

environment system (fire, storms or pest outbreaks) can affect both ecological and economic 

levels.  This relationship will be discussed in more detail in the following sub-section. 

 

2.3 Linking system’s resilience to anthropogenic behaviour 

A dominant element in recent discussions about ecosystem’s functioning is the worry about 

the influence of the human activities in threatening the stability and continuity of ecosystems 

(Pimm et al. 1995; Simon and Wildavsky 1995). In recent years, many economists have 

focused their attention towards the valuation of the stability and continuity of ecosystems in 

Environmental System 

Human System 

Economic 
System 



 9

terms of their ability to guarantee the provision of goods and services to mankind. Stability 

and continuity of ecosystems, i.e. resilience, today represents, more than ever, a valuable 

natural resource and requires our attention for two main reasons. First, it provides a wide 

range of direct and indirect benefits to mankind, which occur on both local and global scales. 

Such benefits include, inter alia, the maintenance of the genetic library, the direct provision 

of food, watershed protection and waste assimilation (Folke et al., 1996). Second, many 

human activities contribute to general, unprecedented pressures on natural systems and on 

their capacity to absorb exogenous perturbations without changes, i.e. their resilience. For 

instance, the accumulation of nutrient concentrations in lakes water until a certain critical 

threshold is passed usually induces an increase in water turbidity and eutrophication (Deutsch 

et al., 2002). The consequent loss of animals and plants diversity would affect recreation and 

fishing activities. Similarly, fire and grazing pressures for sheep and cattle production on 

rangelands produce a shift from grass to the less productive woody plant (small trees and 

shrubs) dominance (Deutsch et al., 2002). Overharvesting of fish stocks, global warming and 

pollution are instead some of the principal causes of the coral reefs degradation into 

alternative ecosystem regimes, dominated by macroalgae or sea urchin-barren (Nordemar and 

Kautsky, 2002). 

In particular, humans are responsible for pressures on resilience at both species 

diversity and ecosystems’ functioning levels. At species diversity level, the assumption of a 

stabilizing role of keystone species implies that systems are more resilient and thus more able 

to absorb exogenous perturbations without changes. To such thresholds corresponds the focus 

of many policy actions. The general idea is to respect the existence of extinction thresholds, 

even if accepting a certain degree of redundancy in the role of the different species. These, in 

turn, will insure against any unpredictable impacts in terms of ecosystems’ deterioration of 

ecosystems’ processes and functioning (Mooney et al., 1995). In such a context, the level of 
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human activities can induce ecosystems to cross such thresholds, threatening system’s 

resilience – including the overexploitation of species for commercial use. This is for instance 

the case, inter alia, of Asian and African elephants, rhinoceroses and certain kinds of orchids 

and cacti, included among species protected by the Convention of International Trade in 

Endangered Species of Wild Fauna and Flora (OECD, 1997).  

At ecosystems’ functioning level, disturbances induced by human activities may 

threaten the ecosystem’s ability to provide a wide range of goods and services, including the 

direct provision of food and the maintenance of the genetic library (Table 1).  

 

Table 1 - Ecosystems’ services provided to humans 
 
watershed protection 
mitigation of flood and droughts 
waste assimilation 
detoxification 
decomposition 
microclimatic stabilization 
purification of air and water 
generation and renewal of soil and its fertility 
pollination of crops and other vegetation 
control of agricutltural pests 
dispersal of seeds  
transport of nutrients 
direct provision of food from sea and land 
maintenance of the genetic library  
 
Source: Perrings (1999), adapted 

 

For any ecosystem to function, a minimum level of variety of communities of living 

organisms and their abiotic environments is required. The task of evaluating ecosystem’s 

benefits for humans requires significant information regarding what the ecosystem does, what 

is worth for resilience and what its impact is to human welfare. The value of ecosystem 

structure is generally more easily appreciated than that of ecosystem resilience, due to the 

informational requirements necessary for the second to be known. Assessing ecosystem 
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capacity to guarantee the provision of current nutrient retention and pollution absorption for 

any given region, for example, is extremely difficult. Such processes cannot in fact be easily 

observed and controlled by humans, who can only notice some effects of their 

mulfunctioning. But ecosystem structure is also incompletely known. To assess the value of, 

for instance, the insect fauna diversity when many of these species have never even been 

described taxonomically, pushes human knowledge beyond its current limits (Westman 

1985). Even if ecology has come to understand ecosystem processes to the extent that some 

relationships and their implications for humans are now evident, many questions still remain 

unsolved. However, due to the uncertain and potentially irreversible consequences in terms of 

ecosystems’ functioning and human welfare, the complex interplay between the range of 

human activities and the natural environment cannot be ignored. In particular, scientists face 

the important challenge of improving their understanding of the impact of resilience on 

human welfare: the preservation of ecosystem processes and their consequent good 

functioning requires in fact the preservation of ecosystem resilience. 

 

3. Motivations for economic valuation 

3.1 Introduction 

Because we live in a world with scarce resources, one is frequently asked to make the choice 

regarding the use and management of these resources. In this context, if policy makers decide 

to invest on the protection of, for example, marine ecosystems integrity by creating a mairne 

wilderness area, less financial resources would be available for other policy areas, such as 

national health. In addition, the investment on the protection of marine ecosystems’ resilience 

brings along with it the provision of public values, which are not fully priced on current 

markets. In other words, marine ecosystems provide a wide range of benefits to humans and 

most are not valued on market prices. For example, a good functioning of marine ecosystems 
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is able to provide an important role in balancing the local chemical composition of the water 

and we do not observe a market price that reflects the welfare impact of such benefit. Given 

that most human activities are priced in one way or other, in some decision contexts, the 

temptation exists to downplay or ignore marine quality benefits on the basis of non-existence 

of prices. The simple and simplistic idea here is that a lack of prices is identical to a lack of 

values. Clearly, this is a slightly biased perspective. Therefore, carrying out proper pricing is 

one of the main reasons to undertake economic assessment of environmental resources. Three 

other main reasons can also be identified. These are performing cost-benefit analysis, 

environmental accounting, and assessing natural resource damage. These will subsequently be 

considered in more detail. 

 

3.2 Cost-benefit analysis 

Cost-benefit analysis (CBA) is a welfare-theoretic method to trade-off the advantageous and 

disadvantageous effects of a proposed project by measuring them in monetary terms. CBA 

emerged as an attempt to systematically incorporate economic information that can be applied 

to project and policy evaluations. Since CBA has traditionally been defined in terms of gains 

and losses to society, project-oriented CBA has tended to be confined to public sector 

investment projects. The first evaluation studies were carried out in the USA in the 1950s to 

deal with ‘intangibles’ in a consistent way, e.g., for river basin projects and infrastructure 

projects. These methods found much application, inter alia, in World Bank practices. They 

were also heavily criticized for many inherent shortcomings, which has led to many new or 

adjusted methods, such as cost-effectiveness analysis, goals-achievement methods and 

multicriteria analysis (see Nijkamp et al. 1991). 

The use of CBA to evaluate policy is more recent (see for an overview Boardman et 

al. 2000). Like an investment project, policies have costs and benefits. For example, standards 
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for marine pollutants concentrations and taxation of marine pollutants are two different 

policies, which, in turn, are associated with different gains and losses to society. The basic 

rule of CBA in decision-making is to approve any potentially worthwhile policy if the 

benefits of the policy exceed the costs. Moreover, to make the best choice, a decision-maker 

should opt for the policy option with the greatest positive net present value. Other criteria 

exist, such as ranking and evaluating projects according to their ‘internal rate of value’ or 

according to the ‘benefit cost ratio’ - see Hanley and Spash (1993) for a literature review on 

CBA and its application to environmental issues; Lima e Santos (2001) for the evaluation of 

biodiversity policy.  

From an environmental agenda perspective, CBA has been used in the USA for 

evaluating policies since the late 1970s. However, only after Reagan’s Executive Order 

12291, in 1981, has CBA been extensively used for evaluating new regulations. In contrast, in 

Europe there are no legal requirements for CBA for new regulations. An exception is the UK, 

whose 1995 Environment Act envisions the use of CBA in policymaking. Clearly, the use of 

and the critical judgments of CBA in public policy is still a matter of ongoing debate among 

most of the European policy makers. 

3.3 Environmental accounting 

Various efforts have been made to adjust national accounting systems and associated gross 

national product (GNP) statistics for the depreciation of environmental assets and for negative 

externalities such as pollution and the loss of biodiversity. The theoretical literature explores 

alternative ways of adjusting conventional estimates of national income to reflect 

environmental deterioration (Aronsson et al. 1997). Green (or environmental) accounting is 

one possible strategy (Lawn, forthcoming).  
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The underlying idea is to add to the traditional national accounting system information 

on physical flows and stocks of environmental goods and services – the so-called physical 

satellite accounts. In the Dutch context, for example, the Netherlands Central Bureau for 

Statistics developed the NAMEA, a National Accounting Matrix that includes both economic 

and Environmental Accounts (Keuning and de Haan 1996). An important aim of green 

accounting is to obtain an adjusted ‘green’ GNP. This can play a potentially crucial role in 

policymaking since the GNP has a powerful influence on macro-economic policy, financial 

markets and international institutions (OECD, IMF, and World Bank). If national income is 

wrongly estimated, then economic analysis and policy formulation are based on the wrong 

premises, thus ‘steering’ the society by the wrong compass (Hueting 1980; El Serafy 1999). 

Adjustment of the national accounts to reflect ecosystem quality loss will lower the GNP 

(Gerlagh et al.  2002). Nevertheless, practice shows that the adjustment of national accounting 

systems is not an easy task. It is therefore necessary to achieve international agreement about 

harmonizing GNP adjustments, allowing for the comparison of GNP and national accounts 

between countries. Independent of which valuation methods are used for this purpose, it is 

clear that monetary valuation of the depreciation of environmental assets and negative 

externalities, such as pollution and the loss of biodiversity, is a key element in green 

environmental accounting. 

3.4 Natural resource damage assessment and legal claims 

Natural resource damage assessments (NRDAs) appraise how much society values the 

destruction of natural resources. An important benchmark in the history of NRDA is the 

massive oil spill due to the grounding of the oil tanker Exxon Valdez in Prince William 

Sound, in the northern part of the Gulf of Alaska, on March 24, 1989. This was the largest oil 

spill from a tanker in USA history. More than 1,300 km of coastline were affected and almost 
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23,000 birds were killed (Carson et al. 1992). After the oil spill, the State of Alaska 

commissioned a legal action in order to assess Exxon’s financial liability in the damage to the 

natural resources. A national contingent valuation study estimated the loss to USA citizens as 

a result of the oil spill. The natural resource damage resulting from the Exxon Valdez oil spill 

was estimated at $2.8 billion. For the first time, a governmental decision expressed the 

legitimacy of nonuse values as a component of the total damage value. To date, NRDAs are 

only undertaken in the USA and have not yet become an issue in the European policy agenda 

because of different legal arrangements between member states. The recent sunk of the tanker 

Prestige in front of the Galician coast is at this aim very significant. 

Such sunk caused in November 2002 probably the largest oil spill to date, with about 

60.000 tons of heavy fuel oil leaked into the sea and affecting more than a thousand of 

coastline (Cajaraville et al., 2005). The Spanish Ministry of Science and Technology 

launched in 2003 two special actions, one of which aimed to monitor the health of sentinel 

coastal organisms and the other focused on determining the effects of the oil spill on the 

platform ecosystems and fisheries resources. The second action included also the analysis of 

the socioeconomic effects of the oil spill: the Economy of Fisheries Resources group of the 

University of the Basque Country was charged of assessing the losses in the fish-extraction, 

commercial and transformation sectors in Basque Country. The evaluation of the losses 

focused on some socioeconomic variables of interest for the whole sea-industry complex, 

including income and employment levels, but no NRDAs were undertaken.  

 

4. Resilience as a source of economic value 

4.1 Introduction 

As we have seen, the concept of resilience has been put forward in the field of natural 

sciences.  In their study, economists are concerned with the magnitude of disturbance that can 
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be absorbed before an ecosystem is displaced from one state to another. In other words, with 

the ability of an ecosystem to maintain its self-organization without undergoing the 

destructive and possibly irreversible change involved in crossing the threshold between 

stability domains (Pearce et al., 1989; Deutsch et al., 2002). The maintenance of the system 

self-organization is interpreted in terms of the ecosystem’s stability and integrity of the 

platform that, in turn, is responsible for the provision of a wide range of direct and indirect 

benefits affecting human welfare. In short, from the economic perspective, the relevance of 

resilience is mainly due to its role in guaranteeing the provision of a wide range of benefits, 

including the ecosystem absorption capacity of external perturbations. Resilience represents a 

valuable natural resource in particular today, in a worldwide context characterized by general, 

unprecedented human pressures on the natural environment and the consequent increasing 

threats to ecosystems’ stability and integrity. 

One can question why, if resilience generates so many benefits for humans it has been 

ignored for a long while from the policy agenda and it is still ignored today when, more than  

ever, we assist to unprecedented pressures on ecosystem stability. When answering to this 

question, it is current practice to distinguish between ‘proximate’ and ‘fundamental’ factors 

that underpin the ecosystem’s ability to buffer against disturbances. While the proximate 

factors relate to the worldwide trend of human population growth, and its impact on 

production and consumption patterns, the fundamental causes are associated with the 

conditions within which system’s resilience decisions are made. Two important fundamental 

causes emerge (Nunes et al., 2003). The first relates to market failures and the second to the 

lack of property rights. Many resilience benefits, such as the ability to maintain the genetic 

library, are not ‘cashed’ flows, i.e., there is no market price mechanism that fully captures 

such benefits. In other words, markets fail to internalize protection benefits. For this reason, 

these are known in the economic literature as positive external effects (or externalities), i.e., 
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positive unintended effects outside the market on the welfare or productivity of other 

individuals. In such a context, the individual rate of return on conservation will almost 

certainly fail to compete with the individual rate of return on development projects. This is a 

consequence of the individual utility maximizing behaviour, ignoring the existence of positive 

externalities. According to the usual economic analysis, the optimal individual choice 

corresponds in fact to a preservation of resilience below the level that would be socially 

optimal, because the external effects are not included within the individual rational 

calculation. The second fundamental cause is related to the lack of property rights. The 

unrestricted depletion of ecosystem resilience due to the lack of enforceable property rights 

causes negative externalities to society, because there is no owner able to privately capture 

resilience benefits. This identifies an example of what is usually called, since the seminal work 

of Hardin (1968), ‘the tragedy of the commons’. In a context in which individuals are supposed 

to be rational, the personal calculation of utility would induce every one to compare his share of 

the cost of decreasing resilience to his share of the cost of preserving resilience. Since for each 

individual the first one is less than the second one due to the absence of property rights, the 

result will be a loss of ecosystems’ resilience greater than the socially optimal level. In 

particular, population growth makes today the problem of properly defining property rights 

even more relevant. At worldwide level, this problem emerges also because of the high 

importance of the spatial element arising from a reciprocal relationship: (1) local, 

anthropogenic rooted processes have global impacts in terms of system’s resilience; and (2) 

global trends in system’s resilience give rise to local effects. For example, natural habitats have 

been historically converted to agricultural use. Such process has heavily affected ecosystems’ 

functioning and structure and, by reducing ecosystems’ resilience, has impacted on geochemical 

cycles and thus contributed to the global warming we are now experiencing on hearth. The 
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global climate change, in turn, is having local consequences in terms of soil erosion, 

downstream sedimentation, flooding and salinization.  

 

4.2 Resilience as a source of welfare 

As already stressed, natural and human systems are strongly interlinked. Demographic, social, 

cultural and economic trends have many impacts on the functioning of such systems. A 

reduction in the systems’ resilience makes them more vulnerable to external perturbations, 

which otherwise would have been absorbed without structural change (Folke et al., 1996). An 

emblematic example of loss of resilience is represented by the construction of the Aswan dam 

that, by ending the annual floods of the Nile river, has impoverished the Egyptian agriculture 

and induced a great portion of the rural population to migrate into Cairo. This in turn was 

responsible for additional welfare damages in terms of urban poverty and unemployment 

(Batabyal et al., 2003). Another significant example is captured in the mid-western regions of 

the United States of America. There, the loss of flood protection services provided by 

upstream wetlands as a consequence of land use decisions has played a key role in the 

intensive flooding of Mississippi river and its tributaries (Batabyal et al., 2003).   

The reduction of systems’ resilience, measured by an overcoming of ecological 

thresholds, causes discontinuities in the provision of ecological service flows, and a negative 

impact on human welfare. This situation configures a challenge for the economic theory 

because of the uncertainty of the thresholds’ levels values and the magnitude of the change 

(Muradian, 2001). In the case of the greenhouse gas emissions, for example, marginal 

increases in carbon dioxide emissions lead to marginal increases in global temperature, but 

when a critical threshold is crossed the consequent massive warming can induce important 

destabilizing phenomena, such as El Nino and La Nina events (Batabyal et al., 2003). 
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In case of irreversible damages or slowly reversible changes, welfare costs derived 

from the reduction of system’s resilience are imposed on both present and future generations 

(Perrings and Stern, 1999). Irreversibility, in fact, typically occurs when the ecosystem 

original state, and the consequent flow of goods and services to humans, can be restored only 

at excessive costs to society, either in terms of resources allocation or of time required (Van 

Kooten and Bulte, 2000). In both cases, the welfare costs associated to irreversible 

environmental damages are not easy to quantify. From one hand, it is not always possible for 

scientists to ex ante assess their amount, due to the limited knowledge on the type and 

duration of the complex natural phenomenon involved. From the other hand, uncertainty also 

derives from the lack of knowledge on the preferences of future generations: different welfare 

priorities could imply different environmental concerns. In this context, resilience can then be 

interpreted in terms of natural insurance capital (Prakash and Pearce 1993; Barbier et al., 

1994; Folke et al., 1996; Deutsch et al., 2002). Therefore, any decrease in the level of 

uncertainty is characterized and measured in terms of an increase in the supply of insurance 

against potential transformation of natural capital. Such an insurance effect is stronger the 

weaker is the substitutability between environmental capital and human-made capital (e.g. 

technology). Resilience, at least for some forms of environmental capital with limited 

substitutability, represents then a critical capital (Prakash and Pearce, 1993), captured in 

terms of both environmental functions for the human system (ecosystem goods and services) 

and environmental functions for the natural system (life-support functions) (Deutsch et al., 

2002). The loss of resilience, by altering essential ecosystems’ functions and processes, 

modifies in fact the risk associated with a given set of environmental conditions and induces a 

different value of potential productivity, in terms of goods and services flows (Brock et al., 

2000). The task is now to evaluate the benefits of ecosystem’s resilience for human welfare. 
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However, before we need to present and discuss the underlying characteristics that the 

economic valuation perspective relies upon.  

 

4.3 Economic valuation perspective 

The valuation of any scarce resource, such as ecosystems’ resilience, relies on cultural, 

political and religious determinants. As proposed by van Ierland et al. (1998), the perspectives 

on value range according to the underlying human attitudes with respect to natural 

environment. For the sake of illustration, we here take into account two opposite perspectives, 

the eco-centric value perspective well know in the literature as deep ecologist and the 

anthropocentric techno-economic dominance (Table 2).  

 

Table 2 - A classification of attitudes towards nature 
 
Attitudes Principles
Deep Ecologist Only biodiversity issues matter
Ecological Approach Recognition of economic needs
Stewardship            Protect biodiversity, allow economic activity 
Multifunctional Use                            Biodiversity and economic activity 
Economic Attitude Priority to economic activity
Techno-economic Dominance Only economic issues matter
 

Source: van Ierland et al. (1998), adapted) 
 

According to the deep ecologist value perspective, top priority is given to the 

conservation of the environment, in general, and protection of resilience, in particular, 

independently of their importance in terms of their role in the human economic activities. The 

underlying idea of this biotic, egualitarianism anchored perspective, is that nature is 

characterized by intrinsic values (Ehrenfeld 1988). On the contrary, the techno-economic 

dominance value perspective, assumes a rather optimistic view with respect to the self-

regulation capacity of the environment and accepts depletion in natural resources to reach 

economic growth targets, without recognizing any intrinsic right for protection. In between, 



 21

the other attitudes (ecological approach, stewardship, multifunctional use, economic attitude) 

differ each other because of a decreasing relevance attributed to the environment and an 

increasing relevance attributed to economic activities.    

The present paper explores an economic perspective with respect to the valuation of 

ecosystem resilience. For the relevance recognized to the preservation of the environment and 

to the practice of economic activities, this economic perspective is placed between the above 

mentioned multifunctional use and economic attitude. In particular, following the framework 

proposed by Nunes and van den Bergh (2001), such perspective is based on an 

anthropocentric point of view on value. This means that the concept of value has its 

foundations in individual welfare. The basic premise of economic valuation, and thus 

economic value of a resource, is the effect of the supply of the same resource on the well-

being of the individuals who make up the society. Therefore, if society wishes to make the 

most in terms of individuals’ well-being maximisation, the issue of the assessment of the total 

economic value of resilience benefits is a key issue in terms of policy decisions. Implicitly, 

this also means that the economic perspective on resilience value embraces an instrumental 

approach. This makes explicit the fact that resilience benefits are used for instrumental 

purposes, either in terms of production opportunities or in terms of consumption opportunities 

(Fromm 2000).  

Many people, however, do not feel comfortable with placing an instrumental value on 

natural resources, in general, and resilience, in particular. The common argument is that the 

resource has a value on its own – also known as ‘intrinsic value’. A more extreme version of 

this argument claims that instrumental monetary valuation is a nonsense exercise (Ehrenfeld 

1988). This approach is not embraced here. On the contrary, the instrumental approach is 

based on the idea that making public or private decisions, which affect system’s resilience, 

implicitly means attaching a value to it, which is disclosed in terms of different changes in the 
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level of resilience benefits associated to each scenario or policy options. In other words, 

humans have preferences with respect to different states of the world and their environmental 

quality characteristics, and value changes (rather than levels) of environmental quality 

characteristics (including system’s resilience), which are relevant for their welfare. 

Furthermore, the economic perspective on the valuation of ecosystem resilience is a 

monetary valuation. Monetary indicators serve as means and not as ends in valuation. In 

short, economists make the use of monetary indicators as common units for the comparison 

and ranking of alternative resilience scenarios or policy options. The magnitude of the 

monetary indicator translates the value of the resilience benefits in human welfare, in terms 

either of the individual production or consumption opportunities. Since monetary valuation 

reflect individual preferences and all individuals are invited to participate in the valuation, it 

can be said to be rooted in a democratic approach allowing direct comparisons with 

alternative options in order to make public decisions, including those affecting ecosystem’s 

resilience. 

Finally, the economic valuation is anchored in a reductionist perspective and for this 

reason is based on the idea that one is able to disentangle, or disaggregate, the total value of 

resilience benefits into different economic value categories, notably direct use and passive use 

or nonuse values (Pearce and Moran 1994), reflecting the different human motivations  

(bottom  up approach, Nunes and van den Bergh, 2001). Next section will focuses on these 

different economic value categories. 

 

4.4 A possible classification of resilience’s value components 

Bearing in mind the proposed economic valuation approach, the different value categories of 

resilience can be identified and described by referring to a simple conceptual framework as 

shown in Figure 3.   
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Figure 3 - Resilience’s value components  

 

A first value category of resilience is denoted by link 1-7. This captures the benefits 

humans derive from the maintenance of ecosystem stability, expressed in terms of the 

intertemporal provision of goods and services. This resilience value component  is referred to  

as direct use value and captures both the value of the information pool contained in plants and 

animals (including genetic diversity) as well as the value of the supply of a variety of 

landscapes, habitats and respective biotic communities (including ecosystem diversity). As far 

as the impacts of resilience on gene diversity are concerned, one can proceed in assessing this 

value component in terms of its added value as an input in the provision of market priced 

goods (such as new medicines or pharmaceutical products). Alternatively, the impacts of 

resilience on ecosystem diversity can be inferred by individual demand on natural habitats, 

including experience and recreational values. 

A second value category of resilience is captured by link 2-6. This denotes the benefits 

accruing to humans by ecosystem functioning, expressed in terms of its ability to buffer 

against disturbances. This resilience value component is referred to as indirect use value.  

This value component includes the welfare that humans derive from preventing any 

malfunctioning in the ecosystem and thus avoiding any interruption in the provision of 
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environmental and ecological services, such as flood control, groundwater recharge, nutrient 

removal, toxic retention and CO2 sequestration.  

Another value category of resilience is captured by link 3. This denotes the benefits 

accruing to humans from ecosystem stability, and its impact in terms of the guarantee in the 

intertemporal provision of goods and services, and ecosystem integrity, expressed in terms of 

its impact in guaranteeing the intertemporal ability to buffer against disturbances, even if none 

of the both are directly consumed or experienced by the individual. In other words, it simply 

corresponds to individual knowledge that these resilience benefits exist, independently of 

their human use. In general terms, these reflect moral and philanthropic considerations, 

including intra and inter generations altruistic motives. For this reason, link 3 denotes a 

passive or non-use value component of resilience.  

In addition, we have a value category captured by link 4-5. This depicts the feedbacks 

that human experience and knowledge of resilience benefits cause on ecosystem stability and 

integrity. In other words, this value category is interpreted as an insurance against potential 

damages caused by the feedback of the wide range of human activities on ecosystem stability 

and integrity. For this reason, link 4-5 denotes a option value component of resilience. Next 

sub-section will focus on the analysis of this value component of resilience, by looking in 

particular at its policy implications in terms of natural disaster prevention and management. 

 

4.5 The option value component of resilience: policy implications 

As previously stressed, resilience derives part of its economic value (option value component) 

from its role in protecting against potential damages due to a loss of ecosystem stability and 

integrity. From this point of view, resilience corresponds to a measure of ecosystems’ 

vulnerability to damage, defined as the probability that ecosystems are affected by a certain 

risk factor (Cardona, 2003). As such, resilience identifies a key element in risk and natural 
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disaster prevention and management. In fact, a reduced vulnerability implies a reduction in 

risk and consequently in the probability of future natural disasters. Then, the analysis of the 

main issues on risk assessment from the perspective of disaster risk may help in defining the 

option value component of resilience.  

Following Cardona (2003) and Freeman et al. (2003), it is possible to divide the 

different components of disaster risk management into two phases. Actions required in the 

pre-disaster phase include risk identification, risk reduction and risk transfer, while the post-

disaster phase is primarily devoted to disaster management actions. Risk identification deals 

with hazard assessment, monitoring and forecasting, as well as with vulnerability and risk 

assessment. Risk reduction refers instead to preventive and mitigation policy measures, aimed 

to intervene on the causal factors of the negative event. Risk transfer includes insurance and 

financial protection through specific instruments, such as national or local calamity funds, 

catastrophe bonds, public services with safety regulation (energy, water and transportation). 

Once the negative event occurred, disaster management identifies response and recovery 

actions devoted to humanitarian assistance, damage assessment, rehabilitation and 

reconstruction of damaged infrastructure, revitalization of affected sectors. 

Within this framework, resilience plays a significant role during the pre-disaster phase 

as insurance against the uncertain and potentially irreversible effects of ecosystem 

malfunctioning, i.e. as factor reducing risk. In particular, resilience acts as factor reducing the 

expected total damage related to the negative event, at both prevention and mitigation level. 

As such, its option value component can be, therefore, approximated by two different 

components. From one hand, by the costs of implementing prevention policy measures, i.e. 

policies aimed to reduce the probability of disaster. From the other hand, by the costs of 

implementing mitigation policy measures, i.e. policies aimed to ex ante reduce the economic 

losses due to the eventual occurrence of natural disasters or extreme events.  
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As recognized by the recent literature on disaster prevention and management (Rose, 

2004), the system’s capacity to absorb the feedback of the wide range of human activities on 

ecosystem stability and integrity deals in particular with three main elements. These are: 

reduced failure probability, reduced consequences from failure and reduced time to recovery. 

The first element depends on how a community intervenes to reduce the probability of 

structural or system failure, for example by implementing public policies aimed to preserve 

system’s resilience through limitations on agricultural practices near river basins. The second 

element results instead from ex ante protective measures aimed to minimize the negative 

effects due to structural or system failure, such as protective barriers in case of periodical 

flooding. Finally, the last element refers to how quickly the system returns to normality in 

case of external shocks.  

The following sub-section will discuss an illustration on the economic value 

measurement of resilience benefits in terms of natural insurance against high water events in 

the city of Venice. Such benefits will be expressed in terms of the avoided welfare costs , 

which would be associated to the negative event of high water in case of low Lagoon system 

resilience. At this aim, the analysis will focus on welfare costs derived by business 

interruption. Even if among the welfare costs associated to natural disasters particular 

emphasis has traditionally been devoted to the measure of property damage, also the other 

category of measurement is recently receiving significant attention (Perrings, 1995; Rose, 

2004; Carraro et al., 2004). Then, the social value of maintaining the Venice Lagoon 

resilience will be approximated with the value of the forgone output from the human activities 

normally carried out in such ecosystem and interrupted because the disaster occurred. 
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5. The Venice Lagoon case study 

5.1 Periodical flooding as a signal of ecosystem’s resilience loss  

The Venice Lagoon configures a particular type of ecosystem, in which natural and 

anthropogenic dynamics coexist, being strongly interlinked to one each other: complex global 

transformation processes (e.g. climate change, see level rising) add up to strong local human 

pressures (e.g. water pollution, solid waste).  

Natural, historical and cultural specificities makes the area of great interest for an 

economic analysis, in particular due to the effects of the growing anthropogenic pressures 

inducing dynamic disequilibria. A typical example of these disequilibria is the more and more 

recurrent phenomenon of acqua alta, i.e. the periodical high water event causing (partial) 

flooding of the historical centre of Venice. Venetians have learnt to coexist and deal with this 

sort of periodical event since the very beginning of the history of the city, by adapting their 

own behaviour to tackle with this problem. Nevertheless, during the last decades the city has 

experienced a systematic increase in the intensity of the phenomenon, as confirmed by the 

upwards trend of mean tidal excursions in Venice. Figure 4 depicts the average water level 

trend from 1993 to 2001.  

The high water impacts on architectural, artistic and cultural heritage and the 

economic damages to the population and its visitors are of increasing concern to both 

Venetians and policy makers (Ministero dei lavori pubblici, 1997). The factors influencing 

such a pattern include, inter alia, the increase of the Adriatic sea level of about 23 cm during 

the twentieth century. This is due to both natural and human causes, among which particularly 

relevant are the subsidence of the islands of Venice and the global climate change 

phenomenon. Nevertheless, the increasing intensity and frequency of the high water event can 

be considered a signal of low resilience of the Lagoon ecosystem as a whole (Ministero 

dell’Ambiente, 1998).    
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Figure 4 – Intertemporal series of mean tidal in Venice  

Source: www.comune.venezia.it/maree/dal1867.asp 

 

Most of the existing valuation studies analysing the economic impacts of high water 

events in the Lagoon refer to the introduction of the mobile-gates project called MOSE 

(Modulo Sperimentale Elettromeccanico) and usually quantify structural damages according 

to physical, non-monetary approaches.  

In a recent valuation report, Carraro and Nunes (2004) propose instead a monetary 

assessment of the economic short-term impacts of high water events on all registered business 

activities located and operating in ground floors units in the city of Venice. A short-term 

perspective means that the attention is focused only on the consequences of high water events 

for the business activities already in place, without extending the analysis also to the potential 

variation in the composition and number of such activities. Impacts are viewed as a sum of on 

site damages and off site damages. The first damage category refers to damages on the 
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structures and materials due to the infiltration of water. The second damage category instead 

captures the damages attributable to the reduced overall functioning of the city dynamics 

during high water events.  In particular, this category of damages is related to the uncertainty 

with respect to the future revenues of business activities and for this same reason impacts on 

the economic value of such activities.  

Bearing in mind such a categorizing of acqua alta damages, the economic valuation of 

the first damage category can be approximated by the costs connected to the implementation 

of mitigation policy measures. These measures are aimed to minimize the damages high water 

and salinity cause to building elements through the adoption of high water protection 

measures and equipment, such as hydraulic pump, the rising of pavements and paratia (a 

system of mobile barriers protecting doors that give access to street). The costs related to 

mitigation policy measures then reflect a private insurance perspective, since they capture the 

value of the direct damages caused by high water on the architectonical structure and 

equipment (e.g., inner and front door maintenance, cleaning of pavements and maintenance of 

walls), which are financially supported by the privately owned business activities.  

The economic valuation of off site damages is instead related to the costs of reducing 

the likelihood of flooding events through the implementation of prevention policy measures. 

Such measures typically cannot be undertaken by private individuals, but has to be the result 

of concerted actions at regional, national or international scale. In fact, the off site damage 

component refers to a set of high water impacts that are not routinely traded in regular 

marketplaces. These include inter alia the impact of the high water, and respective uncertainty 

of the city dynamics’ performance, on the economic value of the business activities. As a 

consequence, the economic valuation of off site damages is relevant from a public protection 

perspective.  
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5.2 Empirical valuation of on site damages 

The empirical valuation is focused on the estimation of both on site and off site 

economic damages induced by the high water event. The estimation exercise referred to the 

first damage component is based on two COSES surveys (1999 and 2001). In order to proceed 

with the monetary assessment of damages, the high water events considered in the empirical 

exercise include the valuation of two possible high water events: single exceptional events; 

weakly periodical flooding episodes and general high water scenarios. In particular, three 

different scenarios are taken into account in addition to the current situation (‘business as 

usual’ scenario), which  reflects the historical annual average frequencies of high water events 

registered by the Venetian Municipality during the period 1996-2001. The second scenario 

(’Defence 110’) corresponds to the situation in which collective defensive measures are taken 

against all events above 110 cm. The third scenario (‘Climate change’) considers an average 

sea-level rise of 10 cm induced by climate change events. Finally, the last scenario is a 

combination of the ‘Defence 100’ and ‘Climate change’ scenarios.  

This part of the valuation exercise combines an integrated dose-response modelling 

with an expert-based valuation approach, relative to maintenance and repair activities due to 

high water and related market prices: it assesses the physical damage on structures and 

materials and estimates the economic value of the damage without retrieving people’s 

preferences.  

The estimation results, referred to the considered different scenarios, are shown in 

Tables 3. As can be noticed, the total on site economic damages range on average between 4,4 

and 2,4 millions of euro. In particular, if the climate change hypothesis is assumed, the 

estimated increase of on site damages is around the 43% with respect to current situation. The 

introduction of a public protection project induces a reduction in the estimated total on-site 

economic damages equal to the 27% with respect to current situation. When the climate 
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change hypothesis is assumed, the estimations reduction due to the public protection project is 

instead equal to the 40%.  

This resulting estimates provide just a partial proxy for the total on site damages, 

because they do not include the economic value of impacts on furniture, working hours and 

commodities. As such, they only partially capture the economic value of the privately 

implemented mitigation policy measures.  

The second part of the valuation exercise is based on a survey instrument portrayed in 

terms of conjoint valuation method (Carraro and Nunes, 2004), since the monetary valuation 

of off site economic damages refers to a damage component not fully captured by market 

prices. This type of survey based valuation methodology, applied to a CORILA questionnaire 

(2003), is characterized by the use of a specific econometric model, which is anchored in the 

random utility micro-economic framework, exploring the direct impact of different high water 

levels on the choice of the business activities. Respondents choose between alternative 

scenarios according to respective impact in terms of welfare gain/loss. Bearing in mind the 

respondent’s choices, it is possible to infer such impact in monetary terms, reporting this 

magnitude as a proxy of the economic value of the business activity. The aim is, inter alia, to 

quantify the negative impacts of high water in terms of its limiting public access and usability 

of the city and its business activity.  

This specific methodology has been conceived so as to: 1) identify a set of 

characteristics that together with the effects of high water influence the economic value of a 

business activity located at ground level in the city of Venice; 2) employ a valuation tool that 

links the economic value of a business activity with a consumer choice model and 3) estimate 

the impact of the different characteristics under consideration in the individual choices, 

thereby inferring the respective valuation mechanisms in monetary terms.  
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Table 3-  On-site economic damages      
                

        

BAU Climate Change Public protection 
project + 110 cm 

Public protection 
project + 110 cm and 

climate change 
scenario 

Cost category            

 Substitution of inner doors          
 Higher Bound   1441144 2233543 460253 460253 
 Lower Bound   893049 1638794 402604 460253 
 Maintenance of front doors          
 Higher Bound   135281 284389 108467 124133 
 Lower Bound   63598 164415 63598 122566 
 Maintenance and cleaning of pavements         
 Higher Bound   78797 188408 42151 100401 
 Lower Bound   68519 163833 36653 87305 
 Maintenance of walls           
 Higher Bound   2920301 3232043 2773044 3019921 

  Lower Bound    1240247 156812 1106891 1380724 

Total on-site economic damages          
 Higher Bound   4575522 5938383 3383916 3704709 
  Lower Bound    2265413 3535853 1609746 2050849 

Source: Breil et al. (2005), adapted 
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Bearing in mind this economic valuation framework, a bid valuation function for 

alternative sets of business locations is estimated, assessing the marginal impact of the 

different characteristics under consideration. In particular, one business activity is modelled 

and described with respect to the following three different characteristics: the position of the 

business activity with respect to the sea level; whether the shop is accessible by means of a 

catwalk; whether the shop is located in an area mainly visited by tourists.  

 

Table 4 - Estimation results  
      
on site damages per year 2,4 - 4,4 millions Euro
costs due to an exceptional event (16 november 2002) 10,6 millions Euro 
on site costs of a year similar to 2002 (including protection measures) 30 millions Euro 
total on site and off site damages per year (CORILA questionnaire)  22 millions Euro 

Source: Carraro et al.(2004) 
  

All the estimation results are summarized in Table 4. The monetary assessment of 

damages induced by an exceptional flooding event, such as the extraordinary flooding of 16th 

November 2002, is estimated at 10.6 million of Euro, while the economic value of damages of 

a year similar to 2002 is estimated at 30 million of Euro. The total economic value of  

damages due to high water event for an entire year are estimated at 22 million of Euro.  

 

6. Conclusions 

This paper has focused on the analysis of ecosystems’ resilience as scarce environmental 

resource. The attention has been directed on resilience value from an economic perspective, 

exploring the motivations for economic valuation and its relevance in terms of human 

welfare. In this context, resilience has been interpreted as a natural insurance capital against 

the risk of ecosystems’ malfunctioning and the consequent damages associated to a potential 

interruption of the ecosystems’ ability to provide goods and services to humans. From the 

analysis emerged two main important messages.  
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The first message is of a methodological nature and refers to the review of the main 

reasons that steer economists to be interested in studying resilience, as the concept has been 

originally developed in the field of natural sciences. The economic perspective has been put 

forward in order to shed light on the basic premises that anchor the economic valuation of any 

scarce resource, such as resilience and its benefits. It has been argued that policy guidance 

constitutes an important motivation for pursuing economic valuation of resilience since 

respective monetary estimate is crucial when performing a cost-benefit analysis, natural 

resource damage assessment or green environmental accounting. Moreover, given that most 

of the human activities are priced in a way or another and most of ecosystem’s stability and 

integrity benefits are not market priced, one can be tempted to downplay or ignore resilience 

benefits on the basis of non-existence prices. The simple and simplistic idea here is that a lack 

of prices, basically induced by market failures (externalities and public goodness) and the lack 

of enforceable property rights, is identical to a lack of values. Clearly, this is a slightly biased 

perspective. The need for carrying out proper pricing is instead one of the main reason to 

undertake economic assessment of environmental resources, such as resilience. In this 

context, we developed a simple framework to identify and describe the different value 

components, related to resilience, which economists need to assess when performing an 

economic valuation exercise.  

The second message emerges from the empirical exercise briefly discussed at the end 

of the paper. Such exercise refers to the economic assessment of damages induced by high 

water events in the city of Venice. The increasing frequency and intensity of flooding, causing 

many serious damages to business activities carried out at ground level, can be interpreted as 

a signal of a decreasing resilience in the Lagoon natural system. Bearing in mind such a 

premise, the analysis has focused on the interpretation of the estimation results in terms of the 

economic value of the Lagoon resilience. In doing so, we referred to both, a private insurance 
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perspective and a public policy perspective. From the first perspective, the economic value 

individuals attribute to resilience because of its contribution to the reduction of the negative 

impacts of flooding on business activities can be approximated by the prevention and 

mitigation costs necessary to minimize the welfare losses. In particular, such costs correspond 

to the amount individuals are willing to pay for ex ante limiting the damages caused by 

flooding on business activities. From the public policy perspective, the estimate of the off-site 

damages reflect the uncertainty with respect to the future revenues of the business activities. 

Taken together, the estimated on site and off site damages can be considered as a proxy of the 

option value component of the total economic value of the Lagoon system’s resilience. In 

fact, by assuming that the higher frequency of flooding is a signal of a progressive loss of 

resilience in the Lagoon, then the higher the resilience, the lower the frequency and intensity 

of high water events (resilience as natural insurance capital). Investing in measures to 

minimize the welfare losses due to flooding on business activities (i.e. paying for mitigation 

and remediation costs) can be thought as an insurance premium against the economic 

damages induced by high water, i.e. the costs to reduce the risk of negative consequences 

related to this event. In other words, for individuals working in the business activities located 

at the ground floor of some Venetian buildings the costs of reducing the economic damages of 

flooding can be thought as a proxy of the economic value of the possibility to maintain as 

much as possible constant business output flows in the future. Such costs represent then the 

amount individuals are willing to pay to both reduce impacts from ecosystem failure (high 

water events) and reduce time to recovery from the negative consequences of the failure.  

 

 

 

 



 36

References 

Aronsson, T., P.-O. Johansson and K.-G. Lofgren (1997), Welfare Measurement, 

Sustainability and ‘Green’ Accounting - a Growth Theoretical Approach, Edward Elgar, 

Cheltenham, UK and Lyme, USA. 

Barbier E.B., Burgess J. and Folke C. (1994), Paradise Lost? The Ecological Economics of 

Biodiversity, Earthscan Publications Limited, London. 

Batabyal A.A., Kahn J.R. and O’Neill R.V. (2003), “On the Scarcity Value of Ecosystem 

Services”, Journal of Environmental Economics and Management, 46, 334-352. 

Beisner, B.E., Haydon, D.T. and K. Cuddington (2003), Frontiers of Ecological Environment, 

1 (7), 376-382. 

Boardman, A., Greenberg, D., Vining, A. and D. Weimer (2000), Cost Benefit Analyis: 

Concepts and Practice, 2nd Edition, Prentice Hall. 

Bosello, F., Buchner, B. and Carraro, C. (2003), “Equity, Development and Climate Change 

Control”, Journal of the European Economic Association, Vol. 1, 2-3, pp. 601-611. 

Breil M., Gambarelli G. and Nunes P.A.L.D. (2005), Economics valuation of on-site material 

damages of high water on economic activities based in the city of Venice: results from a 

dose-response-expert-based valuation approach, in Fletcher C.A. and Spencer T. (eds.), 

Flooding and Environmental Challenges for Venice and its Lagoon: State of Knowledge, 

Cambridge University Press, Cambridge. 

Brock W.A., Maler K.-G and Perrings C.A. (2000), Resilience and Sustainability: The 

Economic Analysis of Non-Linear Dynamic Systems, Discussion Paper n. 133, The Beijer 

International Institute of Ecological Economics.  

Cajaraville M.P., I. Diez, J.M. Gorostiaga, N. Etxebarria, I. Astorkiza, J.V. Tarazona and G. 

Diez (2005), Integrated assessment of the effects of the Prestige oil spill in Galizia and the 

Biscay Gulf: toxicological, ecological, productive and socioeconomical aspects 



 37

(Prestepse), VERTIMAR-2005, SYMPOSIUM for monitoring of Accidental Oil Spill 

Projects in Marine Environment related with VEM2003 Program of Ministry of Education 

and Science (Spain).  

Cardona, O.D. (2003), ‘The Need for Rethinking the Concepts of Vulnerability and Risk from 

a Holistic Perspective: A Necessary Review and Criticism for Effective Risk 

Management’, in G. Bankoff, G. Frerks and D. Hilhorst (eds.), Mapping the Vulnerability: 

Disasters, Development and People, Earthscan Publishers, London, UK. 

Carpenter S.R. and Cottingham K.L. (1997), “Resileince and Restoration of Lakes”, 

Conservation Ecology, 1. 

Carraro C. and P.A.L.D. Nunes (2004), Valutazione economica degli impatti di breve periodo 

del fenomeno delle acque alte sulle attività economiche della città di Venezia, Rapporto 

Finale, Comune di Venezia, CORILA.  

Carson, R. T., R. C. Mitchell, W. M. Hanemann, R. J. Kopp, S. Presser and P. A. Ruud 

(1992),  “A Contingent Valuation Study of Lost Passive Use Values Resulting from the 

Exxon Valdez Oil Spill”, Report prepared for the Attorney General of the State of Alaska, 

Washington, USA. 

CBD - Convention on Biological Diversity (2001) Biodiversity Global Outlook, 

www.biodiv.org. 

Christianou, M. and Ebenman, B. (2005), “Keystone species and vulnerable species in 

ecological communities: strong or weak interactors?”, Journal of Theoretical Biology, 

235, Issue 1 (July), 95-103. 

De Leo, G. A., and S. Levin (1997), “The multifaceted aspects of ecosystem integrity”, 

Conservation Ecology, 1(1), 3. 



 38

Deutsch L., Folke C. and Skanberg K. (2002), The Critical Natural Capital of Ecosystem 

Performance as Insurance for Human Well-Being, Discussion Paper n. 156, The Beijer 

International Institute of Ecological Economics.  

Ehrenfeld, D. (1988), Why Put A Value In Biodiversity, in E.O. Wilson (Ed), Biodiversity, 

National Academy Press, London, UK.  

El Serafy, S. (1999), Steering the Right Compass: Proper Measurements for Sound Macro-

economic Management, paper presented at International Symposium Valuation of Nature 

and Environment, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The 

Netherlands. 

Folke, C., C.S. Holling, C. Perrings (1996), “Biological Diversity, Ecosystems and the 

Human Scale”, Ecological Applications, 6, No. 4, 1018-1024. 

Freeman, P.K., L.A. Martin, J. Linnerooth-Bayer, R. Mechler, G. Pflug, K. Warner (2003), 

Disaster Risk Management, National Systems for the Comprehensive Management of 

Disaster Risk and Financial Strategies for Natural Disaster Reconstruction, Inter-

American Development Bank, Sustainable Development Department, Environment 

Division, Integration and Regional Programs Department, Regional Policy Dialogue, 

Washington D.C., USA. 

Fromm, O. (2000) “Ecological Structure and Functions of Biodiversity as Elements of Its 

Total Economic Value”, Environmental and Resource Economics, 16, 303–28. 

Gerlagh, R., R. Dellink, M. Hofkes and H. Verbruggen (2002), “A Mesure of Sustainable 

Development for the Netherlands”, Ecological Economics, 41, 157–74. 

Gibson, C.C., E. Ostrom and T.K. Ahn (2000), “The Concept Of Scale And The Human 

Dimensions Of Global Change: A Survey”, Ecological Economics, 32, 217–39. 

Gunderson, L.H. (2000), “Ecological resilience – in theory and application”, Annual Review 

of Ecological Systems, 31, 425-39. 



 39

Hanley, N. and C.L. Spash (1993), Cost-Benefit Analysis and the Environment, Edward 

Elgar, Aldershot, UK and Brookfield, USA. 

Hardin, G. (1968), ‘The Tragedy of the Commons’, Science, 162, pp. 1243-48. 

Hueting, R. (1980), New Scarcity and Economic Growth, North-Holland, Amsterdam, The 

Netherlands. 

Holling, C.S. (1973), “Resilience and stability of ecological systems”, Annual Review of 

Ecological Systems, 4, 1-23. 

Holling, C.S., D.W. Schindler, B.W Walker and J. Roughgarden (1995), “Biodiversity in the 

Functioning of ecosystems: an Ecological Synthesis”, in Perrings, Ch., (eds.), Biodiversity 

Loss. Economic and Ecological Issues, Cambridge University Press, Cambridge. 

Holling, C.S. (1996), ”Engineering resilience vs ecological resilience”, in Schulze P.C. (ed.), 

Engineering within Ecological Constraints, National Academy Press, Washington DC. 

Keuning, S.T. and M. de Haan (1996), What is a NAMEA?, Statistics Netherlands National 

Accounts Paper, Voorburg, The Netherlands. 

Johnson, K.H, K.A. Vogt, H.J. Clark, O.J. Schmitz and D.J. Vogt (1996) ‘Biodiversity And 

The Productivity And Stability Of Ecosystems’, Trends in Ecology and Evolution, 11, 

372–77. 

Lambeck, R.J. (1992), ‘The role of faunal diversity in ecosystem function’, in R.J Hobbs 

(ed.), Biodiversity of Mediterranean ecosystems in Australia, Surrey Beatty & sons, 

Melbourne. 

Lawn, P. (ed.), Sustainable Development Indicators in Ecological Economics, Edward Elgar 

Publishing Ltd, Camberley, UK, forthcoming. 

Lima e Santos, J.M. (2001), ‘Evaluating multidimensional biodiversity policy: what can we 

learn from contingent valuation studies of biological resources in the context of rural 

amenities?’, in OECD, Valuation of Biodiversity Benefits. Selected Studies, Paris, France. 



 40

Maltby, E., D.V. Hogan and R.J. McInnes (Eds) (1996a), Functional Analysis of European 

Wetland Ecosystems, Final Book - Phase One, EC DGXII STEP Project CT90-0084, 

Wetland Ecosystems Research Group, University of London, UK. 

Maltby, E., D.V. Hogan and R.J. McInnes (Eds) (1996b), The functioning of River Marginal 

Wetlands-Improving the Science-base for the Development of Procedures of Functional 

Analysis, Commission of the European Communities, DG XII, Environment and Waste 

Recycling, Water Pollution Research Book Series. 

Miller, K. R., J. Furtado, C. Klemm, J.A. McNeely, N. Myres, M.E. Soule and M.C. Texton 

(1985), Maintaining Biological Diversity, The Key Factor for a Sustainable Sociaty, 

JUCN, Gland, Switzerland. 

Ministero dei Lavori Pubblici, Magistrato delle Acque, Nuovi interventi per la salvaguardia di 

Venezia, Interventi alle bocche lagunari per la regolazione dei flussi di marea, Studio di 

impatto ambientale del progetto di massima, Allegato 3, Studi socio-economici: parte B, 

1997. 

Ministero dell’Ambiente, Valutazione di impatto ambientale relativa al progetto: Interventi 

alle bocche lagunari per la regolazione dei flussi di marea, Studio di impatto ambientale 

del progetto di massima, Parere di compatibilità ambientale della Commissione per le 

Valutazioni di Impatto ambientale, 1998.  

Mooney, H.A., Lubchenco, J., Dirzo, R. and Sala, O.E. (1995), Biodiversity and Ecosystem 

Functioning: Basic Principles, in Heywood V.H. (ed.), Global Biodiversity Assessment, 

UNEP, Cambridge University Press, Cambridge. 

Muradian, R. (2001), “Ecological thresholds: a survey”, Ecological Economics, 38, 7-24. 

Nijkamp, P., P. Rietveld and H. Voogd (1991), Multicriteria Evaluation in Physical Planning, 

North-Holland, Amsterdam, The Netherlands. 



 41

Nunes, P.A.L.D. and J.C.J.M. van den Bergh (2001), Economic Valuation of Biodiversity: 

Sense or Nonsense, Ecological Economics, 39, pp. 203-222. 

Nunes, P.A.L.D., J.C.J.M. van den Bergh and P. Nijkamp (2003), The Ecological Economics 

of Biodiversity. Methods and Policy Applications, Edward Elgar, Cheltenham. 

Odum, H.T. (1950) ‘Bird Populations Of The Highlands Plateau In Relation To Plant 

Succession And Avian Invasion’, Ecology, 31, pp. 587–605. 

OECD (1997), Experience with the use of trade measures in the convention of international 

trade in engendered species of wild fauna and flora (Cites), Paris, France.  

Paine, R.T. (1969), The Pisaster-Tegula interaction: prey patches, predator food preference, 

and intertidal community structure, Ecology, 50, 950-961. 

Pearce, D., A. Markandya and E.B. Barbier (1989), Blueprint for a Green Economy, 

Earthscan Publications Ltd, London. 

Perrings, C. and H. Opschoor (1994), “The Loss of Biological Diversity: Some Policy 

Implications”, in Turner K. et al. (eds.), Ecosystems and Nature, Edward Elgar, London.  

Perrings, C. and Walker B. (1997), Biodiversity, resilience and the control of ecological-

economic systems: the case of fire-driven rangelands, Ecological Economics, 22, 73-83. 

Perrings, C. (1998), “Resilience in the Dynamics of Economy-Environment Systems”, 

Environmental and Resource Economics, 11, 3-4, 503-520. 

Perrings, C. and D.I. Stern (1999), “Modelling Loss of Resilience in Agroecosystems: 

Rangelands in Botswana”, Environmental and Resource Economics, 16, 185-200. 

Pimm, S.L (1984), “The complexity and stability of ecosystems”, Nature, 307, 321-326.   

Pimm, S., G. Russell, J. Gittleman and T. Brooks (1995), ‘The Future of Biodiversity’, 

Science, 269, 347–50. 

Prakash, T.N.R. and D. Pearce (1993), Sustainability as resilience: measuring sustainable 

development, unpublished. 



 42

Reggiani, A., de Graaf and P. Nijkamp (2002) ‘Resilience: An Evolutionary Approach to 

Spatial Economic Systems’, Networks and Spatial Economics, 2, pp. 211–29. 

Rose, A. (2004), “Defining and measuring economic resilience to disasters”, Disaster 

Prevention and Management, 13, No. 4, 307-314. 

Scheffer M., Hosper S.H., Meijer M.L. and Moss B. (1993), „Alternative Equilibira in 

Shallow Lakes“, Trends Evol. Ecol., 8, 275-79. 

Simon, H. and A. Wildavsky (1995), ‘Species Revisited’, in J. Simon (Ed) The State of 

Humanity, Blackwell, Oxford, UK. 

Turner, R.K., J.C.J.M. van den Bergh, A. Barendregt and E. Maltby (1998) ‘Ecological-

Economic Analysis of Wetlands: Science and Social Science Integration’, in T. Söderquist 

(Ed) Wetlands: Landscape and Institutional Perspectives, Beijer Occasional Paper Series, 

Beijer International Institute of Ecological Economics, Stockholm, Sweden. 

Van Ierland E.C., de Kruijf H.A.M. and van der Heide C.M (1998)., Attitudes and the Value 

of Biodiversity, A paper on biodiversity valuation & statements by participants of Benin, 

Bhutan, Costa Rica and The Netherlands at the workshop ?Biodiversity Valuation in 

Cultural Context’, March 2-7, San Josè, Costa Rica. 

Van Kooten, G.C. and Bulte, E.H. (2000), The economics of nature. Managing biological 

assets, Blackwell Publishers, Malden. 

Walker, B.H. (1992), “Biological diversity and ecological redundancy”, Conservation 

Biology, 6, 18-23. 

Walker, B.H. (1995), ‘Conserving Biological Diversity through Ecosystem Resilience’, 

Conservation Biology, 9 (4), pp. 747-52. 

Westman, R.E. (1985), Ecology, Impact Assessment and Environmental Planning, Wiley, 

Chichester, UK. 

Wilson, E.O. (Ed) (1988a) Biodiversity, National Academy Press, London, UK. 



NOTE DI LAVORO DELLA FONDAZIONE ENI ENRICO MATTEI 
Fondazione Eni Enrico Mattei Working Paper Series 

Our Note di Lavoro are available on the Internet at the following addresses: 
http://www.feem.it/Feem/Pub/Publications/WPapers/default.html 

http://www.ssrn.com/link/feem.html 
http://www.repec.org 

http://agecon.lib.umn.edu 
 
 
 
 
 

NOTE DI LAVORO PUBLISHED IN 2006 
   

SIEV 1.2006 Anna ALBERINI: Determinants and Effects on Property Values of Participation in Voluntary Cleanup Programs: 
The Case of Colorado 

CCMP 2.2006 Valentina BOSETTI, Carlo CARRARO and Marzio GALEOTTI:  Stabilisation Targets, Technical Change and the 
Macroeconomic Costs of Climate Change Control 

CCMP 3.2006 Roberto ROSON: Introducing Imperfect Competition in CGE Models: Technical Aspects and Implications 
KTHC 4.2006 Sergio VERGALLI: The Role of Community in Migration Dynamics 

SIEV 5.2006 Fabio GRAZI, Jeroen C.J.M. van den BERGH and Piet RIETVELD: Modeling Spatial Sustainability: Spatial 
Welfare Economics versus Ecological Footprint 

CCMP 6.2006 Olivier DESCHENES and Michael GREENSTONE: The Economic Impacts of Climate Change: Evidence from 
Agricultural Profits and Random Fluctuations in Weather 

PRCG 7.2006 Michele MORETTO and Paola VALBONESE: Firm Regulation and Profit-Sharing: A Real Option Approach 
SIEV 8.2006 Anna ALBERINI and Aline CHIABAI: Discount Rates in Risk v. Money and Money v. Money Tradeoffs 
CTN 9.2006 Jon X. EGUIA: United We Vote 
CTN 10.2006 Shao CHIN SUNG and Dinko DIMITRO: A Taxonomy of Myopic Stability Concepts for Hedonic Games 
NRM 11.2006 Fabio CERINA (lxxviii): Tourism Specialization and Sustainability: A Long-Run Policy Analysis 

NRM 12.2006 Valentina BOSETTI, Mariaester CASSINELLI and Alessandro LANZA (lxxviii): Benchmarking in Tourism 
Destination, Keeping in Mind the Sustainable Paradigm 

CCMP 13.2006 Jens HORBACH: Determinants of Environmental Innovation – New Evidence from German Panel Data Sources
KTHC 14.2006 Fabio SABATINI:  Social Capital, Public Spending and the Quality of Economic Development: The Case of Italy
KTHC 15.2006 Fabio SABATINI: The Empirics of Social Capital and Economic Development: A Critical Perspective 
CSRM 16.2006 Giuseppe DI VITA:  Corruption, Exogenous Changes in Incentives and Deterrence 

CCMP 17.2006 Rob B. DELLINK and Marjan W. HOFKES: The Timing of National Greenhouse Gas Emission Reductions in 
the Presence of Other Environmental Policies 

IEM 18.2006 Philippe QUIRION: Distributional Impacts of Energy-Efficiency Certificates Vs. Taxes and Standards 
CTN 19.2006 Somdeb LAHIRI: A Weak Bargaining Set for Contract Choice Problems 

CCMP 20.2006 Massimiliano MAZZANTI  and Roberto ZOBOLI: Examining the Factors Influencing Environmental 
Innovations  

SIEV 21.2006 Y. Hossein FARZIN and Ken-ICHI AKAO: Non-pecuniary Work Incentive and Labor Supply 

CCMP 22.2006 Marzio GALEOTTI, Matteo MANERA and Alessandro LANZA: On the Robustness of Robustness Checks of the 
Environmental Kuznets Curve 

NRM 23.2006 Y. Hossein FARZIN and Ken-ICHI AKAO: When is it Optimal to Exhaust a Resource in a Finite Time? 

NRM 24.2006 Y. Hossein FARZIN and Ken-ICHI AKAO: Non-pecuniary Value of Employment and Natural Resource 
Extinction 

SIEV 25.2006 Lucia VERGANO and Paulo A.L.D. NUNES: Analysis and Evaluation of Ecosystem Resilience: An Economic 
Perspective 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

(lxxviii) This paper was presented at the Second International Conference on "Tourism and Sustainable 
Economic Development - Macro and Micro Economic Issues" jointly organised by CRENoS (Università 
di Cagliari and Sassari, Italy) and Fondazione Eni Enrico Mattei, Italy, and supported by the World Bank, 
Chia, Italy, 16-17 September 2005. 

 
 
 
 
 
 
 
 
 
 
 

 2006 SERIES 

  CCMP Climate Change Modelling and Policy  (Editor: Marzio Galeotti ) 

  SIEV Sustainability Indicators and Environmental Valuation (Editor: Anna Alberini) 

  NRM Natural Resources Management  (Editor: Carlo Giupponi) 

  KTHC Knowledge, Technology, Human Capital  (Editor: Gianmarco Ottaviano) 

  IEM International Energy Markets (Editor: Anil Markandya) 

  CSRM Corporate Social Responsibility and Sustainable Management (Editor: Sabina Ratti) 

  PRCG Privatisation Regulation Corporate Governance (Editor: Bernardo Bortolotti) 

  ETA Economic Theory and Applications (Editor: Carlo Carraro) 

  CTN Coalition Theory Network 

 




