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More empirical evidence on the adoption of chick peas in Western Australia.
.
 

or: 

Different ways of thinking about nothing. 

 

A. Abadi Ghadim, M. Burton and D.Pannell 

 

 

Agricultural and Resource Economics 

University of Western Australia 

 
This paper presents various econometric models of the adoption of chick peas in Western 

Australia.  Data are available on both whether farmers intend to adopt, and the intensity 

of adoption, defined by the area planted.  Traditionally, analysis of such data has 

focussed on the probability of adoption (using Probit/Logit models), or assumed that 

intensity and adoption are determined by a single process (Tobit models).  However, an 

alternative specification, which is not commonly used in adoption studies, is to allow for 

two processes, one determining adoption, the second intensity, and estimate these jointly 

(i.e. Double Hurdle models). The implications of using these alternative specifications for 

inferences about the causes of adoption are explored. 

 

 

1. Introduction 

 

The analysis of the adoption of an agricultural technology can be conceptualized in 3 different 

ways: who adopts, when do they adopt and how much do they adopt.  They are clearly interrelated, 

although asymmetrically.  Thus, the standard bivariate approach simply identifies which 

individuals within a sample have adopted, and tries to explain this difference in behavior in terms 

of producer characteristics.  It does not consider at which point in time they adopted, although the 

fact that adoption is conditioned upon a particular sampling date introduces a temporal aspect to the 

problem that is not often recognized.  The explicit consideration of when adoption occurs clearly 

nests the first question of who, and one can model the process as a simple extension of the bivariate 

model.  The data are set up as a panel, with each producer contributing as many observations as 

periods in which they potentially could have adopted (see Jenkins (1995) for a formal exposition of 

this and Burton et al. (1998) for an application).   

 

It is possible to model the degree of adoption (measured, for example, as the proportion of a crop 

sown to a new variety) without having to deal with the explanation of who adopts.  Under very 

limited circumstances it is possible to restrict attention to the sub-sample of those who have 

adopted.  However, application of this model in inappropriate circumstances leads to biased 

estimates.  A more common approach is to combine the who and how much into a single model, 

such as the Tobit.  

 

 

These different models can be characterized by different rationalizations of the process underlying 

the observed non-adoption of a technology (the zeros).  We present a number of different models of 
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adoption, each of which treat the non-adopters, the 'zeros', in a different way, and as the results 

indicate, lead to quite different interpretations of the determinants of the probability of adoption 

and intensity of adoption.  In theory, it should be possible to develop a model which encompasses 

all three issues.  This would involve integrating a duration model (which generalizes the adoption 

decision across time) with a model of intensity (such as a standard Tobit model).  This ambitious 

task is not attempted here, and instead we concentrate on the adoption and intensity aspects of the 

problem. 

 

 The presentation abstracts from a number of issues: there is no formal presentation of the utility 

maximization problem facing the producer, the solution of which presumably has led to the 

observed behavior.  Instead we follow the precedent of using an ad hoc, reduced form specification 

for a latent variable which is assumed to capture the relevant features of the problem.  In the model 

development section (section 2) the definition of 'adoption' is not expanded upon: it could be at any 

of the 3 stages of adoption identified by Lindner et al. (1982): discovery, evaluation or full 

adoption.  It assumes that the innovation being considered is well defined, and those producers who 

adopt can be unambiguously classified as such (avoiding problems which may arise in situations 

where the technology under consideration is multifaceted, such as those related to 'sustainable' 

agriculture, or integrated pest management).  Instead we focus on alternative models that could 

rationalize the observed zeros, and their econometric implementation. 

 

Some of these broader issues are touched on when considering the particular empirical case study: 

the adoption of chick peas in Western Australia.  Section 3 outlines the data series available, which 

implicitly represent a model of the underlying economic process.  Section 4 presents and compares 

the results from 4 different models of adoption, and 5 concludes. 

 

 

 

2.  The Models 

 

Probit 

 

The initial model considered is that of binary choice, which ignores any information on the 

intensity of adoption that is available.  However, it is a convenient starting point, as it becomes a 

component of some of the later models, and is one of the most widely used empirical models of 

adoption (Feder et al., 1985, Feder and Umali, 1993) 

 

Consider an index variable, Y which takes a value of 1 if a producer adopts the technology and 0 

otherwise.  We believe that a set of technical and socioeconomic factors (x), loosely derived from 

an underlying theory, explain that decision, so that 

 

 

 

)()1(obPr xFY 
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The function F should be defined such that the probabilities generated are well behaved, and the 

normal distribution provides that restriction, giving the Probit model: 

 

 

 

        (1) 

 

 

 

 

where  and  are the standard normal density and distribution functions respectively. 

 

Tobit 

 

The Tobit model explicitly accounts for the level of intensity of adoption, and assumes that the 

zeros are corner solutions to the underlying process: in deciding on the optimal level of intensity of 

adoption the exogenous variables have taken a particular set of values that lead to non-adoption.  A 

(possibly marginal) change in any of those variables may cause a revision in that decision.  There 

are a number of applications of this model to agricultural technology adoption (e.g. Akinola and 

Young, 1985, Lin, 1991; Abadi Ghadim and Pannell, 1998, Goodwin and Schroeder, 1994). 

 

 Formally, a latent variable (y
*
) is defined which governs both the adoption and intensity decision. 
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where  ~ N(0,). 

  

Thus, y
*
 is unobserved, and the observed variable, y, is censored at zero.  The limitation of this 

model is that both the probability of adoption and the level of intensity are linked by the same 

latent index, i.e. 
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There is no reason, a priori, why this should be the case.  Thus education, acting as a proxy for 

human capital, may have strong positive marginal impacts on the probability of adoption, due to 

farmers being more aware of the innovation and how it can be incorporated profitably into their 
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farming system, and yet have very minor marginal impacts on the level of intensity (measured as 

e.g. application rate per hectare) due to the nature of the technology being adopted.  Alternatively, 

farm size may act positively on the probability of adoption in early adopters, as larger farms are 

better placed to absorb the risks associated with trialing the crop, and yet farm size may be 

negatively correlated with intensity of those adopting (measured as % of farm planted to the crop) 

if there significant economies of size associated with the trialing of the innovation.  If such 

possibilities exist in the processes generating the observed data then (2) will be an inappropriate 

modeling framework, and will lead to biased estimates of the determination of both the probability 

and intensity of adoption. 

 

Heckman  

 

The alternative is to provide separate mechanisms for the two activities within the same model.  

This the Heckman model does, but again with some severe restrictions on the interpretation of the 

process generating the zero observations.  We now have two decisions, adoption and intensity 

which are modeled separately. 

 

The adoption decision is governed by a wholly unobserved latent variable, zi 
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where q is a vector of explanatory variables. 

 

The intensity level is governed by a separate latent variable ( y
*

i)
  
which is truncated normal at zero: 
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where BVN indicates a bivariate normal and  is the correlation coefficient between the two 

residuals, which is to be estimated. 

 

This is termed a first hurdle dominance model, because once the first hurdle is cleared one is 

guaranteed a positive level of adoption: none of the observed zeros are due to corner solutions in 

the intensity equation.  Although preferable to the Tobit model, this still imposes restrictions on 

behavior.  In particular, if a variable appears in the vector x, determining intensity of adoption, it is 

not possible for changes in that variable to sequentially lead to reduced and then zero intensity, 

although if it appears in the first hurdle it may have that effect.   
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Imposing the restriction that =0 implies that the adoption and intensity decisions are independent, 

leading to the complete dominance model which can be estimated as two separate equations: a 

Probit for the adoption decision and then estimation of the intensity over the positive observations 

using only truncated regression (Greene, 1993). 

 

 

 Double hurdle 

 

A more general specification is the double hurdle model, which allows for two processes to 

potentially generate zero observations.  The 'participation' decision (adopting the terminology of 

the demand studies) can be interpreted as a decision as to whether the technology is even feasible 

for a particular farmer, and potentially could be determined by availability, knowledge of the 

technique etc.  There is then a subsequent 'intensity' decision which allows for the  possibility of  

setting the level of use to zero, and hence non-adoption even if the participation decision is 

positive. 

 

Formally, this can be specified by a participation equation: 
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where z is again an unobserved latent variable and q vector of explanatory variables. The indicator 

variable Y is also strictly unobserved.  There is also an intensity equation, which can generate 

corner solutions: 
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The observed outcome is given by: 
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Initially developed by Cragg (1971) this model has been extensively applied in the consumer 

demand literature (e.g. Jones, 1989; Burton et al. 1994; Blaylock and Blisard, 1992; Yen, 1993) but 
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there is apparently only one application in the agricultural adoption literature (Coady, 1995).  There 

it is applied to the use of fertilizer in Pakistan, where there were clear indications that both 

availability of fertilizer, and economic (non-)profitability of applying fertilizer were both 

generating zero adoption responses in the data.   

 

This general model nests a number of others.  If the estimate of  is constrained to equal 0 then the 

model collapses to the independent Cragg (which is what is estimated in Coady (1995)).  If the 

vector q is restricted to a constant (so that there is a constant probability of participation, unaffected 

by individual characteristics) then one has the p-Tobit of Deaton and Irish (1982).  If both =0 and 

(q)=1 then one has the standard Tobit model
1
. 

 

3. Data 

 

 

The empirical analysis reported here builds on a previous study of the adoption of chick peas in 

Western Australia (Abadi Ghadim and Pannell, 1997, 1998).  Based on Lindner’s (1987) approach 

to the theory of adoption of innovations, Abadi Ghadim and Pannell (1997) develop a formal 

framework to evaluate how perceptions of risk, and attitudes to risk, affect adoption behavior. 

There the adoption process of a farmer considering a new crop is modeled as a dynamic decision 

problem spanning a number of years.  The model allows for generation of potentially valuable 

information from trials of the crop.  The value of such trials is due to development of skills in 

agronomic management of the crop as well as due to reduction in uncertainty about its long term 

profitability.  The former of these appears not to have been adequately recognized in previous 

literature and even the latter has often been neglected.  In order to properly represent the process, 

the framework must include the farmer’s personal perceptions, managerial abilities and risk 

preferences.  

 

The data set used to implement this model was generated from a longitudinal survey of 136 farmers 

selected at random from the wheatbelt of Western Australia. The surveys were administered 

through personal interviews spanning three years from 1994-97, but the dependent variable under 

consideration is the area of chick peas planned for planting in 1997, expressed as a proportion of 

the total area of  the farm suitable for chick peas.  The sample of farmers used in the analysis 

reported in this study contained 114 farmers.  The 22 farmers whose responses were not used 

showed either inconsistencies in their answers or did not complete the interview process.   

 

The fact that only 16 farmers had grown chick peas for 3 or more years and the relatively small 

percentages of the total suitable area of the farm being cropped with chick peas  (an average of 

11%) indicates that most of the farmers were either in the non-trial evaluation or trial evaluation 

phase (Lindner, 1987).  

 

 

                                                           
1
 Further generalizations are possible. A Box-Cox double hurdle model relaxes the assumption of bivariate normality 

(Yen, 1993), and it is possible to relax the assumption of homoscedasticity in the error terms.  However, in the 

empirical application neither of these generalizations led to significant improvements in fit, and hence are not 

elaborated on here. 
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An earlier analysis of this data is reported in Abadi Ghadim and Pannell (1998), using Tobit, Probit 

and OLS techniques.  The approach employed there is to generate an ad hoc index equation, with 

the definition of the variable set guided by the underlying theory.  Thus, adoption and intensity of 

adoption is assumed to depend upon a wide range of factors: 

 

 farmer’s past experience with the crop, represented by the cumulative sum of the chick pea area 

grown by the farmer in previous years; 

 perception of scale of relevance, represented by the total area of the farm considered to be 

suitable for chick peas; 

 relative profitability, represented by the difference between the gross margin of chick peas and 

the best alternative enterprise; 

 relative riskiness of chick peas, represented by the difference in the variance of the revenue from 

chick peas and variance of the revenue from wheat; 

 farmer’s personal risk preferences; 

 farmer’s innovativeness, represented by their past behaviour in adoption of wheat and lupin 

varieties; 

 availability of resources such as machinery and labour to facilitate adoption of chick peas; 

 factors that influence a farmer’s ability to learn from a trial in order to revise their estimate of 

the profitability of the crop and to improve grower’s skill in managing the crop to obtain higher 

yields and prices.  Those factors include the covariance between the yield of wheat and chick 

peas, perception of the difference between the gross margin of chick peas with full knowledge 

and the gross margin at the time of the interview, the value of the first trial with chick peas 

relative to later trials, the ability to predict the yield of the crop and the time required for the 

farmer to develop sufficient skill for full adoption of chick peas; and 

 interactions between the above factors, particularly between risk factors and the scale of 

relevance. 

 

Table 1 below gives a full listing of variables employed.  The approach of the current study is to 

take this set of variables as given, and explore the implications of the alternative modeling 

frameworks outlined in section 2 above. 
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Table 1.  Definitions of the variables used in the regression analyses of survey data. 
  

Variable Description 

  

RP Risk Preference - Pratt-Arrow - Constant Absolute Risk Aversion Coefficient 

AT  Scale of relevance - total area of the farm suitable to chick peas - (ha); 

GC

L
 Expected long run average gross margin of chick peas with complete knowledge ($/ha) (only 

used in constructed variables) 

GA  Expected gross margin of the alternative enterprise ($/ha) (only used in constructed 

variables) 

GC

C
 Expected gross margin of chick peas with the level of knowledge at the time of the interview 

($/ha) (only used in constructed variables) 

CovWC  Covariance of yield of wheat and chick peas  kg ha/
2
 

ACs  Area of chick pea crop(s) previously grown by the farmer (ha) 

Rf  Long term annual average rainfall of the farm (mm) 

L f  Number of family labour available for cropping (integer); 

Lh  Number of hired labour available for cropping (integer); 

Tw Years taken to adopt the most recent wheat variety being grown by the farmer (years); 

Tl Years taken to adopt the most recent lupin variety being grown by the farmer (years); 

Rr  Rate of return required to invest surplus cash funds in a term deposit account for one year 

(%); 

Spd  Duration of the crop seeding program (days) 

Sc  Seeding capacity (ha/day); 

Ap  Ability to predict the yield of chick pea after seeding compared to wheat expressed as odds 

out of ten (%); 

Sk  Time to acquire 95% of the skill for growing chick peas as compared to a new wheat variety 

(years); 

Efa  Time to develop enough confidence for full adoption of chick peas (years); 

Vt  Value of first trial with chick peas compared to a new wheat  variety (%); 

C

2
 

Variance of the net revenue of chick peas (t/ha)
2
 

 A

2
 

Variance of the net revenue of  alternative enterprise (t/ha)
2
 

GC

L
- GA  

GC

L
- GC

C
 

ACs (Dum) = 1 if ACs >0, 0 otherwise. 

AT *RP 

CovWC *RP 

CovWC * AT  

C

2
- A

2
 

(C

2
- A

2
)*RP 

(C

2
- A

2
)* AT  

(C

2
- A

2
)* AT *RP 
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4. Estimation results 

 

Double hurdle 

 

The estimation results
2
 are presented in the reverse order to that of the models outlined in section 2, 

thereby moving from the general to the restricted.  For brevity not all possible specifications are 

reported.  The full dependant double hurdle model was estimated, but a log likelihood test on the 

significance of the covariance term () indicates that the independent double hurdle model is 

appropriate (this restriction was accepted on the basis of a log likelihood ratio (LLR) test statistic of 

0.066 compared to a critical value of the 
2
 distribution of 3.84). Our starting point  (Table 2) 

reports the results of this independent double hurdle model. It is usually thought necessary to 

impose some exclusion restrictions across the two vectors of explanatory variables in order to 

adequately identify the parameter estimates. However, theory seldom allows one to be precise as to 

which variables should appear in which vector.   The final choice of variables was arrived at after 

an extensive search across the variable space (as defined in Table 1 above), constrained by poor 

convergence properties when a large number of variables are used in both equations.  A subsequent 

test of the p-Tobit model (where only a constant is employed in the 'participation' equation) was 

rejected (LLR test statistic of 22 compared to a critical value of 7.82).   

 

The economic interpretation of these results is aided by the calculation of elasticities with respect 

to each of the exogenous variables.  The 'intensity' equation is essentially a tobit model, and the 

elasticity is decomposed into the separate impacts on the probability of adoption and the intensity 

of adoption, using the McDonald and Moffat framework (McDonald and Moffat, 1980).  The 

marginal impact on the observed outcome is given by: 
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Thus, the marginal impact is split into the change in y of those who have a positive level of 

intensity, weighted by the probability of it being positive (the first term), and the change in the 

probability of there being a positive level of adoption, weighted by the expected level of intensity  

if it is positive (the second term). It is important to note that in the double hurdle model these 

marginal effects are themselves conditioned upon the first, participation, hurdle i.e. E(Y)=1. 

 

In Table 2 these two parts underpin the Intensity and Adoption elasticity's reported for the intensity 

equation. The elasticity's reported for the participation equation simply report the impact of 

changes in the variables on the probability of clearing the first hurdle. 

 

 

                                                           
2
 All estimation was undertaken using Stata 5.0 (Statacorp, 1997). 
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Table 2  Independent Double Hurdle Model (equations 6-8, =0) 
 

       

Variable Coef. Std. Err. Z P>|z Elasticities 

Intensity equation    Intensity Adoption 

GC
L
-GA 0.229 0.070 3.252 0.001 1.428 0.729 

GC
L
-GC

C
 -0.211 0.083 -2.552 0.011 -0.565 -0.288 

Tw -0.203 0.092 -2.209 0.027 -0.465 -0.237 

AT -0.196 0.050 -3.951 0.000 -0.440 -0.224 

Spd 0.092 0.038 2.423 0.015 0.417 0.213 

Sc 0.200 0.061 3.262 0.001 0.512 0.262 

Lf 0.158 0.043 3.718 0.000 0.703 0.359 

Rr 0.205 0.057 3.581 0.000 0.504 0.257 

RP -0.736 0.938 -0.784 0.433 -5.591 -2.853 

CovWC 0.049 0.084 0.584 0.559 0.189 0.097 

C
2
-A

2
 -0.206 0.074 -2.800 0.005 -1.524 -0.778 

CovWC*RP 0.456 0.355 1.284 0.199 3.077 1.570 

(C
2
-A

2
) *RP -1.260 0.531 -2.375 0.018 -1.724 -0.880 

Intercept 0.323 0.395 0.818 0.413   

 
 

0.039 0.006     

Participation equation      

ACS(Dum) 3.227 1.352 2.388 0.017  0.04/0.93
* 

Vt 0.982 0.324 3.025 0.002  0.902 

Intercept
 

-2.163 0.661 -3.272 0.001   

       

       

       

Log Likelihood =17.116 

 

R
2
=0.430 

 

n =0.518 

 

     

The z statistic is given by the ratio of coefficient to standard error. P>|z reports the significance level of the coefficient. 

* Acs(Dum) is a 0-1 dummy variable.  The values reported here are the probabilities of adoption as this value switches 

from 0 to 1, with Vt held at its mean value. 

 

The results from the second hurdle equation are largely what one would expect a priori.  The 

conventional marginal response to higher expected profitability relative to alternative crops (G
L

C-

GA) is present.  The greater the discrepancy between the estimated long run returns with full 

knowledge as compared to current returns, the less area is planted, which is consistent with farmers 

gaining knowledge through trials.  Increased available area (AT) reduces the proportion of the 

available area in chick peas, which is logical given these farmers are in the trial phase.  Increased 

family labour (lf ) to facilitate such trials, and increased seeding capacity both increases the area 

grown, while evidence of longer lags in the adoption of wheat crops reduces the probability of 

adoption and intensity.   

 

The 'risk' variables are also in line with what one would expect from a risk averse producer.  

Increased risk aversion and a belief that chick peas are more risky than their alternative crop 

reduces both the probability of adoption and intensity of adoption, while the greater the perceived 

covariance the greater both are.  The interaction terms imply that the more risk averse one is the 
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greater is the impact of relative riskiness and covariance. A combination of the relevant elasticity's
3
 

reveals that, ceteris paribus, increased risk aversion reduces the area under trial, an increase in the 

covariance between wheat and chick peas increases the area, while an increase in the variance of 

chick peas relative to the alternative enterprise reduces it.   Although not strictly significant, RP and 

CovWC are retained in the specification because of their inclusion in the interaction terms.  The 

relatively high aggregate estimate of the elasticity for RP is a feature of all specifications estimated. 

  

In the participation equation, having grown the crop previously (Acs(Dum)) increases the 

probability of  clearing the first hurdle, as does the estimate of the value of trialing the crop relative 

to a new wheat variety (Vt).  

 

In-order to interpret the implications of the double hurdle aspect of the model further, it is useful to 

identify the distribution of predicted adopters with the actual values.  Table 3 presents these results, 

with the correct predictions (based on an adopter having a predicted probability >0.5 in the first 

hurdle, and a positive expected area in the second) highlighted in bold.  Thus, 25 of the 35 adopters 

are correctly predicted as such, clearing both hurdles.  The remaining 10 who did adopt are all 

predicted as having a non-corner solution to the intensity equation, but fail at the first hurdle.  Of 

the 64 correctly identified non-adopters, 20 'fail' at both hurdles, 35 fail at the first hurdle only, 

while 9 are predicted as potential adopters but are at a corner solution of the intensity equation.  

 

Table 3.  Predicted v. actual adopters. 

 

 

                       Actual values 

P
re

d
ic

te
d
 

v
al

u
es

 

 

1st Hurdle 

 

2nd Hurdle 

0 1 

0 0 20  

 1 35 10 

1 0 9  

1 1 15 25 

 

 

 

 Although illustrative of how the model works, such a table, or estimates of the proportion of 

correct predictions, should not be used as a measure of the goodness of fit of the model (Veall and 

Zimmermann, 1996).  Instead we report one of the "R
2
" type measures, given by  
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where pij is the fraction of times the realization was outcome i when the model predicted outcome j, 

and p~j is the fraction of times alternative j is predicted.  However, this measure is for the zeros 

only, and takes no account of the contribution of the continuous part of the data.  

                                                           
3
 "Adding up" the elasticities to identify the full impact of a change in (e.g.) RP implies one is abstracting from any 

covariance between variables used in the composites. 
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 The R
2
 measure reported in Table 2 is given by 

 

 
Nll
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where lm and l0 are the log likelihoods for the full model and a model with just constants in both 

hurdles, respectively and N the number of observations.  There is no consensus on the appropriate 

goodness-of-fit measure for these type of models, and a wide variety are available.  Although the 

one proposed above is not the preferred choice of Veall and Zimmermann (1994) in terms of a 

Tobit model, the advantage of its use here is that it can be applied uniformly across double hurdle, 

Heckman and Tobit specifications. 

 

 

Heckman 

  

Both first hurdle dominance and complete dominance versions of the Heckman model have been 

estimated, but the complete dominance restriction (=0) is accepted using a LL ratio test, with a  

test statistic of  0.3 compared to a critical value of 2

1,05.0  of 3.84.  Table 4 reports the results for the 

complete dominance model. 

 

Note that in the intensity equation, there are no elasticities reported for the probability of adoption: 

conditional upon clearing the first hurdle, a positive level of area is ensured.  The marginal impact 

underlying the intensity elasticity is given by: 
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Table 4.  Heckman Complete Dominance Model (equations 4-5, =0 ) 
       

Variable Coef. Std. Err. Z P>|z Elasticities 

 

 

Intensity equation     Intensity Adoption 

GC
L
-GA 0.133 0.057 2.330 0.02 0.268  

GC
L
-GC

C 
-0.187 0.066 -2.829 0.005 -1.242  

AT -0.227 0.042 -5.443 0 -0.279  

Sc 0.204 0.053 3.859 0 0.470  

Lf 0.116 0.037 3.093 0.002 0.651  

Rr 0.151 0.051 2.976 0.003 0.603  

RP 0.280 0.273 1.024 0.306 1.913  

CovWC 0.115 0.051 2.274 0.023 0.397  

C
2
-A

2
 -0.183 0.064 -2.862 0.004 -0.405  

(C
2
-A

2
) *RP -1.208 0.492 -2.454 0.014 -1.486  

Intercept 0.014 0.155 0.092 0.927   

 
 

0.036 0.004     

       

Adoption equation      

GC
L
-GA 3.412 1.237 2.758 0.006  1.846 

GC
L
-GC

C 
1.607 0.690 2.329 0.020  0.286 

TW -2.434 1.359 -1.791 0.073  -0.370 

ACS -3.613 1.558 -2.319 0.020  -0.415 

Vt 3.492 1.570 2.224 0.026  1.237 

RP -53.809 26.714 -2.014 0.044  -27.200 

CovWC -2.738 1.413 -1.938 0.053  -0.698 

(C
2
-A

2
)  -2.925 1.712 -1.709 0.088  -1.438 

CovWC*RP 26.345 12.531 2.102 0.036  11.813 

(C
2
-A

2
) *RP -22.500 10.941 -2.056 0.040  -2.048 

Intercept 20.487 10.969 1.868 0.062   

       

Log Likelihood = 21.827 

 

R
2
=0.477 

 

n =0.556 

    

  

 

There are a number of changes in the inferences that can be made if one compares Table 4 and 

Table 2.  The 'risk' variables in the Heckman model tend to have smaller impacts on the intensity of 

adoption, and the impact of RP is much less.  The estimated responsiveness of planted area to 

relative profitability (GC
L
-GA) is also lower, with the elasticity reduced by some 80%, and the impact 

of long run v short run profitability has reversed sign.   

 

The set of variables significant in the Heckman adoption equation is somewhat reduced compared 

to the combined list of the adoption and participation variables in the double hurdle.  In the 

Heckman model the implied responsiveness of adoption to the 'risk' variables is increased across 

the board; for risk aversion the equation implies an elasticity of -17 if one combines values across 

all terms; +11 for the covariance of returns; -3.5 for the relative variance. The area suitable for 

chick peas (At) is not significant.  Both previous planting of the crop and the estimated value of 
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trialing increase the probability of adoption, whereas increased time to adopt wheat varieties 

reduces the probability. 

 

The Heckman and double hurdle models are not nested: they represent fundamentally different 

representations of the process, and so one cannot provide a formal test of relative performance.  

However, comparison of the R
2
 values indicate a slight preference for the Heckman model, as does 

the estimate of n, based on the predicted and actual adopters reported in Table 7. 

 

 

Table 7.  Predicted v. actual adopters: Heckman model 

 

Actual values 

 

Predicted 

values 

0 1 

 

  

0 73 15 

1 6 20 

 

 

 

 

 

Tobit 

  

Table 6 reports the results for a standard Tobit model.  This specification is nested within the 

double hurdle, and it is interesting to note the implications of using this more restricted form of 

model.  The first item of note is the fact that, relatively, the elasticities for adoption are greater than 

those for intensity, which is the reverse of the results in Table 2.  Secondly, the elasticities for 

adoption tend to be larger.  Thus, observed variation in the exogenous variables will have a greater 

impact on expected adoption probabilities in the tobit model, than they do in the 'tobit' element of 

the double hurdle model.  This is possibly due to the fact that the tobit is now having to 

discriminate across all non-adopters, whereas in the double hurdle model some 60% of farmers are 

predicted to be non-adopters from the first hurdle alone.  The elasticity of the risk aversion variable 

for intensity is also much higher while those of the relative profitability variables is halved.  Of 

perhaps most importance is the emergence of Acs and Vt as significant determinants of the area 

grown.  The double hurdle models suggest that these variables are affecting participation, but not 

intensity.  In the tobit model they either have to affect both adoption and intensity, or have no effect 

on either.  Their role as determinants of the adoption decision is dominating the estimation, leading 

to the significant estimates, but one has to then also make the inference that these variables are 

important in determining area, when they clearly are not (otherwise they would have appeared as 

significant variables in the double hurdle intensity equation).  Similarly, the rate of return variable 

(Rr) has dropped out of the estimation of the tobit model, whereas it is significant in the double 

hurdle. 
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It is noticeable that while the ability of the Tobit  to discriminate between adopters and non-

adopters is high (the estimate of n is not that much different than the other models), the estimate of 

the overall fit is considerably reduced, suggesting that the ability of the model to explain the 

intensity of adoption is being compromised by the 'single indicator' approach. The formal 

relationship between the Tobit specification reported in Table 6 and an independent double hurdle 

model was also tested.  The first hurdle equation contained those variables found significant in the 

earlier model (ACS(Dum) and Vt) and the model was re-estimated. The restrictions imposed by the 

Tobit model were rejected when compared against this new model, with a LL ratio value of 11.76  

against a critical value of  7.82 (
2

3,05.0
 ).  These results suggest that the use of the tobit model is 

inappropriate for this data set, and would lead to erroneous inferences of the significant 

determinants of adoption of chick peas. 

 

Table 6.  Tobit model (equation 2) 

 
       

Variable Coef. Std. Err. T P>|t Elasticities 

     Intensity Adoption 

GC
L
-GA 0.354 0.099 3.587 0.001 0.723 2.817 

GC
L
-GC

C 
-0.438 0.130 -3.37 0.001 -0.383 -1.493 

Tw -0.210 0.105 -1.999 0.048 -0.157 -0.612 

AT -0.228 0.102 -2.23 0.028 -0.167 -0.650 

Spd 0.177 0.062 2.836 0.006 0.262 1.021 

Sc 0.322 0.107 3.004 0.003 0.270 1.051 

Lh -0.121 0.067 -1.803 0.074 -0.113 -0.439 

ACS 0.124 0.053 2.331 0.022 0.070 0.273 

Vt 0.269 0.103 2.623 0.010 0.469 1.825 

RP -3.860 2.002 -1.928 0.057 -9.600 -37.380 

Covwc -0.213 0.115 -1.857 0.066 -0.268 -1.042 

C
2
-A

2
 -0.377 0.134 -2.821 0.006 -0.912 -3.549 

CovWC*RP 1.742 0.702 2.481 0.015 3.843 14.964 

(C
2
-A

2
) *RP -2.201 0.990 -2.222 0.029 -0.986 -3.837 

Intercept 1.617 0.855 1.891 0.062   

 0.094 0.013     

       

Log Likelihood =7.623 

 

R
2 = 

0.118 

 

n =0.446 
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Table 7.  Predicted v. actual adopters: Tobit model 

 

                                           Actual values 

 

Predicted 

values 

0 1 

 

  

0 69 11 

1 10 24 

 
 

 

 

Probit 

 

The outcome of estimating a probit model has already been reported: because we accept 

independence across the residuals in the Heckman model, the adoption equation reported in Table 4 

is simply a probit.  

 

 

 

5. Conclusions 

 

 

This paper has presented a number of alternative models that may be used to explain the adoption 

and intensity decision, and applied them to a particular innovation: the growing of chick peas in 

Western Australia.  The results of all models give support to the general underlying model of 

adoption proposed in Abadi Ghadim and Pannell (1997): attitudes towards risk, and perceptions of 

relative riskiness of chick peas are important factors determining adoption, as is the perceived gains 

in knowledge from trialing the crop, as well as their relative profitability.  However, their relative 

importance, and vectors of influence vary across specifications.  For example, both the Double 

Hurdle and Heckman models suggest that an increased value of trialing will increase adoption 

levels, but have no impact on the area actually grown.  The application of the  Tobit model, 

however, would draw one to the conclusion that it also has a significant impact on area.  A similar 

result holds for prior experience in growing the crop.  The restrictive nature of the Tobit, in using a 

single latent variable to explain both adoption and intensity, also appears to distort the impact of 

variables which are significant in determining intensity, as identified by the more liberal 

specifications. The Heckman and Double Hurdle provide competing explanations of the underlying 

process determining non-adoption, and generate some important differences in the interpretation of 

the risk variables in particular.  The structural differences in the models are not that great: a 

censored as compared to truncated second hurdle equation.  Further development of both the 

theoretical framework for the use of double hurdle models in adoption studies, and in techniques of 

and model evaluation would appear to be fruitful  avenues for research. 
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