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Abstract. Classification errors, selection bias, and uncontrolled confounders are
likely to be present in most epidemiologic studies, but the uncertainty introduced
by these types of biases is seldom quantified. The authors present a simple yet easy-
to-use Stata command to adjust the relative risk for exposure misclassification,
selection bias, and an unmeasured confounder. This command implements both
deterministic and probabilistic sensitivity analysis. It allows the user to specify
a variety of probability distributions for the bias parameters, which are used to
simulate distributions for the bias-adjusted exposure–disease relative risk. We
illustrate the command by applying it to a case–control study of occupational
resin exposure and lung-cancer deaths. By using plausible probability distributions
for the bias parameters, investigators can report results that incorporate their
uncertainties regarding systematic errors and thus avoid overstating their certainty
about the effect under study. These results can supplement conventional results
and can help pinpoint major sources of conflict in study interpretations.

Keywords: st0138, episens, episensi, sensitivity analysis, unmeasured confounder,
misclassification, bias, epidemiology

1 Introduction

Conventional statistical methods to estimate exposure–disease associations from ob-
servational studies are based on several assumptions, such as no measurement error
and no selection bias (i.e., selection, participation, and retention of subjects are purely

c© 2008 StataCorp LP st0138



30 A tool for deterministic and probabilistic sensitivity analysis

random). If the associations are interpreted as causal effects, another assumption of
random-exposure assignment within levels of controlled covariates is also implicitly
made. When such assumptions are not met, tests and estimates for the association
between exposure and disease are likely to be biased and may fail to capture most of
the uncertainty about the estimated parameter (Greenland 2005).

There are many proposed methods to adjust uncertainty assessments for unmeasured
sources of bias or systematic error (Chu et al. 2006; Eddy, Hasselblad, and Shachter
1992; Fox, Lash, and Greenland 2005; Greenland 2001; Greenland 2003b; Greenland
2005; Greenland and Lash 2008; Hoffman and Hammonds 1994; Lash and Fink 2003;
Phillips 2003; and Steenland and Greenland 2004). Nonetheless, few published papers in
epidemiologic journals use quantitative methods to investigate the role of potential bias
in the observed findings (Jurek et al. 2006). To facilitate the use of both deterministic
and probabilistic sensitivity analysis, we present a flexible and easy-to-use tool to assess
the uncertainty of exposure–disease associations due to misclassification of the exposure,
selection bias, and unmeasured confounding. The proposed tool is implemented as a
one-line Stata command. Here we illustrate the use of the tool by analyzing a published
medical study reporting a positive association between occupational resin exposure and
lung-cancer deaths in a case–control study.

2 Methods

We consider the simplest situation in which there are only two factors: the disease and
the exposure. Each factor is considered as being either present or absent, and so the data
can be summarized in a 2×2 table. The term relative risk (RR) will be used as a generic
term for the risk ratio (ratio of proportions getting disease), rate ratio (ratio of person–
time incidence rates), and odds ratio (ratio of odds, most often used in case–control
data). The formulas implemented for correction of the observed RR due to misclassifica-
tion of the exposure, selection bias, and a binary unmeasured or uncontrolled confounder
are described in detail elsewhere (Greenland 1996; Greenland and Lash 2008).

Deterministic (ordinary or classical) sensitivity analysis provides an external ad-
justment of the observed RR upon specification of a list of hypothetical values for the
bias parameters. The main limitation of this approach is related to the lack of explicit
accounting for uncertainty about the bias parameters (Greenland 1998). To account
for this uncertainty, probabilistic sensitivity analysis allows the user to specify a vari-
ety of probability densities for the bias parameters and use these densities to obtain
simulation limits for the bias-adjusted exposure–disease relative risk. The accompany-
ing Stata tool allows the user to specify a variety of probability density functions for
the bias parameters (table 1). Probabilistic sensitivity analysis through Monte Carlo
(random-number–based) simulations involves two iterated steps: 1) draw a random sam-
ple (one set of bias parameters) from the user-specified probability density functions of
the bias parameters, and 2) back-calculate a bias-adjusted (“corrected) RR from the
drawn parameters. These two steps are repeated several times to obtain a distribution
of bias-adjusted RR.
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Table 1. Probability distributions for the bias parameters used in adjustment for mis-
classification of the exposure, selection bias, and unmeasured or uncontrolled confound-
ing

Type of systematic Description Probability density functions
error and bias (pdf)
parameters

Misclassification of
the exposure

dseca() Sensitivity cases constant(#)

dspca() Specificity cases uniform(a b)
dsenc() Sensitivity noncases triangular(a b c)
dspnc() Specificity noncases trapezoidal(a b c d)

logit-logistic(m s
ˆ
lb ub

˜
)

logit-normal(m s
ˆ
lb ub

˜
)

Selection bias
dpscex() Pr selection cases exposed constant(#)

dpscun() Pr selection cases unexposed uniform(a b)
dpsnex() Pr selection noncases exposed triangular(a b c)
dpsnun() Pr selection noncases unexposed trapezoidal(a b c d)

logit-logistic(m s
ˆ
lb ub

˜
)

logit-normal(m s
ˆ
lb ub

˜
)

dsbfactor() Selection bias factor constant(#)

log-logistic(m s)
log-normal(m s)

Unmeasured
confounding

dpexp() Pr confounder exposed constant(#)

dpunexp() Pr confounder unexposed uniform(a b)
triangular(a b c)
trapezoidal(a b c d)
logit-logistic(m s

ˆ
lb ub

˜
)

logit-normal(m s
ˆ
lb ub

˜
)

drrcd() RR counfounder–disease constant(#)

dorce() OR confounder–exposure log-logistic(m s)
log-normal(m s)

The results of the simulation can be summarized by descriptions of the distribu-
tion of bias-adjusted RR. For example, the median (50th percentile) and the 2.5th and
97.5th percentiles can serve as analogues of the point and interval estimate for the bias-
adjusted RR. To take into account uncertainty due to random error, we subtract from
the distribution of the bias-adjusted ln(RR) a random draw from a normal distribution
with zero mean and standard deviation equal to the standard error of the conventional
ln(RR) estimate.
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In a situation where more than one systematic error occurred during the study
(uncontrolled confounding, selection bias, misclassification of the exposure) and these
errors can be treated as independent, we can perform a multiple probabilistic bias anal-
ysis with adjustment made in the reverse order of their occurrence. Suppose that the
order of events is as follows: confounded associations arise in the population used as
the source of study subjects; subjects are selected; and finally, subjects are classified
by exposure (with no misclassification of disease). Then, at each iteration of the simu-
lation, adjustment of the observed exposure–disease RR follows this order: adjustment
for misclassification of the exposure, then adjustment for selection bias, and finally,
adjustment for uncontrolled confounders.

The rest of the article is organized as follows: section 3 presents the syntax of the
command episens and its immediate form episensi; section 4 provides some examples
in which the command is applied to published data; and section 5 contains a discussion
of strengths and limitations of sensitivity analysis.

3 The episens command

3.1 Syntax

episens var case var exposed
[
var time

] [
if

] [
in

] [
weight

] [
, options

]
episensi #a #b #c #d

[
, options

]
3.2 Description

episens performs deterministic and probabilistic sensitivity analysis of the exposure–
disease relative risk for misclassification of the exposure, selection bias, and unmeasured
or uncontrolled confounding.

episensi is the immediate form of episens.

3.3 Options

The probability distribution function (pdf) of each bias parameter is specified as an
argument of an option. The list of probability distributions is presented in pdf for the
bias parameter (pdf options) below, as well as in table 1 organized by type of systematic
error.
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Misclassification of the exposure

dseca(pdf options) define the sensitivity among the cases
dspca(pdf options) define the specificity among the cases
dsenc(pdf options) define the sensitivity among the noncases
dspnc(pdf options) define the specificity among the noncases
corrsens(#) set the correlation between case and noncase

sensitivities to #
corrspec(#) set the correlation between case and noncase

specificities to #

Selection bias

dpscex(pdf options) define the selection probability among cases
exposed

dpscun(pdf options) define the selection probability among cases
unexposed

dpsnex(pdf options) define the selection probability among noncases
exposed

dpsnun(pdf options) define the selection probability among noncases
unexposed

dsbfactor(pdf options) define the selection-bias factor

Uncontrolled confounder

dpexp(pdf options) define the prevalence of the confounder among the
exposed

dpunexp(pdf options) define the prevalence of the confounder among the
unexposed

drrcd(pdf options) define the confounder-disease relative risk
dorce(pdf options) define the confounder-exposure odds ratio
corrprev(#) set the correlation between exposure-specific

confounder prevalences to #

(Continued on next page)
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pdf for the bias parameter (pdf options)

constant(#) constant value equal to #
uniform(a b) uniform between min = a and max = b
triangular(a b c) triangular with min = a, mode = b, and max = c
trapezoidal(a b c d) trapezoidal with min = a, modes between b and

c, and max = d
logit-logistic(m s

[
lb ub

]
) logit–logistic with mean = m and scale = s,

shifted between
[
lb ub

]
logit-normal(m s

[
lb ub

]
) logit-normal with mean = m and scale = s,

shifted between
[
lb ub

]
log-logistic(m s) loglogistic with mean = m and scale = s

log-normal(m s) lognormal with mean = m and scale = s

Simulations

reps(#) specify the number of replications to be performed
nodots suppress the replication dots
seed(#) set the random-number seed to #
ndraw(#) number of observations drawn at each replication
saving(filename) save results to filename
grprior histogram of the priors
grarrsys histogram of the adjusted relative risk (systematic

error)
grarrtot histogram of the adjusted relative risk (systematic

error plus random error)

Study design, format, combined analysis

study(cc | cs | ir) specify the type of study
format(% fmt) set the display format for numbers
combined specify combined analyses of multiple biases
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3.4 Saved results

episens saves the following in r():

Scalars

Deterministic sensitivity analysis

r(bias mie) percentage of bias due to misclassification of the exposure
r(rrdx mie) exposure–disease relative risk adjusted for misclassification of

the exposure
r(bias sel) percentage of bias due to selection bias
r(rrdx sel) exposure–disease relative risk adjusted for selection bias
r(bias unc) percentage of bias due to unmeasured confounding
r(rrdx unc) exposure–disease relative risk adjusted for unmeasured

confounding

Probabilistic sensitivity analysis

r(rrdx mie pm) median of the distribution of exposure–disease relative risks
adjusted for misclassification of the exposure

r(rrdx mie plb) 2.5th percentile of the distribution of exposure–disease risks
adjusted for misclassification of the exposure

r(rrdx mie pub) 97.5th percentile of the distribution of exposure–disease risks
adjusted for misclassification of the exposure

r(rrdx sel pm) median of the distribution of exposure–disease relative risks
adjusted for selection bias

r(rrdx sel plb) 2.5th percentile of the distribution of exposure–disease risks
adjusted for selection bias

r(rrdx sel pub) 97.5th percentile of the distribution of exposure–disease risks
adjusted for selection bias

r(rrdx unc pm) median of the distribution of exposure–disease relative risks
adjusted for unmeasured confounding

r(rrdx unc plb) 2.5th percentile of the distribution of exposure–disease risks
adjusted for unmeasured confounding

r(rrdx unc pub) 97.5th percentile of the distribution of exposure–disease risks
adjusted for unmeasured confounding

r(rrdx all pm) median of the distribution of exposure–disease relative risks
adjusted for all user-specified biases

r(rrdx all plb) 2.5th percentile of the distribution of exposure–disease risks
adjusted for all user-specified biases

r(rrdx all pub) 97.5th percentile of the distribution of exposure–disease risks
adjusted for all user-specified biases



36 A tool for deterministic and probabilistic sensitivity analysis

4 Examples

4.1 Deterministic sensitivity analysis

To illustrate how to perform a sensitivity analysis using the command episens, we used
the crude data from a case–control study comparing cases of lung-cancer deaths with
controls based on occupational exposure to resins (Greenland et al. 1994).

. cci 45 94 257 945, woolf

Proportion
Exposed Unexposed Total Exposed

Cases 45 94 139 0.3237
Controls 257 945 1202 0.2138

Total 302 1039 1341 0.2252

Point estimate [95% Conf. Interval]

Odds ratio 1.760286 1.202457 2.576898 (Woolf)
Attr. frac. ex. .4319106 .1683693 .6119365 (Woolf)
Attr. frac. pop .1398272

chi2(1) = 8.63 Pr>chi2 = 0.0033

The authors found a positive association between occupational exposure and lung-
cancer deaths (OR=1.76, 95% CI, 1.20–2.58). Further adjustment for age or year did
not substantially change this association. Nonetheless, the measured exposure to resins
must be misclassified to some extent.

Exposure misclassification

The sensitivities and specificities of classification among the cases and noncases would
allow us to adjust the observed data for classification error (Greenland 1996; Greenland
and Lash 2008). We can perform a deterministic sensitivity analysis assuming nondif-
ferential misclassification of the exposure and assigning a specific (fixed) value to the
sensitivity and specificity among cases and noncases, say, 0.9.

. episensi 45 94 257 945, st(cc) dseca(c(.9)) dspca(c(.9)) dsenc(c(.9))
> dspnc(c(.9))

Se|Cases : Constant(.9)
Sp|Cases : Constant(.9)
Se|No-Cases: Constant(.9)
Sp|No-Cases: Constant(.9)

Observed Odds Ratio [95% Conf. Interval]= 1.76 [1.20, 2.58]

Deterministic sensitivity analysis for misclassification of the exposure
External adjusted Odds Ratio = 2.34
Percent bias = -25%

The odds ratio (OR adjusted for misclassification of the exposure is 2.34, with a
percentage of bias of (1.76− 2.34)/2.34 ∗ 100 = −25%. However, under the assumption
that the sensitivity among the cases (0.9) is higher than the sensitivity among the
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noncases (0.8) with specificities at 0.8, the OR adjusted for misclassification of the
exposure would be 9.11.

. episensi 45 94 257 945, st(cc) dseca(c(.9)) dspca(c(.8)) dsenc(c(.8))
> dspnc(c(.8))

Se|Cases : Constant(.9)
Sp|Cases : Constant(.8)
Se|No-Cases: Constant(.8)
Sp|No-Cases: Constant(.8)

Observed Odds Ratio [95% Conf. Interval]= 1.76 [1.20, 2.58]

Deterministic sensitivity analysis for misclassification of the exposure
External adjusted Odds Ratio = 9.11
Percent bias = -81%

One can repeat this procedure for various likely combinations of sensitivities and
specificities among the cases and noncases and present the adjusted ORs in a table
(Greenland 1996; Greenland and Lash 2008).

Selection bias

Because of lack of adequate job records for exposure reconstruction, some data available
from this study indicate that the probabilities of selecting a case and a noncase are 0.7
and 0.6, respectively.

If selection is associated with both exposure to resins and lung-cancer death, con-
siderable selection bias could result. The selection-bias factor dsbfactor is given by
the exposed versus unexposed selection probabilities comparing cases (dpscex/dpscun)
and noncases (dpsnex/dpsnun). If the selection probabilities among cases and noncases
do not differ across exposure status, there is no bias [dsbfactor = (dpscex/dpscun)/
(dpsnex/dpsnun) = 1].

. episensi 45 94 257 945, st(cc) dpscex(c(.7)) dpscun(c(.7)) dpsnex(c(.6))
> dpsnun(c(.6))

Pr Case Selection Exposed: Constant(.7)
Pr Case Selection No-Exposed: Constant(.7)
Pr No-Case Selection Exposed: Constant(.6)
Pr No-Case Selection No-Exposed: Constant(.6)

Observed Odds Ratio [95% Conf. Interval]= 1.76 [1.20, 2.58]

Deterministic sensitivity analysis for selection bias
External adjusted Odds Ratio = 1.76
Percent bias = 0%

However, if the probabilities of selecting a case and a noncase are different with respect to
the exposure status, the selection-bias factor will be greater than 1 if (dpsecx/dpscun)
> (dpsnex/dpsnun) and lower than 1 if (dpsecx/dpscun) < (dpsnex/dpsnun). For in-
stance, lets suppose that the probability of selecting a case exposed is 0.9, a case unex-
posed is 0.5, a noncase exposed is 0.5, and a noncase unexposed is 0.7. The selection-bias
factor is equal to (.9/.5)/(.5/.7) = 2.5.
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. episensi 45 94 257 945, st(cc) dpscex(c(.9)) dpscun(c(.5)) dpsnex(c(.5))
> dpsnun(c(.7))

Pr Case Selection Exposed: Constant(.9)
Pr Case Selection No-Exposed: Constant(.5)
Pr No-Case Selection Exposed: Constant(.5)
Pr No-Case Selection No-Exposed: Constant(.7)

Observed Odds Ratio [95% Conf. Interval]= 1.76 [1.20, 2.58]

Deterministic sensitivity analysis for selection bias
External adjusted Odds Ratio = 0.70
Percent bias = 152%

The selection-bias adjusted OR is equal to 1.76/2.5 = 0.7. In an opposite scenario,
the probability of selecting a case exposed is 0.5, a case unexposed is 0.9, a noncase
exposed is 0.7, and a noncase unexposed is 0.5. The selection-bias factor is equal to
(.5/.9)/(.7/.5) = 0.4.

. episensi 45 94 257 945, st(cc) dpscex(c(.5)) dpscun(c(.9)) dpsnex(c(.7))
> dpsnun(c(.5))

Pr Case Selection Exposed: Constant(.5)
Pr Case Selection No-Exposed: Constant(.9)
Pr No-Case Selection Exposed: Constant(.7)
Pr No-Case Selection No-Exposed: Constant(.5)

Observed Odds Ratio [95% Conf. Interval]= 1.76 [1.20, 2.58]

Deterministic sensitivity analysis for selection bias
External adjusted Odds Ratio = 4.44
Percent bias = -60%

The selection-bias adjusted OR is equal to 1.76/0.4 = 4.4. These two extreme scenar-
ios, however, do not take into account that there is no reason to expect big differences
comparing the case and noncase selection probabilities with respect to the exposure;
that is, dpscex should be similar to dpscun, and dpsnex should be similar to dpsnun.

Uncontrolled confounders

In the case–control study of occupational exposure to resins and lung-cancer mortality,
the authors had no data on smoking. Therefore, we want to quantify the potential
bias introduced by ignoring smoking in the published analysis. To back-calculate the
smoking adjusted OR, we assume that the RR relating smoking to lung-cancer death is
5, and the smoking prevalences among the resins exposed and unexposed are 0.7 and
0.5, respectively.

. episensi 45 94 257 945, dpexp(c(.7)) dpunexp(c(.5)) drrcd(c(5))

Pr(c=1|e=1): Constant(.7)
Pr(c=1|e=0): Constant(.5)
RR_cd : Constant(5)

Observed Odds Ratio [95% Conf. Interval]= 1.76 [1.20, 2.58]

Deterministic sensitivity analysis for unmeasured confounding
External adjusted Odds Ratio = 1.39
Percent bias = 27%



N. Orsini, R. Bellocco, M. Bottai, A. Wolk, and S. Greenland 39

The resin lung-cancer death OR adjusted for smoking is 1.39, which is lower than
the observed OR because we assumed positive associations between the confounder and
the outcome (5 > 1) as well as between the confounder and the exposure (0.7 > 0.5).
For sensitivity analysis, one can repeat the above command using other plausible values
for the resins-specific smoking prevalences and the smoking lung-cancer OR (Greenland
1996; Greenland and Lash 2008).

4.2 Probabilistic sensitivity analysis

The main limitation of deterministic sensitivity analyses is that they treat the bias
parameters as if they were known or as if they can assume only certain fixed values.
It also fails to discriminate among the different scenarios in terms of their likelihood,
and it is not straightforward to summarize all the bias-adjusted RR calculated under
a variety of possible values for the bias parameters. Therefore, we next assume that
we can specify prior probability distributions for the bias parameters that capture our
uncertainty about those parameters and then use these distributions in a probabilistic
sensitivity analysis.

Exposure misclassification

We first assume nondifferential misclassification of the exposure with probability density
functions for sensitivities and specificities among cases and noncases equal to trapezoidal
distributions with a minimum of 0.75 and a maximum of 1, and an interval of equally
probable values between 0.85 and 0.95.

A technical issue is that the formulas used to back-calculate the relative risk can
yield negative adjusted counts, which are impossible. To avoid negative adjusted counts,
the prior distributions for sensitivity and specificity must be bounded by dsenc() ≥
(number of noncases classified exposed / total number of noncases) and dspnc() ≥
(number of noncases classified unexposed / total number of noncases) among noncases
and by dseca() ≥ (number of cases classified exposed / total number of cases) and
dspca() ≥ (number of cases classified unexposed / total number cases) among cases.
The command episens automatically discards draws of sensitivities and specificities
from user-specified distributions falling into the region of negative adjustment. It is the
user’s decision whether to check that the resulting truncated distribution still appears
to be reasonable.

Here negative adjustments would occur whenever dsenc() < (257/1202 = 0.214)
and dspnc() < (945/1202 = 0.786) among noncases, and dseca() < (45/139 = 0.324)
and dspca() < (94/139 = 0.676) among cases. Among these four bounds, however,
only one is of interest (dspnc() < 0.786) because we specified trapezoidal distributions
between 0.75 and 1.
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. episensi 45 94 257 945, st(cc) reps(20000) nodots
> dseca(trap(.75 .85 .95 1)) dspca(trap(.75 .85 .95 1))
> dsenc(trap(.75 .85 .95 1)) dspnc(trap(.75 .85 .95 1)) seed(123)

Se|Cases : Trapezoidal(.75,.85,.95,1)
Sp|Cases : Trapezoidal(.75,.85,.95,1)
Se|No-Cases: Trapezoidal(.75,.85,.95,1)
Sp|No-Cases: Trapezoidal(.75,.85,.95,1)

Probabilistic sensitivity analysis for misclassification of the exposure

Percentiles Ratio
2.5 50 97.5 97.5/2.5
----------------------------------------

Conventional 1.20 1.76 2.58 2.14
Systematic error 1.87 2.47 14.71 7.86
Systematic and random error 1.49 2.57 15.00 10.07

The 2.5th and 97.5th percentiles of the simulated distribution of bias-adjusted OR

are 1.9 and 14.7, and the median estimate is 2.5. Including random error in the distribu-
tion of bias-adjusted OR, the 2.5th and 97.5th percentiles of the simulated distribution
become 1.5 and 15. Unsurprisingly, given the high uncertainty about the bias parame-
ters, the ratio of the bias-adjusted simulation limits (15/1.5) is about 5 times the ratio
of the conventional limits (2.6/1.2). The option grprior helps to visualize the assumed
prior probability distributions by showing histograms of the draws of the bias parame-
ters from those distributions (figure 1). The specificity distribution among noncases is
truncated at 0.786 because the command episens discards draws leading to negative
adjustments. The option saving(filename) can be useful to inspect the sampled distri-
butions of the bias parameters and the bias-adjusted odds ratios and to control various
aspects of the graphs.

We can allow for differential misclassification by drawing the sensitivities and speci-
ficities from different trapezoidal distributions for cases and controls. Because the sensi-
tivities/specificities among the cases are not independent of the sensitivities/specificities
among the noncases, we should specify a high correlation between sensitivities and
specificities respectively, say, 0.8. The options corrsens() and corrspec() can help to
control the degree of differentiality. Assuming the same priors for cases and noncases, a
correlation of 1 means no difference between sensitivities/specificities among cases and
noncases (nondifferential misclassification).
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. episensi 45 94 257 945, st(cc) reps(20000) nodots dseca(trap(.75 .85 .95 1))
> dspca(trap(.75 .85 .95 1)) dsenc(trap(.7 .8 .9 .95))
> dspnc(trap(.7 .8 .9 .95)) corrsens(.8) corrspec(.8) seed(123) grprior

Se|Cases : Trapezoidal(.75,.85,.95,1)
Sp|Cases : Trapezoidal(.75,.85,.95,1)
Se|No-Cases: Trapezoidal(.7,.8,.9,.95)
Sp|No-Cases: Trapezoidal(.7,.8,.9,.95)
Corr Se|Cases and Se|No-Cases : .8
Corr Sp|Cases and Sp|No-Cases : .8

Probabilistic sensitivity analysis for misclassification of the exposure

Percentiles Ratio
2.5 50 97.5 97.5/2.5
----------------------------------------

Conventional 1.20 1.76 2.58 2.14
Systematic error 1.81 3.48 48.19 26.57
Systematic and random error 1.61 3.60 48.92 30.47
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Figure 1. Histograms of 20,000 draws from trapezoidal prior distributions (a = 0.75,
b = 0.85, c = 0.95, d = 1) for the sensitivity and specificity among cases and noncases.

The 95% simulation limits including systematic and random error were 1.6 and 49,
with a median estimate of 3.6.
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Selection bias

Although Selection bias of section 4.1 shows how sensitive the resins lung-cancer death
OR is to different scenarios of selection bias, these scenarios are of no help because only
a small association (if any) between lack of records and lung-cancer death is expected
(dsbfactor() = 1). Instead of assigning a distribution to each selection probability
(dpscex(), dpscun(), dpsnex(), dpsnun()), we can directly assign a prior distribution
to the selection-bias factor (figure 2). Particularly, we assume a lognormal distribution
with mean 0 and standard deviation 0.21, which yields 95% prior probability of the bias
factor falling between exp(0 − 1.96 ∗ 0.21) = 0.7 and exp(0 + 1.96 ∗ 0.21) = 1.5.

. episensi 45 94 257 945, st(cc) reps(20000) nodots dsbfactor(log-n(0 0.21))
> seed(123) grprior

selection bias factor: Log-Normal(0.00,0.21)

Probabilistic sensitivity analysis for selection bias

Percentiles Ratio
2.5 50 97.5 97.5/2.5
----------------------------------------

Conventional 1.20 1.76 2.58 2.14
Systematic error 1.16 1.76 2.66 2.29
Systematic and random error 1.01 1.75 3.08 3.05
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Figure 2. Histogram of 20,000 draws from a lognormal distribution for the selection-bias
factor (m = 0, s = 0.21).

As expected, the median estimate of the selection-bias adjusted OR 1.75 is not prac-
tically different from the conventional 1.76, but the ratio of 95% simulation limits in-
cluding systematic and random error (3.05) is 43% higher than the conventional one
(2.14).
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Uncontrolled confounder

As a starting example, we specify two uniform independent distributions for the smoking
prevalences among exposed and unexposed between 0.4 and 0.7. We also independently
specify a prior probability distribution for the smoking lung-cancer mortality RR that is
lognormal with 95% confidence limits of ln(5) and ln(15). These limits imply that the
mean of this prior RR distribution is {ln(15)+ln(5)}/2 = 2.159 with standard deviation
{ln(15)−ln(5)}/(2∗1.96) = 0.280. Figure 3 shows the draws from these prior probability
distributions for the bias parameters (option grprior).

. episensi 45 94 257 945, st(cc) reps(20000) nodots dpexp(uni(.4 .7))
> dpunexp(uni(.4 .7)) drrcd(log-n(2.159 .280)) seed(123)
> grarrtot grprior

Pr(c=1|e=1): Uniform(.4,.7)
Pr(c=1|e=0): Uniform(.4,.7)
RR_cd : Log-Normal(2.16,0.28)

Probabilistic sensitivity analysis for unmeasured confounding

Percentiles Ratio
2.5 50 97.5 97.5/2.5
----------------------------------------

Conventional 1.20 1.76 2.58 2.14
Systematic error 1.25 1.76 2.49 2.00
Systematic and random error 1.05 1.76 2.96 2.83
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Figure 3. Histograms of 20,000 draws each from prior distributions for the smoking-
exposure specific prevalences and the confounder-disease RR.
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From the 20,000 draws for each bias parameter, the median smoking-adjusted resins
lung-cancer OR is 1.76 with 2.5th and 97.5th percentiles of 1.05 and 2.96. As expected,
the ratio of the smoking-adjusted simulation limits (2.83) is 32% higher than the ratio
of the conventional limits (2.14). The distribution of the bias-adjusted OR, including
both systematic and random error is shown in figure 4 (option grarrtot).

0
50

0
10

00
15

00
20

00
Fr

eq
ue

nc
y

1 2 3 4 5
Simulated RR adjusted for confounding and random error

Figure 4. Distribution of the 20,000 smoking-adjusted resins lung-cancer odds ratios
derived from the data and the prior distributions in figure 3.

Given that there is no reason to expect great differences in the prevalence of smoking
among resins exposed and unexposed, small differences are more likely than large ones.
Therefore, it is unrealistic to assume two independent priors for the two prevalences of
smoking dpexp() and dpunexp(). A way to incorporate this consideration in the prob-
abilistic sensitivity analysis is to specify a probability distribution for the confounder-
exposure OR (option dorce()) instead of the prevalence of the confounder among the
exposed (option dpexp()). Using independent priors for the confounder-exposure OR

and the prevalence of the confounder among the unexposed is more reasonable and eas-
ier to specify realistically than using independent priors for the confounder prevalences
among the exposed and unexposed.

Suppose that we assign to the confounder-exposure OR a lognormal distribution with
mean 0 (that is, dpexp() is expected to be similar to dpunexp()) and 95% prior limits
equal to {(1 − .7) ∗ .4}/{0.7 ∗ (1 − 0.4)} = 0.286 and {.7 ∗ (1 − .4)}/{(1 − .7) ∗ 0.4} =
3.5. These limits are derived calculating a confounder-exposure OR at the extreme
values of 0.4 and 0.7 for dpexp() and dpunexp(). The standard deviation for the
lognormal distribution is equal to the standard error calculated from the prior limits
{ln(3.5) − ln(0.286)}/(1.96 ∗ 2) = 0.639.
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. episensi 45 94 257 945, st(cc) reps(20000) nodots dpunexp(uni(.4 .7))
> dorce(log-n(0 0.639)) drrcd(log-n(2.159 .280)) seed(123) grprior

Pr(c=1|e=0): Uniform(.4,.7)
RR_cd : Log-Normal(2.16,0.28)
OR_ce : Log-Normal(0.00,0.64)

Probabilistic sensitivity analysis for unmeasured confounding

Percentiles Ratio
2.5 50 97.5 97.5/2.5
----------------------------------------

Conventional 1.20 1.76 2.58 2.14
Systematic error 1.25 1.76 3.02 2.42
Systematic and random error 1.04 1.79 3.36 3.23

Given the priors graphically presented in figure 5, the median bias-adjusted OR is
equal to 1.79 with 95% simulation limits 1.04 and 3.36, which have a ratio 3.2 or 14%
higher than the earlier ratio of 2.8 based on unrealistic independent priors of the smoking
prevalences.

0
10

00
20

00
30

00
40

00
50

00
Fr

eq
ue

nc
y

0 5 10 15
Confounder−Exposure OR

0
10

0
20

0
30

0
40

0
50

0
Fr

eq
ue

nc
y

.4 .5 .6 .7
Prevalence confounder unexposed

0
50

0
10

00
15

00
20

00
Fr

eq
ue

nc
y

5 10 15 20 25
Confounder−Disease RR

Figure 5. Histograms of 20,000 draws each from prior distributions for the confounder-
exposure odds ratio, the prevalence of smoking among the unexposed to resins, and the
confounder-disease RR.

4.3 Combined analysis of biases

Adjustment for multiple biases can be done by specifying the option combined. To
illustrate, we will adjust the observed OR for differential misclassification of the resins
exposure and the selection bias and for uncontrolled confounding by smoking using the
probability density functions for the bias parameters specified in the above sections.
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. episensi 45 94 257 945, st(cc) reps(20000) nodots dseca(trap(.75 .85 .95 1))
> dspca(trap(.75 .85 .95 1)) dsenc(trap(.7 .8 .9 .95)) dspnc(trap(.7 .8 .9 .95))
> corrsens(.8) corrspec(.8) dsbfactor(log-n(0 0.21)) dpunexp(uni(.4 .7))
> dorce(log-n(0 0.639)) drrcd(log-n(2.159 .280)) seed(123) combined

Se|Cases : Trapezoidal(.75,.85,.95,1)
Sp|Cases : Trapezoidal(.75,.85,.95,1)
Se|No-Cases: Trapezoidal(.7,.8,.9,.95)
Sp|No-Cases: Trapezoidal(.7,.8,.9,.95)
Corr Se|Cases and Se|No-Cases : .8
Corr Sp|Cases and Sp|No-Cases : .8
selection bias factor: Log-Normal(0.00,0.21)
Pr(c=1|e=0): Uniform(.4,.7)
RR_cd : Log-Normal(2.16,0.28)
OR_ce : Log-Normal(0.00,0.64)

Probabilistic sensitivity analysis - Combined corrections
Misclassification of the exposure
Selection bias
Unmeasured confounding

Percentiles Ratio
2.5 50 97.5 97.5/2.5
----------------------------------------

Conventional 1.20 1.76 2.58 2.14
Systematic error 1.47 3.87 56.17 38.14
Systematic and random error 1.34 3.92 57.56 42.98

A comparison of the combined analysis with the single-bias analyses of the previous
sections shows that, under the given priors confounding by smoking and selection bias
have little impact on the observed resins lung-cancer OR, and that the greatest source
of uncertainty is misclassification of the exposure.

5 Discussion

We have presented a new Stata command, episens, to perform both deterministic and
probabilistic sensitivity analysis to assess the potential impact of systematic errors on
observed exposure–disease associations. To illustrate, we applied episens to a case–
control study regarding occupational resin exposure and lung-cancer deaths.

The advantages of a probabilistic sensitivity analysis have been discussed previ-
ously (Greenland 2001; Greenland 2003a; Greenland 2005; Greenland and Lash 2008;
Lash and Fink 2003; Phillips 2003; Phillips and LaPole 2003; and Steenland and Greenland
2004). Briefly, a probabilistic sensitivity analysis requires the investigator to make ex-
plicit this uncertainty about bias parameters. This explication is done by using prior
distributions for the parameters, which reflect background information and judgments
of the investigator about sources of systematic error. The resulting distribution of bias-
adjusted estimates captures the uncertainty about bias that is ignored by conventional
statistics (such as confidence intervals). Under certain common conditions, this dis-
tribution can be viewed as an approximation to the more computationally demanding
posterior distribution of Bayesian analysis (Greenland 2005).

Concerns have been raised about the arbitrariness in the particular distributions
assumed for the bias parameters. The important point however is that changing the
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prior distributions can result in different distributions for the bias-adjusted exposure–
disease RR. This relation corresponds to the fact that if different investigators have
different opinions about sources of bias, it should be no surprise if their conclusions
differ.

Differences of opinion about bias sources may be represented by different prior dis-
tributions. The different bias-adjusted RR distributions that result then reflect the
differences in conclusions (final opinions) we should expect when prior opinions differ
and decisive data are lacking (as is usually the case in epidemiology). Thus, by varying
the input prior distributions for probabilistic sensitivity analyses, we can illustrate the
extent to which differences in prior opinions about various sources of bias may con-
tribute to conflicting interpretations of the study. The possibility of conflicting outputs
may encourage analysts to provide the best available evidence or arguments to support
their own choices for prior distributions. As with earlier, more specialized SAS macros
(Fox, Lash, and Greenland 2005), the Stata command presented in this paper greatly
eases such variation by automating the transformation of the input priors to the output
bias-adjusted distributions.

In conclusion, we have provided a user-friendly command suitable for both deter-
ministic and probabilistic sensitivity analysis to evaluate bias due to misclassification of
a binary exposure variable, selection bias, and bias due to an uncontrolled confounder.
We hope that future refinements will provide extensions to variables with multiple levels,
and allow for misclassification of multiple variables.
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