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Some Further Discussion on the Price Index for  

The Almost Ideal Demand System: 
A Chain Price Index Approach 

 
 
 
 

Abstract 
 

The issue of identification of the parameter α0 in the price index of the Almost Ideal 

Demand System (AIDS) is examined.  In nearly all empirical studies, the model’s likelihood 

function has been extremely flat in α0, and this parameter has not been able to be estimated.  

Assumed values are often used.  In this paper, an AIDS-like model is developed with an easy- to-

calculate chain-price index that replaces the price index in the original AIDS.  The model stands 

by itself with respect to consumer demand theory and flexibility. An empirical analysis of 

beverage demands gives merit to the specification. 

 

Key Words:  Demand, Almost Ideal Demand System, differential and level models, chain price 

index.  
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Some Further Discussion on the Price Index for  
The Almost Ideal Demand System: 

A Chain Price Index Approach 

 
This paper examines an aspect of the Almost Ideal Demand System (AIDS) (Deaton and 

Muellbauer 1980a, b) that has caused some difficulty in estimation of the model (this demand 

system will be called the original AIDS in the following discussion). The price index used in 

specifying the real income variable of the model includes a constant α0 that has been 

problematic.  Generally, this parameter cannot be estimated along with the other model 

parameters as the model’s likelihood function tends to be extremely flat in α0.  From the outset, 

the problem was recognized by Deaton and Muellbauer (1980a) who suggested assigning some 

plausible value to α0 or using the Stone price index in place of the model’s original price index.  

For example, a value of zero is sometimes assigned to α0 (e.g., Moschini, Moro, and Green 1994; 

Zhen, Wohlgenant, Karns and Kaufman 2011).  Values for this parameter have also been based 

on the interpretation that α0 reflects the outlay required for a minimal standard of living when 

prices are unity.  Regardless, assigning a value to α0 is a somewhat problematic and an arbitrary 

task.  Similarly, there are problems with using the Stone price index in place of the original price 

index in the AIDS (linear approximate AIDS or LA/AIDS, Pashardes 1993; Wan 1998; Moschini 

1995).  This index, used more often when the AIDS was first introduced, has fallen from favor 

more recently, as a result of problems including endogeneity of the budget shares used in the 

index and the question of how well it actually reflects the original index in the model. Other 

approaches have also been suggested including the use of lagged budget shares in the Stone price 

index to avoid the endogeneity problem (e.g., Eales and Unnevehr 1988).  Overall, regardless the 

approach taken to deal with the AIDS price index, empirical and/or theoretical concerns continue 
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to exist, suggesting further consideration be given to this issue as is done in this paper.     

 In the next section, a model in the same category as the LA/AIDS, but standing alone as a 

theoretically sound specification, is developed with an alternative price index that is easy to 

calculate and with features that are more attractive than those for the Stone price index and 

perhaps setting α0 to some value in the original index (Moschini, Moro, and Green 1994).  Then, 

an empirical application with respect to demands for different beverages is discussed, followed 

by concluding comments. 

Model 

The model developed here is quite similar to the Almost Ideal Demand System, but the approach 

taken to get to it is somewhat different than that taken in the original development of the AIDS.  

Our model is based on a general, un-parameterized cost function, and the demand parameters are 

based on the derivatives of this function, as opposed to the specific parameterization for the 

original AIDS.  Deaton and Muellbauer (1980a, b) obtained their model from an explicit cost 

function.  Here we obtain a model based on the differential approach used to develop such 

models as the Rotterdam demand system (Barten 1966; Theil 1975, 1976, 1980).  First, a 

differential AIDS-like model is developed based on the general form of the cost function, and 

then a corresponding levels model that is the same as the AIDS model except for its price index 

is found.  Although somewhat indirect, this approach provides useful insights into the model’s 

price index.     

Consider the log of the general cost function 

(1) log x = log c(p, u),  

where x is total expenditures or income, c(p, u) is the cost function, p = (p1, …, pn) is a vector of 

prices for n goods and u is utility.  The vector of quantities associated with prices is q = (q1, …, 
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qn).  The cost function is assumed to obey the usual properties: homogeneous of degree one in 

prices, increasing in u, concave in prices, continuous in p with first and second derivatives, and 

obeys Shephard’s Lemma (e.g., Deaton and Muellbauer 1980b).   

Based on Shephard’s Lemma, the general form of the demand equations for cost function (1) 

can be written as 

(2) wi  =  ∂log c(p, u) / ∂(log pi), 

where wi = pi qi/x is the budget share for good i. 

The total differential of demand equation (2) is 

(3) dwit  =  ∑γij dlog pjt + (∂wi/ ∂u) dut, 

where subscript t indicates time, dwit  = wit – wit-1, γij = ∂2log c(p, u) / ∂(log pi) ∂(log pj), d log pjt  

= log pjt  – log pjt-1, and dut  = ut  – ut-1.  As for the LA/AIDS, the parameter notation in equation 

(3) for the price effects follows that for the original AIDS, but the interpretation is different.  

Specifically, for the original AIDS cost function, log (x) = α0 + ∑αj log pj + ½ ∑∑γij log pi log pj 

+ uβ0∏pk
βk, the term ∂2log c(p, u) / ∂(log pi) ∂(log pj) = γij + βiβj log(x/P).  That is, the parameter 

γij in equation (3) is equivalent to γij + βiβj log(x/P) for the original AIDS cost function.  Thus, 

the parameter γij defined for the original AIDS has a different interpretation, except when x=P or 

the βi’s are zero, in which case the term βiβj log(x/P) vanishes.  The parameterization chosen in 

model (3) allows us to tractably deal (below) with the price index problem.1  The parameter γij 

here can be interpreted as the budget share for good i times the elasticity of that budget share 

with respect to the price of good j.  This is parallel to the Slutsky coefficient in the Rotterdam 

model (Theil 1975, 1976, 1980) which is the budget share times the quantity elasticity with 

respect to price, utility held constant.  The sign of γij in model (3), then indicates, of course, how 

the budget share changes with price j, utility held constant.2 
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Next, consider the term du.  Total differentiation of cost function (1) results in 

(4) dlog x = ∑(∂log c(p, u) / ∂(log pj)) d log pj + (∂log c(p, u) / ∂u) du, 

or, rearranging and using result (2), 

(5) du= (dlog x - ∑wjd log pj) / (∂log c(p, u)/∂u), 

or, given 1/(∂log c(p, u)/∂u) = 1/(∂log x/∂u) = (∂u/∂x)x, 

(6) du= (dlog x - ∑wjd log pj)  (∂u/∂x) x. 

 Substituting the right-hand side of (6) for du in equation (3) results in 

(7) dwit  =  ∑γij dlog pjt + βi (dlog xt - ∑wjt d log pjt), 

where βi = (∂wi/ ∂u) (∂u/∂x) x = (∂wi/ ∂x) x = ((pi/x)(∂qi/∂x) - (piqi/x2)) x = pi(∂qi/∂x) - wi, the 

marginal propensity to consume for good i minus its budget share.  The term ∑wjt d log pjt is 

known as the Divisia price index and dlog xt - ∑wjt d log pjt is a measure of the change in real 

income (Theil 1975, 1976, 1980).  This measure of real income is also found in the Rotterdam 

model.  For estimation, the budget shares in the Divisia price index are replaced by their 

averages over periods t and t-1, following the same practice for the Rotterdam model (Theil 

1975, 1976, 1980); that is, wjt
*

 = (wjt + wjt-1)/2 replaces wjt.  The coefficients γij and βi are treated 

as constants to be estimated.   

The parameter βi has the same interpretation in both model (7) and the original AIDS.  

Also, βi is the budget share for good i times the elasticity of that budget share with respect to 

income, parallel to the marginal-propensity-to-consume coefficient in the Rotterdam model 

which is the budget share times the quantity elasticity with respect to income.  Positive, zero and 

negative values of βi indicate a superior good (budget share increases with income), neutral good 

(budget share is unchanged with an income change) and normal to inferior good (budget share 

decreases with income). 
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 Model (7) is discussed by Deaton and Muellbauer (1980a) in their original paper in 

comparing the first-differenced form of the AIDS and the Rotterdam model.  No discussion, 

however, was provided there on the linkage between model (7) and the cost function or the 

underlying utility maximization problem; instead, the Rotterdam real income variable was 

simply substituted for the first-differenced real income variable for the AIDS model for 

comparison of the two models.   It was  noted that the Rotterdam model also has the same right 

hand side as in equation (7), except for interpretation of the coefficients.  The only difference in 

the two models is the left hand side, where in the Rotterdam model the variable widlogqi replaces 

dwi in equation (7).  Barten (1993) provides further discussion on the AIDS and Rotterdam 

models and develops various models combining the features of the two models. 

The results here explicitly link model (7) with the cost function and, hence, the 

underlying utility maximization problem.  In addition to motivating the price index developed in 

this paper, this linkage may be useful in extending the model to non-price, non-income variables 

such advertising, past consumption and demographic variables.  Translation (Pollak and Wales 

1992), scaling (Barten 1964; Deaton and Muellbauer 1980b) and the Tinter-Ichimura-Baseman 

relationship, invoked for the Rotterdam model (Theil 1980), but also perhaps useful in the AIDS 

model (Brown and Lee 2010), might be considered to obtain parsimonious specifications with 

respect to the parameter space of such variables. 

 The parameters for demand equation (7) obey the following restrictions: 

(i)  ∑βi = 0 (adding up), 

(ii) ∑i γij  = 0 (adding up), 

(iii) ∑j γij  = 0 (homogeneity), 

(iv) γij  = γji  (symmetry). 



7 
 

Restriction (iv) γij = γji holds given γij and γji are both equal to ∂2log c(p, u) / ∂(log pi) 

∂(log pj) since the result does not depend on the order of differentiation with respect to the log 

prices.   

Restriction (iii) is based on the property that the cost function c(p, u) is homogeneous of 

degree one in prices.  Given this property, the derivative qi = ∂c(p, u)/ ∂pi is homogeneous of 

degree zero in prices.  It then follows that wi  =  piqi /x is also homogeneous of degree zero in 

prices3 or ∑j γij  = ∑i ∂wi/ ∂(log pj)  =  ∑i (∂wi/ ∂pj) pj = 0. 

Restriction (ii) holds given restrictions (iii) and (iv).  Restriction (i) holds given ∑βi = 

∑(pi(∂qi/∂x) - wi) = 1-1 = 0, since ∑wi = 1 and ∑pi(∂qi/∂x) = 1, where the latter equality is based 

on differentiation of the budget constraint, ∑piqi = x, with respect to income x. 

The negativity condition depends on the values of the Slutsky coefficients kij which for 

the model here can be written as   

(v) kij = γij - wi ∆ij + wi wj 

where ∆ij = 1 if i = j and zero otherwise. The negativity requires that the matrix K with elements 

kij is negative semidefinite.  The Slutsky coefficients for a good are that good’s budget share 

times its compensated price elasticities, and can be calculated as wi (εij + εiwi), where εi and εij are 

the income and uncompensated price elasticity, respectively.  The elasticities for the current 

model are below equation (13) of this paper.  The Slutsky coefficients of the original AIDS 

differs from (v) by the term βiβj log(x/P).  This result stems from the earlier discussion following 

equation (3) where it was shown that for the original AIDS cost function, the ∂2log c(p, u) / ∂(log 

pi) ∂(log pj) = γij + βiβj log(x/P).  The negativity condition can be checked, but cannot be imposed 

by parameter restrictions, as in the case of the original AIDS.   

Given time series data where the first observation is for period 1, equation (7) can be 



8 
 
summed over periods 1 through t to obtain a levels version of the model.  Note for any variable y 

that ∑k=1 to t dyk  =  ∑k=1 to t (yk – yk-1) = yt - y0.  This relationship holds for variables dwit , dlog pjt 

and dlog xt but does not hold for ∑wjt
*

 d log pjt given the multiplication of the log price changes 

by the average budget shares. Thus, summing equation (7) over period 1 through t yields  

(8) wit - wi0  =  ∑γij (log pjt - log pj0) +  

                              βi (log xt  – log x0 - ∑jwj1
*d log pj1 - ∑k=2 to t ∑jwjk

*d log pjk),  

or, rearranging, 

(9) wit  = αi  + ∑γij log pjt + βi (log xt  - log Pc), t = 1, …, T, 

where αi = wi0 - ∑γij log pj0 - βi (log x0 - ∑jwj1
*d log pj1); and log Pc =  ∑k=2 to t ∑jwjk

*d log pjk, 

which is a chain price index (Pc = 1 or  log Pc = 0, for t=1).4  In defining αi, it is assumed that the 

model’s structure applies to the unobservable zero-period values.  In a study of the impact of real 

income on the marginal utility of income, Theil and Brooks (1970-71) obtained a similar levels 

equivalent for the Divisia volume index, ∑wjt d log qjt.5  

 Thus, the general approach taken here to derive a demand system where the dependent 

variables are budget shares and the logs of prices and income are used as explanatory variables 

leads us to a model similar to the original AIDS.  The essential difference between model (9) and 

the AIDS is with respect to the term log Pc.  In the original AIDS, the latter term is replaced by 

log P = α0 + ∑αj log pj + ½ ∑∑γij log pi log pj, while in LA/AIDS, it is replaced by the Stone 

price index log Ps =  ∑wj log pj.  As discussed earlier, however, the use of the original price 

index log P has been problematic as it is nearly impossible to estimate α0, and, alternatively, 

using the Stone price index log Ps has its problems including questions on how good the 

approximation actually is, its theoretical underpinning and endogeneity of the budget shares, 

although the latter can be dealt with by using lagged budget shares in the price index.   
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 Consider in more detail these alternative price indexes.6  First, focusing on the price of 

product j, the chain price index in full can be written as 

(10)  log Pc = ∑j (wj2
* log (pj2 / pj1) + wj3

* log (pj3 / pj2) + …),  

or, taking the antilog, 

(11) Pc = ∏ j (pj2/ pj1) 
wj2* (pj3/ pj2) wj3*

 …  

That is, the index is comprised of a sequence of price ratios for product j, each indicating the 

percentage change in price from one period to the next.  The adjective “chain” is used to describe 

the index as price t appears twice in a chain fashion, first in the numerator and then in the 

denominator.  The budget shares or weights for the price ratios indicate the importance of the 

price changes to the overall index.  The larger a product’s budget share, the larger is its weight.  

In general, the weights can be expected to change over time due to prices, income and other 

factors, resulting in varying product specific contributions to the overall index.  For example, 

suppose in period t and t+k that the log percentage changes in the price of good j are the same, 

log(pjt / pjt-1) =  log (pjt+k  / pjt+k-1), but the budget share in period t+k is greater, wjt+k
* > wjt

*.  

Thus, product j’s contribution to the overall price index increases from period t to t+k, given the 

increase in its budget share.  In summary, log Pc captures three meaningful aspects of a price 

index, it directly measures the percentage change in a product price from one period to the next, 

it gives that percentage change more or less weight depending on the importance of the product 

as reflected by its budget share, and has a theoretical basis as found in deriving equation (9).  

In contrast, consider the Stone price index which, although seemingly similar to the 

Divisia price index and its use in equation (10), is quite different.  First, note only logs of prices 

are taken, not log differences.  Consider product j’s contribution to the overall index, and the 

change in this component over two periods, i.e., wjt  log pjt  - wjt-1  log pjt-1 or, equivalently,  wjt  
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log (pjt / pjt-1) + (wjt  - wjt-1) log pjt-1.  The first part of this change, wjt  log (pjt / pjt-1),  is similar to 

that in the chain index log Pc, except the Stone index uses the actual budget share while the chain 

index here uses the average budget share over the two periods.  The second component of the 

Stone index, (wjt  - wjt-1) log pjt-1, measures the change in the budget share weighted by the lag of 

the price.  This feature can result in the Stone price index changing in value even when prices are 

constant but the budget shares change, a feature that would not occur in the Divisia or chain price 

index, or the original AIDS price index (Changes in the budget shares, prices constant, may be 

due to non-price variables such as income or the error term that would be included in the model 

for empirical analysis.).  This difficulty with the Stone price index means that, in general, it is 

not homogeneous of degree one with respect to prices in practice, as opposed to the original 

AIDS price index , the Divisia price index and associated chain price here, all of which are linear 

homogeneous in prices.  As noted earlier, use of the Stone price index further results in an 

endogeneity problem, and underlies the LA/AIDS elasticity corrections discussed by Green and 

Alston (1990, 1991). 

Lastly, the price index for the original AIDS can be written as log P = α0 + ∑j (αj + ½∑i γij 

log pi) log pj, or, log P = α0 + ∑j wjt
** log pj where wjt

** = αj + ½∑i γij log pi.  Given ∑i γij = 0, the 

weights are unchanged for proportional changes in all prices.  Thus, from this view, the original 

index differs from the Stone index in that the weights for the original index depend only on 

prices.  That is, the weights change only as a result of price changes, not changes in other factors, 

in contrast to what could occur in the Stone price index as discussed above.   

In summary, both the chain price index and the original AIDS price index are well 

founded in consumer demand theory, based on the percentage changes in prices from one period 

to the next, and have meaningful weights.   The chain price index, however, is easing to apply, 
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while the original price index may be problematic in applications due to the difficulty in 

estimating α0.  In contrast, the Stone price index, although easy to apply and having some 

theoretical basis (Deaton and Muellbauer 1980b), has a weighting scheme that may not reflect 

that in the original or chain indexes.  The weighting schemes of the different price indexes are, of 

course, important for measuring real income in empirical analysis.  For example if all prices 

were doubled, the real income variables for the original AIDS and model (9), x/P and x/Pc, 

respectively, would be cut in half, while that for the Stone, x/Ps,  may or may not be halved, 

depending on the budget share changes.   

 The elasticities for the model can be derived directly from equation (9) or from equation 

(7) by using the relationship that dwi = wi  dlog pi + wi dlog qi - wi dlog x.7 In the case of equation 

(7), after substituting the latter expression for dwi and rearranging terms, we find 

(12) wi  dlog qi   =   - wi dlog pi + wi dlog x + ∑γij dlog pj + βi (dlog xt - ∑wj d log pjt), 

and, after dividing both side of equation (10) by wi, we find 

(13) dlog qi   =   - dlog pi + dlog x + ∑(γij/ wi) dlog pj + (βi /wi) (dlog xt - ∑wj d log pjt). 

Hence, from equation (10), the elasticities are8 

εi = 1 + βi /wi    (income) 

εij = -∆ij + γij/ wi – (βi /wi) wj.  (prices, uncompensated) 

 The above elasticities apply to the original AIDS model based log P, except for the price 

elasticity formulas where wj is replaced by αj + ∑k γjk log pk. 

Application 

A demand system for beverage products was studied based on the concept of two-stage 

budgeting,9 where consumers first decide how much to spend on a group (first stage), and, then 

how to allocate this amount to the individual goods in the group (second stage).  This paper 
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focuses on the second stage: allocation of total beverage expenditures across individual beverage 

products.  The second-stage demand equations for individual goods in the group, called 

conditional demands, are functions of the amount of income allocated to the group (group 

expenditures) and the prices of the goods in the group.  Specification of these conditional 

demand equations follows the same general structure as the unconditional demands, except the 

income variable is group expenditures, the prices are those for the goods in the group, and the 

coefficients are conditional. 

 Conditional demands for beverages were studied using Nielsen data based on retail 

scanner sales for grocery stores, drug stores, mass merchandisers along with an estimate of    

Wal-Mart sales based on a consumer panel.10  Twelve beverages were included in the model: 1) 

100% orange juice, 2) 100% grapefruit juice, 3) 100% apple juice, 4) 100% grape juice, 5) 

remaining 100% juice, 6) vegetable juice, 7) less-than-100% juice drinks, 8) carbonated water, 9) 

water, 10) regular and diet soda, 11) liquid tea or tea for short, and 12) milk and shakes. 

The data are for four-week periods, running from the four-week period ending August 11, 

2007 through the four-week ending August 7, 2010 (40 four-weekly observations).11  The raw 

data were comprised of gallon and dollar sales.  Quantity demanded was measured by per capita 

gallon sales, obtained by dividing raw gallon sales by the U.S. population; prices were obtained 

by dividing dollar sales by gallon sales.  Sample mean per capita gallon sales, prices and budget 

shares are shown in Table 1.  The budget share for each beverage is conditional: that beverage’s 

dollar sales divided by total dollar sales for the twelve beverages studies.   

Beverage demands are subject to seasonality and two variables were included to account 

for seasonal changes in demand: s1= sine(2πα/52) and s2= cosine(2πα/52), respectively, with π = 
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3.14…, α indicates the 4-week period in a year (α =1, …., 13) (Brown and Lee, 2008).  The 

coefficients on si (i = 1, 2) sum to zero across beverages to satisfy the adding-up property. 

As the data add up by construction---the left-hand-side variables (budget shares) in the 

model sum over i to one---the error covariance matrix was singular and an arbitrary equation was 

excluded  (the model estimates are invariant to the equation deleted as shown by Barten, 1969).  

The parameters of the excluded equation can be obtained from the adding-up conditions or by re-

estimating the model omitting a different equation. The equation error terms were assumed to be 

contemporaneously correlated and the full information maximum likelihood procedure (TSP) 

was used to estimate the system of equations.  

Two models were estimated---model (9), based on the chain price index, and the original 

model based on the assumption α0 = 0.12  Symmetry and homogeneity were imposed on both 

models as part of the maintained hypothesis. As noted above, since the data add up by 

construction, the adding up conditions also hold. Given the sample specific data used, general 

conclusions cannot be made with regard to choosing one of these models.  The sample specific 

results, however, provide some information on the merits of the models, and in particular, how 

well proposed model (9) explains the data compared to the original model under the assumption 

that α0 = 0. 

Although the demand equations are estimated jointly based on the maximum likelihood 

procedure where individual equation R2’s are not maximized, the R2’s provide some measure of 

fit (Table 2).  The results in the table show that the R2’s for model (9) and the original AIDS 

differ little across equation.  An overall measure of fit for the entire set of demand equations is 

Theil’s information inaccuracy (Theil 1967).  The average information inaccuracy over the 

sample observations is defined as I= ∑t∑jwjt (log wjt /wp
jt)/T, where wjt and wp

jt are the observed 
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and predicted values, respectively (e.g., Barten 1993). A smaller value of I indicates a better fit.  

The results in Table 2 show that model (9) performs somewhat better than the original AIDS, but 

the values of I are low for both models.  Underlying these results, is a value of .96 for the simple 

correlation between the chain price index and the original price index with α0 = 0.13  Overall, 

these fit measures offer little with respect to choosing between models, but they are supportive of 

the use of the chain price index in model (9), at least for this data set. 

Each model has 110 parameters after imposing the restrictions noted above.  In model 

(9), 52 percent of the parameters where statistically different from zero at the 10% level, while in 

the original AIDS 56 percent were statistically significant.  The model income parameters, in 

combination with the budget shares, indicate deviation from unitary income elasticities, while the 

model own-price and cross price parameters, also in combination with the budget shares, as well 

as the income parameters, indicate deviation from unitary and zero price elasticities, 

respectively.  

Income and own-price elasticities for the two models are shown in Table 3.  The 

elasticities are relatively similar between the two models (the largest log difference in the income 

elasticities is 35.5%, while the largest log difference in the own-price elasticities is 8.2%).  Both 

sets of elasticities seem plausible.  For each model, most of the beverages are normal goods, with 

two, apple juice and grape juice, being neutral, based on the insignificance of their effects.  The 

own-price elasticities for model (9) ranged from -.23 for milk and shakes to -2.08 for vegetable 

juice; the range for the original AIDS was similar from -.22 to -2.09 for the same beverages.  The 

majority of cross-price elasticity estimates in both model were positive or insignificant, 

indicating substitute or neutral relationships. 
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Concluding Comments 

Of the number of demand system models developed over the past decades, the AIDS clearly 

stands out.  It is probably the most widely used demand system model for empirical analysis.  

Identification of the model’s price index parameter α0, however, has been problematic.  It simply 

cannot be estimated for most data sets.  Assumed values for α0 are often used. 

A model in the same category as the LA/AIDS is developed here, based on the 

differential approach used to develop the Rotterdam demand system.  The approach is founded in 

demand theory, beginning with the cost function as in the case of the original AIDS.  The model 

in this paper is based on a general cost function, while the original AIDS is based on a specific 

cost function.  That difference leads us to a somewhat different but more tractable model than the 

original AIDS, with respect to the price index.  A differential AIDS is first developed, followed 

by a levels version counterpart.  The two step procedure reveals a chain price index as an 

alternative for the problematic AIDS price index.  The model developed is not some ad hoc fix 

for the original AIDS, but stands by itself, comparable to the original AIDS as well as the 

Rotterdam model with respect to consumer demand theory and flexibility.  The easy-to-calculate, 

chain-price index of the model, compared to the problematic original AIDS price index, is the 

primary advantage for the specification.  Another advantage is that specification can be easily 

compared with the Rotterdam model and the AIDS-Rotterdam variants suggested by Barten 

(1993). 

An empirical analysis of beverage demands indicates that the model based on the chain 

price index performs as well as the original AIDS with α0 = 0.  The elasticities for both models 

appear to be reasonable.  It should be recognized, however, that the results are data specific, and 

general conclusions cannot be drawn on model choice.  Nevertheless, this initial empirical 
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analysis is supportive of the AIDS-like demand system based on the chain-price-index developed 

here. 
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Footnotes 

1. Choice of parameterization is an empirical issue, based on how well the model fits the data, as 

well as the parsimoniousness of the model with respect to its parameter space to be estimated in 

the first place.  This issued is discussed by Barten (1993) with respect to the choice of various 

parameterizations involving the features of the AIDS and the Rotterdam model.  For example, in 

the Rotterdam model, it is not the AIDS price coefficient γij that is constant, but rather the 

Slutsky coefficient kij = γij + βiβj log(x/P) - wi ∆ij + wi wj , where ∆ij is the Kronecker delta, that 

is.  Likewise, in the present model γij = ∂2log c(p, u) / ∂(log pi) ∂(log pj) is constant, not the 

original AIDS price coefficient. 

2. This interpretation, however, does not apply to the original AIDS, since the partial derivative 

of budget share i with respect to the log of price j (utility constant) involves the term βiβj 

log(x/P). 

3. For example, doubling all prices leaves qi unchanged, and, hence, total expenditures x double, 

leaving pi/x unchanged. 

4. Pc is a special case of the chain geometric mean price index, In general, this chain price index 

tends to be better than binary price indices in measuring price changes over time (Forsyth and 

Fowler 1981; Silver 1984).   

5. The procedure to obtain a levels version for equation (7) could also be used to obtain a levels 

version for the Rotterdam model. 

6. See Moschini (1995) for other suggested alternative price indexes, as well as further 

discussion on the Stone price index. 

7. log wi = log pi + log qi - log x; thus, dlog wi = dwi/wi = dlog pi + dlog qi - dlog x; and  dwi = wi  

dlog pi + wi dlog qi - wi dlog x. 
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8. The budget shares in the Divisia and chain price indexes are treated as constants, following the 

Rotterdam model. 

9. The demand system could be rationalized based on a multi-stage budgeting process as well.  

For example, the consumer budget problem might be viewed as first an allocation of total 

consumer expenditures or income to broad groups of commodities (e.g., food); then allocation of 

each broad group’s portion of income to more specific subgroups of goods (e.g., beverages), and 

then allocation of each subgroup’s portion to individual products in that subgroup (e.g., 

individual beverage products). 

10. Data are for U.S. grocery stores doing $2 million and greater annual sales, Wal-Mart stores 

excluding Sam’s Clubs, mass-merchandisers, and drug stores doing $1 million and greater 

annual sales. 

11. Given the relatively short time period studied, impacts of past consumption reflecting 

product inventories held by consumers and habits were not considered.  The four-weekly 

observations, however, may to some extent mitigate the impact of product inventories held by 

consumers.  Also, given the limited data including lack of good instrumental variables, other 

demand issues such as independence of total expenditure on the 12 beverage categories 

(conditional income) and the error terms added to each beverage demand equation were not 

examined. 

12. Differential model (7) could be estimated as well, and, for example, could be compared with 

the (differential) Rotterdam model or AIDS-Rotterdam-model combinations.  In the present 

analysis, however, we focus on levels model (9) for comparison to the original AIDS in levels. 

13. Given the high correlation between log Pc and log P, as well as the difficulty in estimation of 

log P to begin with, it was not possible to estimate a model that included both price indices 
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together through an additional weighting coefficient.  

  



20 
 
References 

 
Barten, A. P. (1964).  “Family Composition, Prices and Expenditure Patterns.” In P.E. Hart, G. 

Mills and J.K. Whittaker (eds.), Econometric Analysis of National Economic Planning. 

London: Butterworth, 277-292. 

Barten, A. P. (1969).  “Maximum Likelihood Estimation of a Complete System of Demand 

Equations.”  European Economic Review 1:7-73. 

Barten, A.P.  (1966). “Theorie en empirie van een volledig stelsel van vraegvergelijkingen.”  

Doctoral Dissertation, Rotterdam: University of Rotterdam. 

Barten, A. P. (1989).  “Towards a Levels Version of the Rotterdam and Related Demand 

Systems.” In B. Cornet and H. Tulkens (eds.), Contributions to Operations Research and 

Econometrics: The Twentieth Anniversary of Core. London: The MIT Press, 442-465. 

Barten, A. P. (1993).  “Consumer Allocation Models: Choice of Functional Form.”  Empirical 

Economics 18:129-158. 

Basmann, R.L. (1956). “A Theory of Demand with Preference Variables.”  Econometrica 24:47-

58. 

Brown, M., and Lee, J. (2008). “Impacts of Income on Price and Income Responses in the 

Differential Demand System.”  Journal of Agricultural and Applied Economics, 40,2 

(August):593-608. 

Brown, M., and Lee, J. (2010). “Preference Variable Impacts in Direct and Inverse Differential 

Demand Systems.”  American Journal of Agricultural Economics, 40,2 (April):889-898. 

Deaton, A.S. and J. Muellbauer. (1980a). “An Almost Ideal Demand System.”  American 

Economic Review 70:312-26. 



21 
 
Deaton, A.S. and J. Muellbauer. (1980b). Economics and Consumer Behavior.  Cambridge, MA: 

 Cambridge University Press. 

Eales, J., and L. Unnevehr. (1988).  “Demand for Beef and Chicken Products: Separability and 

Structural Change.”  American Journal of Agricultural Economics 70 (3): 521-32. 

Forsyth, F.G. and R.F. Fowler (1981).  “The Theory and Practice of Chain Price Index Number,” 

Journal of the Royal Statistical Society, series A (General), 144(2): 224-46. 

Green, R. and J.M. Alston. (1990).  “Elasticities in AIDS Models.”  American Journal of 

Agricultural Economics 72,2:442-445. 

Green, R. and J.M. Alston. (1991).  “Elasticities in AIDS Models: A Clarification and 

Extension.”  American Journal of Agricultural Economics 73, 3:874-875. 

Ichimura, S. (1950-51). AA Critical Note on the Definition of Related Goods.@  Review of 

Economic Studies 18:179-183. 

Moschini, G., Moro, and R. D. Green. (1994) “Maintaining and Testing Separability in Demand 

Systems,” American Journal of Agricultural Economics, 76: 61-73. 

Moschini, G.  (1995). "The Stone Index in Demand Estimation," American Journal of 

Agricultural Economics, 77: 63-68. 

Pashardes, P. (1993). “Bias in Estimating the Almost Ideal Demand System with the Stone Index 

Approximation,” The Economic Journal, 103:908-15. 

 
Pollak, R.A. and T.J. Wales, H. (1992).  Demand System Specification and Estimation, New 

York: Oxford University Press. 

Silver, M.S. (1984).  “Criteria for Choosing between Alternative Consumer Price Index Number 

Formulae with Special Reference to Chained Indices,” The Statisitician, 33: 229-237. 

Theil, H. (1967).  Economics and Information Theory, Amsterdam: North Holland Publishing 



22 
 

Company. 

Theil, H. (1971).  Principles of Econometrics. New York: John Wiley & Sons, Inc. (North-

Holland Publishing Company). 

Theil, H. (1975).  Theory and Measurement of Consumer Demand, Vol. I. Amsterdam: North-

Holland Publishing Company. 

Theil, H. (1976).  Theory and Measurement of Consumer Demand, Vol. II. Amsterdam: North-

Holland Publishing Company. 

Theil, H. (1980).  The System-Wide Approach to Microeconomics, Chicago: University of 

Chicago Press. 

Theil, H. and R.B. Brooks (1970-71).  “How Does the Marginal Utility of Income Change When 

Real Income Changes?” European Economic Review, 2:218-240.. 

Tintner, G. (1952). “Complementarity and Shifts in Demand.” Metroeconomica 4:1-4. 
 
Wan, G. H. (1998). “Linear Estimation of the Nonlinear Almost Ideal Demand System: A Monte 

Carlo Study,” Applied Economics Letters, 5: 181-6. 

Zhen, C., M. Wohlgenant, S. Karns and P. Kaufman.  (2011). “Habit Formation and Demand for 

Sugar-Sweetened Beverages.”  American Journal of Agricultural Economics 93(11) 

January: 175-193. 

  



23 
 
 

Table 1.  Descriptive Statistics of Beverage Sample, Week Ending 7/21/07 through 8/07/10. 

Beverage 
Per Capita 

Gallons/Week Price: $/Gallon Budget Share 

Mean Std Dev Mean Std Dev Mean Std Dev 
Orange1 0.154 0.011 5.669 0.212 0.062 0.006
Grapefruit1 0.006 0.000 6.309 0.078 0.003 0.000
Apple1 0.059 0.007 4.451 0.268 0.019 0.003
Grape1 0.016 0.002 6.456 0.287 0.008 0.001
Remaining Fruit 
Juice1  0.056 0.004 7.211 0.182 0.029 0.002
Vegetable 0.033 0.003 7.332 0.177 0.017 0.002
Juice Drinks2  0.433 0.063 3.987 0.137 0.122 0.011
Carbonated 
Water 0.055 0.004 3.055 0.146 0.012 0.001
Water 0.901 0.129 1.671 0.057 0.107 0.012
Soda 1.496 0.114 3.113 0.117 0.331 0.017
Liquid Tea 0.122 0.021 3.696 0.090 0.032 0.004
Milk & Shakes  0.975 0.029 3.725 0.364 0.259 0.024
1 100% juice. 
2 Less than 100% juice. 
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Table 2.  Model Goodness of Fit.   

Beverage  Coefficients of Determination (R2) 
Model (9)1 Original AIDS2 

Orange3 0.926 0.927 
Grapefruit3 0.787 0.788 
Apple3 0.820 0.822 
Grape3 0.804 0.804 
Remaining Fruit Juice3  0.878 0.876 
Vegetable 0.626 0.625 
Juice Drinks4  0.913 0.912 
Carbonated Water 0.865 0.865 
Water 0.810 0.812 
Soda 0.727 0.729 
Liquid Tea 0.937 0.938 
Milk & Shakes  0.971 0.971 

Average Information Accuracy 
7.76E-06 8.53E-06 

1 Based on chain price index. 
2 Based on α0 = 0. 
3 100% juice. 
4 Less than 100% juice. 



 
Table 3.  Conditional Income and Uncompensated Own- Price Elasticities. 

Beverage  
Model (9)1 Original AIDS2 Model (9)1 Original AIDS2 

Income 
Elasticity 

Standard 
Error 

Income 
Elasticity 

Standard 
Error 

Own-Price 
Elasticity 

Standard 
Error 

Own-Price 
Elasticity 

Standard 
Error 

 
Orange 0.996 0.230 1.006 0.239 -1.722 0.248 -1.718 0.250 
Grapefruit 0.663 0.371 0.766 0.372 -1.502 0.248 -1.500 0.249 
Apple -0.599 0.578 -0.854 0.561 -1.008 0.149 -0.992 0.149 
Grape 0.722 0.627 0.914 0.608 -0.610 0.307 -0.630 0.305 
Remaining Fruit Juice 0.626 0.259 0.651 0.264 -1.455 0.235 -1.458 0.235 
Vegetable 1.393 0.602 1.635 0.556 -2.076 0.347 -2.093 0.346 
Juice Drinks  1.335 0.256 1.460 0.228 -1.018 0.144 -1.085 0.135 
Carbonated Water 1.392 0.206 1.477 0.197 -1.393 0.113 -1.394 0.113 
Water 1.096 0.452 1.263 0.412 -0.687 0.282 -0.746 0.283 
Soda 1.424 0.253 1.317 0.247 -1.173 0.145 -1.179 0.152 
Liquid Tea 0.829 0.321 0.952 0.295 -1.135 0.247 -1.180 0.249 
Milk & Shakes  0.406 0.122 0.386 0.122 -0.234 0.047 -0.224 0.048 
1 Based on chain price index. 
2 Based on α0 = 0. 
 

 


