
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their 
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/


This paper can be downloaded without charge at: 
 

The Fondazione Eni Enrico Mattei Note di Lavoro Series Index: 
http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm 

  
Social Science Research Network Electronic Paper Collection: 

http://ssrn.com/abstract=881070 
 

 
 
 
 

The opinions expressed in this paper do not necessarily reflect the position of 
Fondazione Eni Enrico Mattei 

Corso Magenta, 63, 20123 Milano (I), web site: www.feem.it, e-mail: working.papers@feem.it 

 
 
 

When is it Optimal to Exhaust a 
Resource in a Finite Time? 
Y. Hossein Farzin and Ken-Ichi Akao 

 
 

NOTA DI LAVORO 23.2006 
 
 
 
 
 
 
 
 
 
 
 
 

FEBRUARY 2006 
NRM – Natural Resources Management 

 
 

Y. Hossein Farzin, Department of Agricultural and Resource Economics, 
University of California 

  Ken-Ichi Akao, School of Social Sciences, Waseda University 
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a community, even if a sustainable use for the resource is feasible and the resource users 
are farsighted and well informed on the ecosystem. We identify conditions under which 
it is optimal not to sustain resource use. These conditions concern the discounting of 
future benefits, instability of social system or ecosystem, nonconvexity of natural 
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prevent unsustainable patterns of resource use. 
 
Keywords: Renewable resource management, Sustainability, Finite-time exhaustion, 
Optimal path, Policy implications 
 
JEL Classification: Q20 
 

 

 

 

 

 

 
 
 
 
 
 
 
Address for correspondence: 
 
Y. Hossein Farzin 
Department of Agricultural and Resource Economics 
University of California 
Davis CA 95616 
USA 
E-mail: farzin@primal.ucdavis.edu 
 



 2

1. Introduction 
Sustainability has long been a primary objective of renewable resource management. The notion of 

sustained yield goes back to at least the 18th century European forestry (Carlowitz 1713. Also see 

Vanclay 1996). After the publication of “Our Common Future” by the World Commission on 

Environment and Development (WCED 1987) and the United Nation Conference on Environment 

and Development in Rio de Janeiro, 1992, the concept of sustainability has been popularized and 

regarded as one of the basic social goals. At the same time, most scholars have recognized the 

vagueness of the concept, raising questions such as: Is it to keep physically intact a natural resource 

or environmental asset? If so, how should one think about the sustainability of a nonrenewable 

resource? How does it relate to intergenerational equity and intertemporal efficiency? Not 

surprisingly, economists have come to various definitions of sustainability and differing views about 

their merits. (See, for example, Pearce et al. 1990; Turner et al. 1994; Nordhaus, 1994; Solow, 1998; 

Heal 1999; Farzin, 2004.) 

Whatever the definition of sustainability, it is obvious that finite-time resource extinction 

defies sustainability. In this paper, we show how a rational agent willingly exhausts a resource in a 

finite time, even though a sustainable resource use is feasible, or, at least, the resource could be used 

up over an infinitely long period. The assumption of rationality is important: it enables us to avoid an 

unsustainable path of resource use by removing the very conditions that render finite-time extinction 

rational. Therefore, the aim of the paper is to identify the conditions under which finite-time 

exhaustion of a renewable resource is optimal. These conditions concern (a) the discounting of 

future benefits, (b) uncertainty about the future of the resource stock, (c) nonconvexity of natural 

growth function, (d) socio-psychological aspect of work incentives, and (e) strategic interaction 

among resource users. 

The paper is organized as follows: the next section introduces a simple model for resource 

management to show that heavy discounting makes finite-time extinction optimal. We show that a 

source of a high discount rate could be the uncertainty about the future ecological state of the 

resource stock or about its future ownership and management. In Section 3, we modify the model by 
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allowing nonconvexity in the resource’s natural growth function. If an inbreeding depression or an 

Alee effect exists, the growth function takes a shape that it is convex when the population size 

(resource stock) is small and concave when it is large. We will see that even with a low discount rate, 

if the initial stock of the resource is small, the optimal path is finite-time exhaustion. In Section 4, 

the model is extended to incorporate socio-psychological value of employment. We show that even 

with a low discount rate and an abundant resource stock, finite-time exhaustion becomes optimal. 

This is because in this case it is optimal for the resource user to harvest the resource at the maximum 

harvesting ability. This is an extreme case of extinction: the most rapid extinction. In Section 5, we 

consider a common property resource problem, assuming that multiple agents use the resource. 

Again, we show that the most rapid extinction is optimal for each individual resource user.  At the 

same time, we show that, under the same condition, sustainable resource use is optimal too. However, 

one cannot be sure which optimal path is adopted. Section 6 concludes with some policy 

implications of these findings. 

 

 

2. Discounting and Uncertainty 
Let us start with a rudimentary model in resource economics, characterized by the following 

problem: 

0( ) 0
max ( ( )) t

c t
u c t e dtρ∞ −

≥ ∫  (1.a) 

subject to ( ) ( ( )) ( ),x t f x t c t= −&  (1.b) 

               0( ), ( ) 0,  (0)  given.x t c t x x≥ =  (1.c) 

Here x  denotes the stock of a renewable resource. The natural growth of the resource is described 

by function :f + →R R . Variable ( )c t denotes the amount of harvest at time t . Therefore, the 

evolution of the resource stock is described by equation (1.b), where ( )x t& denotes the time derivative 

of ( )x t . The consumption of harvest yields utility to the resource user according to the utility 

function :u + →R R . We assume that the natural growth function f is hump-shaped and strictly 
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concave, and the utility functionu is bounded from below, strictly increasing and strictly concave. 

See Figure 1. Formally, we make the following assumptions: 

[Assumption 1]   :f + →R R satisfies (0) ( ) 0,  0,  0f f K K f ′′= = > < . 

[Assumption 2]   :u + →R R  satisfies (0) 0,  0 and 0u u u′ ′′= > < . 

 

<Figure 1> 

 

The objective of the resource user is to maximize the sum of his discounted utilities from 

the present time to infinite future, as seen in the objective functional (1.a). The discount rate ρ is the 

user’s time preference parameter. If ρ is zero, the user values the utilities equally between now and 

any time in future, whereas if it is positive, the utilities in future are valued less than the present 

utility. In particular, by the power of discounting, the present value of the well-being of a generation 

living in a far distant future is almost negligible. This implies that the choice of a discount rate raises 

an ethical problem for intergenerational equity. In fact, in the seminal paper which initiated dynamic 

analysis in economics, Frank Ramsey, who was a philosopher and mathematician as well as 

economist, wrote that [discounting] is ethically indefensible and arises merely from the weakness of 

the imagination (Ramsey 1928). It should be noted, however, that discounting could be rationalized 

from a non-ethical standpoint. It is known that there is no (lifetime) utility function which satisfies 

Pareto criterion and intergenerational equity in an infinite time horizon model (Basu and Mitra 2003. 

Also see Svensson 1980, Diamond, 1965; Koopmans, 1960). Pareto criterion is minimum essential 

requirement for rational decision making. For a discounting model ( 0ρ > ), the lifetime utility 

function is well defined and satisfies the Pareto criterion, but does not satisfy the intergenerational 

equity. For now, let us assume a positive discount rate 0ρ > . Later, we will justify it for a 

non-ethical reason: uncertainty. 

In order to obtain finite-time extinction as an optimal path, we make an additional 

assumption: 

[Assumption 3]  
0 0

lim ( )  and lim ( )
x c

f x r u c′ ′= < ∞ < ∞
 

. 
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While the finiteness of the intrinsic growth rate r is quite plausible, the assumption for the utility 

function is relatively restrictive, because it rules out the case where c is an essential good like water 

or oxygen. If your consumption of water decreases to zero, the value of one unit of water for 

you, ( )u c′ , will rise up to infinity. Therefore, you will never exhaust the source of water. This 

explains the necessity of this assumption for optimal finite-time resource exhaustion. However, in a 

setup with multiple resource users, as in Section 5, finite-time resource extinction could be optimal 

without this assumption. 

To solve the rudimentary problem, it is a routine to define the (maximized) Hamiltonian 

* 2:H + →R R  as 

 *( , ) max[ ( ) ( ( ) ) | 0],H x u c f x c cλ λ= + − ≥  (2) 

whereλ is called the costate variable. By Pontryagin’s maximum principle, there is a nonnegative 

function of time ( )tλ , with which the optimal control *( )c t and the optimal state *( )x t  satisfy (2), 

and 

 *( , ) / ,x H x λ λ= ∂ ∂&  (3.a) 

 *( , ) / ,H x xλ ρλ λ= −∂ ∂&  (3.b) 

on the interior of the domain of *H . The system of autonomous differential equations (3) is called 

(modified) Hamiltonian dynamics. This system is rewritten as 

 
[ ]

1( ) ( ),
( ) ,

x f x u
f x

λ

λ ρ λ

−′= −

′= −

&

&
 

where 1u −′ is the inverse function ofu′ . The phase diagram of this system is depicted as Figure 2. A 

solution path is optimal if it converges to a steady state, by Arrow’s sufficiency theorem.1 From this, 

it follows that the interior steady state, which satisfies ( )f xρ ρ′ = , is an optimal steady state (OSS). 

This interior OSS exists if the intrinsic growth rate exceeds the discount rate: 

 
0

( lim ( )).
x

r f xρ ′< =


 (4) 

 

<Figure 2> 

                                                  
1  See, for example, Dockner et al. 2000, Chapter 3. 
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Figure 2 Panel (a) illustrates this case, where every optimal path converges to the unique interior 

OSS. Thus, the optimal resource use is sustainable. 

If the discount rate is too high to satisfy inequality (4), the interior OSS disappears. The 

phase diagram for this case is drawn in Figure 2 Panel (b). Still, an optimal path for each initial 

stock 0x  exists and it is unique.2 Furthermore, the optimal path is monotone (Hartl 1987). Therefore, 

the path converging to 1( , ) (0, (0))x uλ −′=  is the unique optimum. Along the optimal path, the 

resource stock decreases and eventually becomes extinct. The extinction occurs in a finite time, since 

1(0)u −′ takes a finite value and the time derivatives of the Hamiltonian dynamics do not degenerate 

at the limit point: 0, 0x λ≠ ≠&& at 1(0, (0))u −′ . Therefore, we have the following proposition. 

 

Proposition 1: For the rudimentary problem (1) with Assumptions 1-3, if the discount rate exceeds 

the intrinsic growth rate, finite-time extinction is optimal for the resource user. 

 

As mentioned before, the choice of discount rate raises an ethical problem: that is, how 

should we value the well-being of future generations? Another problem is that if idiosyncratic 

preferences are the underlying cause of unsustainable resource use, then there is little one can do to 

prevent extinction without regulating the resource harvesting in some fashion. However, 

independently of any ethical argument, there is another reason for discounting; that is, uncertainty 

about the future of the resource stock or its ownership. Imagine that a sudden disaster completely 

destroys the resource, or the resource owner is suddenly deprived of his ownership by, say, 

confiscation of the resource stock by a corrupt or politically radical government.3  

We assume that this sort of fatal event occurs with a positive probability. Formally, we 

suppose that the agent does not discount future utilities at all. Instead, the parameter ρ  expresses 

                                                  
2  For the proof of the existence, see Magill 1981. The uniqueness follows from the strictly concavity of 
the functions  and f u . 
3  Note that for environmental conservation or other reasons, a politically radical government may 
suddenly impose a resource tax whose rate is sufficiently high and/or increases steadily at a constant 
proportional rate. It will have the equivalent effect as a stochastic resource confiscation/catastrophe, and 
as shown here, it will cause finite-time exhaustion to be optimal. 
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the arrival rate of the Poisson process for the occurrences of the fatal event. Once the fatal event 

occurs, the utility levels of the resource user thereafter are zero forever. Note that the probability 

with which the event occurs from 0t = to t τ=  is1 e ρτ−− , and thus the probability density of 

occurrence is te ρρ − . The objective functional (1.a) is modified to be 

 
0

( ( ))
T

E u c t dt⎡ ⎤
⎢ ⎥⎣ ⎦∫ , 

where stochastic variable T is the time at which a fatal event occurs and E is the expectation 

operator. The following calculation is well known:4 

 

0

0 0 0 0

0 00

0

( ( ))

( ( )) ( ( ))

( ( )) ( ( ))

( ( )) .

T

TT TT

TT T

T

t

E u c t dt

deu c t dt e dT u c t dt dT
dT

e u c t dt u c T e dT

u c t e dt

ρ
ρ

ρ ρ

ρ

ρ
−∞ ∞−

∞ ∞− −

=

∞ −

⎡ ⎤
⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤= = −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤= +⎢ ⎥⎣ ⎦

=

∫

∫ ∫ ∫ ∫

∫ ∫

∫

 

The last equality holds since every feasible consumption path satisfies 

[ ]limsup ( ) max ( ) | 0t c t f x x→∞ ≤ ≥  and there exists u < ∞ such that 0esssup ( ( ))t u c t u≥ ≤  

for each feasible  ( )c t . Note 
0

lim ( ( )) lim /
TT T

T T
e u c t dt uT eρ ρ−

→∞ →∞
≤∫  lim / 0.T

T
u eρρ

→∞
= =  

After all, we are back to the rudimentary problem (1), although now ρ expresses the 

magnitude of the probability of the fatal event. We interpret this result as the following corollary: 

 

Corollary of Proposition 1: Finite-time extinction may be optimal, if the ecosystem and/or the 

socio-political system is so unstable that the probability of the arrival of the ecological catastrophe 

or socio-political upheaval is so high as to exceed the intrinsic growth rate, rρ > . 

 

 

                                                  
4  See, for example, Dasgupta and Heal (1979). 
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3. Nonconvexity of a Natural Growth Function 
In this section, we focus on the natural growth function. A concave growth function implies that the 

natural growth rates increase as the size of the resource stock decreases. However, if the stock size is 

very small, the growth rate may be small, for example, due to an Alee effect or an inbreeding 

depression. Then, we may have a convex-concave shape of the growth function, as in figure 3. 

 

<Figure 3> 

 

Consider the rudimentary problem (1) with modification of Assumption 1 as follows: 

[Assumption 4] 
0

(0) 0,  lim ( ) ,  0 : ( ) , ( ) ( )0 if ( ) .I I Ix
f f x x f x f x x xρ ρ

→
′ ′ ′′= < ∃ > > > < < >  

 

<Figure 4> 

 

Figure 4 illustrates the associated phase diagram. There are two stock levels at which the 

slope of the growth function coincides to discount rate ρ . The larger one xρ corresponds to the OSS 

for the original rudimentary model (1). The smaller one xρ is new. It is readily seen that xρ and the 

associated costateλ constitute another steady state of the Hamiltonian dynamics (3). However, it can 

be shown that xρ is not an OSS.5 Also notice that it is ambiguous whether xρ is an OSS, due to the 

nonconvexity of the growth function. Even the existence of optimal paths is a subtle problem for a 

nonconvex problem. However, they exist if we impose a certain growth condition for the evolution 

of the resource stock (See Romer 1987). Furthermore, it can be shown that every optimal path is 

monotonic (See Long et al. 1997). Then, we have the following proposition: 

 

Proposition 2:  Suppose the existence of optimal paths. Under Assumption 4, there exists a 

                                                  
5 It can be shown that given the initial point 0( , (0))x λ , the lifetime utility induced by the Hamiltonian 

dynamics coincides with 0*( , (0)) /H x λ ρ . By construction, *H is a strictly convex function in λ . 

Therefore, the lifetime utility is minimized by staying the lower steady state xρ . 
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threshold (0, ]cx ∈ ∞ such that if 0 ( ) cx x< > , the optimal state trajectory monotonically converges 

to 0 ( xρ ). Furthermore, the threshold satisfies cx xρ< , if the following mild discounting condition 

holds: 

 max[ ( ) / | 0]f x x xρ < ≥ . 

Proof: See the Appendix. 

 

Figure 5 illustrates the optimal paths. Even with a very low discount rate, in the presence 

of non-concavity of natural growth function, finite-time extinction may be optimal if the resource 

stock has been already degraded (by, for example, overexploitation so far) below the critical 

threshold. This threshold cx is called Skiba point or DNS point.6 

 

<Figure 5> 

 

4. Non-Pecuniary Value of Employment: A Socio-Psychological Aspect 

It is natural to think that working is not only a means of earning income, but also a form of social 

involvement. Because of this, unemployment usually brings a person unhappiness more than loss of 

income does, which may include, for example, losses of dignity, confidence and identity. In other 

words, there is a non-pecuniary value of employment. Curiously enough, this fact has been ignored 

in traditional economics until recently. Farzin and Akao (2005) incorporate this socio-psychological 

aspect explicitly into a bio-economic model and find that the optimal resource use may be finite-time 

extinction. In this section, we introduce their results with a simpler model than theirs. 

We modify the utility part of the rudimentary problem (1) as follows:  

[Assumption 5]   2 2( , ),  [0, ],   working time. / 0, / 0.u c E E E E u E u E∈ = ∂ ∂ > ∂ ∂ <  

The utility stems from two sources. One is consumption of harvests as before. The other source is 

                                                  
6  “DNS” is the initials of three authors, Dechert, Nishimura, and Skiba. Skiba (1978) first introduced the 
convex-concave production function in the theory of optimal growth in economics. A rigorous analysis 
for a discrete time model is given by Dechert and Nishimura (1983). Gustav Feichtinger and his 
collaborators have recently studied the continuous time models and their applications. See, for example, 
Deissenberg et al. (2001) and Hartl et al. (2004), which contain the literature review in economic 
dynamics with nonconvexity, including environmental economics. 
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working. Different from a standard economic model, here working is not a source of disutility, but a 

source of utility. Although this assumption may seem curious, Farzin and Akao (2004) show that 

non-pecuniary value of work exceeds the value of leisure at very low income levels. 

 Assume that all the labor is used to extract the resource, which is the case where there is 

no alternative employment other than resource extraction. The relationship between labor 

input E and resource output c is described with the cost function ( )E c . There is an upper bound for 

working time E , which limits the maximum harvest level. Denote the maximum harvest level by H , 

which satisfies ( )E E H= . We assume that with the maximum effort E , the resource is certainly 

exhausted in a finite time: 

[Assumption 6]  The maximum harvest level with full employment exceeds the maximum 

sustained yield (MSY): ( )MSYH f x> , where MSYx is the solution of max[ ( ) | 0]f x x ≥ ).  

It is important to notice that even though working is a source of utility, the full 

employment E is not necessarily an optimal choice. This is because the full employment may 

degrade the resource too much to allow sustaining future consumptions. Recall that we have 

supposed that the resource user is rational enough and in particular farsighted. 

 Although it is mathematically invariant, let us add a flavor of macro economics to the 

rudimentary model (1). Consider a community, in which the local people are governed by a 

benevolent government. Everyone has identical preferences and the same harvesting technology, as 

described above. Let n be the population size. The problem of the benevolent government is:  

 [ ]
0( ) 0

max ( ), ( ( )) t

c t
u c t E c t e dtρ∞ −

≥ ∫  (7.a) 

     subject to ( ) ( ( )) ( ),x t f x t nc t= −&  (7.b) 

                       00 ( ) ,   (0)  given.E c H x x≤ ≤ =  (7.c) 

 

Pontryagin’s maximum principle suggests that an optimal control *c maximizes the Hamiltonian: 

 ( , , ) ( ) [ ( ) ] , where ( ) [ , ( )].H c x U c f x nc U c u c E cλ λ= + − =  

Assume that the reduced form utility functionU is strictly convex. The following example shows 
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that such a convex utility function is obtained with standard assumptions in economics, if we allow 

working to be a source of utility. 

 

[Example] 

Let utility function have a form of ( , )u c E c Eα η= , with 0 1α< < and 0 1η α< < −  (so thatu is 

concave and increasing, a standard assumption of economics). The harvesting technology is 

expressed by ( )E c cβ= , with 1β > , which is also a standard assumption of economics: a cost 

function is convex and increasing. If the elasticity of marginal utility of employment is sufficiently 

high to satisfy ( )1 /β α η> − , then ( ) [ , ( )]U c u c E c cα βη+= = is strictly convex 

( 2 2/ 0d U dc > ). 

 

If 2 2/ 0d U dc > , the maximum of the Hamiltonian is attained at a corner of c . That is, the 

optimal control *c is either of the full harvesting *c H= or no harvesting * 0c = . Also, notice that 

there is no interior optimal control and thus no interior OSS. Therefore, the optimal path of the 

resource stock converges either to the carrying capacity or to zero. It is, however, obvious that the 

path going to the carrying capacity is suboptimal, because there is no chance to harvest at all. 

Therefore, we have: 

 

Proposition 3: Under Assumptions 5 and 6, if 2 2[ , ( )] / 0d u c E c dc > , full employment is always 

optimal. On an optimal path the resource stock decreases most rapidly and becomes extinct in a 

finite time.7 

 

In Farzin and Akao’s framework, if the harvest level with full employment exceeds the MSY, full 

employment and sustainable resource management are incompatible objectives, and the former is 

chosen over the latter as the optimal policy. Population growth and technological progress in 

resource extraction may bring about such a situation. The optimal path has two novelties. First, the 

                                                  
7 The formal proof, including the existence of an optima path, is found in Farzin and Akao (2005). 
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optimal resource extinction is an extreme one, the most rapid extinction.8 Second, resource 

extinction is optimal irrespective of the state of the resource stock and the magnitude of the discount 

rate. Notice that in this section, we have referred neither to the discount rate nor to the initial level of 

the resource stock, which were crucial factors for finite-time extinction to be optimal in the previous 

sections. 

 

 

5. Strategic Interaction 
In this section, we consider a natural resource used by multiple users, who are not cooperative.9 

Such a resource may be categorized by its physical property into two types. The first type is a 

resource for which it is difficult to establish a definite property right. The global atmosphere, 

underground aquifers, and highly migratory fish stocks are few examples. The second type is a 

resource which, although its private or governmental holding is physically possible, is owned 

communally for institutional or historical reasons. An example is the high seas defined in the United 

Nations Convention on the Law of the Sea. Another example is a local communal forest in Japan, 

which is a relic of the Edo era (1603-1868), at which private ownership of a forest was prohibited.  

We will show that for those resources, finite-time extinction may be optimal from the 

viewpoint of each resource user, despite the fact that it is by no means socially or cooperatively 

optimal. In other words, we will see the individual optimality of the so-called “tragedy of the 

commons.” We also show that a sustainable resource use can be individually an optimal path, 

although it differs from a socially optimal path. Therefore, the tragedy of the commons is not an 

inevitable destiny. This could explain the fact that some communal resources have been managed in 

a sustainable way, at least apparently and so far. 

A fundamental change from the previous models is that not a single agent but many agents 

use the resource. We assume that the number of resource users 2n ≥  is fixed. In terminology of 

                                                  
8 Without invoking non-pecuniary value of employment, we could obtain the most rapid extinction as an 
optimal path. It is necessary, however, to specify the utility and natural growth functions that satisfy the 
restrictive conditions derived by Spence and Starrett (1975). Heavy discounting is also needed. 
9  We have used “not cooperative” as a synonym of “individually rational.” 
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economics, this sort of resource is called a common property resource or a common pool resource.10 

The resource users are identical in their preferences and harvesting technology. As in the previous 

section, there exists the upper bound of the harvest ability ( / ) 0h H n= > . Modifying the 

rudimentary model (1), we study the following differentiable game model: 

0( ) 0
max ( ( )) t

c t
u c t e dtρ∞ −

≥ ∫  (8.a) 

     subject to ( ) ( ( )) ( 1) ( ) ( ),x t f x t n x c tσ= − − −&  (8.b) 

 0                ( ) [0, ],  (0)  given.c t h x x∈ =  (8.c) 

Let us introduce a few terms of differential game theory. A strategy is a way to harvest. 

While strategy is a quite broad concept, we restrict our analysis to stationary Markovian strategy. 

“Stationary” means that the strategy is time independent. “Markovian” means that the strategy is a 

function of the resource stock x . An example of stationary Markovian strategy ( )xσ is the most 

rapid extinction strategy: 

 
0

( )     if     
00

xh
x

x
σ

>⎧
= ⎨ =⎩

, (9) 

which harvests with the maximum effort as far as the resource exists. When the other players use a 

Markovian strategy ( )xσ , the problem for each user is written as in (8) above. If the optimal 

solution is described by the same strategy ( )xσ , it is said that ( )xσ constitutes a symmetric 

Markov perfect Nash equilibrium (shortly, MPNE). It is a Nash equilibrium, because once all users 

choose the strategy, then no one wants to change the strategy. “Perfect” implies that the equilibrium 

is subgame perfect. In other words, the strategy is strongly time consistent in the sense that even if 

some players deviate from the equilibrium strategy, the equilibrium strategy is still optimal as far as 

the players return to the equilibrium strategy. Finally, it is symmetric since all users take the same 

                                                  
10 Another resource modeling with multiple users is that of an open access resource problem, for which 
the number of the users varies. Anonymous agents freely enter to extract the resource, until their temporal 
profits equilibrate to zero. For this setup, the mechanism causing finite-time extinction is quite simple. 
That is, it occurs if the aggregate harvest levels corresponding to zero profit always exceed the natural 
growth rates of the resource (Berck 1979).  Also, notice that an open access resource problem can be 
regarded as the limit case of the problem (1) with ρ →∞  (Beddington et al. 1975). Therefore, we omit 
this problem in this paper. 
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strategy. For analytical simplicity, we will restrict our concern to the class of symmetric MPNEs. 

Notice that the problem of each resource user now becomes more complicated than the ones in the 

previous sections, because other users also harvest the resource and their harvest rates affect the 

user’s action, which affects, in turn, other users’ actions. This is the strategic interaction. 

The cooperative or social optimization problem, compared with non-cooperative problem 

(8), is formulated as follows: 

0( ) 0
max ( ( )) t

c t
u c t e dtρ∞ −

≥ ∫  

     0subject to ( ) ( ( )) ( ),  ( ) [0, ],  (0)  given.x t f x t nc t c t h x x= − ∈ =&  

Maintain Assumptions 1, 2, and 

[Assumption 7]  
0

lim ( ) .
x

f x ρ′ >


 

It is easily verified that every optimal cooperative path of the resource stock monotonically 

converges to a unique social OSS, 0xρ > , such that ( )f xρ ρ′ =  (See Figure 1). Therefore, the 

cooperative solution is sustainable. 

We want to show that finite-time exhaustion is a Nash equilibrium, i.e. individuals’ 

rational choice. To do so, unlike the previous section, we do not need Assumption 3 (the finiteness of 

the marginal utility u′ and the marginal productivity f ′ at the origin). Instead, we assume 

[Assumption 8] 

 
0

( ) 1( ),  ( 1) ( ),  ( ) ,  lim ( ) 0.
( )MSY c

cu c nnh f x n h f x c c
u c n

ρ β β
→

′′− −
> − > = ≤ >

′
 

The first inequality is the same assumption as Assumption 6 in the previous section. That is, with the 

maximum harvesting effort, the resource is exhausted in a finite time. The second inequality ensures 

that if other users harvest the resource with the maximum effort, there is no way for an individual 

user to sustain the social OSS xρ . The third and forth inequalities restrict the curvature of utility 

function. These assumptions are technical, but standard in economics. 

The following proposition on equilibrium resource use is given by Gerhard Sorger (1998). 
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Proposition 4 (Sorger, 1998): (a) The most rapid extinction strategy (9) constitutes a MPNE if and 

only if the following inequality holds: 

 
0

( )( ) exp .
( ) ( )

xu h dyu h
nh f x nh f y

ρ

ρ ρ
⎡ ⎤′ ≥ −⎢ ⎥− −⎣ ⎦

∫  (10) 

(b) There is a continuum of the other MPNE strategies if ( ) ( )f x nf x xρ ρ ρ′> . Each strategy is 

sustainable in the sense that the associated equilibrium path of the resource stock converges to a 

positive stock level in (0, )xρ .  

 

We refer to the strategy in Proposition 4(b) as Sorger’s strategy. Interestingly, there is a 

pair of a Sorger’s strategy and the initial resource stock with which the associated equilibrium path 

of the resource stock stays in an arbitrarily small neighborhood of the social OSS xρ for an 

arbitrarily long time. This implies that if a “good” Sorger’s strategy is chosen and if the initial stock 

of the resource lies sufficiently near xρ , the lifetime utility of each resource user is approximately 

the same as would be with the social optimum. Eventually, the stock diminishes to less than xρ , 

though.  

In contrast, the most rapid extinction is the worst strategy, from the viewpoint of 

sustainability. The inequality in Proposition 4(a) holds when the number of users n is large, the 

maximum harvest rate h is high, or the discount rate of each user ρ is high. In any of the cases, 

finite-time extinction is optimal from an individual’s viewpoint. 

A troublesome, but interesting, point is that we cannot predict which equilibrium is chosen, 

since all MPNEs are subgame perfect. Furthermore, the most rapid extinction may coexist with 

Sorger’s strategies as equilibrium strategy. This is illustrated in Figure 6 with the following 

specification: the utility function is isoelastic, the natural growth function is described by a logistic 

equation, and ρ is fixed at a rather low level, since we have already seen how heavy discounting 

brings finite-time extinction. In Figure 6, there are two areas: one is the area on which Sorger’s 

strategies constitute equilibria and the other is the area on which the most rapid extinction strategy 

becomes an equilibrium strategy. Observe that these two areas overlap.  
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<Figure 6> 

 

 The coexistence of the equilibrium strategies means that the resource use for a common 

property resource is ambiguous and unstable. It is possible on a theoretical ground, that for two 

communities with the same conditions, one uses its natural resource in a sustainable way, whereas 

the other exhausts its resource with the most rapid speed. Also, it is possible that a community which 

was using its resource in a sustainable way until yesterday suddenly starts a ruinous resource use 

path without any evident trigger. 

 

 

6. Concluding Remarks 
We conclude these observations with their policy implications. 

First, we have seen how uncertainty raises discount rate and how a high discount rate 

brings finite-time resource extinction. To prevent such a situation, we need to mitigate the risk of the 

fatal events. For example, political stability matters. Furthermore, such a policy should be 

implemented early on, if the growth function of the resource exhibits nonconvexity and the resource 

is being degraded. This is because when the resource has been already degraded, finite-time 

extinction is more prone to be an optimal resource use policy even with a low discount rate. 

Second, we have seen that non-pecuniary value of employment makes people give priority 

to full employment over sustainable resource use. Farzin and Akao (2005) show that the remedy is 

none but to create alternative employment sources to absorb labor force which is excessive from the 

viewpoint of sustainable resource use. They also suggest that earlier policy implementation is more 

prudent, since when the resource is more degraded, higher wage rates may be necessary to prevent 

resource exhaustion. 

Third, we have seen a strategic interaction cause the most rapid extinction, which is an 

extreme case of a finite-time resource extinction. Although all common property resources do not 
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have such a fate as predicted by Garrett Hardin (1968), all of them share the possibility. Breaking 

such an interaction is the primal policy to prevent the most rapid extinction. Akao (2001, 2004) 

shows that among standard economic policy measures, a tax on harvest does not work, whereas 

tradable permits or quota system works well, because it establishes property rights to resource use. 

Another prospective prescription is privatization. However, a caution is given by Dasgupta and 

Maler (1997). They have pointed out that, in the real world, the consequence of privatization of a 

common property resource may be further resource degradation. This is due to the existing 

inequality in a rural community. If the resource is not favorably distributed to the poor, they cannot 

help but to encroach on the resource. 

Finally, resource-sector technological assistance and income assistance may not help to 

prevent finite-time extinction. In particular, if a technological assistance improves the harvesting 

efficiency, and hence the maximum harvesting ability, it may even accelerate resource extinction. 

 

 

Appendix: Proof of Proposition 2 

Suppose cx does not exist. Then, every optimal path converges to xρ by its monotonicity. The 

monotonicity also implies that there is an interval (0, ]x% such that the optimal control is zero 

harvesting (a corner solution) while the resource stock stays in the interval. The situation is depicted 

in Figure 7. Let ( )V x  be the optimal value function, that is, the lifetime utility gained when the 

initial stock is x . For 0 (0, ]x x∈ % , 

 0

0

( )
0( ) ( ) ( ) exp ,

( )
xT x

x

dxV x V x e V x
f x

ρ ρ− ⎡ ⎤
= = −⎢ ⎥

⎣ ⎦
∫
%

% %  (5) 

where 0( )T x is the arrival time at x% . Let 0( ; )t xλ be the optimal costate at time t  when the initial 

stock is 0.x  Since 0( )V x is twice continuously differentiable, 0 0(0; ) ( )x V xλ ′= (See Arrow and 

Kurz, 1970). By (5), 0 0 0( ) ( ) / ( )V x V x f xρ′ = . Combine these and take the limit, 0 0x  . Using 

the l’Hospital’s rule, we have 
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0 0 0 0

0 0
0 00 0 0 0

0 0

( ) ( )lim (0; ) lim ( ) lim lim .
( ) ( )x x x x

V x V xx V x
f x f x
ρ ρλ

′
′= = =

′   
 (6) 

 

<Figure 7> 

 

Since
0

00
lim (0; )
x

xλ


exists and finite (see the phase diagram in Figure 5), the equality in (6) holds if 

and only if
0

00
lim ( )
x

f x ρ′ =


, which contradicts Assumption 4. The second part of the proposition is 

proved as follows: Let arg max[ ( ) / | 0]MSYx f x x x= ≥ . The mild discounting condition implies 

that MSYx xρ< . Consider a new growth function ( )f x% , 

which is defined by the convex hull of the graph ( , ( ))x f x . Since ( ) ( ) all 0f x f x x≤ ≥% , an 

optimal control for the problem (1) with ( )f x% is optimal for the problem with ( )f x , if the control is 

feasible with ( )f x . It is easily seen that these two problems share the optimal path in a 

neighborhood of xρ , which is the OSS when the growth function ( )f x% . 

                (Q.E.D.) 
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Figure 1 Natural growth function and utility function. 
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Figure 2 Phase diagrams for the rudimentary model 
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Figure 7  Phase diagram near the corner OSS. 
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