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Analysis and Evaluation of Ecosystem Resilience: An Economic
Perspective

Summary

This paper focuses on the analyses and evaluation of resilience anchored in an economic
perspective. Resilience, as well as most of the benefits provided by ecosystems, is not
priced on current markets. However, this does not mean that resilience is of no value for
humans. On the contrary, the interest of using an economic perspective, and the
respective scientific methodology, will be put forward in terms of resilience relevance
for ecosystems’ life and functioning, and its impact on human welfare. The economic
perspective is anchored in an anthropocentric analysis meaning that resilience is
evaluated in terms of provision of natural capital benefits. These, in turn, are interpreted
as an insurance against the risk of ecosystem malfunctioning and the consequent
interruption of the provision of goods and services to humans. For this analysis, we
make use of a conceptual framework so as to identify and describe the different value
components of resilience. Finally, we present an illustration that tackles the economic
analysis and discussion of resilience benefits in the context of the Venice Lagoon.
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1. Introduction

Ecosystems are identified in the ecological literature as ‘biological communities that interact
with the physical and chemical environment, with adjacent ecosystems and with the
atmosphere’ (Holling et al., 1995, p. 54). From an economic perspective, ecosystem
functioning and stability are responsible for the provision of a wide range of benefits to
humans. Such benefits include, inter alia, the maintenance of the genetic library, the direct
provision of food, watershed protection and waste assimilation (Folke et al., 1996).

In the recent years, anthropogenic pressures are increasingly threatening ecosystem
functioning and stability, and thus environmental quality. Increasing rates in the urbanisation
trend and demanding land use management regimes, such as intensive monoculture
agricultural practices, have contributed to unprecedented impacts on ecosystems. These, in
turn, create additional uncertainty with respect to the inter-temporal guarantee in the provision
of goods and services and in the buffering against environmental change. As a result, we have
been assisting to a growing interest in the identification and definition of policy oriented
strategies, ranging from prevention to adaptation measures, so as to deal with such pressures.

In order to guarantee the success of such policies, today, and more than ever, both
natural and social scientists focus their attention on the study of ecosystems’ life and
functioning. On one hand, natural scientists analyse the conditions for ecosystems’
persistence stressing the relevance of resilience in terms of the capacity of a natural system to
maintain its functioning. In other words, resilience is here interpreted as a buffer against
environmental changes or disturbances. On the other hand, economists allocate particular
effort in exploring a set of tools so as to identify and assess the value of resilience, measured
in terms of its impacts on human welfare. In this context, resilience is interpreted as a natural
insurance capital against the risk of ecosystems’ malfunctioning, and the consequent damages

associated to a potential interruption of the ecosystems’ ability to provide goods and services.



This paper focuses on the analyses and evaluation of resilience anchored in an economic
perspective.

The paper is organized as follows. Section 2 introduces the concept of resilience as
originally put forward in the ecological literature. Section 3 presents and discusses the
motivations to perform economic valuation, in general, and non-market valuation of
ecosystems’ resilience, in particular. Section 4 defines and explains the concept of economic
perspective, which will serve as the platform for the discussion and evaluation of resilience.

Section 5 presents an illustration. Section 6 concludes.

2. A natural science perspective on resilience
2.1 Introduction
The concept of resilience has found application in many different fields. In physics, for
instance, it identifies the resistance of building materials to collision, by providing an
indicator of materials’ fragility: a material poorly resilient is more fragile and vice versa. In
the ecological literature, resilience, firstly defined by the theoretical ecologist Holling (1973),
refers to the understanding of ecosystems’ dynamics, in general, and its conditions for
persistence, in particular (Gunderson, 2000). Abandoning the traditional equilibrium-centred
ecological view, which has been focusing on the static analysis of ecosystem’s equilibrium,
Holling proposes a dynamic approach to the analysis of ecosystem functioning. From
Holling’s perspective, resilience is then defined as the amount of disturbance that can be
absorbed before the system redefines its structure and respective processes without moving
the system from the current state to another state. This perspective is referred to in the
literature as ecological resilience (Holling, 1986; 1996).

Since the pioneering work of Holling, other versions with respect to the concept of

resilience have been put forward by natural scientists. Among them, we can find the definition



proposed by Pimm (1984). According to Pimm, resilience is identified as the time necessary
for a system to return to an equilibrium once the system has been the target of an
environmental change or disturbance. The respective amount of time gives an indication of
the ecosystem ability to assimilate the change, which is in turn inferred as a measurement of
resilience. The faster is the recovery, the minimum is the time to return to equilibrium and
therefore the stronger the resilience of the system. This perspective is referred to in the
literature as engineering resilience (Holling, 1986; 1996).

We can discuss in more detail each approach by exploring the use of Figure 1, as

originally proposed by Scheffer et al. (1993) and Carpenter et al. (1999).
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Figure 1 — Ecological and engineering resilience

Source: Scheffer (1993), Carpenter et al. (1999).

The ball represented in Figure 1 depicts the system state, the convex set represents the
stability domain and the arrows represent the disturbances that the system is subject to. An
equilibrium exists whenever the ball lies down, after having experienced other positions
induced by disturbances. In this setting, ecological resilience can then be defined as the

maximum size of the ripples before the ball reach the new equilibrium after perturbations



occurred. On the other hand, engineering resilience can be thought as the return time of the
ball to the initial equilibrium, i.e. to the bottom of the convex set, depending on the slope of
the sides of the convex set. In both cases, resilience depends on the shape of the convex set,
which is, as shown by the three slices represented in Figure 1, subject to changes. These
changes result from the alteration, often human induced, of parameters, such as birth rates,
death rates, carrying capacity, migration or per capita predation, governing interactions
between ecosystems (Beisner et al., 2003).

As recently pointed out by Gunderson (2000), both perspectives, i.e. ecological
resilience and engineering resilience, have in common the fact that both deal with aspects of
stability of system equilibrium. In other words, both investigate the persistence of a system,
which is supposed to operate near or close to an equilibrium state, concentrating on the self-
organized behaviour of that natural system over time. On the contrary, the definitions differ
because they offer alternative measures of the capacity of a system to maintain its functioning
and stability.

Such differences reflect alternative assumptions about the existence of either single or
multiple ecosystem’s equilibrium. The ecological resilience perspective, which focuses on
conditions far from any steady state, where instabilities can flip a system into another stability
domain, implicitly assumes the existence of multiple locally stable equilibria and the
tolerance of the system to perturbations that facilitate transitions among stable states. The
lower the natural system’s capacity to adapt to changes, the higher is the risk for the system to
shift into a qualitatively different state. When such new state is undesirable, restoring the
system to its previous state can be complex, expensive and sometimes it reveals to be
impossible. In case of uncertainty and potential irreversibility of the change, the interplay
between stabilizing and destabilizing forces is then particularly relevant for the maintenance

of ecosystems’ functioning. When destabilizing forces are predominant, the natural system



could be unable in the new qualitatively state to guarantee to humans the provision of the
same goods and benefits as in the previous state. From the ecological resilience perspective,
particular attention is then focused on maintaining the existence of ecosystem’s functions
relevant to human welfare. The engineering resilience perspective instead assumes the
existence of a global stability, meaning that the behaviour of a system remains within the
stable domain containing a single steady state. Then, from this perspective resilience does not
impact on which equilibrium the ecosystem will reach, but rather on how it will reach its
equilibrium. As a consequence, the main emphasis is put on the efficiency of the path to reach
the single best equilibrium steady state. The more resilient the ecosystem, the faster is the
process of returning to the original equilibrium state, i.e. the higher is the probability of
maintaining the efficiency in ecosystems’ functioning. This indirectly implies that the
variability of natural systems can be to a certain extent effectively controlled by humans and
its consequences are, at least up to a certain point, predictable.

In order to analyse and value resilience, next sub-section will be devoted to the
identification, and definition, of resilience relationship with species diversity and natural
systems’ functioning. In doing so, we will refer to the notion of ecological resilience:
ecosystems’ complexity and their unknowable and unpredictable evolution over time
(Deutsch et al., 2002) seem to be more realistically consistent with the existence of multiple

local equilibria.

2.2 Resilience, system functioning and species diversity

Species diversity refers to the variety of species on earth, or in any other given geographical
area. Such diversity is associated with a large degree of uncertainty. In fact, estimates of the
total number of species on earth range from 5 to 300 million, of which about 1.5 million have

been described, and less than 0.5 have been analyzed for potential economic benefit properties



(Miller et al. 1985; CBD 2001). The best-catalogued species groups include vertebrates and
flowering plants, with other groups, such as lichens, bacteria, fungi and roundworms,
relatively under-researched (Wilson 1988a; Pimm et al. 1995). A long-standing theoretical
paradigm has predicted that species diversity is important because it enhances the productivity
and stability of ecosystems (Odum 1950). In this stream of thought, some authors distinguish
species according to their impact in ecosystem stability and resilience. In particular, Walker
(1992) distinguishes two types of species, drivers and passengers. Drivers correspond to the
species that directly, or indirectly, influence the ability of the ecosystem to function, to
provide goods and services as well as to buffer against changes or disturbances in the future.
Passengers correspond to the set of species that do not have a significant role in altering the
states of the ecosystem. In this context, while removing passengers usually induces little
effect in the system performance and absorption capacity, removing drivers may cause a large
impact, threatening system resilience by reducing its buffer ability to absorb disturbances. The
plant Banksia prionotes well illustrates the Walker’s notion of driver (Walker, 1995). In the
wheatbelt in Western Australia, during a certain period of the year this plant is the only source
of nectar. The loss of such a species would probably induce the loss of all the honeyeaters of
the region and all the plants for which honeyeaters are vectors for pollen. The overall impact
of Banksia prionotes loss on plant-species diversity in that area would then be consistent. In
other areas, the effect would instead not be so critical. In the coastal regions of Western
Australia, for instance, honeyeaters can find alternative sources of nectare in other Banksia
species flowering at the same time. As a consequence, there the Banksia prionotes does not
identify a driver species: its functional role is easily substitutable by other species.

Some recent studies, however, acknowledge that no pattern, or deterministic
relationship needs to exist between species diversity and the stability of ecosystems (Johnson

et al. 1996). Others instead suggest that the stability of ecosystems, and thus resilience, may



be linked to the prevalence of a rather limited number of organisms and groups of organisms
that seem to drive or control the critical processes necessary for ecosystem functioning —
known as keystone species (Paine 1969; Folke et al. 1996). The extinction of these species
reduces the ecosystem’s capacity to accommodate external shocks, like climatic and human
influences, and ultimately results in the loss of spatial variety in ecosystem types. Therefore,
analyzing keystone species is about determining the minimum range of species within which
the different state variables can be disturbed without flipping from the current ecosystem to
another regime of behaviour (Perrings and Opschoor, 1994, Holling et al. 1995; Reggiani et
al. 2002, Christianou and Ebenman, 2005).

The ability of an ecosystem to maintain its self-organization and integrity, without
undergoing the evolving, and possibly irreversible, change is associated with crossing the
thresholds between stability domains. This notion is closely linked to the guarantee of the
variety of ecosystem functions (De Leo and Levin 1997, Turner et al. 1998). Ecosystem
functions, including interconnections between hydrological and geomorphological systems,
photosynthesis and food web support, are the result of interactions between its structure and
processes. Ecosystem structure refers to the tangible biotic and abiotic items such as plants,
animals, soil, air and water of which an ecosystem is composed. Ecosystem processes refer
instead to the dynamics of transformation of matter or energy between living and abiotic
systems. These processes, in turn, are responsible for the provision of life support services,
e.g. resilience benefits, such as assimilation of pollutants, cycling of nutrients, soil generation
and preservation, pollination of crops, and maintenance of the balance of gases in the air
(Maltby et al. 1996a and 1996b). Furthermore, they also enable the development and
maintenance of the ecosystem structure that is, in turn, the basis for the continued provision of

goods and services.



Natural and human systems coexist and are mutually interrelated. Arrows in Figure 2

show the different interactions existing among them.

Environmental System

Economic
System

Figure 2 - Linkages between system’s resilience and anthropogenic behaviour

Source: Batabyal et al. (2003), adapted.

As a matter of fact, humans share with other species a fixed amount of natural resources. If
economic activities depend on the flow of goods and services provided by ecosystems,
ecosystems are in turn dependent on the economy, due to the complexity of the
interconnections between human and natural systems. Shocks to the joint economic-
environment system (fire, storms or pest outbreaks) can affect both ecological and economic

levels. This relationship will be discussed in more detail in the following sub-section.

2.3 Linking system’s resilience to anthropogenic behaviour

A dominant element in recent discussions about ecosystem’s functioning is the worry about
the influence of the human activities in threatening the stability and continuity of ecosystems
(Pimm et al. 1995; Simon and Wildavsky 1995). In recent years, many economists have

focused their attention towards the valuation of the stability and continuity of ecosystems in



terms of their ability to guarantee the provision of goods and services to mankind. Stability
and continuity of ecosystems, i.e. resilience, today represents, more than ever, a valuable
natural resource and requires our attention for two main reasons. First, it provides a wide
range of direct and indirect benefits to mankind, which occur on both local and global scales.
Such benefits include, inter alia, the maintenance of the genetic library, the direct provision
of food, watershed protection and waste assimilation (Folke et al., 1996). Second, many
human activities contribute to general, unprecedented pressures on natural systems and on
their capacity to absorb exogenous perturbations without changes, i.e. their resilience. For
instance, the accumulation of nutrient concentrations in lakes water until a certain critical
threshold is passed usually induces an increase in water turbidity and eutrophication (Deutsch
et al., 2002). The consequent loss of animals and plants diversity would affect recreation and
fishing activities. Similarly, fire and grazing pressures for sheep and cattle production on
rangelands produce a shift from grass to the less productive woody plant (small trees and
shrubs) dominance (Deutsch et al., 2002). Overharvesting of fish stocks, global warming and
pollution are instead some of the principal causes of the coral reefs degradation into
alternative ecosystem regimes, dominated by macroalgae or sea urchin-barren (Nordemar and
Kautsky, 2002).

In particular, humans are responsible for pressures on resilience at both species
diversity and ecosystems’ functioning levels. At species diversity level, the assumption of a
stabilizing role of keystone species implies that systems are more resilient and thus more able
to absorb exogenous perturbations without changes. To such thresholds corresponds the focus
of many policy actions. The general idea is to respect the existence of extinction thresholds,
even if accepting a certain degree of redundancy in the role of the different species. These, in
turn, will insure against any unpredictable impacts in terms of ecosystems’ deterioration of

ecosystems’ processes and functioning (Mooney et al., 1995). In such a context, the level of



human activities can induce ecosystems to cross such thresholds, threatening system’s
resilience — including the overexploitation of species for commercial use. This is for instance
the case, inter alia, of Asian and African elephants, rhinoceroses and certain kinds of orchids
and cacti, included among species protected by the Convention of International Trade in
Endangered Species of Wild Fauna and Flora (OECD, 1997).

At ecosystems’ functioning level, disturbances induced by human activities may
threaten the ecosystem’s ability to provide a wide range of goods and services, including the

direct provision of food and the maintenance of the genetic library (Table 1).

Table 1 - Ecosystems’ services provided to humans

watershed protection

mitigation of flood and droughts

waste assimilation

detoxification

decomposition

microclimatic stabilization

purification of air and water

generation and renewal of soil and its fertility
pollination of crops and other vegetation
control of agricutltural pests

dispersal of seeds

transport of nutrients

direct provision of food from sea and land
maintenance of the genetic library

Source: Perrings (1999), adapted

For any ecosystem to function, a minimum level of variety of communities of living
organisms and their abiotic environments is required. The task of evaluating ecosystem’s
benefits for humans requires significant information regarding what the ecosystem does, what
is worth for resilience and what its impact is to human welfare. The value of ecosystem
structure is generally more easily appreciated than that of ecosystem resilience, due to the

informational requirements necessary for the second to be known. Assessing ecosystem
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capacity to guarantee the provision of current nutrient retention and pollution absorption for
any given region, for example, is extremely difficult. Such processes cannot in fact be easily
observed and controlled by humans, who can only notice some effects of their
mulfunctioning. But ecosystem structure is also incompletely known. To assess the value of,
for instance, the insect fauna diversity when many of these species have never even been
described taxonomically, pushes human knowledge beyond its current limits (Westman
1985). Even if ecology has come to understand ecosystem processes to the extent that some
relationships and their implications for humans are now evident, many questions still remain
unsolved. However, due to the uncertain and potentially irreversible consequences in terms of
ecosystems’ functioning and human welfare, the complex interplay between the range of
human activities and the natural environment cannot be ignored. In particular, scientists face
the important challenge of improving their understanding of the impact of resilience on
human welfare: the preservation of ecosystem processes and their consequent good

functioning requires in fact the preservation of ecosystem resilience.

3. Motivations for economic valuation

3.1 Introduction

Because we live in a world with scarce resources, one is frequently asked to make the choice
regarding the use and management of these resources. In this context, if policy makers decide
to invest on the protection of, for example, marine ecosystems integrity by creating a mairne
wilderness area, less financial resources would be available for other policy areas, such as
national health. In addition, the investment on the protection of marine ecosystems’ resilience
brings along with it the provision of public values, which are not fully priced on current
markets. In other words, marine ecosystems provide a wide range of benefits to humans and

most are not valued on market prices. For example, a good functioning of marine ecosystems
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is able to provide an important role in balancing the local chemical composition of the water
and we do not observe a market price that reflects the welfare impact of such benefit. Given
that most human activities are priced in one way or other, in some decision contexts, the
temptation exists to downplay or ignore marine quality benefits on the basis of non-existence
of prices. The simple and simplistic idea here is that a lack of prices is identical to a lack of
values. Clearly, this is a slightly biased perspective. Therefore, carrying out proper pricing is
one of the main reasons to undertake economic assessment of environmental resources. Three
other main reasons can also be identified. These are performing cost-benefit analysis,
environmental accounting, and assessing natural resource damage. These will subsequently be

considered in more detail.

3.2 Cost-benefit analysis
Cost-benefit analysis (CBA) is a welfare-theoretic method to trade-off the advantageous and
disadvantageous effects of a proposed project by measuring them in monetary terms. CBA
emerged as an attempt to systematically incorporate economic information that can be applied
to project and policy evaluations. Since CBA has traditionally been defined in terms of gains
and losses to society, project-oriented CBA has tended to be confined to public sector
investment projects. The first evaluation studies were carried out in the USA in the 1950s to
deal with ‘intangibles’ in a consistent way, e.g., for river basin projects and infrastructure
projects. These methods found much application, inter alia, in World Bank practices. They
were also heavily criticized for many inherent shortcomings, which has led to many new or
adjusted methods, such as cost-effectiveness analysis, goals-achievement methods and
multicriteria analysis (see Nijkamp et al. 1991).

The use of CBA to evaluate policy is more recent (see for an overview Boardman et

al. 2000). Like an investment project, policies have costs and benefits. For example, standards
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for marine pollutants concentrations and taxation of marine pollutants are two different
policies, which, in turn, are associated with different gains and losses to society. The basic
rule of CBA in decision-making is to approve any potentially worthwhile policy if the
benefits of the policy exceed the costs. Moreover, to make the best choice, a decision-maker
should opt for the policy option with the greatest positive net present value. Other criteria
exist, such as ranking and evaluating projects according to their ‘internal rate of value’ or
according to the “benefit cost ratio’ - see Hanley and Spash (1993) for a literature review on
CBA and its application to environmental issues; Lima e Santos (2001) for the evaluation of
biodiversity policy.

From an environmental agenda perspective, CBA has been used in the USA for
evaluating policies since the late 1970s. However, only after Reagan’s Executive Order
12291, in 1981, has CBA been extensively used for evaluating new regulations. In contrast, in
Europe there are no legal requirements for CBA for new regulations. An exception is the UK,
whose 1995 Environment Act envisions the use of CBA in policymaking. Clearly, the use of
and the critical judgments of CBA in public policy is still a matter of ongoing debate among

most of the European policy makers.

3.3 Environmental accounting

Various efforts have been made to adjust national accounting systems and associated gross
national product (GNP) statistics for the depreciation of environmental assets and for negative
externalities such as pollution and the loss of biodiversity. The theoretical literature explores
alternative ways of adjusting conventional estimates of national income to reflect
environmental deterioration (Aronsson et al. 1997). Green (or environmental) accounting is

one possible strategy (Lawn, forthcoming).
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The underlying idea is to add to the traditional national accounting system information
on physical flows and stocks of environmental goods and services — the so-called physical
satellite accounts. In the Dutch context, for example, the Netherlands Central Bureau for
Statistics developed the NAMEA, a National Accounting Matrix that includes both economic
and Environmental Accounts (Keuning and de Haan 1996). An important aim of green
accounting is to obtain an adjusted ‘green’ GNP. This can play a potentially crucial role in
policymaking since the GNP has a powerful influence on macro-economic policy, financial
markets and international institutions (OECD, IMF, and World Bank). If national income is
wrongly estimated, then economic analysis and policy formulation are based on the wrong
premises, thus “steering’ the society by the wrong compass (Hueting 1980; El Serafy 1999).
Adjustment of the national accounts to reflect ecosystem quality loss will lower the GNP
(Gerlagh et al. 2002). Nevertheless, practice shows that the adjustment of national accounting
systems is not an easy task. It is therefore necessary to achieve international agreement about
harmonizing GNP adjustments, allowing for the comparison of GNP and national accounts
between countries. Independent of which valuation methods are used for this purpose, it is
clear that monetary valuation of the depreciation of environmental assets and negative
externalities, such as pollution and the loss of biodiversity, is a key element in green

environmental accounting.

3.4 Natural resource damage assessment and legal claims

Natural resource damage assessments (NRDAs) appraise how much society values the
destruction of natural resources. An important benchmark in the history of NRDA is the
massive oil spill due to the grounding of the oil tanker Exxon Valdez in Prince William
Sound, in the northern part of the Gulf of Alaska, on March 24, 1989. This was the largest oil

spill from a tanker in USA history. More than 1,300 km of coastline were affected and almost

14



23,000 birds were killed (Carson et al. 1992). After the oil spill, the State of Alaska
commissioned a legal action in order to assess Exxon’s financial liability in the damage to the
natural resources. A national contingent valuation study estimated the loss to USA citizens as
a result of the oil spill. The natural resource damage resulting from the Exxon Valdez oil spill
was estimated at $2.8 billion. For the first time, a governmental decision expressed the
legitimacy of nonuse values as a component of the total damage value. To date, NRDAs are
only undertaken in the USA and have not yet become an issue in the European policy agenda
because of different legal arrangements between member states. The recent sunk of the tanker
Prestige in front of the Galician coast is at this aim very significant.

Such sunk caused in November 2002 probably the largest oil spill to date, with about
60.000 tons of heavy fuel oil leaked into the sea and affecting more than a thousand of
coastline (Cajaraville et al., 2005). The Spanish Ministry of Science and Technology
launched in 2003 two special actions, one of which aimed to monitor the health of sentinel
coastal organisms and the other focused on determining the effects of the oil spill on the
platform ecosystems and fisheries resources. The second action included also the analysis of
the socioeconomic effects of the oil spill: the Economy of Fisheries Resources group of the
University of the Basque Country was charged of assessing the losses in the fish-extraction,
commercial and transformation sectors in Basque Country. The evaluation of the losses
focused on some socioeconomic variables of interest for the whole sea-industry complex,

including income and employment levels, but no NRDAS were undertaken.

4. Resilience as a source of economic value
4.1 Introduction
As we have seen, the concept of resilience has been put forward in the field of natural

sciences. In their study, economists are concerned with the magnitude of disturbance that can
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be absorbed before an ecosystem is displaced from one state to another. In other words, with
the ability of an ecosystem to maintain its self-organization without undergoing the
destructive and possibly irreversible change involved in crossing the threshold between
stability domains (Pearce et al., 1989; Deutsch et al., 2002). The maintenance of the system
self-organization is interpreted in terms of the ecosystem’s stability and integrity of the
platform that, in turn, is responsible for the provision of a wide range of direct and indirect
benefits affecting human welfare. In short, from the economic perspective, the relevance of
resilience is mainly due to its role in guaranteeing the provision of a wide range of benefits,
including the ecosystem absorption capacity of external perturbations. Resilience represents a
valuable natural resource in particular today, in a worldwide context characterized by general,
unprecedented human pressures on the natural environment and the consequent increasing
threats to ecosystems’ stability and integrity.

One can question why, if resilience generates so many benefits for humans it has been
ignored for a long while from the policy agenda and it is still ignored today when, more than
ever, we assist to unprecedented pressures on ecosystem stability. When answering to this
question, it is current practice to distinguish between ‘proximate’ and ‘fundamental’ factors
that underpin the ecosystem’s ability to buffer against disturbances. While the proximate
factors relate to the worldwide trend of human population growth, and its impact on
production and consumption patterns, the fundamental causes are associated with the
conditions within which system’s resilience decisions are made. Two important fundamental
causes emerge (Nunes et al., 2003). The first relates to market failures and the second to the
lack of property rights. Many resilience benefits, such as the ability to maintain the genetic
library, are not ‘cashed’ flows, i.e., there is no market price mechanism that fully captures
such benefits. In other words, markets fail to internalize protection benefits. For this reason,

these are known in the economic literature as positive external effects (or externalities), i.e.,
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positive unintended effects outside the market on the welfare or productivity of other
individuals. In such a context, the individual rate of return on conservation will almost
certainly fail to compete with the individual rate of return on development projects. This is a
consequence of the individual utility maximizing behaviour, ignoring the existence of positive
externalities. According to the usual economic analysis, the optimal individual choice
corresponds in fact to a preservation of resilience below the level that would be socially
optimal, because the external effects are not included within the individual rational
calculation. The second fundamental cause is related to the lack of property rights. The
unrestricted depletion of ecosystem resilience due to the lack of enforceable property rights
causes negative externalities to society, because there is no owner able to privately capture
resilience benefits. This identifies an example of what is usually called, since the seminal work
of Hardin (1968), ‘the tragedy of the commons’. In a context in which individuals are supposed
to be rational, the personal calculation of utility would induce every one to compare his share of
the cost of decreasing resilience to his share of the cost of preserving resilience. Since for each
individual the first one is less than the second one due to the absence of property rights, the
result will be a loss of ecosystems’ resilience greater than the socially optimal level. In
particular, population growth makes today the problem of properly defining property rights
even more relevant. At worldwide level, this problem emerges also because of the high
importance of the spatial element arising from a reciprocal relationship: (1) local,
anthropogenic rooted processes have global impacts in terms of system’s resilience; and (2)
global trends in system’s resilience give rise to local effects. For example, natural habitats have
been historically converted to agricultural use. Such process has heavily affected ecosystems’
functioning and structure and, by reducing ecosystems’ resilience, has impacted on geochemical

cycles and thus contributed to the global warming we are now experiencing on hearth. The
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global climate change, in turn, is having local consequences in terms of soil erosion,

downstream sedimentation, flooding and salinization.

4.2 Resilience as a source of welfare

As already stressed, natural and human systems are strongly interlinked. Demographic, social,
cultural and economic trends have many impacts on the functioning of such systems. A
reduction in the systems’ resilience makes them more vulnerable to external perturbations,
which otherwise would have been absorbed without structural change (Folke et al., 1996). An
emblematic example of loss of resilience is represented by the construction of the Aswan dam
that, by ending the annual floods of the Nile river, has impoverished the Egyptian agriculture
and induced a great portion of the rural population to migrate into Cairo. This in turn was
responsible for additional welfare damages in terms of urban poverty and unemployment
(Batabyal et al., 2003). Another significant example is captured in the mid-western regions of
the United States of America. There, the loss of flood protection services provided by
upstream wetlands as a consequence of land use decisions has played a key role in the
intensive flooding of Mississippi river and its tributaries (Batabyal et al., 2003).

The reduction of systems’ resilience, measured by an overcoming of ecological
thresholds, causes discontinuities in the provision of ecological service flows, and a negative
impact on human welfare. This situation configures a challenge for the economic theory
because of the uncertainty of the thresholds’ levels values and the magnitude of the change
(Muradian, 2001). In the case of the greenhouse gas emissions, for example, marginal
increases in carbon dioxide emissions lead to marginal increases in global temperature, but
when a critical threshold is crossed the consequent massive warming can induce important

destabilizing phenomena, such as El Nino and La Nina events (Batabyal et al., 2003).
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In case of irreversible damages or slowly reversible changes, welfare costs derived
from the reduction of system’s resilience are imposed on both present and future generations
(Perrings and Stern, 1999). Irreversibility, in fact, typically occurs when the ecosystem
original state, and the consequent flow of goods and services to humans, can be restored only
at excessive costs to society, either in terms of resources allocation or of time required (Van
Kooten and Bulte, 2000). In both cases, the welfare costs associated to irreversible
environmental damages are not easy to quantify. From one hand, it is not always possible for
scientists to ex ante assess their amount, due to the limited knowledge on the type and
duration of the complex natural phenomenon involved. From the other hand, uncertainty also
derives from the lack of knowledge on the preferences of future generations: different welfare
priorities could imply different environmental concerns. In this context, resilience can then be
interpreted in terms of natural insurance capital (Prakash and Pearce 1993; Barbier et al.,
1994; Folke et al., 1996; Deutsch et al., 2002). Therefore, any decrease in the level of
uncertainty is characterized and measured in terms of an increase in the supply of insurance
against potential transformation of natural capital. Such an insurance effect is stronger the
weaker is the substitutability between environmental capital and human-made capital (e.g.
technology). Resilience, at least for some forms of environmental capital with limited
substitutability, represents then a critical capital (Prakash and Pearce, 1993), captured in
terms of both environmental functions for the human system (ecosystem goods and services)
and environmental functions for the natural system (life-support functions) (Deutsch et al.,
2002). The loss of resilience, by altering essential ecosystems’ functions and processes,
modifies in fact the risk associated with a given set of environmental conditions and induces a
different value of potential productivity, in terms of goods and services flows (Brock et al.,

2000). The task is now to evaluate the benefits of ecosystem’s resilience for human welfare.
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However, before we need to present and discuss the underlying characteristics that the

economic valuation perspective relies upon.

4.3 Economic valuation perspective

The valuation of any scarce resource, such as ecosystems’ resilience, relies on cultural,
political and religious determinants. As proposed by van lerland et al. (1998), the perspectives
on value range according to the underlying human attitudes with respect to natural
environment. For the sake of illustration, we here take into account two opposite perspectives,
the eco-centric value perspective well know in the literature as deep ecologist and the

anthropocentric techno-economic dominance (Table 2).

Table 2 - A classification of attitudes towards nature

Attitudes Principles
Deep Ecologist Only biodiversity issues matter
Ecological Approach Recognition of economic needs
Stewardship Protect biodiversity, allow economic activity

Multifunctional Use Biodiversity and economic activity

Economic Attitude Priority to economic activity
Techno-economic Dominance Only economic issues matter

Source: van lerland et al. (1998), adapted)

According to the deep ecologist value perspective, top priority is given to the
conservation of the environment, in general, and protection of resilience, in particular,
independently of their importance in terms of their role in the human economic activities. The
underlying idea of this biotic, egualitarianism anchored perspective, is that nature is
characterized by intrinsic values (Ehrenfeld 1988). On the contrary, the techno-economic
dominance value perspective, assumes a rather optimistic view with respect to the self-
regulation capacity of the environment and accepts depletion in natural resources to reach

economic growth targets, without recognizing any intrinsic right for protection. In between,
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the other attitudes (ecological approach, stewardship, multifunctional use, economic attitude)
differ each other because of a decreasing relevance attributed to the environment and an
increasing relevance attributed to economic activities.

The present paper explores an economic perspective with respect to the valuation of
ecosystem resilience. For the relevance recognized to the preservation of the environment and
to the practice of economic activities, this economic perspective is placed between the above
mentioned multifunctional use and economic attitude. In particular, following the framework
proposed by Nunes and van den Bergh (2001), such perspective is based on an
anthropocentric point of view on value. This means that the concept of value has its
foundations in individual welfare. The basic premise of economic valuation, and thus
economic value of a resource, is the effect of the supply of the same resource on the well-
being of the individuals who make up the society. Therefore, if society wishes to make the
most in terms of individuals” well-being maximisation, the issue of the assessment of the total
economic value of resilience benefits is a key issue in terms of policy decisions. Implicitly,
this also means that the economic perspective on resilience value embraces an instrumental
approach. This makes explicit the fact that resilience benefits are used for instrumental
purposes, either in terms of production opportunities or in terms of consumption opportunities
(Fromm 2000).

Many people, however, do not feel comfortable with placing an instrumental value on
natural resources, in general, and resilience, in particular. The common argument is that the
resource has a value on its own — also known as ‘intrinsic value’. A more extreme version of
this argument claims that instrumental monetary valuation is a nonsense exercise (Ehrenfeld
1988). This approach is not embraced here. On the contrary, the instrumental approach is
based on the idea that making public or private decisions, which affect system’s resilience,

implicitly means attaching a value to it, which is disclosed in terms of different changes in the
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level of resilience benefits associated to each scenario or policy options. In other words,
humans have preferences with respect to different states of the world and their environmental
quality characteristics, and value changes (rather than levels) of environmental quality
characteristics (including system’s resilience), which are relevant for their welfare.

Furthermore, the economic perspective on the valuation of ecosystem resilience is a
monetary valuation. Monetary indicators serve as means and not as ends in valuation. In
short, economists make the use of monetary indicators as common units for the comparison
and ranking of alternative resilience scenarios or policy options. The magnitude of the
monetary indicator translates the value of the resilience benefits in human welfare, in terms
either of the individual production or consumption opportunities. Since monetary valuation
reflect individual preferences and all individuals are invited to participate in the valuation, it
can be said to be rooted in a democratic approach allowing direct comparisons with
alternative options in order to make public decisions, including those affecting ecosystem’s
resilience.

Finally, the economic valuation is anchored in a reductionist perspective and for this
reason is based on the idea that one is able to disentangle, or disaggregate, the total value of
resilience benefits into different economic value categories, notably direct use and passive use
or nonuse values (Pearce and Moran 1994), reflecting the different human motivations
(bottom up approach, Nunes and van den Bergh, 2001). Next section will focuses on these

different economic value categories.

4.4 A possible classification of resilience’s value components
Bearing in mind the proposed economic valuation approach, the different value categories of
resilience can be identified and described by referring to a simple conceptual framework as

shown in Figure 3.
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Figure 3 - Resilience’s value components

A first value category of resilience is denoted by link 1-7. This captures the benefits
humans derive from the maintenance of ecosystem stability, expressed in terms of the
intertemporal provision of goods and services. This resilience value component is referred to
as direct use value and captures both the value of the information pool contained in plants and
animals (including genetic diversity) as well as the value of the supply of a variety of
landscapes, habitats and respective biotic communities (including ecosystem diversity). As far
as the impacts of resilience on gene diversity are concerned, one can proceed in assessing this
value component in terms of its added value as an input in the provision of market priced
goods (such as new medicines or pharmaceutical products). Alternatively, the impacts of
resilience on ecosystem diversity can be inferred by individual demand on natural habitats,
including experience and recreational values.

A second value category of resilience is captured by link 2-6. This denotes the benefits
accruing to humans by ecosystem functioning, expressed in terms of its ability to buffer
against disturbances. This resilience value component is referred to as indirect use value.
This value component includes the welfare that humans derive from preventing any

malfunctioning in the ecosystem and thus avoiding any interruption in the provision of
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environmental and ecological services, such as flood control, groundwater recharge, nutrient
removal, toxic retention and CO, sequestration.

Another value category of resilience is captured by link 3. This denotes the benefits
accruing to humans from ecosystem stability, and its impact in terms of the guarantee in the
intertemporal provision of goods and services, and ecosystem integrity, expressed in terms of
its impact in guaranteeing the intertemporal ability to buffer against disturbances, even if none
of the both are directly consumed or experienced by the individual. In other words, it simply
corresponds to individual knowledge that these resilience benefits exist, independently of
their human use. In general terms, these reflect moral and philanthropic considerations,
including intra and inter generations altruistic motives. For this reason, link 3 denotes a
passive or non-use value component of resilience.

In addition, we have a value category captured by link 4-5. This depicts the feedbacks
that human experience and knowledge of resilience benefits cause on ecosystem stability and
integrity. In other words, this value category is interpreted as an insurance against potential
damages caused by the feedback of the wide range of human activities on ecosystem stability
and integrity. For this reason, link 4-5 denotes a option value component of resilience. Next
sub-section will focus on the analysis of this value component of resilience, by looking in

particular at its policy implications in terms of natural disaster prevention and management.

4.5 The option value component of resilience: policy implications

As previously stressed, resilience derives part of its economic value (option value component)
from its role in protecting against potential damages due to a loss of ecosystem stability and
integrity. From this point of view, resilience corresponds to a measure of ecosystems’
vulnerability to damage, defined as the probability that ecosystems are affected by a certain

risk factor (Cardona, 2003). As such, resilience identifies a key element in risk and natural
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disaster prevention and management. In fact, a reduced vulnerability implies a reduction in
risk and consequently in the probability of future natural disasters. Then, the analysis of the
main issues on risk assessment from the perspective of disaster risk may help in defining the
option value component of resilience.

Following Cardona (2003) and Freeman et al. (2003), it is possible to divide the
different components of disaster risk management into two phases. Actions required in the
pre-disaster phase include risk identification, risk reduction and risk transfer, while the post-
disaster phase is primarily devoted to disaster management actions. Risk identification deals
with hazard assessment, monitoring and forecasting, as well as with vulnerability and risk
assessment. Risk reduction refers instead to preventive and mitigation policy measures, aimed
to intervene on the causal factors of the negative event. Risk transfer includes insurance and
financial protection through specific instruments, such as national or local calamity funds,
catastrophe bonds, public services with safety regulation (energy, water and transportation).
Once the negative event occurred, disaster management identifies response and recovery
actions devoted to humanitarian assistance, damage assessment, rehabilitation and
reconstruction of damaged infrastructure, revitalization of affected sectors.

Within this framework, resilience plays a significant role during the pre-disaster phase
as insurance against the uncertain and potentially irreversible effects of ecosystem
malfunctioning, i.e. as factor reducing risk. In particular, resilience acts as factor reducing the
expected total damage related to the negative event, at both prevention and mitigation level.
As such, its option value component can be, therefore, approximated by two different
components. From one hand, by the costs of implementing prevention policy measures, i.e.
policies aimed to reduce the probability of disaster. From the other hand, by the costs of
implementing mitigation policy measures, i.e. policies aimed to ex ante reduce the economic

losses due to the eventual occurrence of natural disasters or extreme events.
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As recognized by the recent literature on disaster prevention and management (Rose,
2004), the system’s capacity to absorb the feedback of the wide range of human activities on
ecosystem stability and integrity deals in particular with three main elements. These are:
reduced failure probability, reduced consequences from failure and reduced time to recovery.
The first element depends on how a community intervenes to reduce the probability of
structural or system failure, for example by implementing public policies aimed to preserve
system’s resilience through limitations on agricultural practices near river basins. The second
element results instead from ex ante protective measures aimed to minimize the negative
effects due to structural or system failure, such as protective barriers in case of periodical
flooding. Finally, the last element refers to how quickly the system returns to normality in
case of external shocks.

The following sub-section will discuss an illustration on the economic value
measurement of resilience benefits in terms of natural insurance against high water events in
the city of Venice. Such benefits will be expressed in terms of the avoided welfare costs ,
which would be associated to the negative event of high water in case of low Lagoon system
resilience. At this aim, the analysis will focus on welfare costs derived by business
interruption. Even if among the welfare costs associated to natural disasters particular
emphasis has traditionally been devoted to the measure of property damage, also the other
category of measurement is recently receiving significant attention (Perrings, 1995; Rose,
2004; Carraro et al., 2004). Then, the social value of maintaining the Venice Lagoon
resilience will be approximated with the value of the forgone output from the human activities

normally carried out in such ecosystem and interrupted because the disaster occurred.
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5. The Venice Lagoon case study

5.1 Periodical flooding as a signal of ecosystem’s resilience loss

The Venice Lagoon configures a particular type of ecosystem, in which natural and
anthropogenic dynamics coexist, being strongly interlinked to one each other: complex global
transformation processes (e.g. climate change, see level rising) add up to strong local human
pressures (e.g. water pollution, solid waste).

Natural, historical and cultural specificities makes the area of great interest for an
economic analysis, in particular due to the effects of the growing anthropogenic pressures
inducing dynamic disequilibria. A typical example of these disequilibria is the more and more
recurrent phenomenon of acqua alta, i.e. the periodical high water event causing (partial)
flooding of the historical centre of Venice. Venetians have learnt to coexist and deal with this
sort of periodical event since the very beginning of the history of the city, by adapting their
own behaviour to tackle with this problem. Nevertheless, during the last decades the city has
experienced a systematic increase in the intensity of the phenomenon, as confirmed by the
upwards trend of mean tidal excursions in Venice. Figure 4 depicts the average water level
trend from 1993 to 2001.

The high water impacts on architectural, artistic and cultural heritage and the
economic damages to the population and its visitors are of increasing concern to both
Venetians and policy makers (Ministero dei lavori pubblici, 1997). The factors influencing
such a pattern include, inter alia, the increase of the Adriatic sea level of about 23 cm during
the twentieth century. This is due to both natural and human causes, among which particularly
relevant are the subsidence of the islands of Venice and the global climate change
phenomenon. Nevertheless, the increasing intensity and frequency of the high water event can
be considered a signal of low resilience of the Lagoon ecosystem as a whole (Ministero

dell’Ambiente, 1998).
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Andamento della media degl estremali di marea a Punta della Salute, dal 1923 al 2001.
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Figure 4 — Intertemporal series of mean tidal in Venice

Source: www.comune.venezia.it/maree/dal1867.asp

Most of the existing valuation studies analysing the economic impacts of high water
events in the Lagoon refer to the introduction of the mobile-gates project called MOSE
(Modulo Sperimentale Elettromeccanico) and usually quantify structural damages according
to physical, non-monetary approaches.

In a recent valuation report, Carraro and Nunes (2004) propose instead a monetary
assessment of the economic short-term impacts of high water events on all registered business
activities located and operating in ground floors units in the city of Venice. A short-term
perspective means that the attention is focused only on the consequences of high water events
for the business activities already in place, without extending the analysis also to the potential
variation in the composition and number of such activities. Impacts are viewed as a sum of on

site damages and off site damages. The first damage category refers to damages on the
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structures and materials due to the infiltration of water. The second damage category instead
captures the damages attributable to the reduced overall functioning of the city dynamics
during high water events. In particular, this category of damages is related to the uncertainty
with respect to the future revenues of business activities and for this same reason impacts on
the economic value of such activities.

Bearing in mind such a categorizing of acqua alta damages, the economic valuation of
the first damage category can be approximated by the costs connected to the implementation
of mitigation policy measures. These measures are aimed to minimize the damages high water
and salinity cause to building elements through the adoption of high water protection
measures and equipment, such as hydraulic pump, the rising of pavements and paratia (a
system of mobile barriers protecting doors that give access to street). The costs related to
mitigation policy measures then reflect a private insurance perspective, since they capture the
value of the direct damages caused by high water on the architectonical structure and
equipment (e.g., inner and front door maintenance, cleaning of pavements and maintenance of
walls), which are financially supported by the privately owned business activities.

The economic valuation of off site damages is instead related to the costs of reducing
the likelihood of flooding events through the implementation of prevention policy measures.
Such measures typically cannot be undertaken by private individuals, but has to be the result
of concerted actions at regional, national or international scale. In fact, the off site damage
component refers to a set of high water impacts that are not routinely traded in regular
marketplaces. These include inter alia the impact of the high water, and respective uncertainty
of the city dynamics’ performance, on the economic value of the business activities. As a
consequence, the economic valuation of off site damages is relevant from a public protection

perspective.
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5.2 Empirical valuation of on site damages

The empirical valuation is focused on the estimation of both on site and off site
economic damages induced by the high water event. The estimation exercise referred to the
first damage component is based on two COSES surveys (1999 and 2001). In order to proceed
with the monetary assessment of damages, the high water events considered in the empirical
exercise include the valuation of two possible high water events: single exceptional events;
weakly periodical flooding episodes and general high water scenarios. In particular, three
different scenarios are taken into account in addition to the current situation (‘business as
usual’ scenario), which reflects the historical annual average frequencies of high water events
registered by the Venetian Municipality during the period 1996-2001. The second scenario
("Defence 110°) corresponds to the situation in which collective defensive measures are taken
against all events above 110 cm. The third scenario (‘Climate change’) considers an average
sea-level rise of 10 cm induced by climate change events. Finally, the last scenario is a
combination of the *‘Defence 100 and ‘Climate change’ scenarios.

This part of the valuation exercise combines an integrated dose-response modelling
with an expert-based valuation approach, relative to maintenance and repair activities due to
high water and related market prices: it assesses the physical damage on structures and
materials and estimates the economic value of the damage without retrieving people’s
preferences.

The estimation results, referred to the considered different scenarios, are shown in
Tables 3. As can be noticed, the total on site economic damages range on average between 4,4
and 2,4 millions of euro. In particular, if the climate change hypothesis is assumed, the
estimated increase of on site damages is around the 43% with respect to current situation. The
introduction of a public protection project induces a reduction in the estimated total on-site

economic damages equal to the 27% with respect to current situation. When the climate
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change hypothesis is assumed, the estimations reduction due to the public protection project is
instead equal to the 40%.

This resulting estimates provide just a partial proxy for the total on site damages,
because they do not include the economic value of impacts on furniture, working hours and
commodities. As such, they only partially capture the economic value of the privately
implemented mitigation policy measures.

The second part of the valuation exercise is based on a survey instrument portrayed in
terms of conjoint valuation method (Carraro and Nunes, 2004), since the monetary valuation
of off site economic damages refers to a damage component not fully captured by market
prices. This type of survey based valuation methodology, applied to a CORILA questionnaire
(2003), is characterized by the use of a specific econometric model, which is anchored in the
random utility micro-economic framework, exploring the direct impact of different high water
levels on the choice of the business activities. Respondents choose between alternative
scenarios according to respective impact in terms of welfare gain/loss. Bearing in mind the
respondent’s choices, it is possible to infer such impact in monetary terms, reporting this
magnitude as a proxy of the economic value of the business activity. The aim is, inter alia, to
quantify the negative impacts of high water in terms of its limiting public access and usability
of the city and its business activity.

This specific methodology has been conceived so as to: 1) identify a set of
characteristics that together with the effects of high water influence the economic value of a
business activity located at ground level in the city of Venice; 2) employ a valuation tool that
links the economic value of a business activity with a consumer choice model and 3) estimate
the impact of the different characteristics under consideration in the individual choices,

thereby inferring the respective valuation mechanisms in monetary terms.
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Table 3- On-site economic damages

Public protection
Public protection project + 110 cm and

Source: Breil et al. (2005), adapted

BAU Climate Change project + 110 cm climate change
scenario

Cost category

Substitution of inner doors

Higher Bound 1441144 2233543 460253 460253

Lower Bound 893049 1638794 402604 460253

Maintenance of front doors

Higher Bound 135281 284389 108467 124133

Lower Bound 63598 164415 63598 122566

Maintenance and cleaning of pavements

Higher Bound 78797 188408 42151 100401

Lower Bound 68519 163833 36653 87305

Maintenance of walls

Higher Bound 2920301 3232043 2773044 3019921

Lower Bound 1240247 156812 1106891 1380724
Total on-site economic damages

Higher Bound 4575522 5938383 3383916 3704709

Lower Bound 2265413 3535853 1609746 2050849



Bearing in mind this economic valuation framework, a bid valuation function for
alternative sets of business locations is estimated, assessing the marginal impact of the
different characteristics under consideration. In particular, one business activity is modelled
and described with respect to the following three different characteristics: the position of the
business activity with respect to the sea level; whether the shop is accessible by means of a

catwalk; whether the shop is located in an area mainly visited by tourists.

Table 4 - Estimation results

on site damages per year 2,4 - 4,4 millions Euro
costs due to an exceptional event (16 november 2002) 10,6 millions Euro
on site costs of a year similar to 2002 (including protection measures) 30 millions Euro
total on site and off site damages per year (CORILA questionnaire) 22 millions Euro

Source: Carraro et al.(2004)

All the estimation results are summarized in Table 4. The monetary assessment of
damages induced by an exceptional flooding event, such as the extraordinary flooding of 16"
November 2002, is estimated at 10.6 million of Euro, while the economic value of damages of
a year similar to 2002 is estimated at 30 million of Euro. The total economic value of

damages due to high water event for an entire year are estimated at 22 million of Euro.

6. Conclusions

This paper has focused on the analysis of ecosystems’ resilience as scarce environmental
resource. The attention has been directed on resilience value from an economic perspective,
exploring the motivations for economic valuation and its relevance in terms of human
welfare. In this context, resilience has been interpreted as a natural insurance capital against
the risk of ecosystems’ malfunctioning and the consequent damages associated to a potential
interruption of the ecosystems’ ability to provide goods and services to humans. From the

analysis emerged two main important messages.
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The first message is of a methodological nature and refers to the review of the main
reasons that steer economists to be interested in studying resilience, as the concept has been
originally developed in the field of natural sciences. The economic perspective has been put
forward in order to shed light on the basic premises that anchor the economic valuation of any
scarce resource, such as resilience and its benefits. It has been argued that policy guidance
constitutes an important motivation for pursuing economic valuation of resilience since
respective monetary estimate is crucial when performing a cost-benefit analysis, natural
resource damage assessment or green environmental accounting. Moreover, given that most
of the human activities are priced in a way or another and most of ecosystem’s stability and
integrity benefits are not market priced, one can be tempted to downplay or ignore resilience
benefits on the basis of non-existence prices. The simple and simplistic idea here is that a lack
of prices, basically induced by market failures (externalities and public goodness) and the lack
of enforceable property rights, is identical to a lack of values. Clearly, this is a slightly biased
perspective. The need for carrying out proper pricing is instead one of the main reason to
undertake economic assessment of environmental resources, such as resilience. In this
context, we developed a simple framework to identify and describe the different value
components, related to resilience, which economists need to assess when performing an
economic valuation exercise.

The second message emerges from the empirical exercise briefly discussed at the end
of the paper. Such exercise refers to the economic assessment of damages induced by high
water events in the city of Venice. The increasing frequency and intensity of flooding, causing
many serious damages to business activities carried out at ground level, can be interpreted as
a signal of a decreasing resilience in the Lagoon natural system. Bearing in mind such a
premise, the analysis has focused on the interpretation of the estimation results in terms of the

economic value of the Lagoon resilience. In doing so, we referred to both, a private insurance
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perspective and a public policy perspective. From the first perspective, the economic value
individuals attribute to resilience because of its contribution to the reduction of the negative
impacts of flooding on business activities can be approximated by the prevention and
mitigation costs necessary to minimize the welfare losses. In particular, such costs correspond
to the amount individuals are willing to pay for ex ante limiting the damages caused by
flooding on business activities. From the public policy perspective, the estimate of the off-site
damages reflect the uncertainty with respect to the future revenues of the business activities.
Taken together, the estimated on site and off site damages can be considered as a proxy of the
option value component of the total economic value of the Lagoon system’s resilience. In
fact, by assuming that the higher frequency of flooding is a signal of a progressive loss of
resilience in the Lagoon, then the higher the resilience, the lower the frequency and intensity
of high water events (resilience as natural insurance capital). Investing in measures to
minimize the welfare losses due to flooding on business activities (i.e. paying for mitigation
and remediation costs) can be thought as an insurance premium against the economic
damages induced by high water, i.e. the costs to reduce the risk of negative consequences
related to this event. In other words, for individuals working in the business activities located
at the ground floor of some Venetian buildings the costs of reducing the economic damages of
flooding can be thought as a proxy of the economic value of the possibility to maintain as
much as possible constant business output flows in the future. Such costs represent then the
amount individuals are willing to pay to both reduce impacts from ecosystem failure (high

water events) and reduce time to recovery from the negative consequences of the failure.
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