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Abstract

How should a decision-maker allocate R&D funds when a group of experts provides diver-

gent estimates on a technology’s potential effectiveness? To address this question, we propose

a simple decision-theoretic framework that takes into account ambiguity over the aggregation

of expert opinion and a decision-maker’s attitude towards it. In line with the paper’s focus

on R&D investment, decision variables in our model may affect experts’ subjective probability

distributions of the future potential of a technology. Using results from convex optimization,

we are able to establish a number of analytical results including a closed-form expression of our

model’s value function, as well as a thorough investigation of its differentiability properties. We

apply our framework to original data from a recent expert elicitation survey on solar technology.

The analysis suggests that more aggressive investment in solar technology R&D is likely to yield

significant dividends even, or rather especially, after taking ambiguous aggregation into account.
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1 Introduction

Innovation is an uncertain process. The history of major R&D programs is paved with failures and

dead ends and, eventually, successes. Failures can derive from a funding tap closed too early, or

from the plain fact that a technology ultimately proves to be technically or economically infeasible.

High opportunity costs and scarce public funding imply that making decisions over competing R&D

programs is a delicate and considerably complex task. Importantly, it is a task that needs to take

into account uncertainty.

Addressing the uncertainty of R&D programs is complicated by the fact that probabilities of

success are very hard to estimate. They tend to be functions of R&D investment itself, and this

endogeneity adds formidable challenges to their econometric estimation. Nonetheless, there exists a

vast literature, studying patent numbers and/or productivity levels, that provides empirical support

to the idea of a positive and strong relationship between R&D funding and innovation (Grossman

and Helpman [19]). Of relevance to this paper’s empirical exercise, such a connection has also been

observed in the specific case of energy R&D investment (Newell et al. [28], Popp [31]).

Although the positive relationship between R&D and technological breakthroughs is well es-

tablished, characterizing the probability of success given different levels of R&D expenditure is a

question that can only partially be addressed by past data. Historical information on costs, patents,

and R&D expenditure may be used to get an idea of the general trends, but research programs

differ vastly and are, most of the time, not reproducible. Therefore, to account for the uncer-

tainty of specific R&D programs it is often necessary to resort to expert judgments and subjective

probabilities.

Structured expert judgment, pioneered in the 1975 Rasmussen Report on nuclear power plant

safety, derives probabilistic input for decision problems through experts’ quantification of their

subjective uncertainties (Morgan and Henrion [27], Cooke [13], O’Hagan et al. [29]). Experts’

probability distributions are elicited via transparent protocols and treated as scientific data. The

employed elicitation techniques involve recognizing and removing, as much as possible, known psy-

chological biases in judgment (Tversky and Kahneman [35]). They further incorporate consistency

checks and structure the variables to be estimated in such a way that experts are called to respond

to well-defined and clear questions. Expert elicitation surveys have been used in a wide variety of

applications, including energy innovation (Baker et al. [4, 5]), and we refer the reader to [27, 13, 29]

for a comprehensive account of this growing literature.

Despite its intuitive appeal, expert elicitation often generates widely-divergent opinions across

experts, implying fundamentally different and competing views. To come to grips with this com-
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plexity, researchers typically aggregate over expert estimates in some fashion and consider their

average. Indeed, there is a rich literature that studies the many different ways such aggregations

may be performed. In their general survey papers, Clemen and Winkler [11, 12] broadly distinguish

between (i) mathematical approaches and (ii) behavioral approaches. Mathematical aggregation

methods are primarily concerned with constructing a single probability distribution on the basis

of individual elicited distributions. This is usually pursued either through axiomatic treatments of

mathematical formulas of aggregation, or, where possible, through Bayesian statistical methods.

By contrast, behavioral approaches involve the direct interaction between experts in order to reach

consensus on a single “group” estimate. This interaction can be structured in a number of different

ways according to the application at hand.

We take a different approach to the ones outlined above. Motivated by contexts in which

Bayesian updating methods are not readily applicable1, we propose a modeling framework that is

inspired by the economic-theory literature on decision making under ambiguity and as such is not

concerned with determining a single probability distribution reflecting expert opinion.2 In constrast

to the Bayesian setting, decision-theoretic models of ambiguity are designed to address situations

in which a decision maker is unable to posit precise probabilistic structure to physical and economic

phenomena. This framework derives from the concept of uncertainty as introduced by Knight [25]

to represent a situation in which a decision maker lacks adequate information to assign probabilities

to events. Ambiguity is contrasted to risk, which defines settings in which probabilistic structure

can be fully captured by a single Bayesian prior.

We now briefly describe the mechanics of our model. In our setting, a decision maker elicits

the judgment of a set of experts on the effect of R&D investment on the future cost of a technology.

Levels of R&D investment affect the decision maker’s problem in two ways: (a) they alter experts’

subjective probability distributions on the technology’s future cost and (b) they are arguments of a

utility function that measures the technology’s cost-effectiveness as a function of its future cost and

R&D expenditure. As an initial benchmark, our framework posits an equal-weight linear aggrega-

tion over experts’ diverging probability distributions. Subsequently, it considers enlargements of

the set of possible aggregation schemes by parametrizing over their maximum distance, measured

via the L2 norm, with respect to the benchmark equal-weight aggregation. This distance is referred

to as aggregation ambiguity. Next, our model computes the best-and worst-case expected outcomes

of a given level of R&D investment, subject to the feasible set of distributions that is implied by

1Say, when a group of experts is interviewed a single time on the long-term potential of an untested technology.

Which matches perfectly our paper’s empirical application (see Section 4).
2See Gilboa and Marinacci [17] for a comprehensive recent survey of this literature.
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assigned levels of aggregation ambiguity. Finally, we consider a convex combination of the best

and worst-case expected outcomes as a reasonable way to model decision makers’ preferences under

aggregation ambiguity.

Our model nests in a parametric fashion simple averaging and best/worst-case analysis and

allows for an expression of decision-makers’ beliefs regarding, and attitude towards, the underlying

uncertainty in expert aggregation. Its simple structure allows for precise analytical insights, and

we study its properties in depth. Using results from convex and conic optimization, we are able to

provide a closed-form expression for our value function and its derivative with respect to aggregation

ambiguity. These results enable sensitivity analysis across different levels of aggregation ambiguity

and ambiguity attitude. We proceed to investigate the value function’s differentiability in R&D

investment and, where applicable, provide a closed-form expression for this derivative. This can

subsequently be used to to obtain a necessary condition for optimal R&D investment. We conclude

the paper’s theoretical section by arguing that, while non-differentiability of the value function with

respect to investment is in principle possible, it is not likely to be often encountered in practice.

We now discuss our model’s relation to the existing literature. Our framework is a variation of

the α-maxmin model that has been studied extensively in the decision-theoretic literature beginning

with Hurwicz [20] and Arrow and Hurwicz [3]. Later contributions by Gilboa and Schmeidler [18]

(whose seminal paper dealt with the pure maxmin model), Ghirardato et al. [16], Chateaunauf et

al. [10], and Eichenberger et al. [14] focused on axiomatic treatments of similar models in which

a decision maker’s actions are modeled by Savage acts [34], i.e. functions from a state space

to a space of consequences. Our work departs from these papers in a number of ways. First, the

decision variables in our model are not functions. Instead, they are real numbers, representing levels

of R&D investment, that enter the value function as arguments of (a) a utility function measuring

the technology’s cost-effectiveness as well as (b) the set of priors that the decision-maker is taking

into account when performing his best- and worst-case analysis. This latter element of action-

dependent expert beliefs is non-standard in the decision-theoretic literature. It has been studied

in recent axiomatic work by Karni [23], who developed a Bayesian decision theory in which acts

influence subjective beliefs. Other researchers have focused on generalizations of the Savage setting

along similar lines. Olszewski [30] studied the α-maxmin model in a more abstract environment

in which a decision maker is called to choose over sets of lotteries (i.e., priors), while Viero [36]

axiomatized the α-maxmin model in a setting in which acts map from states to sets of priors.

The model we propose in this paper combines features of [23, 30, 36] but differs in its explicit

treatment of aggregation ambiguity as a parameter input, as well as in its focus on the derivation and
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differentiability of the value function.3 Correspondingly, the mathematical machinery we employ

is also quite different and, unlike the previously cited economic-theory literature, we do not pursue

an axiomatic characterization of preferences in our economic environment. As a result, we do

not assert the appeal of our value function on formal principles of rationality. Instead, we see

the primary virtues of our approach as being those of intuitiveness and practicality. Admitting

a closed-form solution and straightforward interpretation/calibration, our model aims to integrate

and operationalize the insights of the deeper contributions of the literature to the decision-making

process as it pertains to expert opinions over R&D budgets. Indeed, the model we propose is an

outgrowth of the need to develop a tractable theoretical framework to accommodate data from a

recent expert elicitation on solar-energy R&D (see paragraph below and Section 4).

We base the empirical analysis of our paper on original data from the ICARUS project (Bosetti

et al. [7]), a recent expert elicitation survey on the potential of R&D investment in alternative

energy technologies.4 As an initial step, we use the collected data of the survey to construct

experts’ subjective probability distributions on the future cost of solar energy conditional on R&D

investment. Subsequently, we employ an integrated assessment model (Bosetti et al. [8]) to calculate

the benefits of R&D investment (in the form of lower future solar-electricity costs) and use these

estimates to inform our assesment of the relevant R&D investment alternatives. The application

of our theoretical model to these data suggests that ambiguity plays an important role in assessing

the potential of solar technology. The policy implication we are able to cautiously draw is that

more aggressive investment in solar technology R&D is likely to yield significant dividends, even

(or perhaps especially) after taking ambiguity into account.

Paper outline. The structure of the paper is as follows. Section 2 introduces the decision-

theoretic model, while Section 3 analyzes its theoretical properties. Section 4 illustrates the the-

oretical results with original data from a recent expert elicitation on solar technology. Section

5 provides concluding remarks. All mathematical proofs, tables, figures, as well as non-essential

supplementary information are collected in the Appendix.

2 Model Description

Consider a set N of experts indexed by n = 1, 2, ..., N . R&D investment is denoted by a variable

r ∈ R and the technology’s cost by c ∈ C, where R and C are subsets of real numbers. An expert

3We elaborate further on the relevant literature and its relation to our work after we have formally defined the

model in Section 2.
4For more information see www.icarus-project.org.
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n’s probability distribution of the future cost of technology given investment r is captured by a

random variable Cn(r) having a probability distribution function

πn(c|r). (1)

Note that the decision variables of our model (R&D investment) directly affect experts’ subjective

probability distributions of the technology’s cost. This means that our setting is not amenable to

standard decision-theoretic frameworks going back to Savage [34].

Expert beliefs over the economic potential of R&D investment may, and usually do, vary

significantly. The question thus naturally arises: How do we make sense of this divergence when

studying optimal R&D investment? In the absence of data that could lend greater credibility to

one expert over another and form the basis of a Bayesian analysis, one straightforward way would

be to simply aggregate over all pdfs πn as given by Eq. (1), so that we obtain an “aggregate” joint

pdf π̄, where

π̄(c|r) =
N∑
n=1

1

N
πn(c|r). (2)

This approach inherently assumes that each and every expert is equally likely to represent reality,

and makes use of simple linear aggregation. While this is standard practice in the applied expert

elicitation literature, a great deal of information may be lost in such an averaging-out process,

especially when there are huge differences among experts.

We thus move beyond simple averaging. In our framework each expert n’s pdf πn(c|r) is

weighted by the decision maker through a second-order probability pn. The set of admissible

second-order distributions p depends on the amount of ambiguity the decision maker is willing to

take into account when aggregating across experts, and in particular on how “far” he is prepared to

stray from equal-weight aggregation. Specifically, we consider the set of second-order distributions

P(b) over a set of N experts, parametrized by b ∈
[
0, N−1

N

]
where

P(b) =

{
p ∈ <N : p ≥ 0,

N∑
n=1

pn = 1,
N∑
n=1

(
pn −

1

N

)2

≤ b
}
. (3)

Here, the set P(b) captures the uncertainty of the decision-maker’s aggregation protocol. Thus,

we refer to parameter b it as aggregation ambiguity. Letting eN denote a unit vector of dimension

N , we see that distributions p belonging to P(b) satisfy ||p − eN
N ||2 ≤

√
b, where || · ||2 denotes

the L2-norm. Setting b = 0 implies complete certainty and adoption of the equal-weight singleton,

while b = N−1
N complete ambiguity over the set of all possible second-order distributions.5

5The latter statement holds in light of the fact that values of b > N−1
N

cannot enlarge the feasible set. This is
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We briefly provide a potential interpretation of an ambiguity level b in our model. Consider

the benchmark equal-weight distribution 1
N eN . Now take a set of experts N̂ of cardinality N̂ and

begin increasing the collective second-order probability attached to their pdfs. The convex structure

of the feasible set P(b) enables us to provide a tight upper bound on the maximum second-order

probability p(b, N̂ ;N) that can be placed on this set of experts, as a function of b and N̂ :

p(b, N̂ ;N) = max
p∈P(b)

max{
N̂⊆N :

∣∣N̂ ∣∣=N̂}
∑
n∈N̂

pn = min

N̂N + N̂

√
N − N̂
N̂N

b, 1

 . (4)

To provide a sense of the above formula, let us focus on singleton sets so that N̂ = 1. Increasing b

from zero to 0.1 mean that the maximum second-order probability that can be assigned to a single

agent is 0.48, 0.4, and 0.35 for N = 5, 10, and 20 experts, respectively.

Weighting the expert pdfs (1) under all aggregation schemes belonging in P(b) induces the

following set of priors

Π(b, r) =

{
N∑
n=1

pn(b)πn(·|r) : p ∈ P(b)

}
(5)

governing the future cost of the technology conditional on R&D investment r. Thus, holding r fixed,

an increase in b implies an expansion of the set of priors a decision maker is willing to consider.

Define the real-valued function

u (c, r) : C ×R 7→ <,

as representing the utility of R&D investment r, under cost realization c. Now, given investment

r, utility u, and the set of second-order distributions P(b) introduced in (3), we can calculate the

best- and worst-case expected outcomes associated with r, given aggregation ambiguity b. This

provides a measure of the spread, as measured by utility u, between the worst and best-cases, given

a “willingness” to stray from the benchmark equal-weight distribution that is constrained by b.

More formally, we consider the functions

Vmax(r|b) = max
π∈Π(b,r)

∫
C
u (c, r) dπ(c) (6)

Vmin(r|b) = min
π∈Π(b,r)

∫
C
u (c, r) dπ(c). (7)

Plotting functions (6) and (7) over b ∈ [0, (N−1)/N ] gives decision makers a comprehensive picture

of the effectiveness of R&D investment r (as measured by utility u).

because the maximizers of
∑N

n=1

(
pn − 1

N

)2
over the set of probability vectors concentrate all probability mass on

one expert, leading to an aggregation ambiguity of
(
1− 1

N

)2
+ (N − 1) ·

(
1
N

)2
= N−1

N
.
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The functions (6)-(7) fix a level of aggregation ambiguity b and subsequently focus on the best

and worst cases. As such they capture extreme attitudes towards uncertainty in aggregation. To

express more nuanced decision-maker preferences we consider the following value function

V (r|b, α) = α · Vmin(r|b) + (1− α) · Vmax(r|b) α ∈ [0, 1], (8)

representing a convex combination of the worst- and best-cases. The parameter α above captures

the decision maker’s ambiguity attitude. It measures his degree of pessimism given aggregation

ambiguity b: the greater (smaller) α is, the more (less) weight is placed on the worst-case scenario.

Given values for b and α, Eq. (8) operates as an objective function when searching for optimal

investment decisions r.

Relation to the literature. As mentioned in the introduction, the above framework is a varia-

tion of the α-maxmin model that has been studied extensively in the decision-theoretic literature

beginning with Hurwicz [20] and Arrow and Hurwicz [3]. Later contributions by Gilboa and Schmei-

dler [18], Ghirardato et al. [16], Chateaunauf et al. [10], and Eichenberger et al. [14] focused on

axiomatic treatments of similar models in which a decision maker’s actions are modeled by Savage

acts [34], i.e. functions from a state space to a space of consequences. In these models (as in most

of the relevant literature) acts enter into the value function only as arguments of the utility function

u, and have no effect on the set of priors that characterize the model’s ambiguity. By contrast,

our model does not introduce the notion of a state space, and its decision variables (R&D invest-

ment) are real numbers, not functions. Moreover, a decision variable r enters the value function

both as an argument of the utility function u(c, r) as well as on the set of priors Π(b, r) that the

decision-maker will be taking into account when he conducts his best- and worst-case analysis given

aggregation ambiguity b. The latter dependency is non-standard. Jaffray [22] had first introduced

a similar notion with a decision-theoretic model based on non-additive belief functions, while later

Ghirardato [15] analyzed a model in which acts map from states to sets of consequences. More

recently, Olszewski [30] studied the α-maxmin model in a related setting in which decision makers

are called to choose between sets of lotteries over which the maximum and the minimum payoffs

are subsequently computed. Moreover, Viero [36] axiomatized the α-maxmin model in a setting in

which acts map from states to sets of lotteries, and thus can be viewed as a generalization of the

model of Olszewski. Ahn [1] adopted a similar environment to Olszewski, but the decision maker in

his model has preferences that incorporate aversion to ambiguity in a manner similar to the smooth

ambiguity model of Klibanoff et al. [24]. All of the above papers focus on settings that are consider-

ably more abstract to ours, and do not easily lend themselves to the kind of optimization-centered
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analysis we pursue. Of greater resemblance to this work, Karni [23] proposed a Bayesian model

with action-dependent subjective probabilities similar to Eq. (1). However, Karni was primarily

interested in providing an axiomatic characterization of his model and did not consider extending

it to a multiple-prior setting. An additional difference of our framework with respect to all of the

above is its specific consideration of aggregation ambiguity through sets P(b) and Π(b, r). Searching

for the maximum and minimum payoff of an investment subject to an aggregation ambiguity b is

reminiscent, at least in spirit, to the quantile-maximization model of Rostek [33].

3 Theoretical Analysis

In this section we focus on the optimization problems (6) and (7) and analyze the behavior of

value function V (r|b, α), as we vary ambiguity levels b and R&D investment r. Using results from

convex optimization we are able to derive closed-form expression for this function and establish

its differentiability in b (almost everywhere). To the best of our knowledge these results are novel,

as are the proof techniques we employ. Differentiablity with respect to r is more subtle and we

use the results of Milgrom and Segal [26] to provide ranges of b and α for which it holds. Where

applicable, we ease notation in the following manner:6

un(r) ≡
∫
C
u(c, r)dπn(c|r),

Vmax(r, b) ≡ Vmax(r|b) = max
π∈Π(b,r)

∫
C
u (c, r) dπ(c) = max

p∈P(b)

N∑
n=1

pnun(r) (9)

Vmin(r, b) ≡ Vmin(r|b) = min
π∈Π(b,r)

∫
C
u (c, r) dπ(c) = min

p∈P(b)

N∑
n=1

pnun(r). (10)

Eqs. (9) and (10) are valid by the linearity of the expectation operator. Optimization problems (9)

and (10) are convex programs with a simple structure and thus amenable to rich analysis. We

begin by proving that their optimal cost functions are continuous, monotonic, and concave/convex

in b.

Proposition 1 Fix r ∈ R. The function Vmax(r, b) (Vmin(r, b)) defined in Eq. (9) (Eq. 10) is

increasing (decreasing) and concave (convex) in b. Both functions are continuous in b.

Before we state our next result we need to introduce additional notation. First, letNk(r) denote

the set of experts sharing the k’th order statistic of {u1(r), u2(r), ..., uN (r)}. There are a total of

N(r) such sets where, depending on the problem instance, N(r) can be any number in {1, 2, ..., N},
6While b is a parameter, we will abuse notation and, where convenient, consider it a variable.
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and we define Nk(r) = |Nk(r)|. Furthermore, let N+
k (r) =

⋃N
i=kNi(r), N−k (r) =

⋃k
i=1Ni(r) and

N+
k (r) =

∣∣∣N+
k (r)

∣∣∣, N−k (r) =
∣∣∣N−k (r)

∣∣∣. Our model structure enables us to easily show the following

Lemma.

Lemma 1 Fix r ∈ R and consider the optimization problems (9) and (10). Define ambiguity levels

b∗max(r) ≡ 1
NN(r)(r)

− 1
N and b∗min(r) ≡ 1

N1(r) −
1
N . Vmax(r, b) is strictly increasing in b ∈ [0, b∗max(r)]

and equal to maxn∈N un(r) in b ∈ [b∗max(r), N−1
N ]. Vmin(r, b) is strictly decreasing in b ∈ [0, b∗min(r)]

and equal to minn∈N un(r) in b ∈ [b∗min(r), N−1
N ].

Lemma 1 suggests that b∗max(r) and b∗min(r) are important thresholds. They represent the level

of aggregation ambiguity above which the set P(b) allows for the maximum (minimum) expert

estimate to be attained as an objective function value of (9) ((10)). Our next result establishes

that for levels of ambiguity smaller than these extreme values, the optimal solutions of problems (9)

and (10) will be unique and bind the quadratic ambiguity constraint associated with set P(b).

Proposition 2 Fix r ∈ R. Suppose b ∈ [0, b∗max(r)] and consider the maximization problem (9).

There exists a unique optimal solution pmax(r, b) and it must satisfy the quadratic constraint of

set (3) with equality. For b ∈ (b∗max(r), N−1
N ] all probability vectors pmax(r, b) satisfying pmaxn (r, b) =

0 for n 6∈ NN(r)(r) and
∑
n∈NN(r)

(
pmaxn (r, b)− 1

N

)2
≤ b−

N−
N(r)−1

(r)

N2 will be optimal solutions of (9).

Analogous results apply to the minimization problem (10).

We are now ready to prove the paper’s first main result. Theorem 1 establishes that functions

Vmax(r, b) and Vmin(r, b) are differentiable with respect to b everywhere on
(
0, N−1

N

)
except at the

points b∗max(r) and b∗min(r) respectively. Moreover, it formalizes a straightforward monotonicity

property of the optimal solutions of (9) and (10) that is essential to the derivation of the value

function pursued in Theorem 2. In proving Theorem 1 we make extensive use of results from conic

optimization, in particular the duality theory of second-order cone programming (see Alizadeh and

Goldfarb [2]).

Theorem 1 Fix r ∈ R.

(a) The function Vmax(r, b) (Vmin(r, b)) is differentiable with respect to b everywhere on b ∈(
0, N−1

N

)
except b∗max(r)(b∗min(r)).

(b) Let pmax(r, b) (pmin(r, b)) denote an optimal solution of Vmax(r, b)(Vmin(r, b)). The following

levels of aggregation ambiguity

bmaxk (r) =

{
b̃ :
{
pmaxn (r, b) = 0 ∀n ∈ N−k (r)

}
⇔ b ≥ b̃

}
, (11)

bmink (r) =

{
b̃ :
{
pminn (r, b) = 0, ∀n ∈ N+

N(r)−k+1(r)
}
⇔ b ≥ b̃

}
, (12)
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where k ∈ {1, 2, ..., N(r)− 1}, are well-defined and strictly increasing in k.

Part (b) of Theorem 1 implies that bmaxk (r) and bmink (r) can be interpreted in the following way.

In the case of problem (9), bmaxk (r) denotes the minimum level of ambiguity such that for all

b ≥ bmaxk (r) no probability mass is ever allocated to experts having an un(r) that is less than or

equal to the k’th order statistic of {u1(r), u2(r), ..., uN (r)}. Conversely, in the case of problem (10),

bmink (r) denotes the minimum level of ambiguity such that for all b ≥ bmink (r) no probability

mass is allocated to experts having an un(r) that is greater than or equal to the (N(r)− k + 1)’th

order statistic of {u1(r), u2(r), ..., uN (r)}. While the existence and monotonicity of these ambiguity

thresholds is intuitively clear, their proofs are relatively involved.

Having established the differentiability with respect to b of Vmax(r, b) and Vmin(r, b), we go on

to provide a set of differential equations that they must satisfy. These differential equations will

prove valuable in the subsequent derivation of Vmax and Vmin.

Proposition 3 Fix r ∈ R and let pmax(r, b) denote the unique optimal solution of maximization

problem (9) as a function of b ∈ [0, b∗max(r)]. Suppose expert nk satisfies nk ∈ Nk(r). Consider

bmaxk (r) defined in Eq. (11). Vmax(r, b) satisfies the following differential equation:

2
∂

∂b
Vmax(r, b)

(
pmaxnk

(r, b)− 1

N
− b
)

= unk(r)− Vmax(r, b), b ∈ (0, bmaxk (r)) . (13)

Analogous results apply for the minimization problem (10) and Vmin(r, b).

Before presenting the paper’s second main result, let u(k)(r) denote the k’th order statistic

of {u1(r), u2(r), ..., uN (r)}, where k = 1, 2, ..., N(r). Now, define the following quantities (where

uN(r)+1(r)+ = u−0 (r) ≡ 0)

uk(r)
+ =

∑
n∈N+

k
(r) un(r)

N+
k (r)

, ûk(r)
+ = u(k)(r)− uk+1(r)+, k = 1, 2, ..., N(r) (14)

uk(r)
− =

∑
n∈N−

k
(r) un(r)

N−k (r)
, ûk(r)

− = u(k)(r)− uk−1(r)−, k = 1, 2, ..., N(r). (15)

The term uk(r)
+ (uk(r)

−) is simply an average of the values of the set {u1(r), u2(r), ..., uN (r)} that

are greater (smaller) than or equal to its k’th order statistic. The term ûk(r)
+ (ûk(r)

−) captures

the distance between the k’th order statistic and the average of the un(r)’s that are strictly greater

(smaller) than it.

Now, we define the following quantities that play an important role for functions Vmax(r, b)

and Vmin(r, b) (1{·} denotes an indicator function).

C+
k (r) =

√√√√1 + (N − 1)1{k = 1}
N+
k (r)

[
N+
N(r)−1

(r)NN(r)(r)

NN(r)−1(r)

(
u(N(r))(r)− uN(r)−1(r)+

)2
+

N(r)−1∑
l=k+1

N+
l (r)Nl−1(r)

N+
l−1(r)

(ûl−1(r)+)
2

]

11



b+k (r) =
1

N+
k+1(r)

[(
C+
k+1(r)

ûk(r)+

)2

+
N−k (r)

N

]
, k = 1, 2, ..., N(r)− 2 (16)

C+
N(r)−1(r) =

√
NN(r)(r)

NN(r)−1(r)
· (1 + (N − 1)1{N(r) = 2}) ·

(
u(N(r))(r)− uN(r)−1(r)+

)
, b+N(r)−1(r) =

1

NN(r)(r)
− 1

N

C−k (r) = −

√√√√1 + (N − 1)1{k = 1}
N−N(r)−k+1(r)

[
N−2 (r)N1(r)

N2(r)

(
u(1)(r)− u2(r)−

)2
+

N(r)−k∑
l=2

N−l (r)Nl+1(r)

N−l+1(r)
(ûl+1(r)−)

2

]

b−k (r) =
1

N−
N(r)−k(r)

[(
C−k+1(r)

ûN(r)−k+1(r)−

)2

+
N+
N(r)−k(r)

N

]
, k = 1, 2, ..., N(r)− 2 (17)

C−N(r)−1(r) =

√
N1(r)

N2(r)
· (1 + (N − 1)1{N(r) = 2}) ·

(
u(1)(r)− u2(r)−

)
, b−N(r)−1(r) =

1

N1(r)
− 1

N
.

(Clearly, the first two expressions of Eqs. (16) and (17) are applicable only if N(r) ≥ 3.)

We are now ready to state our second main result and provide a closed-form expression for

Vmax(r, b) and Vmin(r, b), and therefore the value function (8).

Theorem 2 Fix r ∈ R. Consider the optimization problems (9) and (10) and the vectors
(
C+(r), b+(r)

)
and

(
C−(r), b−(r)

)
defined in Eqs. (16) and (17). The vectors b+(r) and b−(r) satisfy

b+k (r) = bmaxk (r) k ∈ {1, 2, ..., N(r)− 1}

b−k (r) = bmink (r) k ∈ {1, 2, ..., N(r)− 1},

where bmaxk (r) and bmink (r) are defined in Eqs. (11)-(12). The functions Vmax(r, b) and Vmin(r, b)

are equal to

Vmax(r, b) =


∑N

n=1
un(r)

N + C+
1 (r)
√
b b ∈

[
0, b+1 (r)

)
uk(r)+ + C+

k (r)

√
N+

k (r)b− N−
k−1

(r)

N b ∈
[
b+k−1(r), b+k (r)

)
, k = 2, 3, ..., N(r)− 1

maxn∈N un(r) b ∈
[
b+N(r)−1(r), N−1N

]

Vmin(r, b) =



∑N

n=1
un(r)

N + C−1 (r)
√
b b ∈

[
0, b−1 (r)

)
uN(r)−k+1(r)− + C−k (r)

√
N−N(r)−k+1(r)b−

N+
N(r)−k+2

(r)

N b ∈
[
b−k−1(r), b−k (r)

)
, k = 2, ..., N(r)− 1

minn∈N un(r) b ∈
[
b−N(r)−1(r), N−1N

]
.

Theorem 2 shows that, keeping r fixed, Vmax(r, b) and Vmin(r, b) will be concatenations of

approriately-specified square-root-like functions.7 These concatenations occur at levels of ambigu-

7These results are consistent with the more general analysis of Section 4.2 in Iyengar [21]. However, Iyengar uses

different arguments and does not prove differentiability in b, nor does he derive and interpret formulas for Vmax and

Vmin and their optimal solutions pmax, pmin (we provide the latter in Corollary 1). Instead, his analysis is concerned

with determining complexity bounds for the computation of the optimal cost of (10).
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ity bmax, bmin which are interpreted by Eqs. (11)-(12), and can be computed explicitly through

Eqs. (16) and (17). The curvature of these functions is driven by the dispersion of experts’ expected

estimates, as captured by the quantities (ûk(r)
+, ûk(r)

−) of Eqs. (14) and (15). Plotting functions

Vmax(r, b) and Vmin(r, b) over the entire range of b ∈
[
0, N−1

N

]
provides a concise visualization of

expert beliefs on the effect of an investment r.

We verify and illustrate Theorem 2 for the simple case in which N(r) = 2. We focus on Vmax

as the argument for Vmin is analogous. That Vmax(r, b) = maxn∈N un(r) for b ≥ b∗max(r) follows by

Lemma 1 so we proceed by considering b ∈ [0, b∗max(r)). In this case, by first principles it is easy

to see that the optimal solution of (9) will increase the probability share of all experts n ∈ N2(r)

by an equal amount ε, which in turn will be offset by a uniform decrease in the probability shares

of experts n ∈ N1(r). Since by Proposition 2 the quadratic ambiguity constraint will bind, ε must

satisfy

N2(r)ε2 +N1(r)

(
εN2(r)

N1(r)

)2

= b ⇒ ε =

√
N1(r)b

NN2(r)
.

Thus, we may deduce that

Vmax(r, b) = N2(r)

(
1

N
+

√
N1(r)b

NN2(r)

)
max
n

un(r) +N1(r)

(
1

N
− N2(r)

N1(r)

√
N1(r)b

NN2(r)

)
min
n
un(r)

=

∑
n∈N un(r)

N
+

√
N1(r)N2(r)

N

(
max
n∈N

un(r)− min
n∈N

un(r)

)√
b, b ∈ [0, b∗max(r)). (18)

Note that Vmax’s kink at b = b∗max is verified through first principles.

On the other hand, applying Eqs. (16) to the case N(r) = 2, we obtain

C+
1 (r) =

√
N2(r)N

N1(r)

(
u(2)(r)− u1(r)+

)
=

√
N1(r)N2(r)

N

(
max
n∈N

un(r)− min
n∈N

un(r)

)
so that Theorem 2 implies

Vmax(r, b) =

∑
n∈N un(r)

N
+

√
N1(r)N2(r)

N

(
max
n∈N

un(r)− min
n∈N

un(r)

)√
b, b ∈ [0, b∗max(r)),

which is consistent with Eq. (18).

We can now integrate the various results we have established to characterize the optimal

solutions of (9) and (10).

Corollary 1 Consider r ∈ R and b ∈
[
0, N−1

N

]
. Propositions 2 and 3 and Theorems 1 and 2 allow

us to explicitly characterize the sets of optimal solutions Pmax(r, b) and Pmin(r, b) of optimization

problems (9) and (10) respectively. Refer to the Appendix for the an explicit expression of these

sets.
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Corollary 1 provides succinct expressions for the optimal expert probabilities given investment

r and aggregation ambiguity b.

We now shift the focus of our analysis to investigate the differentiability of value function

V (r|b, α), given by Eq. (8), with respect to r.8 Here, the picture is considerably more subtle. We

use the results of Milgrom and Segal [26] to state the following Theorem.

Theorem 3 Fix b ∈
[
0, N−1

N

]
and α ∈ [0, 1] and consider the value function V (r|b, α) given by

Eq. (8). Assume R = [rm, rM ] ⊂ < and that the functions un(r) are continuously differentiable on

R for all n ∈ N . Let Pmax(r, b) and Pmin(r, b) denote the sets of optimal solutions of problems (9)

and (10) respectively, as given by Corollary 1. The function V (·|b, α) : R → < is differentiable at

r0 ∈ (rm, rM ) if and only if the sets{
α

N∑
n=1

pmin
n

d

dr
un(r0)

∣∣∣∣pmin ∈ Pmin(r0, b)

}
and

{
(1− α)

N∑
n=1

pmax
n

d

dr
un(r0)

∣∣∣∣pmax ∈ Pmax(r0, b)

}

are singletons. In that case,

dV

dr
(r0|b, α) =

N∑
n=1

(
αpminn (r0, b) + (1− α)pmaxn (r0, b)

) d

dr
un(r0), (19)

for all pairs of optimal pmin(r0, b) ∈ Pmin(r0, b) and pmax(r0, b) ∈ Pmax(r0, b).

Theorem 3 in combination with Proposition 2 allows us to establish the differentiability of the

value function V (r|b, α) at a point r = r0 for a range of b and α.

Corollary 2 Suppose the assumptions of Theorem 3 hold. The function V (·|b, α) : R → < is dif-

ferentiable at r0 ∈ (rm, rM ) for all b ∈ [0,min {b∗max(r0|α), b∗min(r0|α)}] where b∗max(r|α) = b∗max(r)

if α < 1 and N−1
N otherwise and b∗min(r|α) = b∗min(r) if α > 0 and N−1

N otherwise. The derivative

is given by Eq. (19) where pmax(r0, b) and pmin(r0, b) are uniquely defined by Corollary 1.

Conversely, Theorem 3 also suggests that it is likely for the function V (r|b, α) to be non-

differentiable at a value r0 for a nontrivial range of b and α. This non-differentiability is due to the

fact that for b > b∗max(r0) (b∗min(r0)) optimization problem maxp∈P (b)
∑N
n=1 pnun(r0) (minp∈P (b)

∑N
n=1 pnun(r0))

admits multiple optimal solutions. For this reason, a derivative at r = r0 will generally fail to exist.

Proposition 4 formalizes this observation.

Proposition 4 Suppose the conditions of Theorem 3 hold and consider r0 ∈ (rm, rM ).

8We now return to considering b as a parameter of the value function.
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(a) Suppose there exist two experts n1 and n2 satisfying
dun1

dr (r0) 6= dun2
dr (r0) and n1, n2 ∈ N1(r0)

(NN(r0)(r0)). Then the function Vmin(r|b) (Vmax(r|b)) is not differentiable at r = r0 for all

b > b∗min(r0) (b > b∗max(r0)).

(b) Suppose α ∈ (0, 1). If there exist experts n1 and n2 satisfying
dun1

dr (r0) 6= dun2
dr (r0) such that

n1, n2 ∈ N1(r0) then the function V (r|b, α) is not differentiable at r = r0 for all b > b∗min(r0).

If there exist experts n3 and n4 satisfying
dun3

dr (r0) 6= dun4
dr (r0) such that n3, n4 ∈ NN(r0)(r0)

then the function V (r|b, α) is not differentiable at r = r0 for all b > b∗max(r0).

In instances described by Proposition 4, it is clear that one cannot use first-order conditions

to establish the potential optimality of an R&D investment r0. This non-differentiability is an

unsatisfying, though not entirely unexpected, consequence of the maxmin nature of our model.

It stems from the fact that beyond a certain level of aggregation ambiguity there may exist a

multiplicity of aggregation schemes that yield the absolute maximum and minimum payoffs. In

the remainder of this section, we suggest that such non-smoothness issues may be, to a significant

degree, mitigated.

Remark 1. Given Corollary 2 and Proposition 4, we would like to narrow the range of b and

α over which V (r|b, α) would fail to be differentiable. For this purpose, we provide a plausible

lower bound on problematic ranges of b with the following informal argument. Consider carefully

the continuously differentiable functions un(r) =
∫
c∈C u(c, r)dπn(c|r). Since subjective probability

distributions will generally differ across experts, then, assuming the domain C is moderately large,

it is unlikely that at any point r0 we will have more than 2 experts sharing the same value,

including the maximum and minimum values of {u1(r0), u2(r0), ..., uN (r0)}. Therefore, it is likely

that N1(r) ≤ 2 and NN(r)(r) ≤ 2 for all r ∈ R. This observation leads to the following bound

min
r∈R

min{b∗max(r), b∗min(r)} ≥ 1

2
− 1

N
=
N − 2

2N
,

so that Corollary 2 implies that V (·|b, α) will be, at the very least, everywhere differentiable for

any choice of α ∈ [0, 1] and b ≤ N−2
2N . If we assume that decision makers are constrained in their

maximal choice of b (say, because equal-weight aggregation is deemed “fair” and/or to ensure that

no single group of experts is given too much weight) then potentially problematic ranges of b ≥ N−2
N

are less likely to be considered and the negative result of Proposition 4 loses its bite.

Related to the above, Corollary 2 implies the diffentiability of V (·|b, α) at all r0 ∈ (rm, rM ),

for all b and α, for an important special case: that in which there exists a pair of experts that are
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consistently the most optimistic and pessimistic across all levels of R&D. If surveyed experts have

different backgrounds, such consistently optimistic and pessimistic biases may well occur.

Corollary 3 Suppose the conditions of Theorem 3 hold and there exist two experts n1 and n2 such

that un1(r) > un(r) for all n 6= n1 and un2(r) < un(r) for all n 6= n2, for all r ∈ R. In other

words, experts n1 and n2 are consistently the most optimistic and pessimistic across all levels of

R&D. Then Theorem 3 implies that V (r|b, α) is differentiable at all r0 ∈ (rm, rM ) for all choices

of b and α, with its derivative given by Eq. (19).

Hence, for problem instances satisfying the conditions of Corollary 3, first-order conditions

given by Eq. (19) may be always invoked to solve for the maximizer of the value function V (r|b, α),

regardless of the values of b and α.

Remark 2. Finally, if our problem instance is such that Remark 1 and Corollary 3 are not

applicable, we may always address the potential non-differentiability of the value function (8) by

slightly perturbing the un(r) functions so that for all r ∈ R we have N1(r) = NN(r)(r) = 1. Since

the un(r) functions are assumed to be continuously differentiable, such small perturbations would

be, at least in our view, defensible.

4 Empirical Application to Solar-Technology R&D

We base the empirical application of our paper to original data collected by the ICARUS survey,

an expert elicitation on the potential of solar technologies. During the course of 2010-2011, the

ICARUS survey collected expert judgments on future costs and technological barriers of different

Photovoltaic (PV) and Concentrated Solar Power (CSP) technologies.9 Sixteen leading European

experts from academia, the private sector, and international institutions took part in the survey.

The elicitation collected probabilistic information on (1) the year-2030 expected cost of the tech-

nologies; (2) the role of public European Union R&D investments in affecting those costs; and (3)

the potential for the deployment of these technologies (both in OECD and non-OECD countries).

We refer readers interested in the general findings of the survey to Bosetti et al. [7] and we focus

here on the data on future costs as they form the basis of our analysis.

Current 5-year EU R&D investment in solar technology is estimated at 165 million US dollars.

The ICARUS study elicited the probabilistic estimates of the 16 experts on the 2030 solar electricity

9The survey is part of a 3-year ERC-funded project on innovation in carbon-free technologies (ICARUS - Innovation

for Climate chAnge mitigation: a study of energy R&D, its Uncertain effectiveness and Spillovers www.icarus-

project.org).
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cost (2005 c$/kWh) under three future Scenarios: (1) keeping current levels of R&D constant until

2030, (2) increasing them by 50%, and (3) increasing them by 100%. Coherent responses were

obtained from 14 out of the 16 experts so the analysis that follows focuses solely on them. We used

linear interpolation of the survey’s collected data (generally 3-6 points of each expert’s cumulative

distribution function(cdf) conditional on R&D investment) to compute a pdf for each expert n ∈
{1, 2, ..., 14}, given the three relevant levels of R&D investment denoted by r ∈ {r1, r2, r3} (here

ri refers to Scenario i).10 These pdfs represent experts’ subjective probability distributions of the

cost of technology as denoted in Eq. (1). Figure 1 plots the corresponding cdfs as well as the cdf

that the aggregate pdf (2) leads to, under all three Scenarios.

[FIGURE 1 here]

As one can see in Figure 1 there is considerable disagreement between experts over the potential

of solar technology. This disagreement is particularly acute under Scenario 1, and diminishes

as R&D levels increase. Nonetheless, the breakthrough nature of innovation and the need to

cross certain firm cost thresholds, means that ambiguity in expert estimates remains an important

concern, even under Scenario 3. This will become apparent in the analysis to follow.

We measure the utility of an investment via its net payoff. Denoting the benefit associated to

a technology cost c by the function B(c) and the opportunity cost of an investment r by O(r), this

is given by the following utility function:

u(c, r) = B(c)−O(r). (20)

The next section describes how we provide numerical values for B(·) and O(·).

Quantifying benefits and opportunity costs of solar technology R&D. Expected benefits

of solar technology R&D investments are quantified via a general equilibrium intertemporal model

that can account for a range of macro-economic feedbacks and interactions. These include the effects

of energy and climate change policies, the competition for innovation resources with other power

technologies, the effect of growth, as well as a number of other factors.11 To capture the long-term

nature of such investments, the integrated assessment model is run over the time horizon 2105-2100

in 5-year time periods for the whole range of exogenously-imposed possible 2030-costs of solar power

10Please refer to section A2 of the Appendix for more information on how expert pdfs were constructed from the

survey data.
11The analysis is carried out using the World Induced Technical Change Hybrid (WITCH) model (Bosetti et al. [8]),

an energy-economy-climate model that has been used extensively for economic analysis of climate change policies.

See www.witchmodel.org for a list of applications and papers.
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that we are considering. Subsequently, simulation results are compared to the benchmark case in

which the cost of solar power is so high that the technology is not competitive with alternative

production modes. For each possible 2030 solar-power cost, the benefit to the European Union is

quantified by the discounted EU-consumption improvement over the entire time-horizon 2005-2100

with respect to the case where solar technology is not competitive. Table 1 summarizes the results.

[TABLE 1 here]

Three important assumptions are at the basis of the numbers reported in Table 1. First, as the

survey concentrated on public EU R&D investment and the effects of increasing it, we disregard

spillovers and technological transfers to the rest of the world and consider only the consumption

improvement for Europe. Second, we evaluate the benefit of alternative 2030 costs of solar power

assuming that no carbon policy is in place and that no special constraints on other technologies

are imposed (e.g., a partial ban on nuclear technology). Third, we discount cash flows using a 3%

discount rate. Although our choice is well in the range of discount rates adopted for large scale

public projects, it is important to note that the cost threshold for positive payoffs is robust for

a wide range of more myopic discount rate values. Our assumptions all err on the side of being

conservative about the potential payoffs of solar-technology R&D.

We now explain how we calculate the costs of solar R&D investment. Given an R&D investment

r, we assume that actual R&D spending is fixed at r during the period 2005-2030, in line with the

survey questions. After 2030 we assume that spending drops to half its initial value, i.e. r/2,

and remains at that level until 2100. This drop occurs because we assume that post-2030 funds

represent the government’s commitment to maintain the technological gains achieved by 2030. We

now derive the discounted opportunity cost of such expenditure streams of solar-technology R&D

spending. In doing so we follow Popp [32] and assume that, at every time period, this opportunity

cost is equal to 4 times the original investment. Thus, in our model the opportunity cost of a level

of R&D investment r is given by the net present value of the stream O(t) where O(t) = 4 · r for

t = 1, 2, ..., 6 and 2 ·r for t = 7, 8, ..., 20 (once again we use a 3% discount rate). Table 2 summarizes

these results for the three R&D Scenarios that the ICARUS survey focused on.

[TABLE 2 here]

Application of the decision-theoretic framework. We now extend our analysis to explicitly

account for aggregation ambiguity and adopt the decision-theoretic model introduced in Section

2.12 Our objective is to compare the three R&D Scenarios, and we do not consider optimizing over

12All simulations are performed in Mathematica.
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a continuous R&D domain R. We make this choice primarily because we wish to keep the applied

section brief and pursue more in-depth empirical analysis in future work.13

Figure 2 plots Vmax
(
r, b2

)
and Vmin

(
r, b2

)
over b ∈

[
0,
√

13
14

]
≈ [0, .96] for the three Scenarios.

The parametrization b2 is adopted since it allows us to (a) dampen the curvature of the original

functions as given by Theorem 2 and (b) interpret the parameter b as a bound on the Euclidean

distance of admissible aggregation schemes with respect to the benchmark equal-weight aggregation.

[FIGURE 2 here]

Focusing first on Scenario 1, we note that pure aggregation of expert opinion (corresponding to

b = 0) yields a payoff of approximately $1.36×109. We observe that the worst-case payoff drops to

about $− 3.4× 109 at b ≈ .25 at which point it largely stops being sensitive to changes in b, slowly

asymptoting to its minimum value of $−3.67×109; in contrast, the best-case one increases steadily

to a maximum value of $22.7× 109 at the maximum level of b = .96. Under Scenario 2, the payoff

under zero ambiguity is equal to $7.8× 109. Subequently, we see that the worst-case payoff drops

to 0 at b = 0.15, at which point it keeps decreasing at a smaller rate until it practically reaches its

minimum value of $− 5.5× 109 at b ≈ .55. Conversely, the best-case payoff rises steadily to about

$32 × 109 for b ≈ .55 at which point it continues to rise at a much smaller rate until it reaches a

maximum value of $33.3 × 109 at b = .96. Thus for Scenario 2, aggregation uncertainty becomes

largely unimportant once b reaches the threshold of 0.55. Under Scenario 3 the unambiguous payoff

is around $20 × 109, significantly higher than both other Scenarios. The worst-case payoff drops

relatively smoothly to a minimum value of $− 7.35× 109 for b = .96, while the best-case one rises

at a comparatively higher rate to $70.9× 109.

It is clear that aggregation ambiguity is important under Scenario 3, for both the worst- and

best-case payoffs, significantly more so than under Scenarios 1 and 2. This fact is interesting in

light of Figure 1, which shows that experts’ pdfs are much more dispersed under Scenarios 1 and 2

than they are under 3. The reason behind this seemingly unexpected result is straightforward. As

Table 1 suggests, expected payoffs of R&D investment are very sensitive at low cost values, i.e., less

than 8c$/kWh. The more aggressive investment of Scenario 3 has a greater effect on these lower

cost values, and therefore its best- and worst-case payoffs are in turn more sensitive to changes in

b.

We now consider the effect of ambiguity attitude on the decision maker’s problem. Figure

3 plots the value function V
(
r|b2, α

)
given by Eq. (8) for all three investment Scenarios, over

13Indeed, constructing plausible approximations of experts’ un(r) functions over an interesting range of r will likely

require further engagement with the experts.
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all levels of aggregation ambiguity and a decision-maker’s attitude toward it. This allows policy

makers to visualize the effects of the three R&D investment decisions over the entire range of

possible ambiguity levels and ambiguity attitudes. As we expect from Figure 2, Scenario 3 fares

much better than both 1 and 2 over a very wide range of b and α, and is much more sensitive to

changes in both.

[FIGURE 3 here]

Figure 4 goes a step further and compares the three R&D Scenarios for all possible combinations

of b and α. Following the color scheme of Figure 2, a region’s color corresponds to the Scenario that

performs the best within it, while the bold numbers within regions denote the relative order of the

three Scenarios within this range of (b, α) (e.g., an expression “321” means Scenario 2 dominates

1, and Scenario 3 dominates both 2 and 1).

[FIGURE 4 here]

Figure 4 makes clear that Scenario 3 dominates 1 and 2 for an extremely wide range of com-

binations of b and α. Conversely, Scenario 1 is the best option for a combination of very high b

and α. Somewhat surprisingly, we see that Scenario 2 is dominated by either 1 or 3 for all possible

combinations of b and α and thus will never be chosen by a decision maker whose preferences

are captured by Eq. (8). Thus, on the basis of the presented data, it is clear that policy makers

should opt for the most aggressive R&D investment, unless they are both (a) open to ignoring

a very large set of surveyed experts (b) extremely concerned about the possibility of worst-case

failure. Moreover, assuming all three options are readily implementable, they can safely disregard

the middle-range R&D investment implied by Scenario 2.

5 Conclusion

Determining the optimal portfolio of government R&D is an important task, especially at times of

public funding scarcity. As R&D programs imply uncertain returns, it is important to assess these

investments using probabilistic tools. Expert elicitation surveys can play an important role in this

process if used to capture in a transparent and objective way subjective probabilities that can be

used as scientific data.

Yet, gathered information can vary substantially across experts. In particular, if the elicitation

is designed correctly is should exactly aim at covering all prevailing “visions” about that specific

technology. The different backgrounds and perspectives that experts bring to the elicitation process
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imply that collected subjective probability distributions will, more often than not, span a wide and

potentially confusing spectrum.

Condensing all of the problem’s uncertainty into one single average probability distribution,

especially in cases where Bayesian methods cannot be readily applied, may conceal important

imformation and yield policy recommendations that are not robust. To deal with this issue, we

proposed and analyzed a novel decision-theoretic framework inspired by the well-studied α-maxmin

model. In line with the paper’s focus on R&D investment, decision variables in our model affect

experts’ subjective probability distributions of the future potential of a technology. We applied our

framework to original data from a recent expert elicitation survey on solar technology. The analysis

suggested that more aggressive investment in solar technology R&D is likely to yield substantial

benefits even after ambiguity over expert opinion has been taken into account.

We conclude by noting that while this paper has been motivated by the issue of R&D allocation,

the model and analysis presented herein are general and can be applied to other contexts of decision

making under ambiguity.
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Appendix

A1: Proofs

To ease notation, in our proofs we suppress dependence on R&D investment r except where neces-

sary.

Proposition 1. We prove the Proposition for Vmax(b) (the argument for Vmin(b) is analogous).

That Vmax(b) is increasing in b follows by definition. Consider the optimization problems given by

the right-hand-side of Eq. (9) for b1 ∈ [0, N−1
N ] and b2 ≥ b1 and denote their optimal solutions by

pmax(b1) and pmax(b2) respectively. By feasibility we may note the following:

N∑
n=1

(
pmaxn (b1)− 1

N

)2

≤ b1,
N∑
n=1

(
pmaxn (b2)− 1

N

)2

≤ b2. (21)

Consider a convex combination of b1 and b2 given by b(λ) = λb1 + (1− λ)b2 for some λ ∈ [0, 1] and

the optimization problem

Vmax(b(λ)) = max
p∈P(b(λ))

N∑
n=1

pnmn. (22)

To prove concavity of Vmax in b it suffices to show that

Vmax(b(λ)) ≥ λVmax(b1) + (1− λ)Vmax(b2).

To this end, consider the probability vector given by

p(λ) = λpmax(b1) + (1− λ)pmax(b2).

By feasibility of pmax(b1) and pmax(b2) we immediately deduce that p(λ) ≥ 0 and that
∑N
n=1 pn(λ) =

1. Now we may write

N∑
n=1

(
pn(λ)− 1

N

)2

=
N∑
n=1

(
λ

(
pmaxn (b1)− 1

N

)
+ (1− λ)

(
pmaxn (b2)− 1

N

))2

triangle ineq.

≤

λ( N∑
n=1

(
pmaxn (b1)− 1

N

)2
) 1

2

+ (1− λ)

(
N∑
n=1

(
pmaxn (b2)− 1

N

)2
) 1

2


2

(21)

≤
[
λ
√
b1 + (1− λ)

√
b2
]2
≤
[√

λb1 + (1− λ)b2

]2

= b(λ). (23)

By Eq. (23) and the observations immediately preceding it we can conclude that p(λ) is feasible

for optimization problem (22). Thus we may write

Vmax(b(λ)) ≥
N∑
n=1

p(λ)nun = λ
N∑
n=1

pmaxn (b1)un + (1− λ)
N∑
n=1

pmaxn (b2)un

= λVmax(b1) + (1− λ)Vmax(b2),
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where the last equality follows from the assumed optimality of pmax(b1) and pmax(b2). We now

proceed to show continuity. By concavity Vmax(b) will be continuous on the open interval (0, N−1
N )

so we need only consider the endpoints 0 and N−1
N . Since Vmax(b) is increasing in b we must have

limb→(N−1
N

)− Vmax(b) ≤ Vmax(N−1
N ). However, if limb→(N−1

N
)− Vmax(b) < Vmax(N−1

N ) then we reach

a contradiction if we apply concavity to (N − 1)/N and other values of b.

To prove continuity at b = 0 consider an ε > 0. Now let δ > 0 and write

|Vmax(δ)− Vmax(0)| = Vmax(δ)− Vmax(0) =
N∑
n=1

(
pmaxn (δ)− 1

N

)
un

≤ max
n∈N
|un|

N∑
n=1

∣∣∣∣pmaxn (δ)− 1

N

∣∣∣∣
Hölder’s ineq.

≤ max
n∈N
|un|

[
N∑
n=1

(
pmaxn (δ)− 1

N

)2
] 1

2

≤ max
n∈N
|un|
√
δ.

Thus, any choice of 0 < δ < ε2

(maxn∈N |un|)2 will ensure that |Vmax(δ)− Vmax(0)| < ε, completing the

proof.

Lemma 1. The function Vmax(b) is bounded above by un for any n ∈ NN(r). This upper bound

is attained by a probability vector p if and only if it satisfies∑
n∈N̂

pn = 1, for some N̂ ⊆ NN(r)

Consider a subset N̂ ⊆ NN(r), with cardinality N̂ . Eq. (4) implies that the value of b at which it

first becomes possible to assign probability 1 to subset N̂ is given by

b(N̂ ;N) =
1

N̂
− 1

N
.

The minimizer of b(N̂ ;N) over N̂ ⊆ NN(r) is the entire set NN(r), yielding the desired result.

Now consider b < b∗max and the optimal solution pmax(b). As b < b∗max there must exist

a j 6= NN(r) such that pmaxj (b) > 0. Now consider increasing b by an amount ε. For δ > 0

small enough the solution p̃ which is identical to pmax(b) except that p̃j = pmaxj (b) − δ and

p̃k = pmaxk (b) + δ for some k ∈ NN(r) will be feasible and result in a strictly greater objective value,

so that Vmax(b+ ε) > Vmax(b). Equivalent reasoning applies to the Vmin case.

Proposition 2. Suppose first that b = b∗max. It is clear here that the unique optimal solution is

given by pmax such that pmaxn = 1/NN(r) for all n ∈ NN(r) and pmaxn = 0 otherwise. The quadratic

ambiguity constraint binds by the definition of b∗max.
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Consider now the case b < b∗max and suppose there exists an optimal solution pmax(b) such

that the quadratic ambiguity constraint is slack. As b < b∗max there must exist an j 6= NN(r)

such that pmaxj (b) > 0. For ε > 0 small enough the solution p̃max in which p̃j = pmaxj (b) − ε

and p̃k = pmaxk (b) + ε for some k ∈ NN(r) will be feasible and result in a strictly greater objective

value, contradicting pmax(b)’s optimality. Thus, all optimal solutions must satisfy the quadratic

ambiguity constraint with equality.

We now prove uniqueness. Suppose there exist two optimal solutions pmax,1 and pmax,2. By

the preceding argument they must bind the quadratic ambiguity constraint. Consider the set of

probability vectors given by their convex combinations

p(λ) = λpmax,1 + (1− λ)pmax,2, λ ∈ [0, 1].

For λ ∈ (0, 1), p(λ) will satisfy the ambiguity constraint with strict inequality, since:

N∑
n=1

(
pn(λ)− 1

N

)2

=
N∑
n=1

(
λ

(
pmax,1n − 1

N

)
+ (1− λ)

(
pmax,2n − 1

N

))2

strict convexity

<
N∑
n=1

[
λ

(
pmax,1n − 1

N

)2

+ (1− λ)

(
pmax,2n − 1

N

)2
]

= λ
N∑
n=1

(
pmax,1n − 1

N

)2

+ (1− λ)
N∑
n=1

(
pmax,2n − 1

N

)2

= λb+ (1− λ)b = b.

Thus all solutions p(λ) are feasible. That they are optimal follows trivially by the assumed opti-

mality of pmax,1,pmax,2 and the linear objective function of (9). But this is a contradiction as all

optimal solutions must satisfy the quadratic ambiguity constraint with equality. The second claim

of the Proposition regarding b > bmax is trivial.

Theorem 1. We prove the result for Vmax; the argument for Vmin is analogous. To do so we

need to invoke results from conic duality. We begin with part (a). Given x = (x0, x̄) ∈ <n+1 we

introduce the following notation to denote inclusion in a second-order cone of dimension n+ 1

(x0, x̄) ∈ L2
n+1 ⇔ x0 ≥ ||x̄||2.

We follow Alizadeh and Goldfarb [2] to write (9) as a primal conic program P(b) and introduce its

dual D(b) (for clarity, next to the primal constraints we indicate the corresponding dual variables):
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max
p,q,q0,θ

N∑
n=1

unpn

s.t. −pn + qn = 0, ∀n ∈ N , (yn)
N∑
n=1

−pn = −1, (y0)

P(b) θn = 0, ∀n ∈ N , (γn)

q0 =

√
b+

1

N
, (β0)

(pn, θn) ∈ L2
2, ∀n ∈ N

(q0,q) ∈ L2
n+1,

min
y,y0,γ,β0,zp,zq,zq0,zθ

y0 +

√
b+

1

N
β0

s.t. −y0 − yn + zpn = −un, ∀n ∈ N

yn + zqn = 0, ∀n ∈ N

γn + zθn = 0, ∀n ∈ N

D(b) −β0 + zq0 = 0

(zpn, zθn) ∈ L2
2, ∀n ∈ N

(zq0,−zq) ∈ L2
n+1.

Since both the primal and the dual have feasible strictly interior solutions, strong duality holds

(see Theorem 13 of [2]). Without loss of generality, we can immediately simplify D(b) by setting

zθ = γ = 0 and zp ≥ 0. Correspondingly, we can eliminate the variable zq by replacing it with

−y. Finally, it is evident that at optimality the quadratic constraint of the dual will be binding so

that z∗q0 = β∗0 =
√∑N

n=1(−yn)2 =
√∑N

n=1 y
2
n. Collecting all of these observations we may re-write

the dual in the following much simpler way:

D1(b) = min
y,y0

y0 +

√
b+

1

N

√√√√ N∑
n=1

y2
n

s.t. −un + y0 + yn ≥ 0, n = 1, 2, ..., N. (24)

Examining (24) we deduce that at optimality y∗n = max(0, un−y0). Thus we may simplify the dual

even further to an unconstrained optimization problem with just one variable:

D2(b) = min
y0

y0 +

√
b+

1

N

√√√√ N∑
n=1

max(0, un − y0)2. (25)

By strong duality the dual optimal objective will be bounded between 1
N

∑N
n=1 un and u(N(r)). We

immediately see that solutions satisfying y0 > u(N(r)) result in strictly greater objective function

values than y0 = u(N(r)), so that we can safely disregard them. Conversely, solutions satisfying

y0 < 0 yield

y0 +

√
b+

1

N

√√√√ N∑
n=1

max(0, un − y0)2 = y0 +

√
b+

1

N

√√√√ N∑
n=1

(un − y0)2

> y0 +
√
Nb+ 1(|u(1)| − y0) =

√
Nb+ 1|u(1)|+ y0(1−

√
Nb+ 1).
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Thus, values of y0 <
|u(N(r)|

1−
√
Nb+1

result in a strictly greater objective function value than y0 = u(N(r))

and hence can also be disregarded. With these observations we may rewrite the dual (25) in the

following way:

D3(b) = min
y0∈
[ |u(N(r))|

1−
√
Nb+1

,u(N(r)

] y0 +

√
b+

1

N

√√√√ N∑
n=1

max(0, un − y0)2 (26)

The domain of D3(b) is thus compact, for any b > 0. For values of b ∈ [0, b∗max) we know that the

optimal solution of the primal will be strictly less than u(N(r)). Thus, strong duality implies that

for all b ∈ (0, b∗max), any optimal solution y∗(b) must satisfy y∗(b) < u(N(r)−1). However, notice

that the objective function of D3 is strictly convex for y0 < u(N(r)−1). Thus, we may deduce that

when b ∈ (0, b∗max) D3(b) admits a unique optimal solution y∗0(b).

The above observation implies that we can apply Danskin’s theorem (see Proposition B.25 in

Bertsekas [6]) to conclude that the optimal dual objective value, and therefore by strong duality

Vmax(b) as well, is differentiable at all b ∈ (0, b∗max) and that

dVmax
db

(b) =

√∑N
n=1 max(0, un − y∗0(b))2

2
√
b+ 1

N

, b ∈ (0, b∗max). (27)

Before we proceed with investigating the endpoints b = 0 and bmax, we show that y∗0(b) is

strictly increasing in b ∈ (0, b∗max). Consider b1 < b2 with both belonging in (0, b∗max) and their

optimal solutions y∗0(b1) and y∗0(b2). By uniqueness of y∗0(b) in this range of b we have

y∗0(b1) +

√
b1 +

1

N

√√√√ N∑
n=1

max(0, un − y∗0(b1))2 < y∗0(b2) +

√
b1 +

1

N

√√√√ N∑
n=1

max(0, un − y∗0(b2))2

y∗0(b2) +

√
b2 +

1

N

√√√√ N∑
n=1

max(0, un − y∗0(b2))2 < y∗0(b1) +

√
b2 +

1

N

√√√√ N∑
n=1

max(0, un − y∗0(b1))2.

Summing the above inequalities and rearranging terms yields

(√
b2 +

1

N
−
√
b1 +

1

N

)
√√√√ N∑
n=1

max(0, un − y∗0(b1))2 −

√√√√ N∑
n=1

max(0, un − y∗0(b2))2

 > 0

⇒

√√√√ N∑
n=1

max(0, un − y∗0(b1))2 −

√√√√ N∑
n=1

max(0, un − y∗0(b2))2 > 0⇒ y∗0(b2) > y∗0(b1).

We discuss now the differentiability of Vmax at b ∈ {0, b∗max}. At b = 0 the domain of (26) is

no longer bounded below and therefore we can no longer invoke Danskin’s theorem. Consequently,
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we reason in a different way. By continuity (recall Proposition 1) we must have

lim
b→0+

Vmax(b) =
N∑
n=1

un
N
⇔ lim

b→0+
y∗(b) +

√
1

N

√√√√ N∑
n=1

max(0, un − lim
b→0+

y∗(b))2 =
N∑
n=1

un
N

The strict monotonicity of y∗(b) and Hölder’s inequality imply that limb→0+ y
∗(b) < 0. Subse-

quently, simple algebra obtains:

lim
b→0+

y∗(b)−
∑N
n=1 un
N

= −

√√√√ 1

N

N∑
n=1

(un − lim
b→0+

y∗(b))2

If we take squares now on both sides and re-apply Hölder’s inequality, we see that

lim
b→0+

y∗(b) = −∞ ⇒ lim
b→0+

dVmax
db

(b) = +∞.

Now we consider b = b∗max. Note that the optimal solution y∗0(b∗max) is not unique; instead it

can take any value in the interval [u(N(r)−1), u(N(r))]. Hence Danskin’s theorem implies that the

subdifferential of Vmax(b) at b∗max will consist of all convex combinations of

√
N(N(r))(u(N(r))−u(N(r)−1))

2
√
b∗max+ 1

N

and 0.

We now prove part (b). Let us go back to the original primal-dual pair (P(b),D(b)) and

consider a pair of optimal solutions of the primal and dual problems. By Proposition 2 the primal

optimal solution (p∗(b),q∗(b),θ∗(b), q∗0(b)) is unique, while our reasoning in part (a) established

the uniqueness of the optimal dual variables (β∗0(b),y∗(b), y∗0(b), z∗p(b), z∗q(b)). Applying Theorem

16 and part (ii) of the complementarity conditions of Lemma 15 of Alizadeh and Goldfarb [2], we

arrive at the following conditions:

q∗0(b)z∗qn(b) + β∗0(b)q∗n(b) = 0⇔ −
√
b+

1

N
y∗n(b) +

√√√√ N∑
n=1

y∗n(b)2p∗n(b) = 0, n = 1, 2, ..., N

⇔ −
√
b+

1

N
max(0, un − y∗0(b)) +

√√√√ N∑
n=1

max(0, un − y∗0(b))2 p∗n(b) = 0, n = 1, 2, ..., N.(28)

When b < b∗max, strong duality implies y∗0(b) < u(N(r)−1) which in turn ensures
∑N
n=1 max(0, un −

y∗0(b))2 > 0. As mentioned earlier, when b = b∗max y
∗
0(b) can take any value in [u(N(r)−1), u(N(r))]

so we choose one that again yields
∑N
n=1 max(0, un − y∗0(b∗max))2 > 0. Hence, the complementarity

conditions (28) yield

p∗n(b) = 0⇔ un − y∗0(b) ≤ 0, n = 1, 2, ..., N. (29)
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Since y∗0(b) is strictly increasing in b in (0, b∗max) and limb→0+ y
∗
0(b) = −∞ and limb→b∗max− y

∗(b) =

u(N(r)−1), Eq. (29) implies the existence of a set {b1, b2, ..., bN(r)−1} such that

0 < b1 < b2 < .... < bN(r)−1 = b∗max{{
p∗n(b) = 0 ∀n ∈ N−k

}
⇔ b ≥ bk

}
, ∀k = 1, 2, ..., N(r)− 1.

Proposition 3. We prove the result for Vmax; the argument for Vmin is analogous. Focusing on

optimization problem (9), we introduce Lagrangian multipliers and write the Karush-Kuhn-Tucker

(KKT) conditions:

un − 2λ

(
pn −

1

N

)
+ µ+ νn = 0, n ∈ {1, 2, ..., N} (30)

λ

(
N∑
n=1

(
pn −

1

N

)2

− b
)

= 0, λ ≥ 0 (31)

N∑
n=1

(
pn −

1

N

)2

≤ b,
N∑
n=1

pn = 1, p ≥ 0 (32)

νnpn = 0, νn ≥ 0, n ∈ {1, 2, ..., N}. (33)

Since our problem is concave with affine equality constraints and satisfies Slater’s condition (see

section 5.2.3 in [9]), strong duality holds and the KKT conditions (30)-(33) will be necessary and

sufficient for both primal and dual optimality. In other words, the duality gap is zero and the

vector (p∗,ν∗, λ∗, µ∗) satisfies (30)-(33) if and only p∗ and λ∗,ν∗, µ∗ are primal and dual optimal

respectively (see section 5.5.3 in [9]).

From Proposition 2 we know that there exists a unique primal optimal solution p∗. By strong

duality, the Lagrangean dual problem admits an optimal solution, and we refer to it by λ∗,ν∗, µ∗.14

Since Vmax(b) is differentiable (Theorem 1) and strong duality holds we follow Section 5.6.3 in Boyd

and Vandenberghe [9] to deduce the following simple relation:

d

db
Vmax(b) = λmax(b), b ∈ (0, b∗max). (34)

Eq. (34) means that we can now focus on calculating the Lagrange multiplier λmax(b). Before we

do so we note the following useful identity

N∑
n=1

(
pmaxn (b)− 1

N

)2

=
N∑
n=1

pmaxn (b)

(
pmaxn (b)− 1

N

)
− 1

N

N∑
n=1

pmaxn (b) +
N∑
n=1

1

N2

14Note that at this point one can manipulate the KKT conditions (30)-(33) to show that the Lagrangean dual’s

optimal solution is also unique.
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=
N∑
n=1

pmaxn (b)

(
pmaxn (b)− 1

N

)
. (35)

Multiplying both sides of Eq. (30) by pmaxn (b) and then summing over all n = 1, 2, .., N obtains

N∑
n=1

unp
max
n (b)− 2λmax(b)

N∑
n=1

pmaxn (b)

(
pmaxn (b)− 1

N

)
+ µmax(b)

N∑
n=1

pmaxn (b) = 0

(35)⇒
N∑
n=1

unp
max
n (b)− 2λmax(b)

N∑
n=1

(
pmaxn (b)− 1

N

)2

+ µmax(b) = 0

Prop. 2⇒ µmax(b) = 2λmax(b) · b−
N∑
n=1

unp
max
n (b). (36)

Now we consider Eq. (30) for expert nk ∈ Nk. By part (b) of Theorem 1 we must have pmaxnk
(b) > 0

if and only if b ∈ [0, bmaxk ). Substituting the value of µmax(b) obtained in Eq. (36), and applying

the complementary slackness condition (33) we obtain

unk − 2λmax(b)

(
pmaxnk

(b)− 1

N

)
=

N∑
n=1

unp
max
n (b)− 2λmax(b) · b

(34)⇒ 2
d

db
Vmax(b)

(
pmaxnk

(b)− 1

N
− b
)

= unk − Vmax(b), b ∈ (0, bmaxk ) . (37)

Theorem 2. We focus on Vmax; the argument for Vmin is symmetric. Recall the definition of

bmaxk of Eq. (11). Consider first b ∈ (0, bmax1 ) so that pmaxn (b) > 0 for all b ∈ (0, bmax1 ) and n ∈ N .

Recalling Proposition 3 and adding Eqs. (37) for all n ∈ N yields the following differential equation

−2Nb
dVmax(b)

db
= −NVmax(b) +

∑
n∈N

un, b ∈ (0, bmax1 ). (38)

Solving differential equation (38) leads to the following expression:

Vmax(b) = Cmax1

√
b+

∑
n∈N un
N

, b ∈ [0, bmax1 ), (39)

where Cmax1 is a constant to be determined. Consider now b ∈ [bmaxk−1 , b
max
k ) for k ∈ {2, 3, ..., N(r)−

1}. In this range of b we will have pmaxn (b) > 0 if and only n ∈ N+
k . Adding Eqs. (37) for all such

n ∈ N+
k yields the following differential equation

2

(
N−k−1

N
−N+

k b

)
dVmax

db
=

∑
n∈N+

k

un −N+
k Vmax(b), b ∈ [bmaxk−1 , b

max
k ) (40)
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Solving differential equation (40) gives the following:

Vmax(b) = u+
k + Ck

√
N+
k b−

N−k−1

N
, b ∈

[
bmaxk−1 , b

max
k

)
, (41)

for k ∈ {2, 3, ..., N(r)− 1}, where Cmaxk is a constant to determined. Finally since bmaxN(r)−1 = b∗max

we use Lemma 1 to conclude

Vmax(b) = max
n∈N

un, b ∈
[
bmaxN(r)−1,

N − 1

N

]
. (42)

Putting together Eqs. (39), (41), and (42) we see that Vmax will equal

Vmax(b) =



∑
n∈N un

N + Cmax1

√
b b ∈ [0, bmax1 )

u+
k + Cmaxk

√
N+
k b−

N−
k−1

N b ∈
[
bmaxk−1 , b

max
k

)
, k = 2, 3, ..., N(r)− 1

maxn∈N un b ∈
[
bmaxN(r)−1,

N−1
N

] (43)

for appropriately chosen constants (Cmax1 , Cmax2 , ..., CmaxN(r)−1) and
(
bmax1 , bmax2 , ..., bmaxN(r)−1

)
. By

Proposition 1 and Theorem 1, Vmax is continuous everywhere and differentiable everywhere at

(0, N−1
N ) except b∗max. Thus, the vectors (Cmax1 , Cmax2 , ..., CmaxN(r)−1) and

(
bmax1 , bmax2 , ..., bmaxN(r)−1

)
must fulfill these criteria of continuity and differentiability and are thus uniquely determined by

the following system of nonlinear equations (44)-(51):

Case 1: N(r) = 2. ∑
n∈N un

N
+ Cmax

1

√
bmax
1 = max

n∈N
un (44)

bmax
1 =

1

Nmax
2

− 1

N
. (45)

Case 2: N(r) ≥ 3.

∑
n∈N un

N
+ Cmax

1

√
bmax
1 = u+2 + Cmax

2

√
N+

2 b
max
1 − N−1

N
(46)

Cmax
1√
bmax
1

=
Cmax

2 N+
2√

N+
2 b

max
1 − N−

1

N

(47)

u+k + Cmax
k

√
N+

k b
max
k −

N−k−1
N

= u+k+1 + Cmax
k+1

√
N+

k+1b
max
k −

N−k
N

, k = 2, 3, ..., N(r)− 2 (48)

Cmax
k N+

k√
N+

k b
max
k − N−

k−1

N

=
Cmax

k+1 N
+
k+1√

N+
k+1b

max
k − N−

k

N

, k = 2, 3, ..., N(r)− 2 (49)

30



u+N(r)−1 + Cmax
N(r)−1

√
N+

N(r)−1b
max
N(r)−1 −

N−N(r)−2

N
= max

n∈N
un (50)

bmax
N(r)−1 =

1

Nmax
N(r)

− 1

N
(51)

It now remains to show that the solution of System (44)-(51) satisfies (Cmax, bmax· ) =(
C+, b+

)
, where the latter are given by Eqs. (16). We begin with Case 1 and N(r) = 2. That

bmax1 = b+1 is trivially true. Then, Eq. (44) immediately yields

Cmax1 =

√
NN(r)

NN(r)−1
·N ·

(
u(N(r)) − u+

N(r)−1

)
= C+

1 .

We now focus on Case 2 and N(r) ≥ 3. Once again, bmaxN(r)−1 = b+N(r)−1 is trivially true, whence

Eq. (50) implies

CmaxN(r)−1 =

√
NN(r)

NN(r)−1
·
(
u(N(r)) − u+

N(r)−1

)2
= C+

N(r)−1.

Focusing on Eq. (49) for k ∈ {2, 3, ..., N(r)− 2} and solving for Cmaxk yields:

Cmaxk =

√
N+
k b

max
k − N−

k−1

N

N+
k

Cmaxk+1 N
+
k+1√

N+
k+1b

max
k − N−

k
N

. (52)

Plugging (52) into Eq. (48) we obtain:

Cmaxk+1

√
N+
k+1b

max
k −

N−k
N

1−
N+
k+1

N+
k

·
N+
k b

max
k − N−

k−1

N

N+
k+1b

max
k − N−

k
N

 = ū+
k − ū

+
k+1. (53)

After some algebra, the left-hand-side of Eq. (53) can be simplified so that:

Cmaxk+1 N
+
k+1

N

N−
k−1

N+
k

− N−
k

N+
k+1√

N+
k+1b

max
k − N−

k
N

=

∑
n∈N+

k
un

N+
k

−

∑
n∈N+

k+1
un

N+
k+1

⇒ −Cmaxk+1

Nk

N+
k

√
N+
k+1b

max
k − N−

k
N

=

(
u(k)N

+
k+1 −

∑
n∈N+

k+1
un

)
Nk

N+
k N

+
k+1

⇒ −
Cmaxk+1√

N+
k+1b

max
k − N−

k
N

= û+
k (54)

Combining Eqs. (49) and (54) obtains for k = 2, 3, ..., N(r)− 2:

Cmaxk = −
N+
k+1

N+
k

û+
k

√
N+
k b

max
k −

N−k−1

N
(55)
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bmaxk =

(
Cmaxk+1

û+
k

)2

+
N−
k
N

N+
k+1

, (56)

which after some simple algebra leads to the following nonhomogeneous linear recursion for the

squares of the Cmaxk ’s:

(Cmaxk )2 =
N+
k+1

N+
k

(
Cmaxk+1

)2
+
N+
k+1

N+
k

(
1−

N+
k+1

N+
k

)(
û+
k

)2
, k = 2, 3, ..., N(r)− 2. (57)

Solving recursion (57) backwards with (previously derived) initial value

(
CmaxN(r)−1

)2
=

NN(r)

NN(r)−1
·
(
û−N(r)

)2
,

taking square roots, and recalling the positive sign of the Cmaxk ’s, establishes that Cmaxk = C+
k for

k = 2, 3, ..., N(r)−2. Subsequently applying Eq. (56) establishes bmaxk = b+k for k = 2, 3, ..., N(r)−2.

Finally, Cmax1 = C+
1 and bmax1 = b+k is obtained by applying Cmax2 = C+

2 to Eq. (47) and solving

Eqs. (46) and (47) for bmax1 and Cmax1 .

Corollary 1: Characterization of Pmax(r, b) and Pmin(r, b). We distinguish between different

cases.

1. Pmax(r, b).

Case (1a): b < b+N(r)−1(r). In this case, by Proposition 2, we know that the optimal solution

pmax(b) will be unique. Consider the vectors
(
C+(r), b+(r)

)
defined in Eqs. (16). Suppose expert

nk satisfies n ∈ Nk(r). Then, Proposition 3 and Theorem 2 and simple algebra establish that

pmaxnk
(r, b) =



1
N +

(un(r)−u1(r)+)
C+

1 (r)

√
b b ∈

[
0, b+1 (r)

)
1

N+
k

(r)
+

(unk (r)−uk(r)+)

√
N+
k

(r)b−
N−
k−1

(r)

N

C+
k

(r)N+
k

(r)
b ∈

[
b+k−1(r), b+k (r)

)
, k = 2, 3, ..., k − 1

0 b ∈
[
b+k−1(r), b+N(r)−1(r)

)
.

Case (1b): b ≥ b+N(r)−1(r). Here, by Proposition 2 all vectors pmax(r, b) satisfying pmaxn (r, b) = 0

for n 6∈ NN(r)(r) and
∑
n∈NN(r)

(
pmaxn (r, b)− 1

N

)2
≤ b −

N−
N(r)−1

(r)

N2 will be optimal. This set is a

singleton at b = b+N(r)−1(r).

2. Pmin(r, b).

Case (2a): b < b−N(r)−1(r). In this case, by Proposition 2, we know that the optimal solution

pmin(r, b) will be unique. Consider the vectors
(
C−(r), b−(r)

)
defined in Eqs. (17). Suppose
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expert nk satisfies n ∈ Nk(r). Then, Proposition 3 and Theorem 2 and simple algebra establish

that

pminnk
(r, b) =



1
N +

(un(r)−uN(r)(r)
−)

C−1 (r)

√
b b ∈

[
0, b−1 (r)

)
1

N−
N(r)−k+1

(r)
+

(unk (r)−uN(r)−k+1(r)−)

√
N−
N(r)−k+1

(r)b−
N+
N(r)−k+2

(r)

N

C−
k

(r)N−
N(r)−k+1

(r)
b ∈

[
b−k−1(r), b−k (r)

)
,

k = 2, 3, ..., N(r)− k + 10 b ∈
[
b−k−1(r), b−N(r)−1(r)

)
.

Case (2b): b ≥ b−N(r)−1(r). Here, by Proposition 2 all vectors pmin(r, b) satisfying pminn (r, b) = 0

for n 6∈ N1(r) and
∑
n∈N1(r)

(
pminn (r, b)− 1

N

)2
≤ b− N+

2 (r)

N2 will be optimal. This set is a singleton

at b = b−N(r)−1(r).

Theorem 3. Here we apply part (iii) of Corollary 4 in Milgrom and Segal [26] to functions

Vmax(r|b) and Vmin(r|b) (we express the latter as a maximization problem −Vmax(−r|b)).

Corollary 2. Follows by Proposition 2 and Theorem 3.

Proposition 4. Follows from Proposition 2 and Theorem 3.

Corollary 3. The statement of the Corollary implies that NN(r)(r) = {n1} and N1(r) = {n2} for

all r ∈ R. Hence, b∗max(r) = b∗min(r) = N−1
N for all r ∈ [rm, rM ]. Applying Corollary 2 establishes

the result.
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A2: Constructing expert pdfs for the three R&D Scenarios from ICARUS survey

data

In the ICARUS survey, experts were asked to provide values for the 10th, 50th, and 90th percentile

of their distributions for the 2030 cost of solar technology conditional on all three Scenarios. In

addition, they were asked to provide values for the probability of this cost being less than or equal

to the following three values: 11.3, 5.5, and 3c$/kWh. These “threshold” cost levels correspond to

projections of the costs of electricity from fossil fuels or nuclear in 2030. The first (11.27 c$/kWh)

corresponds to the 2030 projected cost of electricity from traditional coal power plants in the

presence of a specific policy to control CO2 emissions (thus effectively doubling electricity costs

from fossil sources). The second threshold cost (5.5 c$/kWh) is the projected cost of electricity

from traditional fossil fuels in 2030, without considering any carbon tax. Finally, the third (3

c$/kWh) reflects a situation in which solar power becomes competitive with the levelized cost of

electricity from nuclear power.

Asking experts the follow up question on the likelihood of reaching threshold cost targets

allowed the survey authors to guard against the cognitive pitfalls associated with direct elicitation of

subjective probabilities, to increase the amount of elicited information, and to deepen the discussion

with the expert, hence improving their perception of his/her beliefs. In cases where the two sets of

answers (percentile values and threshold probabilities) were inconsistent, we contacted the expert

in order to obtain coherent estimates. Moreover, we asked all experts to give values for the upper

and lower limits of their distribution’s support in order to pinpoint the intervals over which their

implied probability distributions range.

Such corrected estimates were obtained from 14 out of the original 16 experts, and therefore

the analysis of Section 4 focuses solely on them. Among the respondents, not all provided values on

the left and right endpoints of their distributions’ support. As a result, we deduced between 6 and 8

points of 14 experts’ cumulative distribution functions (cdf) of the 2030 cost of solar electricity, given

the aforementioned three R&D investment Scenarios. From these points a probability distribution

function (pdf) was constructed using linear interpolation in the following way. First of all, and in

accordance with the experts’ answers, we considered cost levels c lying in [2c$/kWh, 30c$/kWh]

and discretized this interval on a scale of 0.5 (30c$/kWh represents an estimate of the technology’s

current cost). Now, suppose an expert reported the values of his/her cdf Fn at two successive

points c1 and c2 where c2 > c1 and gave no further information on cost levels between c1 and c2.

Assuming right-continuity of Fn we took the probability mass Fn(c2) − Fn(c1) to be distributed

uniformly among the cost levels {c1 + .5, c1 + 1, ..., c2}. For experts who did not provide values for
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the lower limit of their distribution’s support we assumed that whatever probability mass remained

to be allocated (always less than .1) was distributed uniformly between the smallest argument of

the cdf and two cost levels below it. For example, if an expert only indicated that cl was his y’th

percentile and gave no further points of the cdf below this, we assumed that a probability mass

of y was distributed evenly across {cl − 1, cl − .5, cl}. In the case of an unknown upper limit, if

an expert only indicated that cu was his yth percentile and gave no further arguments for the cdf

above it, we assumed that a probability mass of 1−y was distributed evenly across {cu+ .5, cu+1}.
Following this procedure we arrived at probability distribution functions for all 14 experts

conditional on all three Scenarios. The implied cumulative distribution functions are depicted in

Figure 1.
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A3: Tables and Figures

2030 solar-technology cost c Benefit B(c)

(2005 USc$/kWh) (US$ 109)

2 189.90

2.5 170.76

3 151.26

3.5 131.74

4 112.12

4.5 92.29

5 71.47

5.5 50.64

6 29.27

6.5 23.59

7 12.32

7.5 3.67

8 1.76

> 8 0

Table 1: EU discounted consumption improvement as a function of 2030 solar-power cost

R&D Scenario r Opportunity Cost O(r) (US$ 109)

r1 3.67

r2 5.51

r3 7.35

Table 2: Discounted opportunity cost of R&D Scenarios
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Figure 1: Expert and aggregate cdfs of the 2030 cost of solar technology under the three R&D Sce-

narios. Recall that the cdf’s domain is {2, 2.5, ..., 29, 29.5, 30}. Cost is measured in 2005 USc$/kWh.
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Figure 2: Worst and Best-Case net payoffs (benefits minus opportunity cost) for the three R&D

scenarios. Net payoffs are measured in US$109.
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Figure 3: Net payoff (benefits minus opportunity cost) for the three R&D scenarios, as a function

of ambiguity b and ambiguity attitude α. Net payoffs are measured in US$109.
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40



References

[1] D. Ahn (2008), “Ambiguity without a State Space,” Review of Economic Studies, 75, 3–28.

[2] F. Alizadeh and D. Goldfarb (2003), “Second-order Cone Programming,” Mathematical Programming B, 95,

3–51.

[3] K. Arrow and L. Hurwicz (1972), “An Optimality Criterion for Decision-Making under Ignorance,” in C.F.

Carter and L.J. Ford (eds.) Uncertainty and Expectations in Economics: Essays in Honour of G.L.S. Shackle

(Oxford: Basil Blackwell), 1-11.

[4] E. Baker, H. Chon, J. Keisler (2009), “Advanced solar R&D: Combining economic analysis with expert elicita-

tions to inform climate policy,” Energy Economics, 31, S37-S49.

[5] E. Baker, H. Chon, J. Keisler (2009), “Carbon capture and storage: combining economic analysis with expert

elicitations to inform climate policy,” Climatic Change, 96, 379-408.

[6] D. Bertsekas (1999), Nonlinear Programming, Belmont, MA: Athena Scientific.

[7] V. Bosetti, M. Catenacci, G. Fiorese, and E. Verdolini (2011), “SOLAR PV and CSP technologies: Policy

recommendations from the ICARUS survey on current state and future development,” available at: www.icarus-

project.org/wp-content/uploads/2011/06/wp-icarus-web.pdf.

[8] V. Bosetti, C. Carraro, M. Galeotti, E. Massetti and M. Tavoni (2006), “WITCH: A World Induced Technical

Change Hybrid Model,” Energy Journal, 2, 13-38.

[9] S. Boyd and L. Vandenberghe (2008), Convex Optimization. New York, NY: Cambridge University Press.

[10] A. Chateaunauf, J. Eichberger, and S. Grant (2007), “Choice under Uncertainty with the Best and Worst in

Mind: Neo-additive Capacities,” Journal of Economic Theory, 137, 538–567.

[11] R. Clemen and R. Winkler (1999), “Combining Probability Distributions from Experts in Risk Analysis,” Risk

Analysis, 19, 187–203.

[12] R. Clemen and R. Winkler (2007), “Aggregating probability distributions,” In: W. Edwards, R. Miles, & D.

von Winterfeldt (Eds.) Advances in Decision Analysis .(pp. 154-176). Cambridge , UK : Cambridge University

Press.

[13] R. Cooke (1991), Experts in Uncertainty: Opinion and Subjective Probability in Science, Oxford University

Press, USA.

[14] J. Eichberger, S. Grant, D. Kelsey, and G. Koshevoye (2011), “The α-MEU model: A comment,” Journal of

Economic Theory, 146, 1684–1698.

[15] P. Ghirardato (2001), “Coping with Ignorance: Unforeseen Contingencies and Non-Additive Uncertainty,” Eco-

nomic Theory, 17, 247–276.

[16] P. Ghirardato, F. Maccheroni, and M. Marinacci (2004), “Differentiating Ambiguity and Ambiguity Attitude,”

Journal of Economic Theory, 118, 133-173.

[17] Gilboa, I. and M. Marinacci (2011), “Ambiguity and the Bayesian Paradigm,” Advances in Economics and

Econometrics: Theory and Applications, Tenth World Congress of the Econometric Society, forthcoming.

[18] I. Gilboa and D. Schmeidler (1989), “Maxmin Expected Utility with Non-Unique Prior,” Journal of Mathematical

Economics, 18, 141–153.

41



[19] G. Grossman and E. Helpman (1991), Innovation and growth in the global economy, MIT Press

[20] L. Hurwicz (1951), “Some specification problems and application to econometric models,” Econometrica, 19,

343–344.

[21] G. Iyengar (2005), “Robust Dynamic Programming,” Mathematics of Operations Research, 30, 257-280.

[22] J.-Y. Jaffray (1989), “Linear Utility Theory for Belief Functions,” Operations Research Letters, 8, 107–112.

[23] E. Karni (2011), “A Theory of Bayesian Decision-Making with Action-Dependent Subjective Probabilities,”

Economic Theory 48, 125-146.

[24] P. Klibanoff, M. Marinacci, and S. Mukerji (2005), “A Smooth Model of Decision Making Under Ambiguity,”

Econometrica, 73, 1849–1892.

[25] F. Knight (1921), Risk, Uncertainty, and Profit Houghton Mifflin, USA.

[26] P. Milgrom and I. Segal (2002), “Envelope Theorems for Arbitrary Choice Sets,” Econometrica, 70, 583–601.

[27] G. Morgan, and M. Henrion (1990), Uncertainty: A guide to dealing with uncertainty in quantitative risk and

policy analysis, Cambridge University Press, New York.

[28] R. Newell, A Jaffe, and R. Stavins (1999), “The Induced Innovation Hyphothesis and Energy-Saving Techno-

logical Change.” Quarterly Journal of Economics, 114, 941–975.

[29] A. O’Hagan, C.E. Buck, A. Daneshkhan, J.R. Eiser, P.H. Garthwaite, D.J. Jenkinson, J.E. Oakey, and T. Rakow,

(2006), Uncertain judgments: Eliciting experts probabilities, John Wiley and Sons, Ltd., Chichester.

[30] W. Olszewski (2007), “Preferences Over Sets of Lotteries,” Review of Economic Studies, 74, 567-595.

[31] D. Popp (2002), “Induced Innovation and Energy Prices.” American Economic Review, 92, 160-180.

[32] D. Popp (2004), “ENTICE: Endogenous Technological Change in the DICE Model of Global Warming,” Journal

of Environmental Economics and Management, 48, 742–768.

[33] M. Rostek (2010), “Quantile Maximization in Decision Theory,” Review of Economic Studies, 77, 339–371.

[34] L. J. Savage (1954), The Foundations of Statistics, Wiley, New York.

[35] A. Tversky and D. Kahneman (1974), “Judgment under Uncertainty: Heuristics and biases,” Science, 185,

1124–1131.

[36] M.L. Viero (2009), “Exactly What Happens After the Anscombe-Aumann Race? Representing Preferences in

Vague Environments,” Economic Theory, 41, 175–212.

42



NOTE DI LAVORO DELLA FONDAZIONE ENI ENRICO MATTEI 

Fondazione Eni Enrico Mattei Working Paper Series 

Our Note di Lavoro are available on the Internet at the following addresses: 
http://www.feem.it/getpage.aspx?id=73&sez=Publications&padre=20&tab=1 

http://papers.ssrn.com/sol3/JELJOUR_Results.cfm?form_name=journalbrowse&journal_id=266659 
http://ideas.repec.org/s/fem/femwpa.html 

http://www.econis.eu/LNG=EN/FAM?PPN=505954494 
http://ageconsearch.umn.edu/handle/35978 

http://www.bepress.com/feem/ 
 
 
 
 

NOTE DI LAVORO PUBLISHED IN 2012 
CCSD 1.2012 Valentina Bosetti, Michela Catenacci, Giulia Fiorese and Elena Verdolini: The Future Prospect of PV and CSP 

Solar Technologies: An Expert Elicitation Survey 
CCSD 2.2012 Francesco Bosello, Fabio Eboli and Roberta Pierfederici: Assessing the Economic Impacts of Climate 

Change. An Updated CGE Point of View 
CCSD 3.2012 Simone Borghesi, Giulio Cainelli and Massimiliano Mozzanti: Brown Sunsets and Green Dawns in the 

Industrial Sector: Environmental Innovations, Firm Behavior and the European Emission Trading 
CCSD 4.2012 Stergios Athanassoglou and Valentina Bosetti and Gauthier de Maere d'Aertrycke: Ambiguous Aggregation 

of Expert Opinions: The Case of Optimal R&D Investment 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


