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The Dual of the Least-Squares Method 
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Abstract 
 
The least-squares method was firmly established as a scientific approach by Gauss, 
Legendre and Laplace within the space of a decade, at the beginning of the nineteenth 
century. Legendre was the first author to name the approach, in 1805, as “méthode des 
moindres carrés,” a “least-squares method.”  Gauss, however, is credited to have used it 
as early as 1795, when he was 18 years old. He, subsequently, adopted it in 1801 to 
calculate the orbit of the newly discovered planet Ceres. Gauss published his way of 
looking at the least-squares approach in 1809 and gave several hints that the least-squares 
algorithm was a minimum variance linear estimator and that it was derivable from 
maximum likelihood considerations.  Laplace wrote a very substantial chapter about the 
method in his fundamental treatise on probability theory published in 1812.  Surprisingly, 
there still remains an unexplored aspect of the least-squares method: since the traditional 
formulation is stated as minimizing the sum of squared deviations subject to the linear (or 
nonlinear) specification of a regression model, this mathematical programming problem 
must have a dual counterpart.  This note fills this gap and shows that the least-squares 
estimates of unknown parameters and deviations can be obtained by maximizing the net 
value of sample information. 
 
 
Key Words: least squares, primal, dual, Pythagoras theorem, noise, value of sample 
information 
 
 
1. Introduction 
 
The least-squares method has primal and dual specifications. The primal specification is 
well known: Given a regression function (either linear or nonlinear) and a sample of 
observations, the goal is to minimize the sum of the squared deviations between the data 
and the regression relation, as discussed in section 3. The dual specification is not known 
because it was not sought out over the past two hundred years. This paper presents such a 
dual specification in section 4. First, however, the reader is offered a historical and 
illuminating perspective of the least-squares method in the words of its inventor. 
 
2. Historical Perspective 
 
Karl Friedrich Gauss, at the age of 18, conceived the least-squares (LS) method. 
However, he did not publish it until 1809  (Gauss, p. 221). There, he states that  “Our 
principle, which we have used since the year 1795, has lately been published by Legendre 
in the work Nouvelles méthodes pour la détermination des orbites des comètes, Paris 
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1806, where several other properties of this principle have been explained, which, for the 
sake of brevity, we here omit.” (translation by Charles Henry Davis, 1857, p. 270).    
Furthermore, in the Preface to his book (pp. viii-x), Gauss gives an insightful and 
illuminating account of how the idea of the least-squares method came to him. Up to that 
time, “… in every case in which it was necessary to deduce the orbits of heavenly bodies 
from observations, there existed advantages not to be despised, suggesting, or at any rate 
permitting, the application of special methods; of which advantages the chief one was, 
that by means of hypothetical assumptions an approximate knowledge of some elements 
could be obtained before the computation of the elliptic elements was commenced. 
Notwithstanding this, it seems somewhat strange that the general problem – To 
determine the orbit of a heavenly body, without any hypothetical assumption, from 
observations not embracing a great period of time, and not allowing the selection 
with a view to the application of special methods, – was almost wholly neglected up to 
the beginning of the present century; or at least, not treated by any one in a manner 
worthy its importance; since it assuredly commended itself to mathematicians by its 
difficulty and elegance, even if its great utility in practice were not apparent.  An opinion 
had universally prevailed that a complete determination from observations embracing a 
short interval of time was impossible – an ill-founded opinion – for it is now clearly 
shown that the orbit of a heavenly body may be determined quite nearly from good 
observations embracing only a few days; and this without any hypothetical assumption. 
 
Some idea occurred to me in the month of September of the year 1801, engaged at the 
time on a very different subject, which seemed to point to the solution of the great 
problem of which I have spoken. Under such circumstances we not unfrequently, for fear 
of being too much led away by an attractive investigation, suffer the associations of 
ideas, which more attentively considered, might have proved most fruitful in results, to be 
lost from neglect.  And the same fate might have befallen these conceptions, had they not 
happily occurred at the most propitius moment for their preservation and encouragement 
that could have been selected.  For just about this time the report of the new planet, 
discovered on the first day of January of that year with the telescope at Palermo, was the 
subject of universal conversation; and soon afterwards the observations made by the 
distinguished astronomer Piazzi from the above date to the eleventh of February were 
published.  Nowhere in the annals of astronomy do we meet with so great an opportunity, 
and a greater one could hardly be imagined, for showing most strikingly, the value of this 
problem, than in this crisis and urgent necessity, when all hope of discovering in the 
heavens this planetary atom, among innumerable small stars after the lapse of nearly a 
year, rested solely upon a sufficiently approximate knowledge of its orbit to be based 
upon these very few observations.  Could I ever have found a more seasonable 
opportunity to test the practical value of my conceptions, than now in employing them for 
the determination of the orbit of the planet Ceres, which during the forty-one days had 
described a geocentric arc of only three degrees, and after the lapse of a year must be 
looked for in a region of the heavens very remote from that in which it was last seen?  
This first application of the method was made in the month of October, 1801, and the first 
clear night, when the planet was sought for* (by de Zach, Decembre 7, 1801) as directed 
by the numbers deduced from it, restored the fugitive to observation.  Three other new 
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planets, subsequently discovered, furnished new opportunities for examining and 
verifying the efficiency and generality of the method. 
 
Several astronomers wished me to publish the methods employed in these calculations 
immediately after the second discovery of Ceres; but many things – other occupations, 
the desire of treating the subject more fully at some subsequent period, and, especially, 
the hope that a further prosecution of this investigation would raise various parts of the 
solution to a greater degree of generality, simplicity, and elegance, – prevented my 
complying at the time with these friendly solicitations.  I was not disappointed in this 
expectation, and I have no cause to regret the delay.  For the methods first employed 
have undergone so many and such great changes, that scarcely any trace of resemblance 
remain between the method in which the orbit of Ceres was first computed, and the form 
given in this work.  Although it would be foreign to my purpose, to narrate in detail all 
the steps by which these investigations have been gradually perfected, still, in several 
instances, particularly when the problem was one of more importance than usual, I have 
thought that the earlier methods ought not to be wholly suppressed.  But in this work, 
besides the solution of the principal problems, I have given many things which, during 
the long time I have been engaged upon the motions of the heavenly bodies in conic 
sections, struck me as worthy of attention, either on account of their analytical elegance, 
or more especially on account of their practical utility. (Davis, pp. xiii-xvi). 
 
This lengthy quotation points to several aspects of discovery of which scientists were 
aware more than two hundred years ago: elegance as a crucial scientific criterion, 
serendipity, and the importance of long periods of reflection in order to better understand 
the properties of new methods. This last aspect perfectly fits the spirit of the present note 
that is devoted to the presentation of the dual specification of the least-squares method, a 
property that was neglected for over two hundred years.  
 
Another striking feature of Gauss’ thinking process about measuring the orbit of heavenly 
bodies consists in his clearly stated desire to achieve the highest possible accuracy 
(Davis, p. 249): “If the astronomical observations and other quantities, on which the 
computation of orbits is based, were absolutely correct, the elements also, whether 
deduced from three or four observations, would be strictly accurate (so far indeed as the 
motion is supposed to take place exactly according to the laws of Kepler), and, therefore, 
if other observations were used, they might be confirmed, but not corrected.  But since all 
our measurements and observations are nothing more than approximations to the truth, 
the same must be true of all calculations resting upon them, and the highest aim of all 
computations made concerning concrete phenomena must be to approximate, as nearly 
as practicable, to the truth.  But this can be accomplished in no other way than by a 
suitable combination of more observations than the number absolutely requisite for the 
determination of the unknown quantities.  This problem can only be properly undertaken 
when an approximate knowledge of the orbit has been already attained, which is 
afterwards to be corrected so as to satisfy all the observations in the most accurate 
manner possible. 
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It can only be worth while to aim at the highest accuracy, when the final correction is to 
be given to the orbit to be determined. But as long as it appears probable that new 
observations will give rise to new corrections, it will be convenient to relax more or less, 
as the case may be, from extreme precision, if in this way the length of the computations 
can be considerably diminished.  We will endeavor to meet both cases.” 
 
Here, Gauss seems to be totally aware of the problem connected to out-of-sample 
prediction and the necessity or, at least, convenience of a recursive algorithm to account 
for the information carried by new observations.  
 
Gauss’ reading becomes even more exciting (Davis, pp. 252-253): “But when we have a 
longer series of observations, embracing several years, more normal positions can be 
derived from them; on which account, we should not insure the greatest accuracy, if we 
were to select three or four positions only for the determination of the orbit, and neglect 
all the rest.  But in such a case, if it is proposed to aim at the greatest precision, we shall 
take care to collect and employ the greatest possible number of accurate places.  Then, of 
course, more data will exist that are required for the determination of the unknown 
quantities: but all these data will be liable to errors, however small, so that it will 
generally be impossible to satisfy all perfectly.  Now as no reason exists, why, from 
among those data, we should consider any six as absolutely exact, but since we must 
assume, rather, upon the principles of probability, that greater or less errors are equally 
possible in all, promiscuously; since, moreover, generally speaking, small errors oftener 
occur than large ones; it is evident, that an orbit which, while it satisfies precisely the six 
data, deviates more or less from the others, must be regarded as less consistent with the 
principles of the calculus of probabilities, than one which, at the same time that it differs 
a little from those six data, presents so much the better an agreement with the rest.  The 
investigation of an orbit having, strictly speaking, the maximum probability, will depend 
upon a knowledge of the law according to which the probability of errors decreases as 
the errors increase in magnitude: but that depends upon so many vague and doubtful 
considerations – physiological included – which cannot be subjected to calculation, that 
it is scarcely, and indeed less than scarcely, possible to assign properly a law of this kind 
in any case of practical astonomy.  Nevertheless, an investigation of the connection 
between this law and the most probable orbit, which we will undertake in its utmost 
generality, is not to be regarded as by any means a barren speculation.”  This quotation 
suggests the seed of a maximum likelihood approach.   
 
Which takes on a clear statement in the following quote (Davis, p. 255): “Now in the 
same manner as, when any determinate values whatever of the unknown quantities being 
taken, a determinate probability corresponds, previous to observation, to any system of 
values of the functions (of the unknown parameters); so, inversely, after determinate 
values of the functions have resulted from observation, a determinate probability will 
belong to every system of values of the unknown quantities, from which the value of the 
functions could possibly have resulted: for, evidently, those systems will be regarded as 
the more probable in which the greater expectation had existed of the event which 
actually occurred.  The estimation of this probability rests upon the following theorem: – 
If, any hypothesis H being made, the probability of any determinate event E is h, and if, 
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another hypothesis H’ being made excluding the former and equally probable in itself, 
the probability of the same event is h’: then I say, when the event E has actually 
occurred, that the probability that H was the true hypothesis, is to the probability that 
H’ was the true hypothesis, as h to h’.”   
 
Gauss proceeds to state, analytically, the function that represents the probability of an 
event composed of many observations and to derive from such a statement the least-
squares principle (Davis, pp. 260-261): “Therefore, that will be the most probable system 
of values of the unknown quantities (parameters) in which the sum of the squares of the 
differences between the observed and computed values of the functions (of the unknown 
parameters) is a minimum, if the same degree of accuracy is to be presumed in all the 
observations.  … The principle explained in the preceding (paragraph) derives value also 
from this, that the numerical determination of the unknown quantities is reduced to a very 
expeditious algorithm, when the functions (of the unknown parameters) are linear.” This 
quotation contains a clear statement of the LS approach as the minimum variance linear 
estimator.   
 
Gauss did not name his approach as the Least-Squares method.  This name was suggested 
first by Adrien Marie Legendre (1805).  In his preface, Legendre states (p. viii): “After all 
the problem’s conditions have been appropriately specified, it is necessary to calculate 
the coefficients in such a manner as to make the errors as small as possible.  To this goal, 
the method which seems to me the simplest and most general one consists in minimizing 
the sum of the squared errors.  In this way, one obtains as many equations as unknown 
coefficients; a way to calculate all the orbit’s elements. The method that I will present, 
and that I call the least-squares method, may be very useful in all problems of physics 
and astronomy where one needs to obtain the most precise results possible from 
observations.” Surprisingly, Legendre does not mention Gauss’ success in predicting 
Ceres’ orbit that was obtained in 1801 and was – apparently, according to Gauss – very 
acclaimed among the world’s astronomers.  Also Legendre derives his LS method 
directly by stating the problem as a linear function of the unknown parameters, without 
the more elaborate construct of maximizing the likelihood function formulated by Gauss. 
 
There remains to mention Laplace. In 1812, he published a fundamental textbook about 
probability theory and devoted chapter 4 of Book 2 to a probability treatment of the LS 
methodology. The book was dedicated to Napoleon the Great who, in that year, 
undertook the ill-fated invasion of Russia. The chapter  in question is titled: The 
probability of the errors of the average results based upon a large number of 
observations, and the most advantageous average results. In this chapter one finds a 
theoretical foundation of the least-squares method (for linear systems) which results as a 
consequence of the analysis that the mean observational error will fall within certain 
given limits. The analysis – says Laplace (p. 348) – leads directly to the results associated 
with the least-squares method.  

 
When all the properties and features of the LS method were thought to be well known, 
and when all the possible ways of obtaining the least-squares estimates of a linear 
system’s parameters were thought to have been discovered, there surfaced an intriguing 
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question: What is the dual specification of the least-squares method? It is difficult or, 
better, impossible to conjecture whether such a question could have occurred to either 
Gauss, or Legendre, or Laplace.  The Lagrangean method, that is crucial for answering 
this question, was published by Lagrange in 1804, with revisions in 1806 and 1808.  
Perhaps, the greatest obstacle to the idea of the dual LS specification has been the 
particular way in which the LS problem is formulated and presented to students. To date, 
the traditionally and universally used approach to the LS estimator has hidden away the 
analytical path to the dual problem. By now one can say that, at least from the viewpoint 
of fully understanding its structure, the neglect of the dual of the LS method has left a 
rather sizable gap. The objective of this note is to fill this gap.   

 
3. The Primal of the Least-Squares Method 
 
We abstract from any statistical distribution of the error terms and hypothesis-testing 
consideration.  The traditional (primal) LS approach consists of minimizing the squared 
deviations from an average relation of, say, a linear model that consists of three parts: 
 
     y = X! + u             (1) 
  
where y  is an (n x 1) vector of sample observations,  is an (n x k) matrix of 
predetermined values, !  is a (k x 1) vector of unknown parameters to be estimated, and 

 is an (n x 1) vector of deviations from the quantity X! .  
 
In the terminology of information theory, relation (1) may be regarded as representing the 
decomposition of a message into signal and noise, that is, 
 
    message = signal + noise           (2) 
     
with the obvious correspondence: y  = message, X!  = signal, and u  = noise. The 
quantity y  is more generally known as the sample information. 
 
The least-squares methodology, then, minimizes the squared deviations (noise) subject to 
the model’s specification given in equation (1). Symbolically, 
 
  Primal:      minSSD = !u u / 2           (3) 
     
       subject to      y = X! + u            (4) 
     
where SSD stands for sum of squared deviations. An intuitive interpretation of the 
objective function (3) is the minimization of a cost function of noise. We call model (3) 
and (4) the Primal LS model.  The solution of model (3) and (4) by any appropriate 
mathematical programming routine gives the LS estimates of parameters !  and 
deviations (noise) u . 
 

 

X

 

u
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Traditionally, however, the LS method is presented as the minimization of the sum of 
squared deviations defined as SSD = (y ! X" #) (y ! X" )  with the necessity of deriving, 

first, an estimate of the !  parameters and then using their least-squares estimates ˆ!  to 

obtain the LS residuals: û = y ! X ˆ" .  This way of presenting the LS method obscures the 
derivation of the dual specification and is the source of some readers’ disbelief that LS 
parameters and residuals may be estimated simultaneously. 

 
4. The Dual of the Least-Squares Method 
 
The Lagrange approach is eminently suitable for deriving the dual of the least-squares 
method. Hence, choosing the (n x 1) vector variable  to indicate n Lagrange multipliers 
(or dual variables) of constraints (4), the relevant Lagrangean function is stated as 
 
      L(u,!,e) = "u u / 2 + "e (y # X! # u)                     (5) 
   
with first order necessary conditions (FONC)  
 

    !L

!u
= u " e = 0            (6)

 

        
 

    !L

!"
= # $X e = 0            (7) 

    
     

 

    !L

!e
= y " X# " u = 0 .           (8)  

    
A first remarkable insight is that, from FONC (6), the Lagrange multipliers (dual 
variables), e , of the LS method are identically equal to the deviations (primal variables, 
noise), u . Each observation in model (4), then, is associated with its specific Lagrange 
multiplier that turns out to be identically equal to the corresponding deviation. A 
Lagrange multiplier measures the amount of change in the objective function due to a 
change in one unit of the associated observation. If a Lagrange multiplier is too large, the 
corresponding observation may be an outlier. Secondly, FONC (6) and (7), combined 
into !X u = 0 , represent the orthogonality condition between the vector of deviations and 
the space of predetermined values of the linear model (1) that characterizes the LS 
approach. The equations !X u = 0 constitute the constraints of the dual model.  In general, 
the dual objective function is given by the maximization of the Lagrangean function with 
respect to dual variables, keeping in mind that e = u . And since we are dealing with a 
quadratic specification, the Lagrangean function can be simplified substantially by means 
of relation (6), restated as: 
 
   u = e   and  !u u = !u e .          (9) 
     
Therefore, the Lagrangean function can be streamlined as 

 

e
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L(u,!,e) = "u u / 2 + "e (y # X! # u)

             = "u y # "u u / 2
         (10) 

       
using relations (7) and (9). 
 
The Dual of the LS model can now be assembled as 
 
  Dual:   maxNVSI = !u y " !u u / 2         (11) 
    
   subject to         !X u = 0 .        (12)  
     
Constraints (12) constitute the orthogonality conditions of the LS approach, already 
mentioned above.  An intuitive interpretation of the dual objective function can be 
formulated within the context of information theory. Hence, the dual problem seeks to 
maximize the net value of the sample information (NVSI).  Typically, dual variables 
(Lagrange multipliers) are regarded as marginal sacrifices or implicit (shadow) prices of 
the corresponding constraints. We have already seen that dual variables e  are identically 
equal to primal variables u . Thus, in the LS specification, the variables u  have a double 
role: as deviations in the primal model (noise) and as “implicit prices” in the dual model. 
The quantity !u y , therefore, is interpreted as the gross value of sample information. This 
quantity is netted out of the “cost of noise”, !u u / 2 , to provide the highest possible level 
of the NVSI objective function. 
 
In the dual model, the vector of parameters !  is obtained as a vector of Lagrange 
multipliers of constraints (12). In fact, from the Lagrangean function of the dual problem 
stated as 
 

   L *(u,µ) = !y u " !u u / 2 " !µ [ !X u]  
 

where µ  is a (k !1)  vector of Lagrange multipliers associated with constraints (12), the 
corresponding FONCs are 
 

    !L *

!u
= y " u " Xµ = 0

          (13)
 

  
 

    !L *

!µ
= " #X u = 0 .          (14)  

     
Hence, from equations (13) and (14), we can write 
 
    !X y " !X u " !X Xµ = 0 = !X y " !X Xµ  
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that results (assuming the nonsingularity of the ( !X X)  matrix) in the formula of the well 
known LS estimator 
       µ̂ = ( !X X)"1 !X y = #̂ . 
 
All the information of the traditional LS primal problem is contained in the LS dual 
model, and vice versa.  Hence, the pair of dual problems – the primal [(3)-(4)] and the 
dual [(11)-(12)] – provides identical LS solutions for separating signal from noise. 
 
At optimal solutions, û , of both the primal and the dual LS models, the two objective 
functions are equal and can be written as 
 

    
Primal = Dual

!û û / 2 = !û y " !û û / 2.
 

It follows that  
     

    ! "û û / 2

!y
= û  

which demonstrates a previous assertion, namely that the change in the primal objective 
function corresponding to a marginal change in each sample observation is equal to its 
associated Lagrange multiplier that is identically equal to the corresponding deviation. 
The two primal and dual objective functions can also be rewritten as 
 

    !û û

n
=

!û y

n
. 

 
Hence, the quantity !û y / n  represents an equivalent way to estimate the variance of the 
sample deviations. This result was never indicated in any statistics or econometrics 
textbook.  

 
5. The Dual of the LS Method and Pythagoras Theorem 
 
An interpretation of the dual pair of LS problems, without reference to any empirical 
context, can be formulated using the Pythagorean theorem. With the knowledge that a 
solution to the LS problem requires the fulfillment of the orthogonality conditions 
!X u = 0 , given in (12), Pythagoras theorem allows for the statement 

 

    
!y y = !y (X" + u) = (X" + u !) (X" + u)

    = !" !X X" + 2 !" !X u + !u u

    = !" !X X" + !u u        (15) 

  

 
and also 
 



  10 

    
!y y = !y (X" + u) = !y X" + !y u

     = (X" + u !) X" + !y u

     = !" !X X" + !y u.  

   

 
Therefore, 
     !u u = !y u  
      
that can be restated as 
 
           !u u / 2 = !y u " !u u / 2          (16)  
    
which corresponds to the two objective functions of the primal (3) and the dual (11): the 
left-hand-side of equation (16) is the primal objective function to be minimized and the 
right-hand-side of the same equation is the dual objective function to be maximized. By 
the Pythagoras theorem (expressed by equation (15)), for any given vector of 
observations y , the minimization of !u u  must be matched by the maximization of 
!" !X X" .  Equivalently, minimizing the length of the deviation vector u  corresponds to 

maximizing the length of the vector X! , which is the projection of the observation 
vector y  onto the space of predetermined variables X . 
 
6. Conclusion 
 
This note has retraced the history of the least-squares method and has developed the dual 
specification of it, which is a novel way of looking at the LS approach. It has shown that 
the traditional minimization of the sum of squared deviations – that gives the name to the 
algorithm – is equivalent to the maximization of the net value of sample information. 
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_____________________ 
 
 
Afterword 
 
I assert rather comfortably that very few present-day statisticians (if any) are aware of the 
history of the least-squares method and I am certain that none knows about its dual 
specification. In spite of these facts, the gatekeepers of statistics have desk rejected the 
present paper with justifications that – at times – are hopelessly disturbing.  When a 
problem has primal and dual specifications, ignoring the dual model is akin to ignoring 
the other side of the story and, therefore, preferring ignorance to full knowledge. 
 
I began this saga by submitting the paper to The American Statistician. I specifically 
indicated that it would have been suitable for its Teachers Corner. The editor, professor 
John Stufken, took more than 100 days to deliver the following nonsensical rejection: “... 
your writing makes no distinction between errors (noise) and residuals. The model y = X 
beta + u, with u as the errors, is an identity. Here u is a random error term, and 
minimizing u'u makes no sense since the errors, while unobservable, are what they are. 
What does make sense is finding a beta_hat that minimizes (y - X beta)'(y - X beta) over 
all possible choices of beta. We would then define e = y - X beta_hat (this e is different 
from your e), and refer to this as the vector of residuals. But e and u are not the same. - 
thus the least square problem is normally written as an unconstrained minimization 
problem: min (y - X beta)' (y - X beta). What is gained by using your form (3) and (4), 
suggesting a constrained optimization problem? What insights are gained from any of the 
observations made in the paper?”  
 
Notice that I specifically avoided the use of terms such as “errors” and “residuals” (I 
called them “deviations”) in order to concentrate on the essential aspects of the least-
squares method. A highly surprising statement of professor Stufken, then, deals with his 
writing that “The model y = X beta + u, with u as the errors, is an identity.” This opinion 
is certifiably wrong since, otherwise, every equation would be an identity and the error 
specification analysis would be useless. The next statement is even more appalling: 
“…minimizing u'u makes no sense… [but] What does make sense is finding a beta_hat 
that minimizes (y - X beta)'(y - X beta)…” To help editor Stufken in his understanding of 
the least-squares approach, I suggest that he ought to reflect, for a moment, on how the 
latter sum of squares (y - X beta)'(y - X beta) is obtained. In the end, Stufken’s questions 
“What is gained by using your form (3) and (4), suggesting a constrained optimization 
problem? What insights are gained from any of the observations made in the paper?” 
reveal his total inability to appreciate the process of “understanding” since all his efforts 
are concentrated on the process of “how to do things.” Unfortunately, this is a rather 
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common example of the scientific prejudice that must be confronted when dealing with 
gatekeepers of science of professor Stufken’s type. 
 
I lowered my expectations and the second submission was to the online journal 
Economics Bulletin whose mission statement includes “…free and extremely rapid 
scientific communication across the entire community of research economists.”  In fact, 
when I submitted my paper, the average editorial lag for refereed contents over the last 12 
months was of 53.88 days. Unfortunately, after more than 120 days, the editor, professor 
John P. Conley, notified me that “I have not yet succeeded in getting a response from the 
referees.” I withdrew my submission. 
 
Daringly, the third submission was to the Journal of the American Statistical Association. 
In a moment of scientific enlightenment, I thought that full knowledge and understanding 
of both the history and the structure of the least-squares methodology ought to be 
disseminated in a prominent way among statisticians who, probably, use this approach on 
a daily basis. I was wrong. Professor Xuming He, Co-Editor of JASA wrote: “I regret to 
inform you that we have now considered your paper but unfortunately feel it unsuitable 
for publication in Journal of the American Statistical Association (JASA). Your paper 
discussed an interesting duality for the least squares method, but its level of novelty and 
significance falls short of what we normally expect from JASA publications.” According 
to editor Xuming He, although nobody knows the duality of least squares, “its level of 
novelty and significance falls short of what we normally expect from JASA publications.” 
 
What about the Journal of the Royal Statistical Society, Series B? Another desk rejection. 
The Joint Editor, professor Gareth Roberts, wrote: “I enjoyed reading through your 
account. Certainly much of the historical information about the discovery of the least 
squares method was new to me, and I found it of some interest. However this is not 
material which is suitable for JRSS B. The other contribution of your article is to 
consider the dual to the least squares minimisation problem. Unfortunately, although this 
perspective is quite unusual, I did not find it a sufficiently substantial observation to 
consider that it would fare well in a full review.” 
 
Down from the Olympus Mountain of statistics, the next submission was to the American 
Journal of Agricultural Economics, whose contributors and readers are among the most 
active users of the least-squares approach. No luck. The editor, professor David 
Hennessy, wrote: “In the case of your submission, I have determined that it is not 
appropriate for this journal and it would not be a good use of the referees time or your 
time to send this manuscript to outside reviewers. In this case, I am very confident that if 
I were to choose outside reviewers, they would concur with my decision. In any event, as 
one of the ultimate gatekeepers of what articles are published in this journal, I do not feel 
that this article would be appropriate for publication in American Journal of Agricultural 
Economics even if your paper did happen to receive a positive review.” Prejudice or 
Catch 22? 
 
The last submission was to the Journal of Statistics Education. I thought that knowing 
two ways for explaining the LS method to statistics students ought to be better than 
knowing only one.  The editor, professor John Gabrosek, does not agree. He wrote: “The 
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words primal and dual need a definition.  How should the reader (who is likely a teacher 
of statistics and not a researcher) interpret these words?” This is discouraging: I thought 
that, even before reading my paper, a teacher of statistics ought to know the meaning of 
the words least squares. Gabrosek’s comment is equivalent to say that these words need 
a definition. Of course, my paper defines the primal and dual problems (see the 
Introduction) and in so doing it defines also the primal and dual words. The editor also 
wrote: “If the practical application of the least-squares method is the same whether using 
the primal result or the dual result then what is gained by this foray into history and the 
dual result?  The introductory statistics class … is already jammed full of material.  What 
practical benefit is there to adding this to the curriculum?” For professor Gabrosek, 
crunching numbers seems to be more important than understanding and knowledge. 
 
Gatekeepers of science create obstacles to scientific progress and delay further 
discoveries. Fortunately, the internet has arrived to deflate their censorial and arbitrary 
power. It means only that my paper will not receive brownie points by some 
administrator… 
 
 
 
 
 
 


