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Abstract

This study examines three alternative models of heteroskedasticity in
crop yield models. Non-nested test results suggest that modeling the sources
of heteroskedasticity is the preferred procedure. Including potential sources
of heteroskedasticity as explanatory variables can remove the
heteroskedasticity in wheat yields. The results also suggest that the GARCH
specification is a promising model of heteroskedasticity when the sources
cannot be identified. The time-trend variance model alone may misspecify the

true variance structure.



HETEROSKEDASTICITY IN CROP YIELD MODELS

Understanding the behavior of crop yields becomes increasingly important
for modeling production functions, forecasting price movements, and
understanding farmers’' response to government programs, Variability in crop
yields is the principal source of instability in production levels (Hazell
1985), and most studies use the coefficient of variation around the trend to
measure the variability in crop production (Hazell 1984; Weber and Sievers;
Singh and Byerlee). The maintained assumption of using the coefficients of
variation for analysis is that detrended yields are homoskedastic within the
sample period.

A phenomenon usually confronted in statistical analysis of crop yields
is heteroskedasticity, which seems to be characterized mainly by systematic
changes in yield variation over time. Nevertheless, heteroskedasticity has
received less attention and frequently has been handled inadequately in
empirical analysis.

Hazell (1984) and, similarly, Singh and Byerlee recognized
heteroskedasticity in detrended yields and partitioned the residuals into
subsequent periods. However, the measured coefficient of variation could be
misleading if heteroskedasticity occurs more frequently. Gallagher found that
the detrended yields have an upward trend in variation and standardized the
data with the predicted standard deviation from a regression against a time-
trend to correct for heteroskedasticity'. This standardization procedure
results in heteroskedasticity-adjusted estimates only if the true error
structure is known. If the variation is cyclical or changing with some
systematic patterns other than trend, this procedure would not correct fully

for heteroskedasticity.
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variation in yields may have some patterns due to autocorrelated weather
and/or gradual adaptation of new technology. If this is the case, the GARCH
(Generalized Autoregressive Conditional Heteroskedastic) process developed by
Bollerslev can well serve as an alternative to the time-trend variance model.
The GARCH (p,q) process is equivalent to an ARMA process with m=max{p,q} and p
in the squared disturbances (Bollerslev) and is useful to model systematic
changes in yield variation. The GARCH model is analogous to Just and Pope’s
stochastic production function, which allows the relationships of inputs with
risk to be independent of the relationships of inputs with production.

Conventional time-trend variance or the GARCH models may explain the
variation in crop yields. However, heteroskedasticity may result from model
misspecification, most likely due to omitted variables (Judge et al.). Offutt
et al. found that variability of corn yield around a trend increases over
time, but inclusion of weather variables is 1ikely to remove the
Heteroskedasticity. Engle (p. 990) claimed:

. The existence of ARCH effect would be interpreted as evidence

of misspecification. ... the ARCH may be a better approximation

to reality than making standard assumptions about the

disturbance, but trying to find the omitted variables or

determine the nature of the structural change would be even

better.

An appropriate way to model heteroskedastic yields is to incorporate
possible sources of heteroskedasticity as a priori information. This approach
should be preferred, as Engle suggested, to the models that allow
heteroskedasticity and approximate the true error structure with time-varying
variance models such as the time-trend variance or the GARCH models. If the

analysis fails to identify those sources, then it becomes important to

determine how the variance behaves over time to correctly standardize



the data. If crop yields follow a GARCH process, ignoring it would bias
estimated standard errors and test results (Diebold).

The objective of this study is to determine the appropriate model to
correct for heteroskedasticity in the sample data. 1In this analysis, we
conduct a non-nested test for three alternative models of correcting
heteroskedasticity in crop yields: the time-trend variance model, the GARCH
specification and an econometric model that explicitly includes the potential
sources of heteroskedasticity.

The next section specifies the candidate model and test procedure. The
estimated models and test results are reported in the following section. The
final section summarizes this study and discusses the implications of

findings.

Model specifications and test procedures
Let y, be the sample yield and x,, be a vector of explanatory variables
for the mean process. The three alternative models to be tested are specified
as follows. The time-trend variance model is
(11 vy,
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where b and as are parameters, €, is a disturbance term, and T is a trend
variable.

On the other hand, the alternative GARCH process, which is used
extensively for heteroskedastic time series data (Akgiray; Aradhyula and
Holts; Yang), endogenizes the conditional variance. Following Bollerslev’s

proposition, we use the GARCH(1,1) specification as follows:
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where Bs are parameters and e, follows conditionally a normal distribution
with zero mean and time-varying variance, h,, which is determined by past
realization of second moments of disturbances and its own lag. The variance
equation is equivalent to an ARMA specification in ezt.

Finally, the econometric model is specified such that the disturbances
€. in the above equations have a constant variance, i.e., hy = 0%, for all t.
In this alternative model, x, is a vector of explanatory variables, which
cause heteroskedasticity in crop yields.

Potential sources that may cause heteroskedasticity are changes in
technology, government programs, and climatological variables. The time-trend
mean process, which is most commonly used in crop yield analysis, models the
technology change with a trend, interpreting the coefficient as the
productivity growth rate. However, in addition to yield increases, technology
should change yield variability. For example, the objective of most crop
breeding programs is to improve disease resistance and quality. The
variability in yields should diminish as disease resistance improves. A
spline function (Singh and Byerlee) capturing different rates of change in
yield in different periods implies heteroskedasticity induced by technology.

Government programs have a significant impact on yields in a particular
crop year (Houch and Gallagher). Marginal shifts in area planted (due mainly
to government programs) are typically on the less productive land. Thus,
variation in the area planted on marginal land should impact the variability

in yields.



The variation in key climatological variables appears to be non-
constant. For example, weather patterns in the 1980s differ significantly
compared to previous decades, in which greater varijability appears in both
temperature and precipitation in key growing regions in the United States.
Thus, changes in weather patterns induce apparent changes in variability in
yield trends. Weather-related heteroskedasticity seems to be more profound
with regional crop yield data than aggregated national data, which tend to
average out regional weather effects (Offutt et al.). We chose two key
climatological variables representing temperature and moisture.

Finally, we included a lagged dependent variable to remove
autocorrelation which makes test inferences unreliable. This lagged variable
also models persistence in average productivity, which may be due either to
continuous cropping patterns or to fertilizer and moisture remaining from the
previous years. This persistence would reduce yield variability.

The mean process for the econometric model is then specified as
[3] vy = bo + byT + byT? # byT? + by, + bsAy + bgdTy + byTM, + e,
where A, is the planted acres; JT,, the mean of June’s daily maximum
temperature; and TM,, the sum of growing season precipitation (May to July)
and the recharged precipitation (October to April)2. A cubic function of
trend is introduced to capture nonlinearity in growth rates.

The first step of the non-nested Wald test, which is valid for small
samples, is to nest the alternative models in a more general specification.
The general model is the same as Model [3] with a time-varying variance
equation specified as
[4] hy = 9o + ¥418%4 + Yoheoy * ¥5T

e, ~ N(O,h,)

where ys are parameters.
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The hypothesis of the time-trend model is Ho:y,=0 and y,=0 while that of
the GARCH model is Ho:y,=0. The hypothesis of the econometric model is
Ho:y,=0, y,=0 and y;=0. As is always true of non-nested tests, the test may
reject all candidate models or fail to reject any of them. Eight cases of
test results are possible.

Heteroskedasticity in the data may not conform to systematic patterns
which the candidate models represent. Thus, we apply the BDS test® (Brock,
Dechert and Sheinkman) to the residuals (not standardized) of the general
model. The BDS test detects both linear and nonlinear dependence, and the
rejection of i.i.d. may be due to linear dependence, i.e., autocorrelation.
Thus, the Ljung-Box test for serial correlation® is conducted to the residuals
because our interest is heteroskedasticity.

The data considered in this study are average yields of durum and hard
red sbring (HRS) wheat produced in North Dakota during 1929 to 1988. We use
these state-wide data to avoid the possibility that the sources of
heteroskedasticity would be neutralized or masked in the nation-wide data.
The data for yields and planted acres are obtained from various issues of
North Dakota Agricultural Statistics, and data for the climatological

variables are taken from the U.S. Department of Commerce, National Oceanic and

Atmosphere Administration.

Time~trend variance vs. GARCH models
We first estimated a time-trending GARCH model to confirm
heteroskedasticity in the data since the null hypothesis of the econometric
model is no heteroskedasticity. The non-nested test between the time-trend
variance and the GARCH models is also important since the GARCH specification

for the heteroskedastic crop yields is a new effort in literature. The test



is performed with the time-series (Bessler) and time-trend mean processes,

which were widely used in past studies.

Time-series mean process

The mean process of each crop yield is identified as an ARMA(1,1)
process through autocorrelation and partial autocorrelation functions (Box and
Jenkins). We estimated the ARMA(1,1) process for the mean equation with the
same variance equation as in Equation {4].

Table 1 shows the estimated results of the model for both crops. Both
data are serially correlated. Estimated coefficients of the autoregressive
and moving average terms are significant at the 5% level for each crop. The
Ljung-Box test does not reject the null hypothesis of no serial correlation in
the residuals for each model. The model removes autocorrelation in the sample
data.

The results of non-nested tests differ for each crop. The test rejects
the time-trend variance model in favor of the GARCH alternative in the case of
durum, i.e., the GARCH term (h,_,) is significant while the trend is not
statistically different from zero at the conventional levels. On the other
hand, the test rejects neither time-trend nor GARCH alternatives for HRS,

ji.e., all variables are significant.

Time-trend mean process

The sample data are autocorrelated as found in the time-series model, so
we included a lagged dependent variable. To avoid heteroskedasticity due to
misspecified functional form, trend is introduced into the model using a cubic
function as in the general model [4].

The estimated results in Table 1 indicate significant changes in

productivity due to time-dependent technical changes in each crop. However,



the growth rate patterns differ. Yields for HRS increase linearly over time,
while those for durum increase at first an increasing rate and, then, at a
decreasing rate. Thus, the second- and third-order terms are not included in
the final models for HRS.

The non-nested test results are consistent with those of time-series
mean models. In case of durum, only the GARCH term is significant, rejecting
the time-trend variance model in favor of the GARCH alternative, while neither
model is rejected for HRS.

The results of these tests indicate that the conventional use of a time-
trend_in variance misspecifies the variance structure. The GARCH effects
should be considered when modeling heteroskedastic crop yields. As indicated

by the Ljung-Box test and Kolmogorov-Smirnov test of fit (D_, ) for diagnostic

max
check, the standardized residuals (e./h,) satisfy the maintained assumption of
i.i.d. normal. The estimated model is a valid specification for the sample

data.

Non-nested test among the three alternatives

We have shown that the residuals in conventional time-series and time-
trend mean processes are heteroskedastic. We now estimate the general model
and conduct non-nested tests among the three alternative models. The trend
variable in the variance equation for durum is dropped according to the
previous findings since inclusion of an irrelevant variable reduces
efficiency.

The estimated results are reported in Table 2 along with those from OLS
estimation for comparison. 1In both cases, planted acres had a negative impact
on yields as expected. These negative coefficients imply that these crops are

produced with over-utilization of 1land®. Climatological variables are all



significant in explaining yield movements for each crop. Moisture affects
yields positively, while temperature affects yields negatively.

The non-nested tests support the econometric model against the other two
time-varying variance models. Neither the ARCH nor GARCH term is significant
at conventional levels for both crops. Also, the trend is not significant in
the HRS model. The null hypothesis of no heteroskedasticity also is supported
by the likelihood-ratio (LR) test (Ho: y,=0, y,=0 and y;=0) for the two crops.

To confirm the non-nested test results, we apply the BDS test for the
residuals. The BDS test detects no dependence left for HRS, while the i.i.d.
hypothesis is rejected for durum at an embedding dimension, m=5. However, the
Ljung-Box test does not detect quadratic dependence in the durum residuals
(ei . This implies that the BDS rejection is due to nonlinear dependence at
higher-than-second moments, e.g., heterokurtic. These test results indicate
that the econometric model specified in this study corrects for
heteroskedasticity found in the time-series and time-trend mean processes.

The standard errors of GARCH estimates are compared to those of OLS.
Since the econometric specification removed autocorrelation and
heteroskedasticity, OLS estimates would be more efficient. The results
support this proposition for the durum model in which all standard errors from
OLS are smaller than those from the GARCH model. However, results for HRS are

mixed, i.e., some were smaller and some larger.

Summary and conclusions
Most studies on crop yields tend to ignore heteroskedasticity or to
handle it improperly. Simple linear time-trend and time-series models usually
encounter variances that change over time. The conventional way to correct

for heteroskedasticity is to standardize the data with their predicted
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standard deviation. However, we suggest that including factors that cause the
systematic changes in yield variation should be preferred to the model
allowing heteroskedasticity and approximating the variance structure. The
underlying hypothesis is that the detected heteroskedasticity results from
model misspecification mostly are due to omitted variable explaining the
systematic changes in yield variability. To confirm this proposition, we
conducted non-nested tests among the three alternatives: the time-trend
variance, the GARCH, and the econometric models, including potential sources
of heteroskedasticity for durum and HRS wheat produced in North Dakota during
1929 to 1988.

The results indicate that the econometric model including the trend as a
proxy for technology, planted acres and climatological variables removes
heteroskedasticity found in time-trend and time-series mean models.
Conventional use of the OLS estimation is acceptable for these sample data,
which is convenient in empirical study. Among the variables included, the
climatological variables seem to be most important in explaining
heteroskedasticity. Models only included the climatological variables
provided the same inferences in terms of heteroskedasticity, while it is not
true for planted acres and trend (as shown in the third section)®,

Efforts identifying the sources of heteroskedasticity may not
necessarily be so desperate as many researchers seem to perceive.
Climatological variables used in this study can be located easily, even if
they may be unfamiliar to agricultural economists.

Another important implication of this study is that the GARCH
specification is promising to model heteroskedastic yields. The GARCH effects
were significant for the models that did not include those econometric

variables. The conventional time-trend variance model alone cannot correctly



approximate the systematic changes in the sample yield variation. If the
sources cannot be identified, the GARCH specification or the GARCH with a

trend in variance may be appropriate to correct for heteroskedasticity.
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Footnotes
Hereafter we call this model a time-trend variance model.

In sum, TM is the total precipitation during the year except August and
September when precipitation almost evaporates.

Under the null hypothesis that a time series {x.} is i.i.d. ) the BDS
statistic is W,(e,T)=T"/?[C,(e,T) ~ C,(&,T)1/0, (e), where m is embedding
dimensions, T the sample size, C, the corre]at1on integral evaluated at
T and €, a very small number, and o, the variance of the numerator.

This statistic converges in distribution to a standard normal random
variable under the null hypothesis. For more details, see Sheinkman and
LeBaron.

Under the nulil hypothes1s of no serial correlation, the Ljung-Box test
statistic w1th sample size T is Q(t)= T(T+2)th(T)z/(T—t), t<K, where
p(t) is the t™ autocorrelation coefficient. When applied to residuals,
Q has asymtotically a chi-square distribution with K-s degrees of
freedom to adjust for the estimated parameters, and s is the number of
lagged dependent variables.

The coefficient of planted acres is the first differentiation of yield
with respect to the variable. Since yields are average products of land
(y=Q/A=AP ), the negative coefficient implies that (MP_ ~-AP_ )/A<0 and
MP_<AP,. The production exhibits decreasing returns to scale w.r.t.
1and.

The mean equations only with the planted acres still have the GARCH
effects. We do not report these results for space limitation.



Table 1. Estimated results of time-series and time-trend models with the
time-varying variance equations®

Time-SeriesP

Time-Trend®

Durum HRS Durum HRS
Mean
~Intercept 1.68 1.69 8.96% 3.88%
(1.16) (1.15) (2.15) (1.82)
AR(1) 0.92% 0.90%
(0.07) (0.07)
MA(1) -0.26% -0.39%
(0.11) {(0.17)
Yeot 0.37% 0.42%
(0.17) (0.13)
T -0.64% 0.22%
(0.24) (0.07)
T2 0.04% -
(0.01) -
T3 -0.0005% -
(0.0001) -
Variance
Intercept -0.89 -0.97 13.01 -0.71
(1.62) (1.00) (9.94) (1.09)
e?,_, -0.11 -0.13% 0.30 -0.11
(0.15) (0.05) (0.17) (0.07)
he.s 0.92% 0.99% -0.73% 0.99%
(0.16) (0.10) (0.27) (0.11)
T 0.18 0.13% 0.53 0.10%
(0.12) (0.04) (0.36) (0.04)
Log-Likelihood -173.60 -165.27 -168.91 -164.05
Ljung-Box test(Lag=10)
e./h, 5.17 7.29 14.65 13.22
(ey/hy)? 3.63 7.15 6.10 13.17
Normality test
Skewness 0.540% 0.331 -0.197 0.189
Kurtosis 0.463 0.168 -0.692 0.541
D 0.078 0.075 0.058 0.069

max

8standard errors in parentheses.
bgtatistically significant at a 5% level.



Table 2. Estimated results of the general model for the non-nested tests?

Durum® HRS®
GARCH oLS GARCH oLs
Mean
Intercept 33.05% 28.02% 25.31% 32.39%
(15.38) (10.39) (4.73) (9.13)
Yeeq 0.34% 0.40% 0.43% 0.29%
{0.11) (0.10) (0.12) (0.10)
T ~1.07% -0.83% 0.13% 0.17%
(0.44) (0.34) (0.05) (0.06)
T2 0.05% 0.04% - -
(0.017) (0.012) - -
T3 ~-0.0005% -0.0004% - -
{(0.0002) (0.0001) - -
Acre -1.76 -1.14 -0.,93% -1.12%
(0.97) (0.78) (0.21) (0.38)
JT -0.37% -0.37% -0.30% -0.38%
(0.16) (0.11) (0.06) (0.08)
™ 0.88% 0.95% 0.65% 0.73%
(0.27) (0.18) (0.12) (0.15)
Variance
Intercept 12.91% 11.59% 3.52 7.98%
(4.62) (2.31) (5.18) (1.57)
e? ., 0.09 - 0.44 -.
(0.08) - (0.28) -
he_y '-0.28 - -0.49 -.
(1.30) - (0.44) -
T - - 0.23 -
- - (0.14) -
Log-Likelihood -151.96 -1583.55 -144.02 -145.06
LR test 3.18 - 2.08 -
Adjusted R-square - 0.83 - 0.87
Ljung—-Box test
eE 16.35 - 5.71 -
€% 7.98 - 4.26 -
et/ht 15.02 - 5.32 -
(ey/h)? 5.86 - 3.04 -
BDS test(e=0.50)"
m=2 0.11 - 0.10 -
m=3 -0.38 - -0.78 -
m=4 -1.37 - -1.02 -
m=5 ~-2.11% - -1.41 -
Normality testP
Skewness -0.113 - -0.141 -
Kurtosis 1.109% - -0.418 -
D 0.088 - 0.063 -

max

agtandard errors in parentheses.

scaling problem.

bTests applied for the residuals.
Csignificant at a 5% level.

Acres are divided by 1000 to avoid the

16



