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Abstract

We consider the class of proper monotonic simple games and study coalition forma-
tion when an exogenous share vector and a solution concept are combined to guide the
distribution of coalitional worth. Using a multiplicative composite solution, we induce
players’ preferences over coalitions in a hedonic game, and present conditions under

which the semistrict core of the game is nonempty.
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1 Introduction

The analysis of election results is one of the most popular applications of cooperative game
theory. Thereby a game describes the parties’ possibilities to form a winning coalition,
respectively a government. Application of a solution concept, such as the Shapley value
(or Shapley-Shubik indez as it is often termed in this setup), is readily interpreted as the
(endogenous) power that a party exerts in the parliament. This notion of power is then often

used to distribute responsibilities in a government.

*Financial support from the Alexander von Humboldt Foundation (D. Dimitrov) is gratefully acknow-
ledged.



Two drawbacks of this approach are frequently criticized: First, this notion of power only
takes into account the data of the game, i.e., it only takes into account, which coalitions
may form a government. What it ignores is a party’s total number of votes or its total
number of seats in the parliament. So, it disregards ideas of proportionality or ezogenous
power distributions. It is undoubted that a government consisting of a “small” and a “large”
party does not share responsibilities (e.g., offices) equally. Second, this approach does not
answer the question, which government is likely to form or, regarded from a normative point

of view, should form.

In this paper we are interested in tackling these two problems. For this, we consider the
class of proper monotonic simple games. In a simple game any possible coalition is either
winning or not. Monotonicity guarantees that supercoalitions of a winning coalition are also
winning and properness requires that the complementary coalition of a winning coalition is
not winning. As argued above there are two sources that should play a role, when describing
a power distribution among parties. We bring these endogenous and exogenous impacts
together by introducing the concept of a composite solution. More precisely, a composite
solution F' takes each collection («, S, v, ) of an exogenous share vector «, a coalition S,
a simple game v and a cooperative solution concept ¢ to a distribution of power with the
interpretation that F; (a, S, v, ) reflects player (party) i’s (overall) power within coalition
S, when v describes the possibilities for winning coalitions. Thereby, we will be interested

in a specific composite solution, in which exogenous shares enter in a proportional fashion.

To come back to the government formation problem, we may assume that a player’s
incentive to take part in a (winning) coalition depends on how much power he has within this
coalition according to a composite solution. In effect, we obtain preferences over coalitions.
The collection of these preferences forms a hedonic coalition formation game (cf. Banerjee
et. al. (2001) and Bogomolnaia and Jackson (2002)). A solution for this (and each) hedonic
game proposes a (set of) partition(s) of the set of players into coalitions. In the context of
simple games this in effect means which winning coalition forms. The focus in the context
of solutions are stability considerations, meaning that the final partition should not provide
incentives for a coalition to deviate and form instead. As it can be easily seen, it is not
possible a coalition structure to be stable if it does not contain a winning coalition. Hence,
the answer to the question which partitions are stable is at the same time an answer to
the question which winning coalition (or government) should form with respect to stability

concerns.

Depending on how restrictive conditions for coalitional deviations are formulated, we get
different notions of stability. We have chosen the semistrict core as our stability concept for
hedonic games. This stability notion is weaker than the strict core and stronger than the

standard core notion, and the idea of it can already be found in the work of Kirchsteiger



and Puppe (1997) and, more definitive, in the works of Dimitrov and Haake (2005) and
Dimitrov (2005). In order to state our main existence result with respect to the semistrict
core, we require the solution concept ¢ to satisfy efficiency, symmetry, and the null player
property. Then, as it turns out, if the simple game does not exhibit Shenoy’s (1979) para-
dox of smaller coalitions w.r.t. the given cooperative solution, the corresponding hedonic
game has a nonempty semistrict core. If we eliminate the influence of exogenous factors
by requiring equal shares, then our semistrict core existence result can more clearly be seen
as being stronger and more general than the corresponding core existence result of Shenoy
(1979). On the other hand, if we take Farrell and Scotchmer’s (1988) partnership solution
as cooperative solution concept, then a full characterization of the semistrict core of the

corresponding hedonic game can be provided.

The paper is organized as follows. Section 2 includes basic notions and solution concepts
from the theory of simple games and hedonic games. We define a specific composite solution
and use it to induce players’ preferences over coalitions in a hedonic game. Our main result
is presented in Section 3, while Section 4 contains the mentioned special cases in which we
have either equal shares or fix the partnership solution. Section 5 closes with some final

remarks.

2 Preliminaries

In this section we introduce the basic ingredients of our setup.

Simple games and solutions

Let N be a finite set of players, which we will keep fixed throughout the paper. A (co-
operative) simple game with transferable utility (a simple TU-game) is a pair (IV,v), where
v: 2N — {0,1} is called characteristic function and satisfies v(0)) = 0. We refer to a coalition
S C N with v(S) =1 as a winning coalition. In what follows we will identify a simple game

(N, v) with its characteristic function v.

A simple game v is monotonic if v(S) = 1 implies v(T') = 1 for all T' 2 S, and proper if
v(S) = 1 implies v(N \ S) = 0. A player ¢ € N is a null player in v if v(S) = v (S \ {i})
for all S € N. Players i,j € N are symmetric in v, if v(SU{i}) = v (SU{j}) for all
S C N\ {i,j}. We denote by W¥ = {S C N :v(S) =1} the set of winning coalitions
and by MW" ={S C N :v(S) =1 and v(T) = 0 for all T' C S} the set of minimal winning
coalitions in the simple game v (cf. Shapley (1962)). For S C N define the subgame (N, vg)
by vg (T) = v (SNT) for all T € 2V. Note that vg is also an N player simple game (possibly



with vg(N) = v(S) = 0). The set of all proper monotonic simple games on the player set N

will be denoted by G. Clearly, if a game v is in the set G, then so is any of its subgames.

A solution (of a proper monotonic simple game) is a mapping ¢ : G — Rﬂ\r’ taking each
v € G to a single vector in Rﬂf , 1.e., it assigns a nonnegative real number ¢; (v) to each player
i € N'. A solution ¢ satisfies efficiency if > .y ¢i(v) = v(N), and the null player property
if ; (v) = 0 holds for all i € N who are null players in v. Finally, a solution ¢ is symmetric
if ; (v) = ¢; (v) for all 7, j € N who are symmetric in v. The set of all solutions on G will
be denoted by S.

Next, we recall two specific solutions: the Shapley value (cf. Shapley (1953) and Aumann
and Dréze (1974)) and the partnership solution (cf. Farrell and Scotchmer (1988)). We

provide here the exact form of the corresponding solution for a subgame.

The Shapley value Sh: G — RY applied to a (sub-)game vg (S C N) is given by

> orcs w (vs(T) —vs(T\ {i})), ifies,

0, otherwise

Shi(vg) = { (i€ N).

The partnership solution Pa : G — RY applied to a (sub-)game vg (S C N) is given by

vsS) - if e S,

Pa;(vg) := { 1Sl

(teN).

0, otherwise

It is easy to check that both solutions satisfy efficiency and symmetry. In addition, the

Shapley value also satisfies the null player property, while the partnership solution does not.

Composite solutions

In the context of simple games, solutions such as the Shapley value are often termed power
indices. One frequent criticism to power indices is that they on the one hand measure
“endogenous power”, but on the other hand they cannot take “exogenous power distribu-
tions” into account. For instance, the distribution of seats in a parliament is completely
ignored, when describing the corresponding majority voting game. Hence, it does not enter

the solution, either.

Composite solutions, as defined below, are designed to incorporate exogenous shares as

well as endogenous power. This is done by a combination of a share vector and a solution.

'Requiring nonnegativity is in accordance with the interpretation that ; (v) reflects the power of player
7 in the game v. It can be easily seen that our results also hold in the case when a solution assigns a negative

real number to some players in the game.



Thus, a composite solution does not only reflects the players’ opportunities to form winning

coalitions, but also respects asymmetries among the players outside the game.

Formally, a composite solution F : RY, x 2V x G x § — RY assigns a vector of players’
payoffs to each tuple («, S, v, ) consisting of a share vector, a coalition, a simple game, and
a solution.? We interpret a composite solution as follows: Suppose the game v € G describes
the possibilities to form winning coalitions. The vector « represents asymmetries outside
the model and ¢ is the solution that measures players’ power inherent in v. Then (the
real number) Fj(a, S, v, p) should be viewed as “player i’s overall power” within a coalition
S C N. In the following, we concentrate on a specific composite solution ®, which is defined

by

—oweils) gy if i e S,
(1) (I)Z (ay S) U) (,0) = szS OCJ%O](’US) (Z e N)
0, otherwise

Suppose «a, v, and ¢ are fixed and a winning coalition S € W" has formed. How is the
worth v(S) = 1, i.e., how is power distributed among the players in S? First of all, any
player not in S gets zero. For each player in S, we compute his share of v(S) by weighing
his internal share ¢;(vs) with his external power ;. The denominator in (1) serves for

normalization purposes.

Note that for fixed @ € RY, and ¢ € S the mapping ®(a, N,e, ) : G — RY is a
solution (in the above sense). Observe that ®(«, S, v, ) = ®(«, S, vs, p) = ®(a, N, vg, p) is

valid.

The paradox of smaller coalitions

Let v € G and ¢ € §. We say that v does not exhibit the paradox of smaller coalitions w.r.t.
o, if for all S, T" e W*,

S C T implies p; (vs) > @; (vr) for all i € S.

The absence of this paradox in simple games simply respects the fact that if players form
a smaller winning coalition, then their (internal) power should not decrease since there are
fewer players to share the same amount of power (cf. Shenoy (1979)3). Notice that if a simple
game v does not exhibit the paradox w.r.t. ¢, then for all a € RL and all ST € WY with
S C T, we have ®; (a, S,v,¢) > ®; (o, T, v, ) for all i € S.

2o G]Rﬁ\:Jr means «; > 0 for all s € N.
3Table A.1 in this work lists all games in G with up to four players and verifies presence or absence of
the paradox w.r.t. the Shapley value.



Hedonic games and stability notions

For each player i € N we denote by N; = {X C N | i € X} the collection of all coalitions
containing i. A partition IT of N is called a coalition structure. For each coalition structure
IT and each player i € N, we denote by II(i) the coalition in II containing player i, i.e.,
I1(7) € IT and 7 € TI(z). The set of all coalition structures of N will be denoted by C¥.

Further, we assume that each player 7 € N is endowed with a preference =; over N, i.e.,
a binary relation over N; which is reflexive, complete, and transitive. Denote by =; and ~;
the strict and indifference relation associated with »=; and by =:= (=1, >,,...,>,) a profile
of preferences »=; for all 7+ € N. A player’s preference relation over coalitions canonically

4 For any two

induces a preference relation over coalition structures in the following way:
coalition structures Il and IT’, player ¢ weakly prefers II to IT" if and only if he weakly prefers
“his” coalition in II to the one in IT; i.e., IT »=; IT" if and only if TI(:) >, IT'(i). Hence, we
assume that players’ preferences over coalition structures are purely hedonic, i.e., they are
completely characterized by their preferences over coalitions. Finally, a hedonic game (N, >)

is a pair consisting of the set of players and a preference profile.

Unlike solution concepts for (simple) cooperative games do, there is no worth to distribute
in hedonic games. The relevant question is rather, which coalition structure should form,
taking players’ preferences into account. The basic property that we require is core stability,

which we define next in three versions.

Let (NN, *) be a hedonic game. For any coalition () # X C N and coalition structure IT
of N, let X™(X) :={X NP| P ell}. A partition Il is strictly core stable if there does not
exist a nonempty coalition X such that X >; II(z) holds for all ¢ € X and X >; II(j) is
true for some player j € X. Il is semistrictly core stable if there does not exist a nonempty
coalition X such that X »=; I1(¢) for all i € X and for each X’ € X"(X) there is j € X’
with X >; II(j). II is core stable if there does not exist a nonempty coalition X such that
X >; I1(7) holds for each i € X.

Put in other words, a coalition structure II is strictly core stable if no group of players are
willing to form a coalition, so that each player is at least as well off with this new coalition
and some player is strictly better off compared to the corresponding coalitions in II. For
semistrict core stability we again want to exclude the case that a new coalition X forms.
However, the requirement for some players being strictly better off is more subtle. For this
we partition the deviating coalition X into groups that come from the same coalition in

II. Then, to make X a profitable deviation it is required that in each such group there

4With slight abuse in notation, we use the same symbol to denote preferences over coalitions and prefer-

ences over coalition structures.



has to be some player who is better off in the new coalition. Clearly, the weakest notion
of a coalitional deviation is incorporated in the definition of core stability - everyone in the
deviating coalition should be strictly better off. Observe that strict core stability implies
semistrict core stability that, in turn, implies core stability. In what follows, we denote by
SC(N,»), SSC (N, =), and C (N, =) the sets of strict core stable, semistrict core stable,
and core stable coalition structures, respectively, of a hedonic game (N, >). Alternatively,
call SC' (N, ), SSC (N, =), and C (N, ) the strict core, semistrict core, and core of (N, =).

3 Coalition formation via composite solutions

In this section we address the following question: Given a simple game that describes the
incentives to forming coalitions, which (winning) coalition should form? Clearly, the prefer-
ences over winning coalitions that a player forms depend on how much influence or power he
has within such a coalition. In effect preferences are based on the solution concept at hand
as well as on the exogenous share vector. Once preferences are clear, the question arises,
which coalition structures are stable. Clearly, the best one can get are strictly core stable
partitions. However, as the following example demonstrates, this requirement is in fact too
strict. Therefore, we concentrate our analysis on semistrict core stability for which we obtain

positive results.

Example 1

Let |[N| =4,a:= (4,4,1,1) and let the simple game v € G be given by its minimal winning
coalitions, which are MW" := {{1,2},{1,3,4},{2,3,4}}. Thus, we consider a scenario
with two symmetric “large” players (1 and 2) and two symmetric “small” players (3 and
4). Also, v does not exhibit the paradox of smaller coalitions w.r.t. the Shapley value (see
Shenoy (1979)). Now, using the Shapley value as (inherent) power index, each player forms
preferences according to how much power the composite solution ® assigns to him in a

coalition. One readily computes:

4 4 1 1 11
@(Q,N,U,Sh) = (§’§7E’E) @(Q,N,U{1,2}7Sh) = (5,5,0,0)
2 11 211
O(a, N Sh)=1{=,0,=,= O(a, N Sh)=1(0,=,=,=
(Oé, » U{1,3,4}» ) <37 6 6) (Oé, » V{2,3,4}5 ) < 376 6)

It follows that player 1’s power is largest within the coalition {1,3,4}. Taking this to extract

preferences over coalitions, player 1 evaluates coalitions as follows:

{1,3,4} =1 {1,2} ~1 {1,2,3} ~1 {1,2,4} =1 {1,2,3,4} = {1}.



Collecting all preferences, we obtain a hedonic game (N, >), the preferences of which are
induced by the composite solution ®. Inspecting (N, >), one finds that the strict core is
empty, showing that strict core stability is too restrictive to answer the question, which

coalition(s) should be formed here. O

More precisely, here we consider solutions on G that satisfy efficiency, symmetry, and the
null player property. The set of all such solutions will be denoted by S&*, and let ¢ € S*.
Notice then that efficiency, symmetry and the null player property help us to know the

payoffs if players are members of minimal winning coalitions, i.e., we have

1
©i (vs) = ] foralli € S € MW"

and hence,

a;

a(S)

(2) D, (o, S,v,0) = for all 7 € S € MW",
where o(S) := >, g is the total share of coalition S, S C N. Moreover, for all S C N,

we have that

(3) D, (o, S,v,p) = p; (vs) =0 if ¢ € S is a null player in vg.

Let « € RY,, v € G, and ¢ € S* be fixed. To simplify notation, for all S C N and
all i € N, we write ®; (5) instead of ®; (o, S,v,¢) to denote i’s payoff according to the
composite solution ®. We are now ready to define a hedonic coalition formation game by
inducing players’ preferences over coalitions in the following way. For each ¢ € N define a

preference relation =; over N; by
S= T if and only if  ®;(S) > &, (7)) (S, T e N;),

i.e., ®;(-)|n; is a representation of i’s preferences. In words, player i’s preferences over any
two coalitions S and T' that he is a member of are induced via ¢’s payoffs according to
the composite solution ®. Notice that paying attention to the corresponding coalitions is
compatible with the very definition of a hedonic game - each player in such a game evaluates
any two coalition structures based only on his preferences over the coalitions in the two
partitions he belongs to (cf. Aumann and Dréze (1974) and Shenoy (1979)). In what follows,
we shall use the notation (V,>) to denote the hedonic game induced via ® as indicated

above.

It turns out that certain minimal winning coalitions are crucial w.r.t. semistrict core

stability. Let A" be the set of all minimal winning coalitions with minimal total share,



ie, A" :={S € MW" |a(S) < aT) for all T € MW"}. The following theorem shows that

coalition structures containing a coalition from A" are semistrictly core stable.

Theorem 1 Let o € RJJL, veQG, and p € §*. If v does not exhibit the paradox of smaller
coalitions w.r.t. ¢, then SSC (N, ») # 0.

Proof. Let T € A" and II be a partition of N containing 7. We show that IT € SSC (N, »).
Suppose to the contrary that there is X C N such that

(4) forallie X : &, (X) > &, (I1(7))
and
(5) for all X' € XM ®; (X) > &, (II(j)) for some j € X'.

Clearly, X € W". Let Y € argmingcx serye @(S). Since v does not exhibit the paradox

of smaller coalitions w.r.t. ¢,

(6) O, (Y)>®;(X) forallieY.

Since v is proper and Y € WY, Y NT # (). Consider the following possible cases:

(a) Y = X. Then, in view of (2) and (5), there is i € Y NT such that

Q;

= B, (V) = ®; (X) > &, (I1(i)) = &4(T) =

which is a contradiction to a(Y) > «o(T).

(b)Y € X and a(Y) > a(T). Then, by (2), (6), and (4), we have that for alli € Y NT,

which is a contradiction to a(Y) > (7).

(c)Y € X and a(Y) = a(T). Then, &; (V) = &;(T) for all : € Y NT. Thus, by (2),
(6), and (4), we have that foralli € Y N T,

(7) By (X) > Oy (11(i) = —— =



On the other hand, by (6),

(®) Dy (Y U{i}) > o (X).

Combining (8) and (7) we get

(9) i (Y U{i'}) > — &).

If Y is the only minimal winning coalition in Y U {i'}, then 4’ is a null player in the game
vyugiy- By (3), we have ®; (Y U {i'}) = 0 in contradiction to (9).

Suppose finally that Y is not the only minimal winning coalition in Y U {i'}, i.e., since
Y € argmingcx sepmme a(S), there is Y/ C Y with Y/ U {/'} € argmingcx semmr a(S5).
Again, since v does not exhibit the paradox of smaller coalitions w.r.t. ¢, and the coalitions
Y'U{i'} and Y U {i'} are winning with Y' U {i'} C Y U {i'}, we have

(071
: :(bi’ Y/U / >q)l/YU /
S = B (7 UT) 2 0 (VU
which again contradicts (9). Hence, we conclude that IT € SSC (N, ). O

Theorem 1 says that, if the solution concept “behaves well” in the sense that a player’s
power increases with shrinking winning coalition, then there are coalition structures that are
core stable in the semistrict sense. The reader may verify that the game in Example 1 satisfies
the conditions of Theorem 1. The coalition structures {{1,3,4},{2}} and {{2,3,4},{1}}
are indeed semistrictly core stable. In both cases the winning coalition W has a minimal
total share of a(W) = 6.

Next, we define the sets P” and PY as follows:

P' = {TeCY |IN MW" £0},
Py = {IIeCY|IINA"#0}.

PV is the set of all coalition structures containing a minimal winning coalition, whereas
partitions in P contain a winning coalition with minimal total share. Clearly, P% C P*
holds.

Notice that, as shown in the proof of Theorem 1, PY% C SSC (N, >). Our next result
(Theorem 2) provides more information about the structure of the semistrict core under the
above circumstances. Basically, it says that the semistrict core does not include any partition

containing a minimal winning coalition that does not have minimal total share. The reason

10



here is in the observation (stated in Lemma 1) that the core in fact does not contain such

partitions.

Lemma 1 Let o € Rﬂ\rﬂr,v € G, and let ¢ € §*. Then,

P'NC(N,=)=PynC(N,=).

Proof. Since PY C P", it is enough to show that there is no partition containing a minimal

winning coalition that is not of minimal total share.

Suppose to the contrary that there is I € PN C (N, =) and S € II such that S €
MW\ AY. Let T € A". Since v is proper, T NS # (. Since « (S) > a(T'), we have for all
€T NS,

On the other hand, for all i € N\ S, ®; (II (7)) = 0. Thus, for alli € T'\ 5,
Q;

a(T)

— (1) > ®; (11 (i)) = 0.

Hence, we have ®; (T') > @, (I1 (i)) for all i € T implying that T is a deviation (in the
sense of the core) from II in contradiction to IT € C' (N, ). O

Theorem 2 Let a« € RY,, v € G, and ¢ € S*. If v does not exhibit the paradoz of smaller

coalitions w.r.t. p, then

(P*NC(N,>)) CSSC(N, ).

Proof. By Lemma 1, the set P* N C (N, =) consists only of partitions containing minimal
winning coalitions with minimal total share. In view of Theorem 1, each such a partition is

semistrictly core stable. 0

4 Special cases

In a composite solution asymmetries among the players can either be expressed by an unequal
share vector, or by a solution concept ¢ that takes players’ possibilities to form winning
coalitions into account. In this section we analyze the two cases in which either source is
ruled out: We first restrict our interest to share vectors with equal shares, i.e., we rule out
asymmetries among the players that are based on external considerations and again consider
hedonic games induced by the composite solution ¢ as introduced in the previous section.

The second part of this Section is devoted to the case, in which the solution concept is the

11



partnership solution Pa as defined in Section 2. Thus, the solution ignores asymmetries
stemming from endogenous considerations. Here we obtain a full characterization of the

semistrict core.

4.1 Equal shares and core existence

Let v € G and let ¢ € S satisfy efficiency and the null player property. Moreover, let
a € RL be a share vector with equal shares, i.e., a; = @ for all i € N. Then, for all S C N

and all ¢ € S we have,

Q;Q; ('US) v _ ap; (’Us) . o (o
2 jes 49 (Us) ) a2 jes¥i(vs) (5) =i (vs).

and therefore
A £ i
@(S)z{(’p’(vS)’ Hie s, (i € N).

0, otherwise

Notice that if we take equal shares and ¢ = Sh then Theorem 1 can be seen as being
stronger and more general than the corresponding result of Shenoy (1979). In his Theorem
7.4, Shenoy (1979) shows that if players’ preferences over coalitions are induced via the
Shapley value of the corresponding subgames, and the simple game does not exhibit the
paradox of smaller coalitions w.r.t. the Shapley value, then the core (in our terms: the core

of the corresponding hedonic game) is nonempty.

As we show next, even if we do not assume equal shares, a direct generalization of
Shenoy’s core existence result is possible. In order to state it, we will require a solution
¢ € S to satisfy coalitional efficiency, i.e., Y, ¢ pi(vs) = v(S) should hold for all S C N.
Notice that coalitional efficiency is implied by efficiency and the null player property, i.e., we
consider a larger domain of solutions than the one for which Theorem 1 applies. Moreover,

under coalitional efficiency and symmetry, (2) still holds. We have the following theorem.

Theorem 3 Let « € RY v € G, and let ¢ € S satisfy coalitional efficiency and symmetry.
If v does not exhibit the paradoz of smaller coalitions w.r.t. @, then C (N, =) # (.

Proof. Let T' € A" and II be a partition of N containing 7. We show that II € C' (N, >).
Suppose to the contrary that there is X C N such that

(10) for all i € X : @; (X) > &, (II(1)) .

Clearly, X € W". Let Y € argmingcx serone o(S). Since v does not exhibit the paradox

of smaller coalitions w.r.t. ¢,

(11) O, (V) > ®; (X) forall i € Y.
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Since v is proper and Y € WY, Y NT # (. Then, in view of (2), (11) and (10), there is
¢ € Y NT such that

o) = P; (V) = @; (X) > @, (II(i)) = &4(T) = (T’
which is a contradiction to a(Y") > «(T). O

Notice finally that Theorem 1 shows that the absence of the paradox of smaller coalitions
is in fact a sufficient condition for nonemptiness even of the semistrict core, provided that one
replaces coalitional efficiency by efficiency and imposes in addition the null player property
on . However, as shown by Dimitrov and Haake (2005), the absence of the paradox is not

a necessary condition for an induced hedonic game to have a nonempty semistrict core.

4.2 Partnerships

According to Farrell and Scotchmer (1988), a partnership is a coalition that divides its
output equally. In the following, we use ¢ = Pa as cooperative solution and show next that
semistrictly core stable partitions always exist. More precisely, it turns out that each core

stable coalition structure is semistrictly core stable as well.

Consequently, with ¢ = Pa we have for all S C N and all 1 € N,

a; Pa; (vg) o
v (95) = v (5),
S esasPa; ) = asy )
and hence
Y.y (S ifies
qI>z~(5)={o‘(5) v(8), ities, (i € N).
0, otherwise

In other words, the worth of a coalition S (its power) is distributed in this case propor-
tionally to the exogenously given weights and parties’ possibilities to form winning coalitions

are ignored. Three remarks are in order:

Remark 1 It is always possible to order all (winning) coalitions according to their total
shares and to state, for all S,T € 2V, that S is commonly preferred over T if and only if
a(S) < a(T). Hence, if ¢ = Pa and players’ preferences in a hedonic game are induced via
®, then we would have, for all © € N, that S =; T if and only if S is commonly preferred
over T'. Hence, the corresponding hedonic game would satisfy the common ranking property
of Farrell and Scotchmer (1988).

Remark 2 Clearly, each game v € G does not exhibit the paradox of smaller coalitions w.r.t.

the partnership solution.

13



Remark 3 Notice that the partnership solution satisfies efficiency and symmetry but not the
null player property. Thus, we cannot directly apply Theorem 1 to deduce nonemptiness of

the semistrict core.

Hence, in view of Remark 3, we have to look for a different way when providing a positive
result with respect to this stability concept.

Theorem 4 Let o € RY

veG, and ¢ = Pa. Then, SSC (N,>)=C(N,>) =PY.

Proof. By Remark 1, the game (N, ) satisfies the common ranking property of Farrell and
Scotchmer (1988). Hence, C' (N, >) = P follows easily from their core existence result by
noticing that the common ranking is based on « () for each S C N. Thus, we only have to

show that SSC (N, >) = C (N, »).

Suppose to the contrary that there is IT € C'(N, ») and X C N such that

(12) for all i € X : ®;(X) > &;(11(7)),
and
(13) for all X' € XM (X): ®,;(X) > ®,(II(5)) for some j € X'.

Since Il € C' (N, =), there is i* € X such that & (I1(7*)) > ®@;«(X) which, in combination
with (12), implies ®;-(I1(¢*)) = ®;-(X). By the common ranking property, ®;(II(i*)) =
P, (X) for all j € II(z*) N X in contradiction to (13). O

Remark 4 If ¢ = Pa, and o € RY, and v € G allow for only one minimal winning coalition
with minimal total share, then, clearly, SC (N,>) = SSC(N,>)=C(N,>)=PY.

Remark 5 As it can be easily seen, the proof that a core element for the induced hedonic
game is also a semistrict core element only uses the fact that players’ preferences are derived
from a common ranking. Hence, we may conclude that the core of a general hedonic game

in this case consists of semistrictly core stable partitions only (see also Dimitrov (2005)).

In order to obtain a complete characterization of the core, Shenoy (1979) considers the
class of symmetric monotonic simple games. A simple game is symmetric if the worth of a

coalition, i.e., whether it is winning or not, only depends on its size. Notice then that if ¢

1
S|

each player ¢ who is a member of a winning coalition S (S needs not to be minimal winning).

satisfies efficiency, symmetry and the null player property, then we will have ¢, (vg) = — for

Thus, any such solution coincides with the partnership solution on this class and therefore

the previous theorem tells us, how the semistrict core looks like.

Corollary 1 Let o € RL and v be a symmetric monotonic simple game. If ¢ € §*, then
SSC(N,»)=C(N,»)=PYy.
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We should not fail to mention that, if we restrict ourselves to equal shares and take
¢ = Sh, then Corollary 1 in fact restates Proposition 7.6 of Shenoy (1979).

5 Conclusion

In this paper we studied conditions that guarantee semistrict core stability in hedonic games,
provided that players’ preferences are derived from an underlying simple game. By consider-
ing a multiplicative composite solution we were able to generalize previous results in Shenoy
(1979) by enlarging the domain of solution concepts applied to a simple game and by using
a stronger stability notion. The use of the specific composite solution allowed us to incor-
porate the influence of both exogenous and endogenous factors on players’ preferences over
coalitions. The main insight from our analysis is that each partition containing a minimal
winning coalition with minimal total share is semistrictly core stable. Moreover, in some
interesting special cases, the semistrict core consists only of such partitions. Hence, our
results with respect to the mentioned special cases can be seen as a formal proof of Riker’s
(1962) ‘size principle’ in a more general setting (see also Laver and Schofield (1990) for an
extensive survey). Notice finally that nonemptiness of the semistrict core for the case of
the partnership solution was already indicated by Kirchsteiger and Puppe (1997). However,
to the best of our knowledge, our analysis is the first rigorous account using the semistrict
core concept that takes into account both a large domain of solutions on simple games and

exogenously given share vectors.
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