
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


This paper can be downloaded without charge at: 
 

The Fondazione Eni Enrico Mattei Note di Lavoro Series Index: 
http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm 

  
Social Science Research Network Electronic Paper Collection: 

http://ssrn.com/abstract=885280 
 

 
 
 
 

The opinions expressed in this paper do not necessarily reflect the position of 
Fondazione Eni Enrico Mattei 

Corso Magenta, 63, 20123 Milano (I), web site: www.feem.it, e-mail: working.papers@feem.it 

 
 
 

Estimating Feedback Effect in 
Technical Change: A Frontier 

Approach 
Vincent M. Otto, Timo Kuosmanen  

and Ekko C. van Ierland 
 

NOTA DI LAVORO 27.2006 
 
 
 
 
 
 
 
 
 

FEBRUARY 2006 
KTHC - Knowledge, Technology, Human Capital 

 
 

Vincent M. Otto, Joint Program on the Science and Policy of Global Change, 
Massachusetts Institute of Technology, Environmental Economics and Natural 

Resources Group, Wageningen University 
Timo Kuosmanen, Agrifood Research Finland, Environmental Economics and Natural Resources 

Group, Wageningen University 
Ekko C. van Ierland, Environmental Economics and Natural Resources University 

 
 

 
 
 
 
 
 
 
 



 

 
 

Estimating Feedback Effect in Technical Change: A Frontier 
Approach 

 

Summary 
This study examines whether today’s technical change depends on yesterday’s technical 
change. We propose to investigate this feedback effect by using the technical-change 
component of the Malmquist productivity index. This approach can overcome some 
problems in alternative patent-citation approaches. We apply the approach by estimating 
the feedback effect from production data of 25 OECD countries for 1980 through 1997. 
Our model yields evidence on a positive feedback effect with delays up till eight years. 
These findings are in line with patent-citation studies and bring us closer to a measure 
of the social returns to R&D. 
 

Keywords: Cross-country comparisons, Data envelopment analysis (DEA), Feedback 
effect, Malmquist productivity index, Technical change, Two-stage semiparametric 
estimation 
 
JEL Classification: O47, O30, D24 
 
We gratefully acknowledge financial support from TNO Environment, Energy and 
Process and the Emil Aaltonen foundation. The paper has benefited from helpful 
discussions with Tinus Pulles, Toon van Harmelen, Robert Inklaar, Daan Ooms, Reyer 
Gerlagh, Malcolm Asadoorian, colleagues at Wageningen University and MIT, and 
participants to several seminars and conferences. 

 

 

 

 

 

 

 
Address for correspondence: 
 
Vincent M. Otto 
Joint Program on the Science and Policy of Global Change 
Massachusetts Institute of Technology  
77 Massachusetts Ave. Building E40-410 
Cambridge MA 02139 
USA 
Phone: +1 617 253 2170 
Fax: +1 617 253 9845 
E-mail: vincento@mit.edu 



 1

Treatment of technical change in economic literature can be traced back to Schumpeter (1942) whose 

ideas on the process of technical change comprising three phases of invention, innovation, and diffusion 

led to the first systematic economic theory on this topic. It is becoming increasingly clear, however, that 

delayed feedback occurs between these phases. That is, today’s technical change depends on yesterday’s 

technical change. Arthur (1994) refers to this phenomenon as ‘path dependency’ and shows its 

importance for the process of technical change. Path dependency is also identified as a key determinant 

for technical change and economic growth in recent growth models in which innovation is specified 

endogenously (most notably, Acemoglu, 2002). All this is of public concern. To the extent that such 

feedback is external to agents’ decision-making processes, social returns to R&D diverge from the private 

returns and a case for policy intervention arises.  

To our knowledge, patent citation studies offer the only empirical evidence of feedback in 

technical change. These studies have investigated where and when existing patents are cited in the 

application of new patents (see e.g., Caballero and Jaffe, 1993; and Jaffe, Trajtenberg and Henderson, 

1993; Jaffe, Trajtenberg and Fogarty, 2000). By following these paper trails, patent citation studies inform 

us about the influence of past innovations on the development of new ones. Yet, these studies have some 

drawbacks. One is that they are only available for a limited range of sectors and industries. Another is that 

they suffer from measurement problems associated with the use of patents as measure of innovation 

(Griliches, 1979). Because of the importance of delayed feedback for the process of technical change, and 

hence for productivity growth, we believe it merits further investigation. 

In this paper, we explore an alternative route for empirical analysis of feedback in technical 

change based on the literature of productive efficiency analysis, in particular the Malmquist productivity 

index (Caves, Christensen and Diewert, 1982). This index can be decomposed into an efficiency change 

index and a technical change index, which measure the extent to which productivity changes are due to 

changes in efficiency and technology respectively (see e.g. Färe et al., 1994a,b; Kumar and Russell, 

2002). We argue that the technical change component of the Malmquist index is a useful measure for the 

purposes of feedback estimation because it represents the impact of technical change on productivity. It 

therefore captures the quality and effectiveness of R&D activities as well as spontaneously arising 

technical change through e.g. learning-by-doing. This measure can therefore overcome several 

measurement problems associated with the use of patents as measure for technical change. Other 

advantages of this measure include its capability to handle multiple-input multiple-output technologies 

and biased technical change.  

In general, the proposed Malmquist approach is applicable at any level of aggregation from firm-

level studies to cross-country comparisons. In this paper we focus on empirical estimation of the feedback 

effect at the macro level using cross-country panel data, but the approach is easily adapted to an industry- 
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or firm-level analysis. Our data set covers aggregate production data of 25 OECD countries for the years 

1980 through 1997. We apply a sophisticated two-stage estimation procedure which combines the 

bootstrap approach recommended by Simar and Wilson (2005) with the Generalized Method of Moments 

(GMM) approach suggested by Zengfei and Oude Lansink (2006). More specifically, we first estimate the 

technical change component of the Malmquist index by nonparametric data envelopment analysis, and 

apply the Simar-Wilson bootstrap procedure to correct for small sample bias in the efficiency estimators. 

We subsequently use the obtained estimates in a panel data model with finite distributed lag structure and 

use the Arellano and Bond (1991) GMM estimator to obtain estimates of the delayed feedback effect. 

Besides the production frontier literature, this paper draws from two other strands of papers on 

technical change and productivity growth. First, we build on empirical studies that investigate the effects 

of technical change on productivity growth and the procyclical nature of the latter (see e.g.; Gali, 1999; 

and Basu and Fernald, 2000). A key conclusion of the real business cycle literature is that persistent 

changes in technical opportunities can lead to procyclical productivity changes (Rotemberg, 2003). We 

take this conclusion as our starting point and examine whether such persistent technical changes 

themselves are procyclical in nature. Second, we hope to shed some light on the widening gap between 

private- and social returns to R&D as a proposed explanation for the productivity slowdown observed in 

several OECD countries in the last decades (Griliches, 1994). For long it has been argued that 

productivity growth rates slowed down because of technical exhaustion; any given level of R&D 

expenditures would yield fewer inventions and innovations. Yet, econometric studies at the firm- and 

industry-level do not provide conclusive evidence for this argument (most notably, Griliches, 1994; and 

Hall, 1993). Instead, Griliches (1994) proposed the widening gap between private- and social returns to 

R&D as an explanation for the productivity slowdown. Internationalization of technical changes and the 

rise in skill intensity of many OECD economies are viewed as two important reasons why it has become 

more difficult to appropriate rents associated with R&D. We hope that our attempt to estimate feedback in 

technical change brings us closer to a measure of the social returns to R&D.  

The rest of the paper is organized as follows. In Section 2 we present the theoretical framework 

that underlies our feedback estimation. Section 3 outlines the computation of the Malmquist index and its 

component indices, and discusses various issues that arise when these indices are used as measures of 

technology. Section 4 presents the regression model to be estimated and discusses related econometric 

issues. Section 5 presents the application to 25 OECD countries. Section 6 concludes. 

 

2 Theoretical framework 

This section presents the theoretical framework that forms the foundation for the feedback estimation in 

Section 4. Given the vast number of economic theories on technical change, a comprehensive review is 
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beyond the scope of this study. Instead, we restrict ourselves to a generally accepted macroeconomic 

framework that is directly applicable in Section 4. To keep discussion focused, we first summarize the 

general model specification formally, and then interpret and motivate it.  

The process of technical change generally depends on R&D expenditures, past changes in 
technology and certain other variables. Let ,n tTC  denote the rate of technical change in country n 

( 1,..,n N= ) in time period t ( 1,..,t T= ). A country’s expenditure on research and development is 
denoted by ,& n tR D , and ,n tX  represents a vector of country-specific control variables. The functional 
relationship between these variables can be generally expressed as 

( ), , , ,, & ,n t n t j n t n tTC f TC R D−= X  ( 1,.., )n N= , ( 1,.., )t T= , (1,.., 1)j T∈ −  (1)

where index j denotes the delay of the feedback effect.  

The main theoretical rationale of this equation draws from the endogenous growth model by Rivera-Batiz 

and Romer (1991). First, we capture the essence of what they refer to as the ‘lab equipment’ specification 

by specifying technical change as a function of expenditures on R&D, where we assume the effect of 

R&D on the rate of technical change to be positive (i.e., & 0R Df ′ > ). Second, we capture the essence of 

their ‘knowledge-based’ specification by allowing for delayed feedback in technical change.1 That is, 

yesterday’s technical change can have an effect on today’s technical change. As for the sign of this effect, 

it is often argued that current innovations allow researchers to develop further innovations, that is, 

researchers ‘stand on the shoulders’ of their predecessors implying 0TCf ′ > . Practical examples of causes 

of such delayed feedback include network externalities, learning-by-doing, and learning-by-using.2  

With respect to the control variables, we follow studies that emphasize the role of complementary 

inputs in technical change by allowing technical changes in country n to be a function of country n’s 

distance from the production possibilities frontier (e.g. Rosenberg, 1972). The higher the quality of a 

country’s complementary inputs is, the better able this country is to develop and implement inventions. 

Griffith, Redding and Reenen (2003) present an endogenous growth model that explicitly incorporates 

this consideration by allowing the size of innovations to be a function of the distance from a meta 

production possibilities frontier. We also draw from studies that stress the importance of international 

knowledge spillovers for domestic productivity levels and specify technical changes in country n as a 

                                                           
1 Rivera-Batiz and Romer (1991) refer to the ‘lab-equipment’ specification because of its emphasis on physical inputs and refer 
to the ‘knowledge-based’ specification because of its emphasis on non-physical inputs.  
2 Yet, it can also be argued that, as more and more innovations are developed, the more difficult and costly it becomes to develop 
an innovation that improves upon the previous ones because the easiest discoveries are usually made first. This ‘fishing out 
effect’ would imply 0

TC
f ′ < . Popp (2003) finds that such diminishing returns apply to R&D at the industry level rather than 

aggregate R&D. As expected returns to R&D within any industry decreases, profit maximizing researchers and developers are 
expected to shift resources to more profitable industries. 
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function of these spillovers (Coe and Helpman, 1995). As we also discuss in Section 3, productivity levels 

reflect a country’s ability to innovate or to adopt new technologies. 

The lag structure of the regressors warrants particular attention. First, we follow patent citation 

studies and include multiple lags of the dependent variable as regressors in the model, where we set 

3J ≥ . For example, Caballero and Jaffe (1993) find a modal lag of three years for patent citations in the 

USA, whereas Jaffe and Trajtenberg (1999) report a five-year lag for the G5 countries. Second, we follow 

studies that focus on research productivity and include up to three lags of the R&D regressor as well. 

R&D takes time and it typically takes several years before R&D expenditures affect the growth rate of 

productivity (see Griliches, 1979, for a description of various lags involved). Hall, Griliches and Hausman 

(1986) find that the average lag between R&D expenditures and patent application is short although it still 

takes a few years before a patent application translates into productivity growth. They find no conclusive 

evidence, however, on the precise form of the lag structure. Third, we follow Coe and Helpman (1995) in 

including knowledge spillovers as a one period lagged regressor. Before we can move from theory to 

estimation, however, we need to obtain estimates for the rate of technical change.  
 

3 Estimating technical change  

Traditionally, technical change is approximated by the Solow (1957) residual or by a variable 

representing inputs or outputs of the R&D process. The Solow residual is what is left over of economic 

growth after it has been accounted for changes in aggregate inputs. It thereby proxies total factor 

productivity growth that shifts the production possibility frontier. The quality of this approximation, 

however, depends largely on the validity of the assumptions on perfect competition and constant returns 

to scale. In case of imperfect competition, for example, the Solow residual comprises not only technical 

changes but also efficiency improvements. For this reason, later studies have extended Solow’s 

contribution to the case of imperfect competition and increasing returns, although this comes at the cost of 

imposing additional structure on the production function (see e.g., Hall, 1988).  

One could also use inputs and outputs of R&D activities as proxy variables for technical change. 

R&D input variables include R&D expenditures and numbers of engineers and scientists, whereas R&D 

output variables typically include the depreciated sum of past innovations and numbers of patents. Yet, 

these measures are prone to several measurement problems (Howitt, 1996). One well known problem 

relates to knowledge as an input: intangible inputs such as informal exchange of information are difficult 

to measure and, hence, R&D input variables tend to underestimate the real inputs. Likewise, intangible 

outputs are also difficult to measure and R&D is not the only driver behind changes in technology; 

technical change also occurs spontaneously without R&D efforts. Yet another problem relates to quality 

improvements: R&D output variables underestimate real outputs because of practical difficulties of 
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dealing with quality improvements in constructing price indices. For these reasons, we next consider an 

alternative approach originating from the production frontier literature.  

 

3.1 Malmquist productivity index 

For simplicity, we focus on a single-output, two-input technology where k represents the capital input, l 

the labor input, and y the output.3 Let the production technology of period t be characterized by the 

Shephard (1953) output distance function   

{ }2( , , ) inf inputs ( , )  can produce output /tD k l y k l y
θ

θ θ+ + +≡ ∈ ∈ ∈ . (2)

Output distance functions measure (the inverse of) the maximum output expansion potential at a given 

input level and thus provide a complete characterization of a technology.4 In theory, this maximum 

corresponds to the best technology that is available whereas in empirical work it corresponds to the best 

practiced technology. 

The Malmquist productivity index is defined in terms of the distance function as 

1
1 1 1 1 1 1 1 2

, 1 , 1 , 1
1

( , , ) ( , , )( , , )
( , , ) ( , , )

t t t t t t t t
t t t t t t

t t t t t t t t

D k l y D k l yMI k l y
D k l y D k l y

+ + + + + + +
+ + +

+

⎡ ⎤
≡ ⋅⎢ ⎥
⎣ ⎦

( 1,.., )t T=  (3)

(Caves, Christensen and Diewert, 1982; Färe et al., 1994a,b). It measures productivity change in terms of 

the change in the output augmentation potential relative to a fixed production possibility frontier so that 

index values MI > 1 indicate productivity growth and MI < 1 productivity decline. Taking the base period 

t frontier as the benchmark, the change of productivity is measured by the distance function ratio 
1 1 1( , , )

( , , )

t t t t

t t t t

D k l y
D k l y

+ + +

. Alternatively, we could take the target period t+1 frontier as the benchmark and use 

the distance function ratio 
1 1 1 1

1

( , , )
( , , )

t t t t

t t t t

D k l y
D k l y

+ + + +

+ . Since we have no particular reason to prefer the base 

period frontier to the target period frontier (or vice versa), the index number is calculated as the geometric 

mean of these two distance function ratios. Figure 1 illustrates the Malmquist index and its two distance 

function ratios. Period t distance function ratio is given by (e/d)/(a/b). Period t+1 ratio is (e/f)/(a/c).   

 

                                                           
3 The approach can be directly generalized to multi-input multi-output settings that are of interest at the firm level (see e.g. Färe 
et al. 1994b). This can be seen as one advantage of the approach.  
4 If function F denotes the production function that characterizes the production possibility frontier, then F(k,l) = D(k,l,y)⋅y. 
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Figure 1: Decomposition of the Malmquist productivity index 

 

 

 

The main rationale for considering the Malmquist index here is that it explicitly allows for inefficiency 

and that it therefore lends itself naturally for estimating technical change. Stated otherwise, the MI can be 

decomposed into two mutually exclusive and exhaustive components: technical change (TC) and 

efficiency change (EC) (Färe et al., 1994a). Formally, 

, 1 , 1 , 1( , , )t t t t t t tMI k l y TC EC+ + + = ⋅ ( 1,.., 1)t T= −  (4)

where  

1 1 1 1( , , )
( , , )

t t t t

t t t t

D k l yEC
D k l y

+ + + +

≡ ( 1,.., 1)t T= −  (5)

and 

1
1 1 1 2

1 1 1 1 1

( , , ) ( , , )
( , , ) ( , , )

t t t t t t t t

t t t t t t t t

D k l y D k l yTC
D k l y D k l y

+ + +

+ + + + +

⎡ ⎤
≡ ⋅⎢ ⎥
⎣ ⎦

( 1,.., 1)t T= −  (6)

Values greater than one indicate progress in technical efficiency or technical possibilities whereas values 

less than one indicate regress. The EC component can be interpreted as a relative shift of a country 

towards or away from the production possibilities frontier. In Figure 1, the EC index corresponds to 

(e/f)/(a/b). On the other hand, the TC component corresponds to a shift of the frontier, as perceived from a 

fixed input-output combination as the benchmark. Similar to the MI, we calculate the TC index as the 

geometric mean of distance function ratios referring to input-output observations from periods t+1 and t 

as benchmarks. In Figure 1, the TC index corresponds to a geometric mean of (e/d)/(e/f) and (a/b)/(a/c).  
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Following Nishimizu and Page (1982) and Färe et al. (1994a), we interpret the TC component as 

measure of technical change and the EC component as measure of catching up. In empirical context, the 

TC component represents change of the best practice technology, while the EC component represents 

adoption of best practices. Yet, these technical change components have to be interpreted broadly in our 

application below as to encompass, among others, disembodied technical change and differences in 

economic structures.  

Using the TC component of MI as measure of technical change can overcome several of the 

measurement problems that R&D variables suffer from. This index measures technical change in terms of 

its overall effect on total factor productivity, which encompasses both R&D efforts and spontaneous 

technical change. Thus, this index enables us to overcome the knowledge input problem because inputs 

do not have to be ascribed to R&D. It does not matter, for example, whether machines are used in a 

laboratory or in a production facility as long as these machines generate productivity growth. Similarly, 

changes in the characteristics of machines are irrelevant as long as these new characteristics generate 

productivity benefits, in effect overcoming the quality improvement problem. 

The Malmquist index offers a general framework that is based on the microeconomic theory of 

the firm (see e.g., Färe et al., 1994b). The approach extends to a firm- or industry-level analysis in a 

straightforward fashion. It does not require restrictive assumptions about the structure of the production 

technology or the rate and direction of technical change. For example, the Malmquist approach does not 

require the assumption of Hicks neutral technical change as the traditional Solow residual does (see e.g., 

Färe et al., 1997). 

Some caveats should be noted though. Besides capturing changes in technology and technical 

efficiency, measures of productivity growth (and MI is no exception here) also typically comprise the 

effects of: (i) measurement error, (ii) economies of scale due to widespread imperfect competition and 

increasing returns, and (iii) procyclical fluctuations (Basu and Fernald, 2000). Productivity is procyclical 

mainly because of variable utilization of inputs and reallocations of resources. The former effect can be 

seen as a type of measurement error: true inputs are more cyclical than measured inputs and, hence, 

productivity measures are downward biased in economic downturns. The latter effect arises from 

reallocation of inputs to sectors with higher marginal products yielding more output per input and, 

therefore, higher productivity.5  

If one is interested in productivity because of its index value for welfare, one does not need to be 

concerned about these effects; if productivity and technology differ, then it is productivity that most 

closely indexes welfare (c.f., Basu and Fernald, 2000). But since we are interested in productivity because 

                                                           
5 To be complete, Basu and Fernald (2000) also identify procyclical technology shocks, and scale economies due to imperfect 
competition and increasing returns as reasons why productivity is procyclical.  



 8

of its index value for technical change, we need to correct for these effects. We believe it is possible to 

make such corrections to achieve estimates of technical change. We return to the various corrections in 

further detail in subsequent sections.  

 

3.2 Data envelopment analysis 

In empirical studies, production possibility frontiers or distance functions are not known a priori, but 

must be estimated from empirical data. A common approach in the frontier estimation literature is to use a 

nonparametric programming technique known as data envelopment analysis (DEA) to calculate the 

distance functions underlying the Malmquist index.6 This technique does not require any parametric 

specification of the functional form of the distance function or the distribution of inefficiencies. Neither 

are assumptions about market structure nor firm behavior required. Distance functions are estimated 

relative to the minimal extrapolation envelopment, which is the minimal set that contains all observed 

data and satisfies the maintained regularity conditions. The minimal extrapolation envelopment is 

essentially the smallest set enveloping the data where the upper boundary is the ‘best-practice’ production 

possibilities frontier.  

In our application, we use macroeconomic variables: aggregate labor- and capital inputs and 

aggregate output. The values of distance function are calculated relative to a (global, contemporaneous) 

production possibility frontier exhibiting constant returns to scale.  

Under the usual set of regularity conditions of free disposability, convexity, and constant returns 

to scale, the empirical distance function value ˆ ( , , )s t t t
n n nD k l y of country n observed in period t, measured 

relative to period s technology ( 1, , 1s t t t= − + ), can be computed as the optimal solution to the linear 

programming problem7: 

1

,
ˆ ( , , ) maxs t t t

n n nD k l y
θ λ

θ− =  subject to  (7)

1

M
t s
n m m

m
k k λ

=

≥ ⋅∑   (8)

1

M
t s
n m m

m
l l λ

=

≥ ⋅∑   (9)

                                                           
6 See Färe et al. (1994b) or Charnes et al. (1994) for general expositions of this technique. Stochastic Frontier Analysis (SFA) is 
another popular approach; see Bauer (1990) for a review. 
7 Note that we need four different distance function values to calculate the Malmquist index, corresponding to (t,s=t), (t+1,s=t), 
(t,s=t+1), and (t+1,s=t+1).   
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1

M
t s
n m m

m
y yθ λ

=

≤ ⋅∑   (10)

0 mλ ≥   (11)

where m is an alias of n. This problem calculates the output distance from the input-output vector of 

country n to the best-practice frontier constructed as a linear combination of observed input-output 

vectors. Multipliers mλ  denote the weight of country m in the benchmark (frontier) input-output vector 

that represents the maximum output for country n. The constructed reference technology is a convex cone 

and its isoquants are piecewise linear. 

The effects of scale economies on productivity growth are captured by the EC component. Färe et 

al. (1994a) present an extended decomposition, in which they further decompose the EC component into 

pure efficiency changes, calculated relative to a variable-returns-to-scale frontier, and a scale component 

that captures the deviations between the variable- and constant-returns-to-scale frontiers.8 Besides 

capturing scale economies, we expect this scale component to also capture (at least partly) the effects of 

resource reallocations on productivity growth given that these reallocations, as well as their effects, are 

related to increasing returns (Basu and Fernald, 2000). Increasing returns and imperfect competition cause 

marginal products to differ across firms or industries, which in turn leads to some reallocation of 

resources across these firms or industries. Moreover, resource reallocations appear as increasing returns: 

output increases without proportional increases of the inputs.  

The statistical properties of the nonparametric distance function estimators are nowadays 

relatively well known (see Simar and Wilson, 2000). Nonparametric statistical inference generally suffers 

from ‘curse of dimensionality’, and DEA is no exception. More specifically, the empirical distance 

function estimates based on finite samples exhibit downward statistical bias because we do not observe 

the true maximum output but approximate it by linear interpolation of the frontier. The problem is severe 

especially in small samples. To obtain unbiased estimates, it is advisable to complement the estimation 

procedure with nonparametric bootstrap techniques (see Simar and Wilson, 2000, for further details). 

There is another important reason for eliminating the sampling bias: besides distorting the MI and its 

components, it would cause problems of endogeneity and serial correlation in the regression analysis that 

                                                           
8 The decomposition by Färe et al. (1994a) measures technical change with respect to the constant returns to scale reference 
technology, which we interpret as a “global” benchmark for productivity improving technical progress. Ray and Desli (1997) 
proposed an alternative decomposition which measures technical change by means of a variable returns to scale benchmark 
technology (see also Grosskopf, 2003, and Lovell, 2003 for critical discussion).  
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follows.9 The sensitivity analysis in Section 5 aptly reveals the importance of the correction for the 

sampling bias. 

 

4 Estimating feedback effect in technical change 

Having estimated the rates of technical change, we next proceed to estimation of the feedback effect. This 

section discusses some general econometric issues related to such feedback estimation, and suggests a 

procedure based on GMM. Equation (1) is our starting point in moving from theory to estimation. As the 

estimation of the Malmquist index requires panel data, the estimation of equation (1) essentially boils 

down to a panel data model with a finite distributed lag structure. Following the macro-economic growth 

literature, we assume a constant-elasticity-of-substitution specification for function f and take logarithms 

on both sides to get the regression equation 

, , , 3 , ,1
ln ln ln & lnJ

n t j n t j n t n t n tj
TC TC R D uα β− −=

= + + +∑ χ X  
( 1,.., )n N= , 

( 1,.., )t T= . 
(12)

Coefficients jα  represent elasticities of the current rate of technical change with respect to previous rates 

of technical change, henceforth referred to as the delayed feedback effect. Similarly, coefficient β  is the 

R&D elasticity, and χ  represents elasticities of the control variables. We assume the substitution 

elasticities to be homogeneous for the cross-sectional units. The composite error term , ,n t n t n tu γ τ ε≡ + +  

comprises three effects. A fixed effect ( )nγ  controls for unobserved time-invariant heterogeneity in the 

cross section that can be correlated with any regressor. In our application below, sources of heterogeneity 

include cross-country differences in, for example, culture, geography, and accumulated stocks of 

knowledge from past R&D. The error term also includes a time trend ( )tτ  to represent any systematic 

component of the unmeasured factors. Finally, ,n tε  is the idiosyncratic error term.  

Estimation of equation (12) is complicated by the fact that we cannot assume all regressors to be 

strictly exogenous conditional on the unobserved effect. The inclusion of lagged dependent variables in 

the set of regressors violates this assumption by definition. Instead, we assume the regressors to be 

predetermined conditional on the unobserved effect.10 In other words, ,ln n tTC  is now allowed to affect 

future values of our regressors after all current and past values of the regressors and the fixed effect are 

controlled for. These current and past values are still restricted to be uncorrelated with the idiosyncratic 

                                                           
9 We refer to Simar and Wilson (2005) and Zengfei and Oude Lansink (2006) for further discussion about econometric issues in 
two-stage semiparametric models. 
10 The only regressor for which we can maintain the strict exogeneity assumption is the knowledge spillover variable as future 
spillovers cannot affect today’s innovations.  
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error term. This sequential moment restriction would be violated if, for example, the delay in the feedback 

in technical change were actually longer than we have specified it in equation (12) and violations would 

be reflected in serial correlation of the idiosyncratic error term ,n tε . One therefore has to test for serial 

correlation when applying this specification. To obtain consistent coefficient estimates, one can use 

instrumental variables and a transformation to remove the fixed effects. It can be shown that under a 

sequential moment restriction and some dependence over time, first differencing is an attractive 

transformation because it not only removes the fixed effects (i.e. γn), but also allows for the use of lagged 

levels of the regressors as instruments (Anderson and Hsiao, 1982). In our application below, we follow 

Arellano and Bond (1991) and use such lagged levels in a GMM procedure (see also Zengfei and Oude 

Lansink, 2006). To preserve finite sample properties, we include only two lags of each predetermined 

regressor as instrument. This particular GMM estimator is robust to heteroskedasticity of arbitrary form 

and is the most efficient GMM estimator.11 Because the consistency of this estimator hinges critically on 

absence of serial correlation in the idiosyncratic error term, we assure ourselves that this is indeed the 

case by reporting tests of the LM statistic next to the Sargan statistic in our results below.12  

As a final note, we observe that many of the variables we are interested in tend to correlate with 

each other, which makes it difficult to isolate the specific contribution of each variable with precision. 

This especially concerns the lag structure of the TC variables on the right hand side of (12). We treat each 

of these years as a separate variable although they are correlated from year to year. There is no easy 

solution to this problem. We should therefore limit attention on broader trends revealed by the data and 

not expect the model to answer detailed questions regarding the exact magnitude of the feedback effect. 

 

5 Application 

Aggregate production functions remain the workhorse of macroeconomics despite the recurring criticism 

(see e.g. Colacchio and Soci, 2003).13 We next estimate the feedback effect at the aggregate level 

focusing attention on a sample of 25 OECD countries over the period of 1980 through 1997 (see 

Appendix A for details and sources).14 We first construct our global, contemporaneous production 

                                                           
11 Note that all least squares estimators belong to this class of estimators.  
12 The Sargan (1958) statistic tests for correlation between the instruments and the idiosyncratic error term that would invalidate 
the instruments. An instrument would correlate with ,n tε if it were falsely omitted from the model. Not including a sufficient 

number of lagged dependent variables in equation (12), for example, would result in serially correlated ,n tε  and correlation 

between ,n tε  and any falsely omitted lagged dependent variables as instruments.  
13 It is worth to point out the recent study by Zelenyuk (2005), which shows that consistent aggregation of Malmquist indices 
from the micro units to the macro level is possible. We should also re-emphasize that the approach presented above applies 
equally well to micro-level analysis of technical change in firms. 
14 Countries for which data was available for the entire time period include: Australia, Austria, Belgium, Canada, Denmark, 
Finland, France, Great Britain, Germany, Greece, Iceland, Ireland, Italy, Japan, South-Korea, Mexico, The Netherlands, Norway, 
New Zealand, Portugal, Spain, Sweden, Switzerland, Turkey, and USA.   
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possibility frontier and estimate the Malmquist productivity indices and their components to capture 

changes in technology and technical efficiency. We correct the Malmquist indices for the effects of 

sampling error, scale economies, reallocations of resources, variable utilization of inputs over time, as 

well as for quality differences in the labor input. This leaves us with the technical change component as 

estimate of technical change and allows us to compare the technical performance of each country to the 

frontier over time. We finally use the obtained TC estimates in regression equation (12), which yields 

coefficient values of the delayed feedback effect. 

 

5.1 Data  

From the OECD Annual National Accounts, we obtain gross domestic product (GDP), which we use as 

our value-added measure of aggregate output. We approximate the aggregate capital input by the 

productive capital stock where we make the simplifying assumption that capital assets are fully efficient 

until their retirement. Assuming that capital assets are quasi-fixed, we subsequently multiply the capital 

stock with its utilization rate to account for variability in its utilization. Data for the productive capital 

stock is obtained from the OECD Annual National Accounts and the utilization rate from the OECD 

Business Tendency Survey. We measure the aggregate labor input by total number of persons employed 

and multiply this employment measure with the average number of hours actually worked to account for 

variable utilization of labor. To control for quality differences in the aggregate labor input, we 

differentiate between production- and non-production workers. This is a crude distinction, but the only 

one available for a large sample of countries over time. In addition, it has been found that these 

occupational proportions correlate highly with other measures of human capital like education (Berman et 

al., 1998). We obtain number of persons employed from the OECD Economic Outlook, the average hours 

actually worked from the OECD International Sectoral Database and numbers of both types of workers 

from the UN Industrial Statistics Database. Both aggregate output and the aggregate capital input are 

expressed in US dollars (at purchasing power parity (PPP) adjusted prices of 1995), whereas the 

aggregate labor input is expressed in hours worked. The use of different measurement units does not pose 

a problem because the MI is an index number measure. Table 1 presents average growth rates of the 

inputs and output for each country in the sample. In the subsequent regression analysis we use gross 

expenditures on R&D (expressed in 1995 PPP adjusted prices) as our R&D measure. We obtain this 

variable from the OECD Main Science and Technology Indicators where it should be noted that, 

unfortunately, the data coverage of this variable is relatively incomplete for our sample. We use country-
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specific distance function values as our estimate of country n’s distance from the production possibilities 

frontier in period t.15 A distance function with value one translates into a country spanning the frontier.  

 

Table 1: Average annual growth rates of inputs and output for G7 countries between 1980 and 1997  

Country GDP Capital Labor 

    

Canada 1.025 1.033 1.011 

France 1.019 1.022 0.994 

Great Britain 1.024 1.025 1.001 

Germany 1.019 1.022 1.011 

Italy 1.019 1.011 0.996 

Japan 1.031 1.042 1.003 

USA 1.030 1.032 1.017 

Note: Average values are indices and are geometrically calculated.  

 

Finally, in the absence of data for our sample, we approximate international knowledge spillovers by a 

variable that measures a country’s openness to trade. We follow Coe and Helpman (1995) and define a 

country’s openness to trade as the value share of imports in total value added, all expressed in 1995 PPP 

adjusted prices. We obtain the import variable from the Economic Outlook of the OECD.  

 

 5.2 Estimates of technical change 

Figure 2 illustrates the shape of the DEA production frontiers and their biased shift over time by means of 

an isoquant map. The isoquants represents the combinations of inputs that can produce one unit of value 

added; the horizontal axis represents the labor input per GDP and the vertical axis the capital input per 

GDP. In year 1980, Germany, USA, and Turkey defined the efficient frontier. Germany had the highest 

labor productivity (y/l), Turkey had the highest capital productivity (y/k), while the USA performed well 

on both criteria. The frontier is constructed as the linear combination of these observed points in the input 

space. Since 1980, the capital intensity of production increased in all countries. USA and Germany span 

the frontiers of 1985 and 1990, as they did in 1980, so in Figure 2 we can follow their development in 

three different points of time. In the 1990s, The Netherlands begins to shift the highly capital intensive 

end of the frontier outwards as illustrated by its observation in 1995. The German unification shows up in 

                                                           
15 Contrary to what one might expect, inclusion of this control variable next to the lagged dependent variables does not lead to 
multicollinearity problems, even though distance functions are used for calculating the TC index. Note that this particular 
distance function is merely one of the four distance functions underlying the TC component, and thus this distance function need 
not be correlated with the TC component.  
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the productivity figures since 1993, and Italy took over its relative position as the frontier shifting 

country. USA preserved its relative position until 1996, but the relatively labor intensive Ireland emerged 

to dominate it in 1997. 

 

Figure 2: Isoquant map of DEA frontiers 

 

 
 

In Figure 2 we observe that the input isoquants shift northwest over time, which means that a 

given value added could be produced with less labor, while more capital was needed. A similar pattern of 

biased technical change has been noted in other studies; see e.g. Kumar and Russell (2002). The figure in 

fact indicates technical regress for labor intensive countries like Turkey. A naïve interpretation of the 

figure would suggest that production techniques have been forgotten; for example, USA could not have 

produced the output of 1995 with input levels of 1980. Sampling bias offers a more credible explanation: 

we simply do not observe countries that operate efficiently with a highly labor intensive technology in 

1995. We apply the standard bootstrap procedure (see Simar and Wilson, 2000, for details) to alleviate 

this kind of sampling bias. Note that this figure represents the initial frontiers prior to the bootstrap. 

We next calculate the Malmquist index and its technical- and efficiency change components 

relative to the frontiers for every country in all time periods, generating a total of 1350 (=18⋅25⋅3) indices. 

To provide intuition concerning the results, Table 2 reports the geometric averages of the bootstrapped 

indices for each country in our sample throughout the study period. The first column of the table reports 

change in total factor productivity, as measured by the Malmquist index. According to our analysis, the 



 15

productivity growth in OECD countries was relatively modest during the study period, confirming the 

phenomenon known as ‘productivity paradox’ (see e.g. Lee and Barua, 1999). Specifically, the great 

capital investments that took place in the study period, in particular to ICT, did not appear to contribute to 

the output growth (the so-called dot.com boom occurred only after the study period). The productivity 

growth was highest in South Korea, Norway, and France, with average annual productivity growth rates 

of 2.16, 1.38, and 0.86 percents, respectively. Many countries (12 out of 25) experienced small 

productivity decline. Turkey, Switzerland, and Portugal were associated with the greatest average 

productivity decline of 1.85, 1.35, and 1.31 percents, respectively.  

 

Table 2: Decomposition of the Malmquist Productivity Index for G7 countries 
 Average annual changes from 1980 through 1997 

Country Malmquist Index 

(MI) 

Technical Change 

(TC) 

Efficiency Change  

(EC) 

    

Canada 0.993 1.007 0.987 

France 1.009 1.001 1.007 

Great Britain 0.999 1.002 0.997 

Germany 0.996 0.998 0.998 

Italy 1.006 1.004 1.002 

Japan 1.006 1.004 1.002 

USA 1.000 0.997 1.003 

Note: Average values are geometrically calculated. 

 

The technical change component, reported in the second column of Table 2, represents the productivity 

growth ascribed to technical change. Note that a high value of TC component does not necessarily imply 

that the country has been highly innovative. Rather, the TC component measures the productivity growth 

potential at the given resource endowment of the country; whether or not the country can realize this 

potential depends on its relative distance to the frontier. The rate of technical change was relatively slow 

for most countries. Countries with the highest TC component were highly capital intensive countries like 

The Netherlands and Switzerland. For relatively labor-intensive countries such as Spain, Turkey, and 

Mexico, the average figures suggest technical regress, though less than 0.5 percentage points for all 

countries.  

The third column of Table 2 reports the EC component, which represents catching up to the 

frontier. For the majority of countries (16 out of 25), the average EC component was negative, thereby 
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suggesting a lagging behind. Switzerland and Greece experienced the largest declines in relative 

efficiency (lagging behind of The Netherlands and Italy, respectively). On the other hand, South Korea 

showed impressive catching up, with average efficiency increase of 2.09 percent per year.  

Overall, our results seem to be consistent with other cross-country comparisons of total factor 

productivity (e.g., Färe et al., 1994a; Kumar and Russell, 2002). We observe biased technical progress 

that has improved the labor productivity, while the capital productivity has declined in line with the 

productivity paradox that attracted a lot of debate in the late 1990s.  

 

5.3 Estimates of the feedback effect in technical change 

We now turn to the results of our distributed lag model. Model 1 of Table 3 presents the main results 

where we applied the bootstrap and have made the input adjustments as discussed in Section 3.  

We find evidence for delayed feedback up to eight years. Coefficients of the eight lagged 

dependent variables included as regressors are jointly significant at the five-percent level and five of these 

coefficients are individually significant at the 5% level as well. All significant coefficients have a positive 

sign confirming results of patent citation studies, which find similar evidence (see e.g. Figure 1 in Jaffe, 

Trajtenberg and Henderson, 1993; and Figures 2 through 6 in Jaffe and Trajtenberg, 1999). Moreover, our 

results suggest not only that yesterday’s change in technology contribute to today’s technical change but, 

most importantly that technologies developed several years ago are significant in developing today’s 

technology. For example, having generated a one percent increase in productivity with technical change 

six years ago results in slightly less than a half percent increase in today’s contribution of technical 

change to productivity growth, ceteris paribus. Thus, these findings support the argument that researchers 

‘stand on the shoulders of giants’ at the aggregate level of the economy. 

Regarding the other estimates, the coefficient of the lagged R&D variable has a sign opposite of 

what one would expect from the analytical framework presented above, but is statistically insignificant. It 

is likely that the lagged R&D variable is correlated with the skill content of the labor force, which we 

control for when estimating the TC component of the Malmquist index; both variables depend on the 

unobserved amount of human capital in the economy. Coefficients of the two control variables are signed 

as anticipated and are significant at the one percent level. Being ten percent closer to the frontier is 

predicted to generate a three percent increase in productivity due to technical changes, ceteris paribus. 

This implies that countries that are closer to the frontier are more innovative than countries that lag 

behind, or are more capable to use the innovations they have already developed, or both. Further, the 

negative sign of the proxy for international knowledge spillovers confirms that domestic innovations are 

less important an explanation for productivity changes the more open an economy is. This finding is 

consistent with the result of Coe and Helpman (1995) who find that knowledge spillovers explain more of 
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domestic productivity changes the more open an economy is. Lastly, the trend coefficient approximates 

zero and is insignificant indicating that there is no systematic component left to control for (i.e. 

macroeconomic shocks that equally affect technologies in all countries over time). 

 

Table 3: Estimated coefficients of the distributed lag model 

 model 
 (1) (2) (3) (4) 
ln TCt-1   0.323* 

(0.000)  
  0.271* 
(0.006) 

  0.389* 
(0.000) 

0.139 
(0.172) 

ln TCt-2 -0.279 
(0.127) 

 -0.335* 
(0.003) 

 -0.699* 
(0.004) 

  0.753* 
(0.000) 

ln TCt-3   0.369* 
(0.017) 

-0.058 
(0.664) 

  0.432* 
(0.041) 

 -0.190* 
(0.041) 

ln TCt-4 -0.232 
(0.272) 

 -0.433* 
(0.006) 

-0.398 
(0.076) 

0.118 
(0.708) 

ln TCt-5 0.177 
(0.242) 

0.129 
(0.430) 

0.245 
(0.230) 

-0.012 
(0.914) 

ln TCt-6   0.468* 
(0.003) 

  0.702* 
(0.000) 

0.194 
(0.224) 

0.340 
(0.321) 

ln TCt-7   0.243* 
(0.004) 

  0.360* 
(0.000) 

  0.371* 
(0.001) 

 -0.776* 
(0.000) 

ln TCt-8   0.438* 
(0.000) 

  0.553* 
(0.000) 

  0.603* 
(0.000) 

 -0.751* 
(0.007) 

ln RDt-3 -0.009 
(0.505) 

0.003 
(0.868) 

-0.032* 
(0.000) 

 -0.047* 
(0.017) 

ln Dt   0.301* 
(0.000) 

  0.113* 
(0.018) 

0.102 
(0.212) 

  0.363* 
(0.007) 

ln OPENt-1  -0.037* 
(0.002) 

0.021 
(0.109) 

0.019 
(0.207) 

  0.099* 
(0.000) 

ttrend  0.001 
(0.488) 

  0.003* 
(0.006) 

  0.003* 
(0.005) 

  0.004* 
(0.017) 

     
Sargan test (p) 1.000 1.000 1.000 1.000 
LM test (p) 0.167 0.003 0.305 0.031 
bootstrap yes no yes yes 
adjustment of labor input yes yes no yes 
adjustment of capital input yes yes yes no 

Notes: Dependent variable is
,

ln
i t

TC . Coefficients are constant elasticities and values in 
parentheses are p values. Coefficient values marked by an asterisk are statistically 
significant at the 5% level. Instruments include T-J-2 lagged levels of the dependent 
variable, T-lag-1 lagged levels of the predetermined variables, and differences of the strictly 
exogenous variables (Arellano and Bond, 1991). To preserve finite sample properties, we 
restrict ourselves to only two lags of each predetermined regressor as instrument. Model (1) 
is our preferred model. 
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Conditional on the covariates, we find no evidence of serial correlation in the idiosyncratic error 

terms. First, the Sargan test statistic implies that we can accept the null hypothesis of no correlation 

between our set of instruments and the idiosyncratic error term. Second, the LM test statistic implies that 

we can accept the null hypothesis of no second-order serial correlation in the idiosyncratic error terms.16  

The estimated lag structure also suggests that private- and social returns to R&D diverge to the extent that 

agents do not internalize delayed feedback. Once R&D expenditures have caused productivity to grow 

because of induced changes in technology, these technical changes contribute to further changes in 

technology and productivity while concomitant rents are not necessarily appropriated. The nonrival nature 

of innovations and associated knowledge implies that this is likely to be the case.  
 

5.4 Sensitivity analysis 

In model 2 of Table 3, we assess the sensitivity of our results to the bootstrapping of the data 

envelopment analysis described above. Conditional on the covariates, we find evidence for serial 

correlation in the idiosyncratic error terms when we fail to apply the bootstrap. We reject the null 

hypothesis of no serial correlation at the one-percent significance level, thereby invalidating our 

instruments. Consequently, the Arellano-Bond estimator no longer yields consistent estimates. In our 

interpretation, this finding suggests that the bootstrap is successful in accounting for the sampling bias in 

the distance functions that would otherwise be captured by the error terms.  

Model 3 of Table 3 tests for the robustness of our results to the skill adjustment of the labor input 

in the data envelopment analysis. When we fail to adjust this labor input for its skill content, we find an 

overall change in coefficient values. Most notably, the trend coefficient becomes significant implying that 

we now are omitting a regressor that is relatively common for all countries but varies over time, namely 

the skill content of the labor force. The absolute magnitudes of most of the estimated coefficients of the 

lagged dependent variables are larger, as these variables now also account for feedback in technical 

changes augmenting the human capital stock. In addition, the coefficient of the lagged R&D variable now 

becomes statistically significant since this variable no longer correlates with the skill content of the labor 

force, though maintaining a sign opposite to economic priors. Coefficients of the two control variables are 

rendered statistically insignificant as human capital plays a crucial role in a country’s ability to transform 

domestic- and foreign technical changes into productivity growth. Lastly, we find no evidence of serially 

correlated error terms conditional on the covariates.  

                                                           
16 Since we take first differences of serially uncorrelated ,n tε in equation (12), the ,n tε∆ typically are serially correlated. 

Arellano and Bond (1991) show that the consistency of the GMM estimators therefore hinges on the assumption that there is no 
second-order serial correlation in the ,n tε . 
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Model 4 summarizes the robustness of our results to the adjustment of the capital input for 

variable capacity utilization. In this model, we test our adjustment with the OECD data on capacity 

utilization by omitting this adjustment. Comparing models 4 and 1, we find that omitting this adjustment 

results in serially correlated error terms, ceteris paribus. This suggests that our direct adjustment is 

important in accounting for variable utilization of inputs. At least a part of the variability now ends up in 

the error terms where it correlates over time. Coefficients are now inconsistent and cannot be relied upon.  

In sum, we find that our estimation results are sensitive to the various adjustments discussed in previous 

sections. Although not desirable from a practical point of view, it underscores the need to correct 

productivity indices for disturbances if one is interested in productivity because of its index value for 

technical change. 
 

6 Conclusions 

In this study, we examine whether today’s technical change depend on yesterday’s technical change (i.e., 

whether there is delayed feedback in technical change). Network externalities, learning-by-doing, and 

learning-by-using, among others, can underlie such delayed feedback. We propose to investigate this 

feedback effect by using the technical change component of the Malmquist productivity index to measure 

the impact of technical changes on productivity. This approach has the virtue of being able to overcome 

some problems in the alternative patent citation approaches. Specifically, this component represents the 

impact of technical change on productivity, and therefore captures the quality and effectiveness of R&D 

activities as well as spontaneously arising technical change through, for example, learning-by-doing. 

Other advantages of this measure include its applicability at any level of aggregation from firm level 

studies to cross-country comparisons, and its capacity to handle multiple-input multiple-output 

technologies and biased technical change. However, this approach is not a panacea: estimation of the 

feedback effect is complicated by the various adjustments described above as well as econometric 

problems such as endogeneity of the regressors. We therefore see the frontier approach as a complement 

rather than a substitute to the patent citation approach.   

We applied the proposed frontier approach to estimate the feedback effect from aggregate 

production data of 25 OECD countries for 1980 through 1997. Our model yields conclusive evidence on 

positive feedback in technical change with delays up to eight years. The feedback effect is strong: 

predicting a one percent increase in productivity with technical change six years ago, for example, still 

results in slightly less than a half percent increase in today’s contribution of technical change to 

productivity growth, ceteris paribus. These findings are consistent with patent citation studies.  

The evidence of delayed feedback in technical change is interesting from the policy perspective. 

Many existing studies on research productivity neglect delayed feedback in technical change and, hence, 
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underestimate the social returns to R&D. If social returns to R&D diverge from the private returns, a case 

for policy intervention arises. In this respect, we hope that our approach can bring us closer to a measure 

of the full social returns to R&D. 

There are several ways forward. One is to use an estimator that allows intercepts and coefficients 

on the lagged endogenous variables to be specific to the cross section units (see Weinhold, 1999). Even 

when pooling is appropriate, this would allow for a considerable degree of heterogeneity across the cross 

section. Another way forward is to estimate feedback in technical change at the industry level. In addition 

to the diminishing returns to R&D at the industry level, there are large cross sectional differences in 

measured research productivity that hint at cross sectional differences in technology feedback. Special 

attention needs to be paid to the various adjustments discussed above. Bias of technical change might also 

deserve further attention by using an enhanced decomposition of the Malmquist index. It can be shown 

that the technical change index is the product of a magnitude index and a bias index which, in turn, is the 

product of an output bias index and an input bias index (Färe et al., 1997). Besides estimating path 

dependency at the factor level, one could empirically test hypotheses regarding productivity growth and 

the magnitude and bias of technical change. We believe that the use of a frontier approach in such 

empirical testing offers a promising avenue for future research. 
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Appendix A Data 

 

Aggregate output 

We use gross domestic product as our ‘value-added’ measure of aggregate output expressed in 1995 PPP 

adjusted prices. We obtain this variable from the OECD Annual National Accounts.  

 

 Aggregate capital input 

Services derived from capital assets are very difficult to observe directly. Therefore, we approximate the 

aggregate capital input by the productive capital stock, assuming capital services to be proportional to the 

productive capital stock and make a ‘one hoss shay’ assumption on the efficiency profile of the capital 

stock (OECD, 2001). That is, capital assets are assumed to be fully efficient until their retirement, when 

their productive capacity drops to zero. We construct initial capital stocks by dividing initial investments 

by their equilibrium rental price, which is the sum of the interest rate at which capital can be invested and 

a mark up to recover depreciation. We compute stocks in subsequent periods using the perpetual 

inventory method:  
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where I is investment in fixed capital, D is depreciation of fixed capital, and δ is the depreciation rate of 

fixed capital. r is the interest- or opportunity cost, depending on whether the asset is financed by a loan or 

by equity, and is also called the nominal rate of return. Together withδ , r measures the marginal cost of 

financing capital assets. We construct the capital stock from 1960 onward so that by 1980 most of the 

initial stock has fully depreciated. This minimizes bias in our aggregate capital measure potentially 

arising from the approximation of the initial stock. Finally, we multiply the capital stock measure with the 

utilization rate to account for variability in its utilization across countries and over time. 

We use ‘gross fixed capital formation’ as our measure of investment and ‘consumption of fixed 

capital’ as our measure of depreciation.17 We subsequently express these measures in 1995 PPP adjusted 

prices to facilitate calculation of the productive capital stock. We obtain these measures from the OECD 

Annual National Accounts. We obtain the deflators from the OECD Economic Outlook. With respect to 

                                                           
17 Note that consumption of fixed capital (CFC) is relatively broadly defined as the loss in value of an asset over an accounting 
period. CFC comprises thus not only the effects of ageing, i.e. wear and tear, but also the effects of obsolescence, i.e. capital 
gains or losses.  
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the nominal rate of return, theory provides no specific guidance as to its measurement. We take the usual 

approach and use the interest rate as measure of the nominal rate of return. More specifically, we use the 

‘bank rate’ as reported in the IMF International Financial Statistics. To minimize bias in our capital stock 

measure potentially arising from year specific shocks to the bank rates, we average rates of 1959 through 

1961. A six percent depreciation rate for fixed capital is assumed for 1960. This rate is comparable to 

rates found in the productivity literature. Although differences in the depreciation rate may exist among 

countries, there is little evidence that this is the case. We therefore make the usual assumption that the 

depreciation rate is the same in all the countries in our sample. Further, from the OECD Business 

Tendency Survey we obtain the ‘capacity utilization’ variable. Finally, we interpolate or extrapolate 

values that are missing for certain years and take average values across the countries in the sample for 

missing country values.  

 

Aggregate labor input 

We measure the aggregate labor input in total number of hours worked and adjust this measure for quality 

differences. We divide employment in each country into production- and non-production workers. This is 

a crude distinction, but the only one available for multiple countries over time. In addition, it has been 

found that these occupational proportions correlate highly with other measures of human capital like 

education (Berman et al., 1998). Following Fraumeni and Jorgenson (1992), we express the aggregate 

labor input as a translog function of the two types of labor.  We obtain ‘total employment’ numbers from 

the OECD Economic Outlook and the ‘average annual hours actually worked per person in employment’ 

variable from the OECD International Sectoral Database. From the General Industrial Statistics of the UN 

Industrial Statistics Database, we obtain data on the numbers of both types of workers in the industrial 

sectors as well as of their wage shares. We assume this occupational split to be similar in other sectors of 

the economy. These three variables are available for the period 1980 through 1990 only. For this reason, 

we extrapolate these series until 1997. We take average values across the countries in the sample for 

missing country values. 
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