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Summary 
This paper measures the economic impact of climate change on US agricultural land by 
estimating the effect of the presumably random year-to-year variation in temperature and 
precipitation on agricultural profits. Using long-run climate change predictions from the 
Hadley 2 Model, the preferred estimates indicate that climate change will lead to a $1.1 
billion (2002$) or 3.4% increase in annual profits. The 95% confidence interval ranges from -
$1.8 billion to $4.0 billion and the impact is robust to a wide variety of specification checks, 
so large negative or positive effects are unlikely. There is considerable heterogeneity in the 
effect across the country with California’s predicted impact equal to -$2.4 billion (or nearly 
50% of state agricultural profits). Further, the analysis indicates that the predicted increases in 
temperature and precipitation will have virtually no effect on yields among the most important 
crops. These crop yield findings suggest that the small effect on profits is not due to short-run 
price increases. The paper also implements the hedonic approach that is predominant in the 
previous literature. We conclude that this approach may be unreliable, because it produces 
estimates of the effect of climate change that are very sensitive to seemingly minor decisions 
about the appropriate control variables, sample and weighting. Overall, the findings contradict 
the popular view that climate change will have substantial negative welfare consequences for 
the US agricultural sector. 

Keywords:. Cost of climate change, Hedonics, Agricultural profits, Agricultural production, 
Crop yields 
 
JEL Classification: Q50, Q12, Q54, Q51 
 
We thank the late David Bradford for initiating a conversation that motivated this paper. Our 
admiration for David’s brilliance as an economist was only exceeded by our admiration for 
him as a human being. We are grateful for the especially valuable criticisms from David Card 
and two anonymous referees. Hoyt Bleakley, Tim Conley, Tony Fisher, Michael Hanemann, 
Enrico Moretti, Marc Nerlove, and Wolfram Schlenker provided insightful comments. We are 
also grateful for comments from seminar participants at Maryland, Princeton, Yale, the 
NBER Environmental Economics Summer Institute, and the “Conference on Spatial and 
Social Interactions in Economics” at the University of California-Santa Barbara. Anand 
Dash, Elizabeth Greenwood, Barrett Kirwan, Nick Nagle, and William Young, provided 
outstanding research assistance. We are indebted to Shawn Bucholtz at the United States 
Department of Agriculture for generously generating weather data for this analysis from the 
Parameter-elevation Regressions on Independent Slopes Model. Finally, we acknowledge The 
Vegetation/Ecosystem Modeling and Analysis Project and the Atmosphere Section, National 
Center for Atmospheric Research for access to the Transient Climate database, which we 
used to obtain regional climate change predictions. Greenstone acknowledges generous 
funding from the American Bar Foundation. 
 
Address for correspondence: 
Michael Greenstone 
MIT, Department of Economics 
50 Memorial Drive, E52-391B 
Cambridge, MA 02142 USA 
E-mail: mgreenst@mit.edu 



Introduction 

There is a growing consensus that emissions of greenhouse gases due to human activity will lead to 

higher temperatures and increased precipitation.  It is thought that these changes in climate will impact 

economic well being.  Since temperature and precipitation are direct inputs in agricultural production, 

many believe that the largest effects will be in this sector.  Previous research on climate change is 

inconclusive about the sign and magnitude of its effect on the value of US agricultural land (see, for 

example, Adams 1989; Mendelsohn, Nordhaus, and Shaw 1994 and 1999; Kelly, Kolstad, and Mitchell 

2005; Schlenker, Hanemann, and Fisher 2005a, b).  

Most prior research employs either the production function or hedonic approach to estimate the 

effect of climate change.1  Due to its experimental design, the production function approach provides 

estimates of the effect of weather on the yields of specific crops that are purged of bias due to 

determinants of agricultural output that are beyond farmers’ control (e.g., soil quality).  Its disadvantage is 

that these experimental estimates do not account for the full range of compensatory responses to changes 

in weather made by profit maximizing farmers.  For example in response to a change in climate, farmers 

may alter their use of fertilizers, change their mix of crops, or even decide to use their farmland for 

another activity (e.g., a housing complex).  Since farmer adaptations are completely constrained in the 

production function approach, it is likely to produce estimates of climate change that are biased 

downwards. 

The hedonic approach attempts to measure directly the effect of climate on land values.  Its clear 

advantage is that if land markets are operating properly, prices will reflect the present discounted value of 

land rents into the infinite future.  In principle, this approach accounts for the full range of farmer 

adaptations.  The limitation is that the validity of this approach requires consistent estimation of the effect 

of climate on land values.  Since at least the classic Hoch (1958 and 1962) and Mundlak (1961) papers, it 

has been recognized that unmeasured characteristics (e.g., soil quality) are an important determinant of 

output and land values in agricultural settings.2  Consequently, the hedonic approach may confound 

climate with other factors and the sign and magnitude of the resulting omitted variables bias is unknown.     

In light of the importance of the question, this paper proposes a new strategy to estimate the 

impact of climate change on the agricultural sector.  The idea is to exploit the presumably random year-

to-year variation in temperature and precipitation to estimate their effect on agricultural profits to assess 

                                                           
1 Throughout “weather” refers to the state of the atmosphere at a given time and place, with respect to variables such 
as temperature and precipitation.  “Climate” or “climate normals” refers to a location’s weather averaged over long 
periods of time. 
2 Mundlak focused on heterogeneity in the skills of farmers, however he recognized that there are numerous other 
sources of farm-specific effects.  In Mundlak (2001), he writes, “Other sources of farm-specific effects are 
differences in land quality, micro-climate, and so on” (p. 9).  



whether on average US farm profits are higher or lower in warmer and wetter years.  We then multiply 

the estimated impacts of temperature and precipitation on agricultural profits by the predicted change in 

climate to infer the economic impact.  

Specifically, we use a county-level panel data file constructed from the Censuses of Agriculture 

to estimate the effect of weather on agricultural profits, conditional on county and state by year fixed 

effects.  Thus, the weather parameters are identified from the county-specific deviations in weather about 

the county averages after adjustment for shocks common to all counties in a state.  Put another way, our 

estimates are identified from comparisons of counties within the same state that had positive weather 

shocks with ones that had negative weather shocks, after accounting for their average weather realization.   

This variation is presumed to be orthogonal to unobserved determinants of agricultural profits, so 

it offers a possible solution to the omitted variables bias problems that appear to plague the hedonic 

approach.  The primary limitation of the approach is that farmers cannot implement the full range of 

adaptations in response to a single year’s weather realization.  Consequently, its estimates of the impact of 

climate change may be biased downwards. 

Using long-run climate change predictions from the Hadley 2 Model, the preferred estimates 

indicate that climate change will lead to a $1.1 billion (2002$) or 3.4% increase in annual agricultural 

sector profits.  The 95% confidence interval ranges from -$1.8 billion to $4.0 billion so large negative or 

positive effects are unlikely.  The basic finding of an economically and statistically small effect is robust 

to a wide variety of specification checks including adjustment for the rich set of available controls, 

modeling temperature and precipitation flexibly, estimating separate regression equations for each state, 

and implementing a procedure that minimizes the influence of outliers.  Additionally, the analysis 

indicates that the predicted increases in temperature and precipitation will have virtually no effect on 

yields among the most important crops (i.e., corn for grain, soybeans, and wheat).  These crop yield 

findings suggest that the small effect on profits is not due to short-run price increases.   

Although the overall effect is small, there is considerable heterogeneity across the country.  The 

most striking finding is that California will be substantially harmed by climate change.  Its predicted loss 

in agricultural profits is $2.4 billion and this is nearly 50% of current annual profits in California.  

Colorado (-$610 million) and Oklahoma (-$580 million) are also predicted to have big losses, while the 

two biggest winners are Pennsylvania ($570 million) and South Dakota ($540 million).  It is important to 

note that these state-level estimates are demanding of the data and therefore less precise than is optimal. 

The paper also re-examines the hedonic approach that is predominant in the previous literature.  

There are two important findings.  First, the observable determinants of land prices are poorly balanced 

across quartiles of the long run temperature and precipitation averages.  This means that functional form 

assumptions are important in this approach.  Further, it may suggest that unobserved variables are likely 
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to covary with climate.   

Second, we implement the hedonic approach using all the available data on agricultural land 

values.  We find that estimates of the effect of the benchmark doubling of greenhouse gasses on the value 

of agricultural land range from -$200 billion (1997$) to $320 billion (or -24% to 39%), which is an even 

wider range than has been noted in the previous literature.  This variation in predicted impacts results 

from seemingly minor decisions about the appropriate control variables, sample, and weighting.  Despite 

its theoretical appeal, we conclude that the hedonic method may be unreliable in this setting.3   

The analysis is conducted with the most detailed and comprehensive data available on 

agricultural production, soil quality, climate, and weather.  The agricultural land values, profits and 

production data is derived from the 1978, 1982, 1987, 1992, 1997, and 2002 Censuses of Agriculture.  

The soil quality data comes from the National Resource Inventory data files from the same years.  The 

climate and weather data are derived from the Parameter-elevation Regressions on Independent Slopes 

Model (PRISM).  This model generates estimates of precipitation and temperature at small geographic 

scales, based on observations from the more than 8,000 weather stations in the National Climatic Data 

Center’s (NCDC) Summary of the Month Cooperative Files during the 1970-2000 period.  The PRISM 

data are used by NASA, the Weather Channel, and almost all other professional weather services.  We 

also use daily measurements of temperature from the Summary of the Day Data Files of the NCDC.  The 

predicted changes in state-level climates come from the Hadley Centre’s 2nd Climate Model 

 The paper proceeds as follows.  Section I motivates our approach and discusses why it may be an 

appealing alternative to the hedonic and production function approaches.  Section II describes the data 

sources and provides some summary statistics.  Section III presents the econometric approach and Section 

IV describes the results.  Section V assesses the magnitude of our estimates of the effect of climate 

change and discusses a number of important caveats to the analysis.  Section VI concludes the paper. 

 

I. Motivation and Conceptual Framework 

 

This paper attempts to develop a reliable estimate of the consequences of global climate change 

in the US agricultural sector.  Most previous research on this topic employs either the production function 

or hedonic approach to estimate the effect of climate change.  Here, we discuss these methods’ strengths 

and weaknesses and motivate our alternative approach. 

 

A. Production Function and Hedonic Approaches to Valuing Climate Change 
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The production function approach relies on experimental evidence of the effect of temperature 

and precipitation on agricultural yields.  The appealing feature of the experimental design is that it 

provides estimates of the effect of weather on the yields of specific crops that are purged of bias due to 

determinants of agricultural output that are beyond farmers’ control (e.g., soil quality).  Consequently, it 

is straightforward to use the results of these experiments to estimate the impacts of a given change in 

temperature or precipitation. 

Its disadvantage is that the experimental estimates are obtained in a laboratory setting and do not 

account for profit maximizing farmers’ compensatory responses to changes in climate.  As an illustration, 

consider a permanent and unexpected decline in precipitation.  In the short run, farmers may respond by 

increasing the flow of irrigated water or altering fertilizer usage to mitigate the loss in rainfall.  In the 

medium run, farmers can choose to plant different crops that require less precipitation.  And in the long 

run, farmers can convert their land into housing developments, golf courses, or some other purpose.   

Since even short run farmer adaptations are not allowed in the production function approach, it produces 

estimates of climate change that are downward biased.  For this reason, it is sometimes referred to as the 

“dumb-farmer scenario.”   

 In an influential paper, Mendelsohn, Nordhaus, and Shaw (MNS) proposed the hedonic approach 

as a solution to the production function’s shortcomings (MNS 1994).  The hedonic method aims to 

measure the impact of climate change by directly estimating the effect of temperature and precipitation on 

the value of agricultural land.  Its appeal is that if land markets are operating properly, prices will reflect 

the present discounted value of land rents into the infinite future.  MNS write the following about the 

hedonic approach:  

Instead of studying yields of specific crops, we examine how climate in different places 
affects the net rent or value of farmland.  By directly measuring farm prices or revenues, 
we account for the direct impacts of climate on yields of different crops as well as the 
indirect substitution of different inputs, introduction of different activities, and other 
potential adaptations to different climates (p. 755, 1994).   

Thus the hedonic approach promises an estimate of the effect of climate change that accounts for the 

compensatory behavior that undermines the production function approach.   

To successfully implement the hedonic approach, it is necessary to obtain consistent estimates of 

the independent influence of climate on land values and this requires that all unobserved determinants of 

land values are orthogonal to climate.4  We demonstrate below that temperature and precipitation normals 

                                                                                                                                                                                           
3 This finding is consistent with recent research indicating that cross-sectional hedonic equations are misspecified in 
a variety of contexts (Black 1999; Black and Kneisner 2003; Chay and Greenstone 2005; Greenstone and Gallagher 
2005). 
4 In Rosen’s (1974) classical derivation of the hedonic model, the estimates of the effect of climate on land prices 
can only be used to value marginal changes in climate.  It is necessary to estimate technology parameters to value 
non-marginal changes.  Rosen suggests doing this in a second step.  Ekeland, Heckman, and Nesheim (2004) outline 
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covary with soil characteristics, population density, per capita income, and latitude.  Moreover, 

Schlenker, Hanemann, and Fisher (SHF) show that the availability of irrigated water also covaries with 

climate (SHF 2005a).  This means that functional form assumptions are important in the hedonic 

approach and may imply that unobserved variables are likely to covary with climate.  Further, recent 

research has found that cross-sectional hedonic equations appear to be plagued by omitted variables bias 

in a variety of settings (Black 1999; Black and Kneisner 2003; Chay and Greenstone 2005; Greenstone 

and Gallagher 2005).5  Overall, it may be reasonable to assume that the cross-sectional hedonic approach 

confounds the effect of climate with other factors (e.g., soil quality).   

This discussion highlights that for different reasons the production function and hedonic 

approaches are likely to produce biased estimates of the economic impact of climate change.  It is 

impossible to know the magnitude of the biases associated with either approach and in the hedonic case 

even the sign is unknown. 

 

B.A New Approach to Valuing Climate Change 

In this paper we propose an alternative strategy to estimate the effects of climate change.  We use 

a county-level panel data file constructed from the Censuses of Agriculture to estimate the effect of 

weather on agricultural profits, conditional on county and state by year fixed effects.  Thus, the weather 

parameters are identified from the county-specific deviations in weather about the county averages after 

adjustment for shocks common to all counties in a state.  This variation is presumed to be orthogonal to 

unobserved determinants of agricultural profits, so it offers a possible solution to the omitted variables 

bias problems that appear to plague the hedonic approach. 

This approach differs from the hedonic one in a few key ways.  First, under an additive 

separability assumption, its estimated parameters are purged of the influence of all unobserved time 

invariant factors.  Second, it is not feasible to use land values as the dependent variable once the county 

fixed effects are included.  This is because land values reflect long run averages of weather, not annual 

deviations from these averages, and there is no time variation in such variables.   

Third, although the dependent variable is not land values, our approach can be used to 

approximate the effect of climate change on agricultural land values.  Specifically, we estimate how farm 

profits are affected by increases in temperature and precipitation.  We then multiply these estimates by the 

predicted changes in climate to infer the impact on profits.  Since the value of land is equal to the present 

discounted stream of rental rates, it is straightforward to calculate the change in land values when we 

                                                                                                                                                                                           
a method to recover these parameters in a single step.  MNS implicitly assume that the predicted changes in 
temperature and precipitation under the benchmark global warming scenario are marginal. 
5 For example, the regression-adjusted associations between wages and many job amenities and housing prices and 
air pollution are weak and often have a counterintuitive sign (Black and Kneisner 2003; Chay and Greenstone 2005).   
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assume the predicted change in profits is permanent and make an assumption about the discount rate. 

 

C. The Economics of Using Annual Variation in Weather to Infer the Impacts of Climate Change 

There are two economic issues that could undermine the validity of using the relationship 

between short run variation in weather and farm profits to infer the effects of climate change.  The first 

issue is that short run variation in weather may lead to temporary changes in prices that obscure the true 

long-run impact of climate change.  To see this, consider the following simplified expression for the 

profits of a representative farmer that is producing a given crop (and is unable to switch crops in response 

to short run variation in weather):  

(1) π = p(q(w)) q(w) – c(q(w)), 

where p, q, and c, denote prices, quantities, and costs, respectively.  Prices and total costs are a function of 

quantities.  Importantly, quantities are a function of weather, w, because precipitation and temperature 

directly affect yields.   

 Since climate change is a permanent phenomenon, we would like to isolate the long run change in 

profits.  Consider how the representative producer’s profits respond to a change in weather: 

(2)  ∂π / ∂w = (∂p / ∂q) (∂q / ∂w) q + (p – ∂c / ∂q) (∂q / ∂w). 

The first term is the change in prices due to the weather shock (through weather’s effect on 

quantities) multiplied by the initial level of quantities.  When the change in weather affects output, the 

first term is likely to differ in the short and long runs.  Consider a weather shock that reduces output (e.g., 

(i.e., ∂q / ∂w < 0).  In the short run supply is likely to be inelastic due to the lag between planting and 

harvests, so (∂p / ∂q)Short Run < 0.  This increase in prices helps to mitigate the representative farmer’s 

losses due to the lower production.  However, the supply of agricultural goods is more elastic in the long 

run as other farmers (or even new farmers) will respond to the price change by increasing output.  

Consequently, it is sensible to assume that (∂p / ∂q)Long Run > (∂p / ∂q)Short Run and is perhaps even equal to 

zero.  The result is that the first term may be positive in the short run but small, or zero in the long run.   

The second term in equation (2) is the difference between price and marginal cost multiplied by 

the change in quantities due to the change in weather.  This term measures the change in profits due to the 

weather-induced change in quantities.  It is the long run effect of climate change on agricultural profits 

(holding constant crop choice), and this is the term that we would like to isolate. 

Although our empirical approach relies on short run variation in weather, there are several 

reasons that it may be reasonable to assume that our estimates are largely purged of the influence of price 

changes (i.e., the first term in equation (2)).  Most importantly, our preferred empirical estimates indicate 

that the predicted changes in climate will have a statistically and economically small effect on crop yields 

(i.e., quantities) of the most important crops.  This finding undermines much of the basis for concerns 
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about short run price changes.  Further the preferred econometric model includes a full set of state by year 

interactions, so it non-parametrically adjusts for all factors that are common across counties within a state 

by year, such as crop price levels.6  Thus, the estimates will not be influenced by changes in state-level 

agricultural prices.  Interestingly, the qualitative results are similar whether we control for year or state by 

year fixed effects.7     

 The second potential threat to the validity of our approach is that farmers cannot undertake the 

full range of adaptations in response to a singe year’s weather realization.  Specifically, permanent 

climate change might cause them to alter the activities they conduct on their land.  For example, they 

might switch crops because profits would be higher with an alternative crop. 

Figure 1 illustrates this issue.  Profits per acre are on the y-axis and temperature is on the x-axis.  

For simplicity, we assume that the influence of precipitation and all other exogenous determinants (e.g., 

soil quality) of profits per acre have been successfully controlled or adjusted for.  The Crop 1 and Crop 2 

Profit Functions reveal the relationship between profits per acre and temperature when these crops are 

chosen.  It is evident that crop-specific profits vary with temperatures.  Further, the profit maximizing 

crop varies with temperature.  For example, Crop 1 maximizes profits between T1 and T2, Crops 1 and 2 

produce identical profits at T2 where the profit functions cross (i.e., point B), and Crop 2 is optimal at 

temperatures between T2 and T3. 

The hedonic equilibrium is denoted as the broken line and it represents the equilibrium 

relationship between temperature and profits.   In the long run when farmers can freely switch crops, they 

will choose to operate along the hedonic equilibrium because it reveals the crop choices that maximize 

their profits.  It is formed by the regions of each crop’s profit function where that crop produces the 

highest profits over all potential uses of that land.    

Consider a permanent increase in temperature from T1 to T3.  If farmers are able to switch 

production from crop 1 to crop 2, then their profits can be read off the y-axis at point C.  However, 

farmers that are unable to switch crops will earn profits associated with point C’.  Thus, the long-run 

change in profits is C – A, but, in the short run, the difference is C’ – A, which is a downward biased 

estimate of the long-run effect.  It is noteworthy that if the new temperature is >= T1 and <= T2, then the 
                                                           
6 If production in individual counties affects the overall price level, which would be the case if a few counties 
determine crop prices, or there are segmented local (i.e., geographic units smaller than states) markets for 
agricultural outputs, then this identification strategy will not be able to hold prices constant.  We suspect that this is 
unlikely, because production of the most important crops is spread out across the country and not concentrated in a 
small number of counties.  For example, McLean County, Illinois and Whitman County, Washington are the largest 
producers of corn and wheat, respectively, but they only account for 0.58% and 1.39% of total production of these 
crops in the US. 
7 We explored whether it was possible to directly control for local prices.  The USDA maintains data files on crop 
prices at the state-level, but unfortunately these data files frequently have missing values and limited geographic 
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farmer’s short-run and long-run profits are equal because the hedonic equilibrium and the crop 1 profit 

function are identical.   

 This paper’s empirical strategy relies on year-to-year variation in weather and thus it is unlikely 

that farmers are able to switch crops (or replace farms with golf courses) upon a year’s weather 

realization.  The import for the subsequent analysis is that our estimates of the impact of climate change 

may be downward biased relative to the preferred long-run effect that allows for all economic 

substitutions.  If the degree of climate change is “small,” however, our estimates are equal to the preferred 

long-run effect.  One final note is that in response to year-to-year fluctuations, farmers are able to adjust 

their mix of inputs (e.g., fertilizer and irrigated water usage), so the subsequent estimates are preferable to 

production function estimates that don’t allow for any adaptation. 

 

II. Data Sources and Summary Statistics 

 

To implement the analysis, we collected the most detailed and comprehensive data available on 

agricultural production, temperature, precipitation, and soil quality.  This section describes these data and 

reports some summary statistics. 

 

A. Data Sources 

Agricultural Production.  The data on agricultural production come from the 1978, 1982, 1987, 

1992, 1997, and 2002 Censuses of Agriculture.  The Census has been conducted roughly every 5 years 

since 1925.  The operators of all farms and ranches from which $1,000 or more of agricultural products 

are produced and sold, or normally would have been sold, during the census year, are required to respond 

to the census forms.  For confidentiality reasons, counties are the finest geographic unit of observation in 

these data. 

In much of the subsequent regression analysis, county-level agricultural profits per acre of 

farmland is the dependent variable.  This numerator of this variable is constructed as the difference 

between the market value of agricultural products sold and total production expenses across all farms in a 

county.  The production expense information was not collected in 1978 or 1982, so the 1987, 1992, 1997, 

and 2002 data are the basis for the analysis.  The denominator includes acres devoted to crops, pasture, 

and grazing.   

The revenues component measures the gross market value before taxes of all agricultural 

products sold or removed from the farm, regardless of who received the payment.  Importantly, it does not 

                                                                                                                                                                                           
coverage.  Moreover, the state by year fixed effects provide a more flexible way to control for state-level variation in 
price, because they control for all unobserved factors that vary at the state by year level. 
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include income from participation in federal farm programs8, labor earnings off the farm (e.g., income 

from harvesting a different field), or nonfarm sources.  Thus, it is a measure of the revenue produced with 

the land. 

Total production expenses are the measure of costs.  It includes expenditures by landowners, 

contractors, and partners in the operation of the farm business.  Importantly, it covers all variable costs 

(e.g., seeds, labor, and agricultural chemicals/fertilizers).  It also includes measures of interest paid on 

debts and the amount spent on repair and maintenance of buildings, motor vehicles, and farm equipment 

used for farm business.  Its chief limitation is that it does not account for the rental rate of the portion of 

the capital stock that is not secured by a loan so it is only a partial measure of farms’ cost of capital.  Just 

as with the revenue variable, the measure of expenses is limited to those that are incurred in the operation 

of the farm so, for example, any expenses associated with contract work for other farms is excluded.9  

   We utilize the variable on the value of land and buildings as the dependent variable in our 

replication of the hedonic approach.  This variable is available in all six Censuses.  Finally, we use the 

Census data to examine the relationship between the three most important crops (i.e., corn for grain, 

soybean, and wheat for grain) yields and annual weather fluctuations.  Crop yields are measured as total 

bushels of production per acres planted. 

Soil Quality Data.  No study of agricultural land values would be complete without data on soil 

quality and we rely on the National Resource Inventory (NRI) for our measures of these variables.  The 

NRI is a massive survey of soil samples and land characteristics from roughly 800,000 sites that is 

conducted in Census years.  We follow the convention in the literature and use the measures of 

susceptibility to floods, soil erosion (K-Factor), slope length, sand content, clay content, irrigation, and 

permeability as determinants of land prices and agricultural profits.  We create county-level measures by 

taking weighted averages from the sites that are used for agriculture, where the weight is the amount of 

land the sample represents in the county.  Since the composition of the land devoted to agriculture varies 

within counties across Censuses, we use these variables as covariates.  Although these data provide a rich 

portrait of soil quality, we suspect that they are not comprehensive.  It is this possibility of omitted 

measures of soil quality and other determinants of profits that motivate our approach. 

Climate and Weather Data.  The climate data are derived from the Parameter-elevation 

                                                           
8 An exception is that it includes receipts from placing commodities in the Commodity Credit Corporation (CCC) 
loan program.  These receipts differ from other federal payments because farmers receive them in exchange for 
products. 
9 The Censuses contain separate variables for subcategories of revenue (e.g., revenues due to crops and dairy sales), 
but expenditures are not reported separately for these different types of operations.  Consequently, we cannot 
provide separate measures of profits by these categories and instead focus on total agriculture profits.  
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Regressions on Independent Slopes Model (PRISM).10  This model generates estimates of precipitation 

and temperature at 4 x 4 kilometers grid cells for the entire US.  The data that are used to derive these 

estimates are from the more than 20,000 weather stations in the National Climatic Data Center’s 

Summary of the Month Cooperative Files.  The PRISM model is used by NASA, the Weather Channel, 

and almost all other professional weather services.  It is regarded as one of the most reliable interpolation 

procedures for climatic data on a small scale.  

 This model and data are used to develop month by year measures of precipitation and temperature 

for the agricultural land in each county for the 1970 – 2000 period.  This was accomplished by overlaying 

a map of land uses on the PRISM predictions for each grid cell and then by taking the simple average 

across all agricultural land grid cells.11  To replicate the previous literature’s application of the hedonic 

approach, we calculated the climate normals as the simple average of each county’s annual monthly 

temperature and precipitation estimates between 1970 and two years before the relevant Census year.   

Furthermore, we follow the convention in the literature and include the January, April, July, and October 

estimates in our specifications so there is a single measure of weather from each season.   

Although the monthly averages may be appropriate for a hedonic analysis of property values, 

there are better methods for modeling the effect of weather on annual agricultural profits.  Agronomists 

have shown that plant growth depends on the cumulative exposure to heat and precipitation during the 

growing season.  The standard agronomic approach for modeling temperature is to convert daily 

temperatures into degree days, which represent heating units (Hodges 1991; Grierson 2002).  The effect 

of heat accumulation is nonlinear as temperature must be above a threshold for plants to absorb heat and 

below a ceiling, as plants cannot absorb extra heat when temperature is too high.  Additionally, 

temperatures above some point become harmful.  These thresholds or bases vary across crops, but we join 

SHF (2005b) and follow Ritchie and NeSmith’s (1991) suggested characterization for the entire 

agricultural sector and use a base of 46.4° Fahrenheit (F) and a ceiling of 89.6° F (or 8° and 32° C).  

Ritchie and NeSmith also discuss the possibility of a temperature threshold at 93.2° F (34° C), beyond 

which increases in temperature are harmful.  However, we ignore this possibility since there is not enough 

support in our data to identify its effect.12

We use daily-level data on temperatures and calculate growing season degree days between April 

1st and September 30th, which covers the growing season for most crops, except winter wheat (U.S. 

Department of Agriculture, NASS 1997).  The degree days variable is calculated so that a day with a 

                                                           
10 PRISM was developed by the Spatial Climate Analysis Service at Oregon State University for the National 
Oceanic and Atmospheric Administration.  See http://www.ocs.orst.edu/prism/docs/przfact.html for further details. 
11 We are indebted to Shawn Bucholtz at the USDA for generously generating this weather data. 
12 Over our sample period, the average county in the United States faced 0.2 growing season degree days of such 
harmful temperature. 
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mean temperature: below 46.4° F contributes 0 degree days; between 46.4° F and 89.6° F contributes the 

number of degrees F above 46.4 degree days; above 89.6° F contributes 43.2 degree days. The growing 

season degree day variable is then calculated by summing the daily measures over the entire growing 

season.  

Unfortunately, the monthly PRISM data do not provide information on measures of actual 

growing season degree days.  To measure these degree day variables, we used daily-level data on mean 

daily temperature from the approximately 8,000 operational weather stations located in the U.S. during 

our sample period.  These data were obtained from the National Climatic Data Center “Cooperative 

Summary of the Day” Files.  The construction of the sample used is described with more details in the 

appendix.  Our use of daily data to calculate degree days is an important improvement over previous work 

that has estimated growing season degree days with monthly data and distributional assumptions (SHF 

2005b).13   

 In the specifications that use the degree days measures of temperature, the measure of 

precipitation is total precipitation in the growing season.  This measure is just the sum of precipitation 

across the growing season months in the relevant year calculated from the PRISM data. 

Climate Change Predictions.  We rely on two sets of predictions about climate change to develop 

our estimates of its effects on US agricultural land.  The first predictions follow the convention in the 

literature and rely on the climate change scenario from the 1st IPCC report associated with a doubling of 

atmospheric concentrations of greenhouse gases by the end of the 21st century. (IPCC 1990; NAS 1992)  

This model assumes a uniform (across months and regions of the US and their interaction) 5° F increase 

in temperature and 8% increase in precipitation.  The convention in the previous literature is to use these 

predictions.14

The second set of predictions is from the Hadley Centre’s 2nd Coupled Ocean-Atmosphere 

General Circulation Model, which we refer to as Hadley 2 (T. C. Johns et al. 1997).  This model of 

climate is comprised of several individually modeled components -- the atmosphere, the ocean, and sea 

ice -- which are equilibrated using a “spinup” process.  This model was used in the 2nd IPCC report 

(Houghton 1996).  To obtain predicted impacts on temperature and precipitation, we assume a 1% per 

year compounded increase in both carbon dioxide and IS92A sulphate aerosols, which implies that 

greenhouse gas concentrations will increase to roughly 2.5 times their current levels by the end of the 21st 

century.  These assumptions about emissions and resulting climate change predictions are standard 

assumptions and result in middle of the range predictions.  The Hadley 2 model and this emission 

                                                           
13 See Thom (1966) who outlines a method to recover degree days from monthly data by making a normality 
assumption. 
14 Mendelsohn, Nordhaus, and Shaw (1994 and 1999) and SHF (2005a) also calculate the effect of global climate 
change based on these estimated changes in temperature and precipitation. 
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scenario are used to obtain monthly state-level predictions for January 1994 through December 2099 (see 

the Data Appendix for further details).15  We focus on the “medium term” and “long run” effects on 

climate, which are defined as the temperature and precipitation averages across the 2020-2049 and 2070-

2099 predictions, respectively. 

 

B. Summary Statistics 

Agricultural Finances, Soil, and Weather Statistics.  Table 1 reports county-level summary 

statistics from the three data sources for 1978, 1982, 1987, 1992, 1997, and 2002.  The sample is 

comprised of a balanced panel of 2,268 counties.16  Over the period, the number of farms per county 

varied between 680 and 800.  The total number of acres devoted to farming declined by roughly 7.5%.  At 

the same time, the acreage devoted to cropland was roughly constant implying that the decline was due to 

reduced land for livestock, dairy, and poultry farming.  The mean average value of land and buildings per 

acre in the Census years ranged between $892 and $1,370 (1997$) in this period, with the peak and trough 

occurring in 1978 and 1992, respectively.17

 The second panel details annual financial information about farms.  We focus on 1987-2002, 

since complete data is only available for these four censuses.  During this period the mean county-level 

sales of agricultural products ranged from $72 to $80 million.  Although it is not reported here, the share 

of revenue from crop products increased from 43.7% to 47.9% in this period with the remainder coming 

from the sale of livestock and poultry.  Farm production expenses grew from $57 million to $65 million.  

The mean county profits from farming operations were $14.4 million, $14.0 million, $18.6 million, $10.0 

million or $42, $41, $56 and $30 per acre in 1987, 1992, 1997, and 2002 respectively.  These profit 

figures do not include government payments, which are listed at the bottom of this panel.  The subsequent 

analysis of profits also excludes government payments. 

The third panel lists the means of the available measures of soil quality, which are key 

determinants of lands’ productivity in agriculture.  These variables are essentially unchanged across years 

since soil and land types at a given site are generally time-invariant.  The small time-series variation in 

                                                           
15 The Hadley Centre has released a 3rd climate model, which has some technical improvements over the 2nd one.  
We do not use it for this paper’s predictions, because it has not yet been run on a monthly time by subnational scale 
over the course of the entire 21st century.  Thus, we would not be able to make the state-level predictions about 
climate that are possible with the 2nd model. 
16 Observations from Alaska and Hawaii were excluded.  We also dropped all observations from counties that had 
missing values for one or more years on any of the soil variables, acres of farmland, acres of irrigated farmland, per 
capita income, population density, and latitude at the county centroid.  The sample restrictions were imposed to 
provide a balanced panel of counties from 1978-2002 for the subsequent regressions where these variables are 
important controls.      
17 All dollar values are in 2002 constant dollars.  All entries are simple averages over the 2,268 counties, with the 
exception of “Average Value of Land/Bldg (1$/acre)” and “Profit Per Acre (1$/acre)”, which are weighted by acres 
of farmland. 
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these variables is due to changes in the composition of land that is used for farming.  Notably, the only 

measure of salinity is from 1982, so we use this measure for all years.   

 The final panel reports on annual weather.  The precipitation variables are measured in inches.  

The monthly mean temperature and degree day variables are reported in Fahrenheit degrees.  On average, 

July is the wettest month and October is the driest.  The average precipitation in these months in the five 

census years is 3.9 inches and 2.0 inches, respectively.  It is evident that there is less year-to-year 

variation in the national mean of temperature than precipitation.  The growing season degree days and 

total precipitation range from roughly 2,600 to 3,100 degree days and 19.3 to 21.6 inches, respectively. 

 Figures 2A and 2B provide an opportunity to examine the variability in growing season degree 

days and precipitation (calculated as the mean between 1970 and 2000) at the county level across the 

country.  In Figure 2 A (B), counties in the highest quartile for growing season degree days (precipitation) 

are colored dark gray, counties between the 25th and 75th percentile are dashed light grey, and counties in 

the lowest quartile are light grey.  The dividing lines for these categories are > 4375 degree days (25.5 

inches), and < 2464 degree days (< 18.0 inches).  The “inter-quartile” category consists of counties falling 

between the thresholds.  The degree day figure reveals that the Southern part of the US is the warmest, 

although there is a lot of variability even within states.  The precipitation figure shows that the lowest 

quartile of precipitation is virtually all located to the west of the 100 degree meridian.  This line loosely 

separates land where farming requires irrigation from areas where rainfall is sufficient to successfully 

grow crops. 

 Figure 2C depicts the average profit per acre at the county-level across the 1987-2002 Censuses 

of Agriculture.  Here the three groupings are denoted by > $79.4, between $12.0 and $79.4, and < $12.0.  

It is evident from visual inspection that temperature and precipitation are not the only determinants of 

agricultural profits.  The most profitable agricultural land is interspersed throughout the country but is 

especially concentrated in California (which benefits from heavy irrigation), the Eastern seaboard, the 

grain and corn growing regions in Illinois and Iowa, and North Carolina where tobacco farming is an 

important activity.   

Climate Change Statistics.  Table 2 reports on the predictions of some of the climate change 

models.  All entries are calculated as the weighted average across the fixed sample of 2,268 counties, 

where the weight is the number of acres of farmland.  Under the “Actual” column we show the 1970-2000 

averages of each of the listed variables.  The top panel reports on the benchmark global warming model 

from the 1st IPCC report, which predicts uniform (across season and space) increases of 5° F and 8% in 

precipitation.  The panel reports the actual and predicted mean temperatures and precipitation (as well as 

their difference) for January, April, July, and October.  The table also contains entries for growing season 

degree days and total precipitation.  All of the information is provided separately for non-irrigated (i.e., 
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dryland) and irrigated counties.  We define a county as irrigated if at least 10% of its farmland is irrigated 

and this definition is used throughout the remainder of the paper. 

The bottom panel reports on the medium and long run predicted effects from the Hadley 2 Global 

Warming model for growing season degree days and precipitation.  This information is listed for the 

country as a whole and for each of the four Census Bureau’s regions.   

The model predicts a mean increase in degree days of roughly 800 in the medium term and 

approximately twice that by the end of the century (i.e., the long run).  The most striking regional 

difference is the dramatic increase in temperature in the South.  Its long run predicted increase in degree 

days of roughly 2,700 among non-irrigated counties greatly exceeds the approximate increases of 1,700, 

800, and 1,400 in the Northeast, Midwest, and West, respectively.  The overall average increase in 

growing season precipitation in the long run is approximately 2.5 inches, with the largest increases 

occurring in the Northeast and South. 

Figures 3A and 3B report on the Hadley 2 Model’s predicted changes in growing season degree 

days and total precipitation in the long run at the state-level.18  In Figure 3A, it is notable that even within 

regions there is variability in the increase in degree days.  For example, California is predicted to have an 

increase of 2590 degree days but Arizona’s predicted change is only 1450.  Further Pennsylvania’s 

increase (2951) is substantially larger than its neighbors.  There is even greater intra-region variability in 

the increase in growing season precipitation.  The important inter- and intra-regional variation in the 

changes in temperature and precipitation are an under-recognized feature of the predicted changes in 

climate.  These state-level predicted changes are used in the remainder of the paper to infer the economic 

impacts of climate change.   

Weather Variation Statistics.  In our preferred approach, we aim to infer the effects of weather 

fluctuations on agricultural profits.  We focus on regression models that include county and year fixed 

effects and county and state by year fixed effects.  It would be ideal if after adjustment for these fixed 

effects, the variation in the weather variables that remains is as large as those predicted by the climate 

change models used in this study.  In this case, our predicted economic impacts will be identified from the 

data, rather than by extrapolation due to functional form assumptions.  Recall, the average predicted 

increase in growing season degree days in Table 2 ranges from about 700 (benchmark model) to 1,600 

(long-run Hadley 2 model).  The average predicted increase in growing season precipitation ranges from 

0.6 to 2.7 inches. 

Panel A of Table 3 reports on the magnitude of the deviations between counties’ yearly weather 

                                                           
18 In Figure 3A (B), counties in the highest quartile for growing season degree days (precipitation) are colored dark 
gray, counties between the 25th and 75th percentile are dashed light grey, and counties in the lowest quartile are light 
grey.  The dividing lines for these categories are > 2013 degree days (4.9 inches), between 833 and 2013 degree 
days (0.8 and 4.9 inches), and < 833 degree days (< 0.8 inches).  

 14



realizations and their long run averages after subtracting the deviation between the national average 

weather realization and the national long run average.  Therefore, it provide an opportunity to assess the 

magnitude of the variation in growing season degree days and precipitation after adjustment for 

permanent county factors (e.g., whether the county is usually hot or wet) and national time varying factors 

(e.g., whether it was a hot or wet year).  Specifically, the entries report the fraction of counties with 

deviations at least as large as the one reported in the column heading.  For example, consider the 2002 

degree days row, it indicates that 57%, 19%, and 2% of counties had deviations larger than 200, 800, and 

1,400 degree days, respectively.  Panel B repeats this exercise after subtracting the deviation between a 

states’ yearly weather realization and the states’ long run average (rather than the national deviation).  

These entries report on the variation in weather that remains after the inclusion of county and state by 

year fixed effects in the subsequent specifications. 

 Temperature and precipitation deviations of the magnitudes predicted by the climate change 

models occur in the data in both panels.  This is especially true of precipitation where in Panel A nearly 

31-35% (24-28% in Panel B) of counties have a deviation larger than 2.5 inches, which roughly 

corresponds to the average predicted long-run increase in the long run Hadley 2 model.  In the case of 

temperature, roughly 9-11% of counties have deviations at least as great as the benchmark 800 degree 

days.  The long-run Hadley 2 model predicts increases of 1,600 degree days.  This increase is non-

parametrically identified, although it would come from a relatively small subset of the data.  However, 4-

5% of counties have deviations as large as 1000 degree days in a year (even in Panel B).  Finally, it is 

noteworthy that differencing out state weather shocks does not substantially reduce the frequency of large 

deviations, highlighting that there are important regional patterns to weather shocks. 

 

III. Econometric Strategy  

 

A. The Hedonic Approach 

This section describes the econometric framework that we use to assess the consequences of 

global climate change.  We initially consider the hedonic cross sectional model that has been predominant 

in the previous literature (MNS 1994, 1999; SHF 2005a, b).  Equation (3) provides a standard formulation 

of this model: 

(3) yct = Xct′β + Σi θi fi( icW ) + εct,  εct = αc + uct, 

where yct is the value of agricultural land per acre in county c in year t.  The t subscript indicates that this 

model could be estimated in any year for which data is available.     

Xct is a vector of observable determinants of farmland values.  A t subscript is included on the X 
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vector, because it includes some time-varying factors that affect land values.  icW represents a series of 

climate variables for county c.  We follow MNS and let i indicate one of eight climatic variables.  In 

particular, there are separate measures of temperature and total precipitation in January, April, July, and 

October so there is one month from each quarter of the year.  Moreover, as emphasized by SHF (2005a), 

it is important to allow the effect of climate to differ across dryland and irrigated counties.  Accordingly, 

we estimate equation (3) by including interactions of all the climate variables and indicators for dryland 

and irrigated counties. 

 The appropriate functional form for each of the climate variables is unknown, but in our 

replication of the hedonic approach we follow the convention in the literature and model the climatic 

variables with linear and quadratic terms, separately by irrigation status.  The last term in equation (3) is 

the stochastic error term, εct, that is comprised of a permanent, county-specific component, αc, and an 

idiosyncratic shock, uct. 

The coefficient vector θ is the ‘true’ effect of climate on farmland values and its estimates are 

used to calculate the overall effect of climate change associated with the benchmark 5-degree Fahrenheit 

increase in temperature and eight percent increase in precipitation.  Since the total effect of climate 

change is a linear function of the components of the θ vector, it is straightforward to formulate and 

implement tests of the effects of alternative climate change scenarios on agricultural land values.19  We 

will report the standard errors associated with the overall estimate of the effect of climate change.  

However, the total effect of climate change is a function of 32 parameter estimates when the climate 

variables are modeled with a quadratic, so it is not surprising that statistical significance is elusive.  This 

issue of sampling variability has generally been ignored in the previous literature.20    

Consistent estimation of the vector θ, and consequently of the effect of climate change, requires 

that E[fi( icW ) εct| Xct] = 0 for each climate variable i.  This assumption will be invalid if there are 

unmeasured permanent (αc) and/or transitory (uct) factors that covary with the climate variables.  To 

obtain reliable estimates of θ, we collected a wide range of potential explanatory variables including all 

the soil quality variables listed in Table 1, as well as per capita income and population density.21  We also 

estimate specifications that include state fixed effects.   

                                                           
19 Since we use a quadratic model for the climate variables, each county’s predicted impact is calculated as the 
discrete difference in agricultural land values at the county’s predicted temperatures and precipitation after climate 
change and its current climate (i.e., the average over the 1970-2000 period). 
20 SHF (2005a) is a notable exception. 
21 Previous research suggests that urbanicity, population density, the local price of irrigation, and air pollution 
concentrations are important determinants of land values (Cline 1996; Plantinga, Lubowski, and Stavins 2002; SHF 
2005a, b; Chay and Greenstone 2005).  Comprehensive data on the price of irrigation and air pollution 
concentrations were unavailable. 
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There are three further issues about equation (3) that bear noting.  First, it is likely that the error 

terms are correlated among nearby geographical areas.  For example, unobserved soil productivity is 

likely to be spatially correlated.  In this case, the standard OLS formulas for inference are incorrect since 

the error variance is not spherical.  In absence of knowledge on the sources and the extent of residual 

spatial dependence in land value data, we adjust the standard errors for spatial dependence of an unknown 

form following the approach of Conley (1999).  The basic idea is that the spatial dependence between two 

observations will decline as the distance between the counties increases.22  Throughout the paper, we 

present standard errors calculated with the Eicker-White formula that allows for heteroskedasticity of an 

unspecified nature.  In addition we also present the Conley standard errors for our preferred fixed-effect 

models.  

Second, it may be appropriate to weight equation (3).  Since the dependent variable is county-

level farmland values per acre, we think there are two complementary reasons to weight by the square 

root of acres of farmland.  First, the estimates of the value of farmland from counties with large 

agricultural operations will be more precise than the estimates from counties with small operations and 

this weight corrects for the heteroskedasticity associated with the differences in precision.  Second with 

this weight, the weighted mean of the dependent variable is equal to the mean value of farmland per acre 

in the country.   

MNS (1994, 1999) and SHF (2005a) both use the square root of the percent of the county in 

cropland and the square root of total revenue from crop sales as weights.  We elected not to report the 

results based on these approaches in the main tables, since the motivation for these weighting schemes is 

less transparent.  For example, it is difficult to justify the assumptions about the variance-covariance 

matrix that would motivate these weights as a solution to heteroskedasticity.  Further, although these 

weights emphasize the counties that are most important to total agricultural production, they do so in an 

unconventional manner.  Consequently, the weighted means of the dependent variable with these weights 

have a non-standard interpretation.  For completeness, we report estimates from these weighting schemes 

in a footnote below but again keep them out of the tables 

Third to probe the robustness of the hedonic approach, we estimate it with data from each of the 

Census years.  If this model is specified correctly, the estimates will be unaffected by the year in which 

the model is estimated.  If the estimates differ across years, this may be interpreted as evidence that the 

hedonic model is misspecified. 

                                                           
22 More precisely, the Conley (1999) covariance matrix estimator is obtained by taking a weighted average of spatial 
autocovariances.  The weights are given by the product of Bartlett kernels in two dimensions (north/south and 
east/west), which decline linearly from 1 to 0.  The weights reach 0 when one of the coordinates exceeds a pre-
specified cutoff point.  Throughout we choose the cutoff points to be 7 degrees of latitude and longitude, 
corresponding to distances of about 500 miles.     
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B. A New Approach 

One of this paper’s primary points is that the cross-sectional hedonic equation is likely to be 

misspecified.  As a possible solution to these problems, we fit: 

(4) yct = αc + γt + Xct′β + Σi θi fi(Wict) + uct.     

There are a number of important differences between equations (4) and (3).  For starters, the equation 

includes a full set of county fixed effects, αc.  The appeal of including the county fixed effects is that they 

absorb all unobserved county-specific time invariant determinants of the dependent variable.23  The 

equation also includes year indicators, γt, that control for annual differences in the dependent variable that 

are common across counties.  Our preferred specification replaces the year fixed effects with state by year 

fixed effects (γst). 

The inclusion of the county fixed effects necessitates two substantive differences in equation (4), 

relative to (3).  First, the dependent variable, yct, is now county-level agricultural profits, instead of land 

values.  This is because land values capitalize long run characteristics of sites and, conditional on county 

fixed effects, annual realizations of weather should not affect land values.  However, weather does affect 

farm revenues and expenditures and their difference is equal to profits.  The association between the 

weather variables and agricultural profits may be due to changes in revenues or operating expenditures 

and we also show separate results for these two determinants of profits.   

Second, since there is no temporal variation in icW , it is impossible to estimate the effect of the 

long run climate averages in a model with county fixed-effects.  Consequently, we replace the climate 

variables with annual realizations of weather, Wict.  As explained before, we follow the standard 

agronomic approach and model temperature by using growing season degree days, defined with a base of 

46.4° F and a ceiling of 89.6° F.  Similarly, we model the effect of precipitation on agricultural profits per 

acre by using growing season precipitation.  Once again, we let the effect of these variables on profits per 

acre to differ across irrigated and dryland counties.  We allow for a quadratic in each of these variables.   

The validity of any estimate of the impact of climate change based on equation (4) rests crucially 

on the assumption that its estimation will produce unbiased estimates of the θ vector.  Formally, the 

consistency of each θi  requires E[fi(Wict) uct| Xct, αc, γst]= 0.  By conditioning on the county and state by 

year fixed effects, the θi’s are identified from county-specific deviations in weather about the county 

averages after controlling for shocks common to all counties in a state.  This variation is presumed to be 

orthogonal to unobserved determinants of agricultural profits, so it provides a potential solution to the 

                                                           
23 Interestingly, the fixed effects model was first developed by Hoch (1958 and 1962) and Mundlak (1961) to 
account for unobserved heterogeneity in estimating farm production functions.   
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omitted variables bias problems that appear to plague the estimation of equation (3).  A shortcoming of 

this approach is that all the fixed effects are likely to magnify the importance of misspecification due to 

measurement error, which generally attenuates the estimated parameters. 

 

IV. Results 

 

This section is divided into three subsections.  The first provides some suggestive evidence on the 

validity of the hedonic approach and then present results from that approach.  The second subsection 

presents results from the fitting of equation (4) to estimate the impact of climate change on the US 

agricultural sector.  It also probes the distributional consequences of climate change across the country.  

The third and final subsection estimates the effect of climate change on crop yields for the three most 

important crops (i.e., corn for grain, soybeans, and wheat for grain).  The intent is to determine the source 

of the profit results.    

 

A. Estimates of the Impact of Climate Changes from the Hedonic Approach 

As the previous section highlighted, the hedonic approach relies on the assumption that the 

climate variables are orthogonal to the unobserved determinants of land values.   

We begin by examining whether these variables are orthogonal to observable predictors of farm values.  

While this is not a formal test of the identifying assumption, there are at least two reasons that it may 

seem reasonable to presume that this approach will produce valid estimates of the effects of climate when 

the observables are balanced.  First, consistent inference will not depend on functional form assumptions 

(e.g., linear regression adjustment when the conditional expectations function is nonlinear) on the 

relations between the observable confounders and farm values.  Second, the unobservables may be more 

likely to be balanced (Altonji, Elder, and Taber 2000).   

Table 4A shows the association of the temperature variables with farm values and likely 

determinants of farm values and 4B does the same for the precipitation variables.  To understand the 

structure of the tables, consider the upper-left corner of Table 4A.  The entries in the first four columns 

are the means of county-level farmland values, soil characteristics, and socioeconomic and locational 

attributes by quartile of the January temperature normal.  Here, normal refers to the county average 

temperature over the period 1970-2000.  The means are calculated with data from the six Censuses but are 

adjusted for year effects.  Throughout Tables 4A and 4B, quartile 1 (4) refers to counties with a climate 

normal in the lowest (highest) quartile, so, for example, quartile 1 counties for January temperature are 

the coldest.     

The fifth column reports the F-statistic from a test that the means are equal across the quartiles.  

 19



Since there are six observations per county, the test statistics allows for county-specific random effects.  

A value of 2.37 (3.34) indicates that the null hypothesis can be rejected at the 5% (1%) level.  If climate 

were randomly assigned across counties, there would be very few significant differences.    

 It is immediately evident that the observable determinants of farmland values are not balanced 

across the quartiles of weather normals.  In 112 of the 112 cases, the null hypothesis of equality of the 

sample means of the explanatory variables across quartiles can be rejected at the 1% level.24  In many 

cases the differences in the means are large, implying that rejection of the null is not simply due to the 

sample sizes.  For example, the fraction of the land that is irrigated and the population density (a measure 

of urbanicity) in the county are known to be important determinants of the agricultural land values and 

their means vary dramatically across quartiles of the climate variables.  Overall, the entries suggest that 

the conventional cross-sectional hedonic approach may be biased due to incorrect specification of the 

functional form of the observed variables and potentially due to unobserved variables.   

With these results in mind, Table 5 reports on the implementation of the hedonic approach 

outlined in equation (3).  Every specification allows for a quadratic in each of the 8 climate variables and, 

as recommended by SHF (2005a), their effects are allowed to vary in irrigated and dryland counties.  We 

also allow for intercept differences across irrigated and dryland counties.  All other parameters are 

constrained to be equal across these two sets of counties.   

The entries report the predicted changes in land values in billions of 2002 dollars (and their 

standard errors in parentheses) from the benchmark increases of 5 degrees Fahrenheit in temperatures and 

8% in precipitation.  These predicted changes are based on the estimated climate parameters from the 

fitting of equation (3).  The 56 different sets of estimates of the national impact on land values are the 

result of 7 different data samples, 4 specifications, and 2 assumptions about the correct weights.  The data 

samples are denoted in the row headings.  There is a separate sample for each of the Census years and the 

seventh is the result of pooling data from the six Censuses.   

The A, B, C, and D pairs of columns correspond to four sets of control variables.  In the A 

columns, the climate parameters are the only regressors so the resulting predictions are not adjusted for 

any other observable determinants of farmland values.  The entries in the B columns specification are 

adjusted for the soil characteristics in Table 1, as well as per capita income and population density and 

their squares.  The C columns specification adds state fixed effects to account for all unobserved 

differences across states (e.g., soil quality and state agricultural programs).  In the specification in the D 

columns latitude (measured at the county centroid) is an additional covariate.  We believe that it is 

                                                           
24 We also divided the sample into dryland and irrigated counties, where a county is defined as irrigated if at least 
10% of the farmland is irrigated and the other counties are labeled dryland.  Among the dryland (irrigated) counties, 
the null hypothesis of equality of the sample means of the explanatory variables across quartiles can be rejected at 
the 1% level for 111 (96) of the 112 covariates.  
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inappropriate to control for latitude because it confounds temperature, so our preferred specification is the 

one in the C columns.25  However, the previous literature has generally controlled for latitude so the 

column D results are presented for completeness.26  The exact controls are summarized in the rows at the 

bottom of the table and detailed in the Data Appendix. 

Among the A, B, C, and D pairs of columns, the column “[0]” regression equations are 

unweighted.  The column “[1]” entries are the result of weighting by the square root of acres of farmland.  

We re-emphasize that this seems like the most sensible assumption about the weights, because it corrects 

for the heteroskedasticity associated with the differences in precision in the dependent variable across 

counties.     

The predicted change in land values per acre is calculated separately for each county as the 

difference in predicted land values with the current climate and the climate predicted by the benchmark 

model.27  We then sum each county’s change in per acre land values multiplied by the number of acres 

devoted to agriculture in that county across the 2,124 counties in the sample to calculate the national 

effect.28  For the year-specific estimates, the heteroskedastic-consistent standard errors (White 1980) 

associated with each estimate are reported in parentheses.29  For the pooled estimates, the standard errors 

reported in parentheses allow for clustering at the county level. 

We initially focus on the year-specific estimates in the top panel.  The most striking feature of the 

entries is the tremendous variation in the estimated impact of climate change on agricultural land values.  

For example in the preferred B and C columns, the estimates range between +$320 billion and -$200 

billion, which are 38% and -24% of the total value of land and structures in this period, respectively.  

Figure 4 graphically captures the variability of these 48 estimates by plotting each of the point estimates, 
                                                           
25 Our view is that latitude should not be included as a covariate because it so highly correlated with temperature.  
For instance, Table 4A demonstrates that the F-statistics associated with the test of equality of the means of latitude 
across the temperature normals are roughly an order of magnitude larger than the next largest F-statistics.  This 
suggests that latitude captures some of the variation that should be assigned to the temperature variables and thereby 
leads to misleading predictions about the impact of climate change. 
26 This specification is identical to MNS’ (1994) preferred specification, except that it includes state fixed effects 
and does not include elevation.  It is also very similar to SHF’s (2005b) preferred specification, which only has a 
subset of our soil variables (although it includes state fixed effects and like the present analysis excludes elevation).  
Interestingly, the addition of elevation to the pooled D [1] specification causes the standard error to increase by more 
than six-fold, which means that the point estimates have little empirical content.  We conclude that this is evidence 
that elevation is collinear with the climate variables and that it is appropriate to leave this variable out of the 
estimating equation. 
27 Due to the nonlinear functional form assumptions about the climate variables, we calculate this discrete difference 
in land values rather than simply multiplying the marginal impact of each of the climate variables by the magnitude 
of the change.  Of course, we use the climate parameters from the irrigated (dryland) counties when calculating the 
effect for the irrigated (dryland) counties.  
28 For the analysis in Tables 4 and 5, we add the sample selection rule that the variable for the value of land and 
buildings is non-missing in all census years to the rules used in Table 1.  The result is that the balanced sample has 
144 fewer counties. 
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along with their +/- 1 standard error range.  The wide variability of the estimates is evident visually and 

underscores the sensitivity of this approach to alternative assumptions and data sources.   

An especially unsettling feature of these results is that even when the covariates and weighting 

assumption are held constant, the estimated impact can vary greatly depending on the sample.  For 

example, the C [0] regression produces an estimated impact of roughly +$320 billion in 1978 but 

essentially $0 in 2002.  This difference is large, even in the context of the sampling errors.   

We also test for the equality of the marginal effects of each climate variables across the six 

census years.  Using the estimates from the preferred C [1] model, we perform these tests separately for 

irrigated and dryland counties.  The equality of the 8 marginal effects across years is rejected at the 5% 

level in all 8 cases for dryland counties.  For irrigated counties, the null of equality is rejected in 5 out of 8 

cases.  Overall, these results are troubling because there is no ex-ante reason to believe that the estimates 

from a particular year are more reliable than those from other years. 

The second panel reports the pooled results, which provide an appealing method to summarize 

the estimates from each of the 8 combinations of specifications and weighting procedures.30  The 

estimated change in property values from the benchmark global warming scenario ranges from -$68 

billion (with a standard error of $38 billion) to +$115 billion (with a standard error of $52 billion).  The 

preferred column C specifications indicate increases of $87 and $102 billion and these estimates are 

statistically significant at the 10% and 1% levels, respectively.31

The separate entries for non-irrigated (i.e., dryland) and irrigated counties indicate that across the 

specifications the predicted effects of climate change are concentrated in the dryland counties.  It is 

interesting that in the preferred C [1] specification both dryland and irrigated counties are predicted to 

have statistically significant increases in land values.  There are statistically significant positive and 

negative estimates for the dryland counties, which indicates that even within this subsample the estimates 

are sensitive to choices about the proper set of covariates and the weighting scheme.32

Overall, this subsection has produced a few important findings.  First, the observable 

determinants of land prices are poorly balanced across quartiles of the climate normals.  Second, the more 

                                                                                                                                                                                           
29 Once we adjust for covariates (e.g., in panels B, C, and D), the Conley spatial standard errors are 20-30% smaller 
than standard errors reported in Table 5.   
30 In the pooled regressions, the intercept and the parameters on all covariates, except the climate ones, are allowed 
to vary across years. 
31 As discussed before, the previous literature has considered other weighting schemes.  We replicated these 
estimates as well.  Estimates from the cropland-weighted models range from -$428 billion to +$304 billion, while 
the estimates from the crop revenue-weighted models range from -$326 billion to +$421 billion.  Thus, with these 
weights, the range of the estimates is even wider than with the weights used in Table 5. 
32 SHF (2005b) estimate a hedonic equation with data from dryland counties.  They model climate with growing 
season degree days and precipitation and use a spatial weighting matrix.  The results from this equation appear more 
stable.  It is unclear whether this is due to the alternative modeling of climate, the weighting scheme, or both of 
these differences.   
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reliable hedonic specifications suggest that on net climate change will be modestly beneficial for the US 

agriculture sector.  Third, the hedonic approach produces estimates of the effect of climate change that are 

sensitive to seemingly small decisions about the specification, weighting procedure, and sample.  

Together, these findings suggest that the hedonic method may be unable to produce a credible estimate of 

the economic impact of climate change in the US.  In light of the importance of the question, it is 

worthwhile to consider alternative methods.  The remainder of the paper describes the results from one 

such alternative. 

 

B. Estimates of the Impact of Climate Change from Local Variation in Weather 

We now turn to our preferred approach that relies on annual fluctuations in weather to estimate 

the impact of climate change on agricultural profits.  To provide intuition for the subsequent regression 

results, Figure 5A visually explores the relationship between profits per acre and growing season degree 

days using data the balanced sample of counties from the 1987-2002 Censuses.33  The figure plots the 

results from 4 separate regressions for county-level profits per acre, all of which are weighted by total 

county-level agricultural acres.  The line “Year FE [Decile]” plots the parameter estimates on indicator 

variables for deciles of the distribution of growing season degree days at the midpoint of each decile’s 

range.  As the title of the line indicates, this regression also includes year fixed effects.  The next two 

lines repeat this exercise but include year and county fixed effects and state by year and county fixed 

effects, respectively.  The final line replaces degree day decile indicators with a quadratic in degree days 

and plots the conditional means at the midpoints of each decile’s range.  It is labeled “State by Year & 

County FE [Quadratic].” 

There are several important findings in this graph.  First, in the “Year FE” line there is 

tremendous variation in profits per acre.  Notably, it peaks in the 6th decile (midpoint = 2,697 degree 

days), which includes the overall mean of roughly 2,850.  Second, the addition of county fixed effects to 

the specification greatly reduces the variation in profits per acre.  Further, the inclusion of state by year 

fixed effects further mitigates it.  This finding is consistent with the hedonic results that temperature is 

confounded by many other factors and a failure to adjust for them will lead to severely biased estimates of 

its effect.  Third, the modeling of degree days with a quadratic provides a good approximation to the less 

parametric approach.  Fourth, and most importantly, the adjusted models show that even relatively large 

changes in degree days will have modest effects on profits per acre.  This foreshadows the degree day 

results from the estimation of equation (4).   

Figure 5B repeats this exercise for precipitation and leads to similar conclusions.  It is evident 

                                                           
33 For this figure and the remainder of the subsection, we add the sample selection rule that the variable for profits is 
non-missing in all census years to the rules used in Table 1.  This yields a balanced sample of 2,262 counties. 
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that precipitation is confounded by many other determinants of profits per acre and that county fixed 

effects greatly reduce this confounding.  The primary difference is that profits per acre are increasing in 

growing season precipitation over the range of existing data. 

Table 6A summarizes the results from the estimation of four versions of equation (4).  The means 

of the dependent variable (i.e., county-level agriculture profits per acre) in dryland and irrigated counties 

are $31.27 and $85.75.  Growing season degree days and precipitation are both modeled with a quadratic 

and allowed to differ in dryland and irrigated counties.  Each specification includes a full set of county 

fixed effects as controls.  In columns (1) and (2), the specification includes unrestricted year effects and 

these are replaced with state by year effects in columns (3) and (4).  Additionally, the columns (2) and (4) 

specifications adjust for the full set of soil variables listed in Table 1, while the columns (1) and (3) 

estimating equations do not include these variables.  All equations are weighted by the square root of total 

acres of farmland.  The specification details are noted at the bottom of the table.   

The table reports the marginal effects of the weather variables evaluated at the means for dryland 

and irrigated counties.  Their heteroskedastic-consistent standard errors are in parentheses.  The entries 

indicate that an increase of 1,000 degree days in dryland counties would lead to changes in per-acre 

profits ranging from -$1.90 to +$1.60.  In irrigated counties the estimated impact varies from -$4.90 to - 

$2.60, although these estimates are less precise than those from the dryland counties.  The preferred 

specifications in columns (3) and (4) that include state by year fixed effects produce the point estimates at 

the high end of the ranges.  Notably, the hypothesis that the marginal effects are equal in the two sets of 

counties cannot be rejected at the 1% level (although less strict criteria would lead to rejection).   

The growing season precipitation results lead to similar conclusions.  Specifically, the marginal 

effects suggest that a 1 inch increase in precipitation lead to a -$0.36 to $0.17 change in profits in dryland 

counties and a $0.66 to $1.21 increase in irrigated counties.34  The irrigated county estimates indicate that 

increased rainfall is more beneficial in these counties, which suggests that there are limited supplies of 

free irrigated water.  Overall, these results confirm the visual impression from Figure 5 that suggests that 

variation around counties’ means in degree days and precipitation leads to relatively small changes in 

profits per acres. 

Both the degree day and precipitation marginal effects are virtually unchanged by the addition of 

the soil variables.  This is reflected in the F-statistics, which easily fail to reject the null that the soil 

characteristics are jointly equal to zero.  In this respect, this approach is preferable to the cross-sectional 

hedonic equations where the estimated effect of the climate variables on land values was sensitive to the 

inclusion of these controls. 
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Table 6B uses the 6A results to develop estimates of the impact of the three climate change 

scenarios discussed above on agricultural profits.  The estimates in each column are computed with the 

regression results from the specifications summarized in the same columns in 6A (and the details are 

noted in the row headings at the bottom of the table).  Due to the nonlinear modeling of the weather 

variables, each county’s predicted impact is calculated as the discrete difference in per acre profits at the 

county’s predicted degree days and precipitation after climate change and its current climate (i.e., the 

average over the 1970-2000 period).35  The resulting change in per acre profits is multiplied by the 

number of acres of farmland in the county and then the national effect is obtained by summing across all 

2,262 counties in the sample.  The climate parameters from the irrigated (dryland) counties are used to 

calculate the effect for the irrigated (dryland) counties.   

We focus on the Hadley 2 Long Run scenario that allows for state-level variation in the change in 

degree days and precipitation.  The preferred estimates from the specifications with state by year fixed 

effects suggest that climate change will lead to an increase of roughly $1.2 billion in agricultural sector 

profits.  This estimate is statistically indistinguishable from zero with either the Eicker-White 

(parentheses) or Conley (square brackets) standard errors.  With the smaller standard errors, the 95% 

confidence interval ranges from about -$1.9 billion to $4.1 billion.  In the context of the mean annual 

profits of $32.3 billion and range of $22.6 to $42.1 billion across Censuses, these estimates suggest that 

climate change will have a small effect on agricultural profits. 

A few other features of the results are noteworthy.  The effect is disproportionately due to the 

statistically significant increase in profits from the change in precipitation.  Further if the point estimates 

are taken literally, the effect is almost entirely concentrated in dryland counties.36  The entries from the 

other scenarios follow a similar pattern with the columns (1) and (2) ones suggesting a small decline in 

profits and the specifications that include state by year fixed effects indicating a small increase.  This 

finding that estimated profits are higher with state by year fixed effects suggests that local price changes 

do not appear to be a major concern in this context. 

 Panel A of Table 7 explores the robustness of the results to alternative specifications.  All of the 

specifications include the soil variables and state by year fixed effects.  The estimated impacts and their 

standard errors are from the Hadley 2 Long Run Scenario.  The last column normalizes the predicted 

impact by mean annual profits to provide a sense of the magnitude. 

                                                                                                                                                                                           
34 A Hausman type test easily rejects the null hypothesis that the estimated weather parameters for dryland counties 
are equal in the model with year fixed effects and the model with state by year fixed effects.  The same null is also 
easily rejected for the irrigated counties. 
35 Since the Hadley 2 predictions are at the state level, each county is assigned its state’s prediction  
36 We also estimated “fully interacted” models that allowed all parameters (e.g., the year or state by year fixed 
effects and soil parameters) to vary across irrigated and dryland counties.  The estimated national impact of climate 
change is virtually unchanged in columns (1)-(4). 
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 The true functional form of the weather variables is unknown and thus far we have assumed that 

these variables are accurately modeled with a quadratic.  Rows (1) through (3) model the weather 

variables linearly, with a cubic, and using indicator variables for each 500 degree days and 2 inch interval, 

respectively.37  The predicted change in profits is positive in all three of these approaches but a zero effect 

cannot be rejected in any of the cases.      

 Row (4) explores the possibility that the results in Table 6 are driven by outliers.  Specifically, it 

presents the results from a robust regression routine.  This routine begins by excluding outliers, defined as 

observations with values of Cook’s D>1, and then weights observations based on absolute residuals so 

that large residuals are downweighted.38  The entry indicates that the estimated impact is now negative, 

but the qualitative findings are unchanged. 

 Row (5) summarizes the results from estimating separate versions of equation (4) for each of the 

48 states.  Thus, all the parameters are allowed to vary at the state-level.  The effect of the weather 

variables are allowed to vary across irrigated and dryland counties within each state.  The sum of the 

state-specific estimates of the impact is roughly -$0.9 billion.  However, the heavy demands that this 

approach places on the data is evident in the poor precision of the estimate.39

 The remaining rows of Panel [A] lead to the same qualitative conclusion that climate change will 

have only a modest effect on agricultural profits.  Rows (6) through (8) indicate that the results are largely 

insensitive to how counties are assigned to the irrigated and dryland categories and whether the weather 

parameters are allowed to vary across these groups.    In row (9) the growing season is extended by a 

month to include October and in row (10) we allow for two growing seasons that cover the entire year to 

allow for the effect of the important winter wheat crop.  The predicted change remains small and 

                                                           
37 In the indicator variable approach, the estimated impact is obtained by comparing predicted profits at each 
county’s current degree day and precipitation categories and their degree day and precipitation categories that are 
predicted by the Hadley 2 long run scenario.  A few counties are predicted to have growing season degree days and 
precipitation outside the range of the current data.  To predict profits in these cases, we assign the average change in 
profits associated with a 1 category change (i.e., a change of 500 degree days or 2 inches) across the entire range of 
current data for each 500 degree day or 2 inch category increase.  For example if a county is currently in the highest 
500 degree day category and moves up two 500 degree day categories under the Hadley 2 scenario, its predicted 
increase in profits equals two times the average change in profits associated with an increase in a 500 degree 
category over the current range of data. 
38 After the outlier observations are excluded, the routine obtains optimal weights for the remaining observations in 
an iterative process.  This process begins by taking the estimated residuals from the fitting of the linear regression 
and using them to obtain weights so that observations with large absolute residuals are downweighted.  The 
regression is then fitted again using these weights and the residuals from this new regression are used to derive a 
new set of weights.  This iterative procedure continues until the change in weights is below some threshold.  Huber 
weights (Huber 1964) are used until convergence is achieved and then biweights (Beaton and Tukey 1974) are used 
until convergence is achieved with them.  Street, Carroll, and Ruppert (1998) provide a method to calculate the 
standard errors.  See Berk (1990) on robust regression. 
39 There are a total of 22 parameters so this model cannot be estimated separately for the 11 states with fewer than 
22 counties in our sample.  Instead, we group these states together in 2 groups (AZ, NV) and (CT, DE, MA, MD, 
ME, NH, NJ, RI, VT) and estimate the model separately for each group. 
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statistically insignificant in these rows.  In row (11), the regression equation is not weighted and this 

increases the sampling error but leaves the basic conclusion unaltered. 

 Panel [B] aims to understand the source of the results better.  Specifically, it separates farm 

profits into revenues and expenditures and uses them as separate dependent variables.  The predicted 

changes are estimated imprecisely, but they suggest that revenues would increase by roughly $1 billion 

and that expenses would be unchanged.  The expenditures result implies that to the extent that farmers 

change their mix of inputs in response to weather shocks, these changes do not lead to a substantial 

increase in the costs of production.  Government payments are not included in agricultural profits40, but 

the last row considers how climate change would affect this variable under the current federal programs.  

The results indicate a statistically significant increase of approximately $0.5 billion. 

 Table 8 and Figure 6 provide an opportunity to explore the distributional consequences of climate 

change across states.  Table 8 lists the predicted impact of the Hadley 2 long run climate change on state-

level agricultural profits.  The states are ordered by the impact on profits and the percentage change in 

profits from largest to smallest in columns (1) and (2), respectively.  The entries are based on the 

estimation of separate version of equation (4) for each state.  The sum of these effects was presented in 

row (5) of Table 7. 

 The most striking finding is that California will be significantly harmed by climate change.  Its 

loss in agricultural profits is $2.4 billion and this is nearly 50% of total California agricultural profits.  To 

place this estimate in further context, the remaining 47 states are predicted to have a gain of $1.5 billion.  

Colorado (-$610 million) and Oklahoma (-$580 million) are also predicted to have big losses, while the 

two biggest winners are Pennsylvania ($570 million) and South Dakota ($540 million).  It would be 

remiss to fail to point out that in general these state-specific predictions are imprecise and the null of zero 

can be rejected at the 5% level or better for only eight states (i.e., Delaware, Kansas, Massachusetts, New 

Mexico, New York, North Carolina, Pennsylvania, and South Dakota). 

Figure 6 displays the geographic distribution of these impacts.  The states in the highest quartile 

are colored black and those in the lowest quartile are light gray.  The remaining 50% of states are denoted 

with dashed light gray.  The dividing lines for these categories are > $167 million, between -$122 million 

and $167 million, and < -$122 million.   

In general, the Northern parts of the US are predicted to do better than the Southern ones but the 

correlation is not perfect.  For example, North Carolina and Florida are in the bottom quintile and South 

Carolina and Georgia are in the top quintile, although these four states are all in the South and in close 

proximity to each other.  It is evident that climate change’s impact on a state depends on the crop types 

                                                           
40 The exception is that payments under the Commodity Credit Corporation are counted as part of revenues.  These 
payments are in return for the delivery of crops to the federal government, so they differ from other subsidies. 
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supported by its soil (North Carolina and Florida specialize in tobacco and citrus fruits) and its predicted 

change in climate (Figure 3B reveals that South Carolina and Georgia are in the top quintile of 

precipitation increases but the other states aren’t).  

 Overall, the estimates in this subsection suggest that the predicted changes in climate would lead 

to economically small and statistically significant changes in profits.  The preferred estimates suggest an 

increase in profits and have a  95% confidence interval that ranges from a decline in profits of $1.9 billion 

to an increase of $4.1 billion, or -5.7% to 12.3%.  Thus, it possible to reject large negative effects as has 

been suggested by some previous research.  Further, it is important to recall that these figures may be 

downward biased relative to estimates that allow for the fuller range of adjustments available to farmers 

over longer time horizons.   

 

C. Estimates of the Response of Crop Yields to Climate Change 

 In this subsection, we explore the effect of climate change on crop yields.  This exercise 

complements the results from the previous one by assessing the effect of predicted climate change on crop 

yields. Large declines in yields would suggest that the profit results may be biased (relative to the 

preferred long run measure) by short run price increases.  Although farmers cannot switch crops in 

response to weather shocks, they are able to undertake some adaptations and in this respect this approach 

is preferable to the production function approach. 

Table 9 presents the results of versions of equation (4) where the dependent variables are county-

level total bushels of production per acre planted (production / acre planted) for corn for grain, soybeans, 

and wheat for grain.  The independent variables of interest are growing season degree days and 

precipitation, both of which are modeled with a quadratic and allowed to vary among dryland and 

irrigated counties.  The regressions all include controls for soil characteristics and county fixed effects 

and are weighted by the square root of the number of acres planted.  The “a” specifications include year 

fixed effects and the “b” ones have state by year fixed effects.  The sample is drawn from 1987, 1992, and 

1997, and 2002 Censuses and for each crop it is limited to the counties with production of the crop in 

each of these years.   These three crops account for roughly $46 billion of revenues (in 2002 dollars, when 

their output is evaluated at the average crop price over these years), which is about 27% of total 

agricultural revenues. 

The second panel reports the predicted change in national output in billion of bushels and its 

standard error under the Hadley 2 long run scenario.  Due to the nonlinear modeling of the weather 

variables, each county’s predicted change in bushels per acre is calculated as the discrete difference in per 

acre output at the county’s predicted degree days and precipitation after climate change and its current 

climate (i.e., the average over the 1970-2000 period).  The resulting change in bushels per acre is 
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multiplied by the number of acres of farmland in the county and then the national effect is obtained by 

summing across all counties in the sample.  The next row presents this change as a percentage of the 

average yield in our balanced sample of counties.  The other rows report the change in bushels in dryland 

and irrigated counties and the separate impacts of the predicted changes in temperature and precipitation. 

The results are consistent across the crops.  Specifically, the more robust model with state by year 

fixed effects fails to find a statistically significant relationship between climate change and crop yields for 

any of the three crops.  The less robust “a” specification finds negative effects for corn and soybeans, but 

they are small in magnitude.41  In general, the increase in temperature is harmful for yields and the 

increase in precipitation is beneficial.  This finding underscores that it is important to account for both the 

change in temperature and precipitation when assessing the impacts of climate change.  In summary, the 

small changes in output or quantities suggest that it is unlikely that the previous subsection’s finding that 

climate change will have a small effect on agricultural profits is due to short-run price increases. 

 

V. Interpretation 

 

 Optimal decisions about climate change policies require estimates of individuals’ willingness to 

pay to avoid climate change over the long run.  The above analysis has developed measures of the impact 

of climate change on the profits from agricultural operations that accrue to the owners of land.  Since land 

values ultimately reflect the present discounted value of land rents, or profits from land, we use the 

estimates from the previous section to develop a measure of the welfare consequences of climate change.  

We assume that the predicted increase of $1.1 billion (from column 4 of Table 6B and the long run 

Hadley 2 model) in annual agricultural profits holds for all years in the future and apply a discount rate of 

5%.42  This implies that climate change increases the present value of the stream of land rents by $22 

billion.  The 95% confidence interval is -$36 billion to $80 billion.  This range is much tighter than the 

range of estimates from the hedonic approach that did not even account for sampling variability.   

There are a number of important caveats to these calculations and, more generally, to the analysis.  

First, some models of climate change predict increases in extreme events (e.g., droughts and floods) or the 

variance of climate realizations, in addition to any effects on growing season degree days and 

precipitation.  Our analysis is uninformative about the economic impact of these events.  If the predictions 
                                                           
41 Lobell and Asner (2003a) find a negative relationship between county level corn and soybean yield trends and 
trends in mean temperatures.  There are a number of differences between Lobell and Asner’s approach and this 
paper’s approach that make a comparisons of the results difficult, including Lobell and Asner: limit the sample to 
counties that exhibit a negative correlation between temperature and yields (see Gu 2003 and Lobell and Asner 
2003b), do not adjust their estimates for state shocks (e.g., by including state fixed effects) or changes in 
precipitation; and use mean temperature over the growing season, rather than degree days.   
42 Some readers will prefer a higher discount rate, while others will prefer a lower one, and the implied change in the 
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about these events are correct, a full accounting of the welfare effects of climate change would have to 

add the impacts of these changes to the impacts presented here.  Similarly, it is thought that permanent 

changes in climate will disrupt local ecosystems and/or change soil quality.  Both of these factors may 

affect agricultural productivity.  Since annual fluctuations in climate are unlikely to have the same effect 

on ecosystems and soil quality as permanent changes, our estimates fail to account for these effects too.       

Second as its name suggests, global climate change will affect agricultural production around the 

globe.  It may be reasonable to assume that this will alter the long run costs of production and this would 

cause changes in relative prices.  Since our estimates are based on annual fluctuations in weather and are 

adjusted for state by year fixed effects, it is unlikely that they fully account for this possibility.  It is 

noteworthy that the hedonic approach is unable to account for such changes either because the land value-

climate gradient is estimated over the existing set of prices. 

Third, there are a complex system of government programs that impact agricultural profits and 

land values by affecting farmers’ decisions about which crops to plant, the amount of land to use, and the 

level of production (Kirwan 2004).  Our estimates would likely differ if they were estimated with an 

alternative set of subsidy policies in force.  This caveat also applies to the hedonic method.   

Fourth, our measure of agricultural profits differs from an ideal one in some important respects.  

In particular, interest payments are the only measure of the rental cost of capital in the Censuses.  This 

measure understates the cost of capital by not accounting for the opportunity cost of the portion of the 

capital stock that is not leveraged.  Further, our measure of agricultural profits does not account for labor 

costs that are not compensated with wages (e.g., the labor provided by the farm owner).  

Finally, we discuss two caveats to our approach that would lead to downward biased estimates of 

the impact of global warming, relative to an ideal measure.  First as we have emphasized, our approach 

does not allow for the full set of adaptations available to farmers.  We again note that this may cause the 

estimates from our preferred approach to be biased downwards, relative to a measure that allows for the 

full range of compensatory behaviors.  The direction of the bias can be signed, because farmers will only 

undertake these adaptations if the present discounted value of the benefits are greater than the costs.   

Second, elevated carbon dioxide (CO2) concentrations are known to increase the yield per planted 

acre for many plants (see e.g., Miglietta, et. al. 1998).  Since higher CO2 concentrations are thought to be 

a primary cause of climate change, it may be reasonable to assume that climate change will lead to higher 

yields per acre.  The approach proposed in this paper does not account for this “fertilizing” effect of 

increased CO2 concentrations.    

 

VI. Conclusions 
                                                                                                                                                                                           
value of the stream of land rents can easily be adjusted to reflect such alternative assumptions (Weitzman 2001). 
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 This study proposes and implements a new strategy to estimate the impact of climate change on 

the US agricultural sector.  The strategy exploits the presumably random year-to-year variation in 

temperature and precipitation to estimate their effect on agricultural profits.  Specifically, we use a 

county-level panel data file constructed from the Censuses of Agriculture to estimate the effect of weather 

on agricultural profits, conditional on county and state by year fixed effects.  

Using long-run climate change predictions from the Hadley 2 Model, the preferred estimates 

indicate that climate change will lead to a $1.1 billion (2002$) or 3.4% increase in annual agricultural 

sector profits.  The 95% confidence interval ranges from -$1.8 billion to $4.0 billion so large negative or 

positive effects are unlikely.  The basic finding of an economically and statistically small effect is robust 

to a wide variety of specification checks including adjustment for the rich set of available controls, 

modeling temperature and precipitation flexibly, estimating separate regression equations for each state, 

and implementing a procedure that minimizes the influence of outliers.  Additionally, the analysis 

indicates that the predicted increases in temperature and precipitation will have virtually no effect on 

yields among the most important crops (i.e., corn for grain, soybeans, and wheat for grain).  These crop 

yield findings suggest that the small effect on profits is not due to short-run price increases.   

Although the overall effect is small, there is considerable heterogeneity across the country.  The 

most striking finding is that California will be substantially harmed by climate change.  Its predicted loss 

in agricultural profits is $2.4 billion and this is nearly 50% of current annual profits in California.  

Colorado (-$610 million) and Oklahoma (-$580 million) are also predicted to have big losses, while the 

two biggest winners are Pennsylvania ($570 million) and South Dakota ($540 million).  It is important to 

note that these state-level estimates are demanding of the data and therefore less precise than is optimal. 

Finally, we re-examines the hedonic approach that is predominant in the previous literature.  We 

find that the estimates of the effect of climate change on the value of agricultural land range from -$200 

billion (1997$) to $320 billion (or -24% to 39%), which is an even wider range than has been noted in the 

previous literature.  This variation in predicted impacts results from seemingly minor decisions about the 

appropriate control variables, sample, and weighting.  Despite its theoretical appeal, we conclude that the 

hedonic method may be unreliable in this setting.   

Our results indicate that there is room for much additional research in the valuation of climate 

change.  For example, there is little research on the impact of climate change in non-agricultural regions 

and sectors.  Future research should endeavor to produce estimates of the impact of climate change that 

have a sound theoretical basis and rely on credible identification assumptions. 
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Data Appendix 

 
I. Covariates in Land Value and Agricultural Profits Regressions  
 
The following are the control variables used in the land value and agricultural profits regressions.  They are listed by 
the categories indicated in the row headings at the bottom of these tables.  All of the variables are measured at the 
county level. 
 
Dependent Variables 
Value of Land and Buildings per Acre 
Agricultural Profits per Acre 
 
Soil Variables 
K-Factor of Top Soil 
Slope Length 
Fraction Flood-Prone 
Fraction Sand 
Fraction Clay 
Fraction Irrigated 
Permeability 
Moisture Capacity 
Wetlands 
Salinity 
 
Socioeconomic Variables 
Income per Capita 
Income per Capita squared 
Population Density 
Population Density Squared 
 
Latitude
Latitude measured at county centroid 
 
II. Details on Data Sources 
 
A. Census of Agriculture 
The data on number of farms, land in farms, cropland, agricultural profits, and other agriculture related 
variables are from the 1987, 1992, 1997, 2002 Censuses of Agriculture.  The Census of Agriculture has 
been conducted every 5 years starting in 1925 and includes as a farm “every place from which $1,000 or 
more of agricultural products were produced and sold or normally would have been sold during the 
census year”.  Participation in the Census of Agriculture is mandated by law: All farmers and ranchers 
who receive a census report form must respond even if they did not operate a farm or ranch in the census 
year.  For confidentiality reasons the public-use files provide only county averages or totals. 

The following are definitions for some specific variables that we used in the analysis: 
 
Farm Revenues: Farm revenues are the gross market value of all agricultural products sold before taxes 
and expenses in the census year including livestock, poultry, and their products, and crops, including 
nursery and greenhouse crops, and hay.  All sales occurring during the Census year are included, even if 
the payment has not been received. 
 
Production Expenditures: Production expenses are limited to those incurred in the operation of the farm 
business. Property taxes paid by landlords are excluded.  Also excluded were expenditures for non-farm 
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activities, and farm-related activities such as producing and harvesting forest products, providing 
recreational services, and household expenses.  Among the included items are: agricultural chemicals, 
commercial fertilizer, machine hire, rental of machinery and equipment, feed for livestock and poultry, 
hired farm and ranch labor, interest paid on debts, livestock and poultry purchased, repairs and 
maintenance, seed cost.  All costs incurred during the Census year are included, regardless of whether the 
payment has been made. 
 
Land in farms: The acreage designated as “land in farms” consists primarily of agricultural land used for 
crops, pasture, or grazing.  
 
Value of land and buildings: Respondents were asked to report their estimate of the current market value 
of land and buildings owned, rented or leased from others, and rented or leased to others.  Market value 
refers to the value the land and buildings would sell for under current market conditions. 
 
B. National Resource Inventory 
County-level data on soils are taken from the National Resource Inventory 
(http://www.nrcs.usda.gov/technical/NRI/).  The NRI is a statistically based sample of land use and 
natural resource conditions and trends on U.S. nonfederal lands.  The data has been collected in 
approximately 800,000 points during the Census of Agriculture years, starting in 1982.  For example, 
information on soil permeability, salinity, soil contents (sand and clay), slope length, K-factor, and 
fraction of the county irrigated is available.   
 
C. Hadley 2 State-Level and Regional Predictions on Growing Season Degree Days and Precipitation. 
We downloaded the raw climate data from The Vegetation/Ecosystem Modeling and Analysis Project 
(VEMAP)’s Transient Climate database.  VEMAP was established as a project to learn more about 
ecosystem dynamics through models and simulations and involved a large number of American and 
foreign scientists from a variety of different organizations (Kittel et al. 1995; Kittel et al. 1997; Kittel et 
al. 2000).  Phase 2 of VEMAP focused on transient dynamics, and the resulting database contains several 
climate change scenarios for the continental United States, including the predictions made by the Hadley 
2 model.  The climate variables included in this data set are accumulated monthly precipitation (in 
millimeters) and minimum and maximum temperature (in degrees Celsius).  The data is given monthly 
from January 1994 to December 2099.   
 
VEMAP measures climate data at a set of regular grid points spanning the contiguous United States and 
separated vertically and horizontally by 0.5°.  The grid is then divided into 16 overlapping regions and 
separated into 16 files that must be downloaded individually.  Although the climate data files do not give 
the latitude and longitude of the points that they contain, a different set of 16 files gives the coordinates of 
the points in each region.  Since the points in the two regional files are given in the same order, we easily 
determined the latitude and longitude for each grid point in each region and then combined the 16 
regional files into one larger file, eliminating the multiple instances of any points contained in more than 
one file.   
 
We then used GIS software to place each of these gridpoints into U.S. states (and counties).  With these 
placements, we were able to create the Hadley 2 state-level predictions for each month from 2000-2099.  
These state-level year by month predictions are calculated as the simple average across all grid points that 
fall within each state.  These state-level Hadley 2 predictions are used to infer the economic costs of 
climate change throughout this paper.  We focus on the “medium term” and “long run” effects on climate, 
which are defined as the temperature and precipitation averages across the 2020-2049 and 2070-2099 
predictions, respectively.  The Hadley 2 model is not precise enough to use at smaller units of aggregation 
than the state. 
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D. Growing Season Degree Days 
We construct our measure of growing season degree days using daily data drawn from the National 
Climatic Data Center (NCDC) Summary of the Day Data (TD-3200).  The data are daily measurements 
from weather stations in the United States.  In any given year in our sample period, there were 
approximately 8,000 stations in operation.  The key variables used to construct degree days are the daily 
maximum and minimum temperature from each station.  Using the daily minimum and maximum 
temperatures, we define the mean daily temperature as the simple average of the minimum and maximum 
temperature for a station.  We then construct the mean daily temperature for a county by taking the simple 
average of the mean temperature across all stations within a county.  For counties without a station, we 
impute the average mean temperature from the contiguous counties.  The degree days variable is 
calculated on the daily mean temperature for each county as explained in the text in Section II. 
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TABLE 1:  COUNTY-LEVEL SUMMARY STATISTICS 
1978 1982 1987 1992 1997 2002

Farmland and Its Value:
Number of Farms 799.3 796.3 745.4 688.3 684.9 766.5
Land in Farms (th. acres) 363.7 352.4 345.5 338.4 333.4 336.1
Total Cropland (th. acres) 158.7 156.0 158.3 155.9 154.1 155.3
Average Value of Land/Bldg ($1/acre) 1,370.4 1,300.7 907.3 892.2 1,028.2 1,235.6
Average Value of Machines/Equip ($1/acre) --- --- 126.7 118.8 129.2 145.8

Annual Financial Information:
Profits ($Mil.) --- --- 14.4 14.0 18.6 10.0
Profits Per Acre ($1/acre) --- --- 41.7 41.3 55.7 29.7
Farm Revenues ($Mil.) 88.7 80.0 71.5 72.9 79.9 74.9
Total Farm Expenses ($Mil.) --- --- 57.2 58.9 61.3 64.9
Total Government Payments ($Mil.) --- --- 4.8 2.3 1.9 2.4

Measures of Soil Productivity:
K-Factor 0.30 0.30 0.30 0.30 0.30 0.30
Slope Length 218.9 218.9 218.3 217.8 218.3 218.3
Fraction Flood-Prone 0.15 0.15 0.15 0.15 0.15 0.15
Fraction Sand 0.09 0.09 0.09 0.09 0.09 0.09
Fraction Clay 0.18 0.18 0.18 0.18 0.18 0.18
Fraction Irrigated 0.18 0.18 0.18 0.18 0.19 0.19
Permeability 2.90 2.90 2.90 2.88 2.88 2.88
Moisture Capacity 0.17 0.17 0.17 0.17 0.17 0.17
Wetlands 0.10 0.10 0.10 0.10 0.10 0.10
Salinity 0.01 0.01 0.01 0.01 0.01 0.01

Weather Variables:
January Temperature 25.5 27.2 32.9 35.3 31.2 36.5
April Temperature 54.3 51.0 54.7 53.6 49.9 56.1
July Temperature 75.5 75.2 75.7 73.3 75.0 77.2
October Temperature 55.6 55.9 53.0 55.4 56.0 54.4
January Precipitation 3.73 3.34 2.68 2.48 2.85 2.48
April Precipitation 2.86 3.10 1.99 2.42 3.53 2.90
July Precipitation 3.57 3.62 3.37 4.61 3.19 3.22
October Precipitation 1.38 2.49 1.30 1.95 2.89 4.12

Growing Season Degree Days 2,865.2 2,797.3 2,934.2 2,611.9 2,757.4 3,116.3
Growing Season Total Precipitation 20.9 21.6 19.3 21.5 21.0 20.6

Notes: Averages are calculated for a balanced panel of 2,268 counties.  All entries are simple averages over the 2,268 counties, 
with the exception of “Average Value of Land/Bldg (1$/acre)” and “Profit Per Acre (1$/acre)”, which are weighted by acres of 
farmland.  All dollar values are in 2002 constant dollars.   



TABLE 2:  CLIMATE PREDICTIONS UNDER DIFFERENT GLOBAL WARMING MODELS 
Dryland Counties Irrigated Counties

Actual Predicted Difference Actual Predicted Difference
BENCHMARK GLOBAL WARMING MODEL
January Mean Temperature 29.0 34.0 5.0 32.9 37.9 5.0
April Mean Temperature 51.9 56.9 5.0 52.3 57.3 5.0
July Mean Temperature 74.7 79.7 5.0 74.3 79.3 5.0
October Mean Temperature 54.3 59.3 5.0 55.1 60.1 5.0

January Precipitation 1.57 1.70 0.13 1.92 2.08 0.15
April Total Precipitation 2.40 2.60 0.19 2.08 2.25 0.17
July Total Precipitation 2.82 3.05 0.23 2.27 2.45 0.18
October Total Precipitation 2.23 2.41 0.18 1.73 1.87 0.14

Growing  Season Degree Days 3,184.8 3,905.7 720.9 3,289.1 4,018.7 729.5
Growing Season Total Precipitation 16.96 18.32 1.36 13.60 14.68 1.09

HADLEY 2 GLOBAL WARMING MODEL
A. Medium Term (2020-2049)
Growing Season Degree Days: 3,184.8 3,964.1 779.3 3,289.1 4,076.2 787.0
Std Deviation (1,459.3) (1,325.6) (1,503.1) (1,503.4) (1,112.7) (1,376.2)

Growing Season Total Precipitation: 16.96 17.54 0.57 13.60 14.96 1.36
Std Deviation (6.74) (7.11) (4.25) (8.56) (7.50) (3.99)

B. Long Term (2070-2099)
Growing Season Degree Days:
All Counties [2262] 3,184.8 4,783.3 1,598.5 3,289.1 4,951.3 1,662.1
Std Deviation (1,459.3) (1,736.8) (1,759.9) (1,503.4) (1,352.9) (1,505.1)

Northeast Region [178] 2,556.3 4,221.9 1,665.6 3,581.7 4,154.7 573.0
Midwest Region [735] 2,977.4 3,760.3 782.9 3,214.0 4,263.5 1,049.5
South Region [986] 4,097.6 6,821.9 2,724.3 4,451.2 6,702.2 2,251.0
West Region [363] 2,581.6 3,993.3 1,411.7 2,720.8 4,405.1 1,684.3

Growing Season Total Precipitation:
All Counties [2262] 16.96 19.34 2.38 13.60 16.26 2.66
Std Deviation (6.74) (7.87) (4.62) (8.56) (8.34) (4.28)

Northeast Region [178] 23.38 27.64 4.26 24.04 27.40 3.36
Midwest Region [735] 19.51 20.59 1.08 18.18 16.63 -1.55
South Region [986] 21.20 25.16 3.96 23.31 27.52 4.21
West Region [363] 9.42 11.44 2.02 6.58 10.11 3.53
Notes: All entries are averages over the 2,268 counties, weighted by acres of farmland.   Entries under the “Actual” column are 
averages of the listed variables over the 1970-2000 period.   
 



TABLE 3:  DEVIATIONS OF GROWING SEASON DEGREE DAYS AND PRECIPITATION FROM NORMALS 
A. Removed Year Effects

Degree Days ±200 ±400 ±600 ±800 ±1000 ±1200 ±1400 ±1600
1987 0.48 0.23 0.12 0.07 0.05 0.02 0.02 0.01
1992 0.53 0.30 0.20 0.12 0.05 0.02 0.01 0.00
1997 0.43 0.17 0.08 0.05 0.03 0.01 0.01 0.00
2002 0.57 0.34 0.26 0.19 0.10 0.04 0.02 0.01

Total Precipitation ±0.5 ±1.0 ±1.5 ±2.0 ±2.5 ±3.0 ±3.5 ±4.0
1987 0.86 0.71 0.57 0.46 0.35 0.25 0.19 0.15
1992 0.83 0.65 0.51 0.39 0.31 0.24 0.18 0.12
1997 0.85 0.70 0.55 0.42 0.31 0.23 0.16 0.12
2002 0.84 0.70 0.56 0.45 0.35 0.28 0.22 0.16

B. Removed State*Year Effects

Degree Days ±200 ±400 ±600 ±800 ±1000 ±1200 ±1400 ±1600
1987 0.46 0.21 0.11 0.07 0.04 0.02 0.01 0.01
1992 0.51 0.28 0.17 0.10 0.05 0.02 0.01 0.00
1997 0.39 0.15 0.08 0.04 0.02 0.01 0.00 0.00
2002 0.56 0.35 0.24 0.16 0.08 0.03 0.02 0.01

Total Precipitation ±0.5 ±1.0 ±1.5 ±2.0 ±2.5 ±3.0 ±3.5 ±4.0
1987 0.81 0.63 0.48 0.36 0.26 0.19 0.13 0.09
1992 0.81 0.63 0.47 0.35 0.24 0.17 0.12 0.09
1997 0.80 0.61 0.46 0.33 0.24 0.16 0.11 0.08
2002 0.79 0.62 0.48 0.37 0.28 0.20 0.15 0.10

Proportion of Counties with Degree Days Below/Above Average (Degrees):

Proportion of Counties with Precipitations Below/Above Average (Inches):

Proportion of Counties with Degree Days Below/Above Average (Degrees):

Proportion of Counties with Precipitations Below/Above Average (Inches):

Note: All statistics are weighted by acres of farmland.  Panel A reports on the magnitude of the deviations between counties’ 
yearly weather realizations and their long run averages after subtracting the deviation between the national average weather 
realization and the national long run average.  The entries report the fraction of counties with deviations at least as large as the 
one reported in the column heading.  For example, consider the 2002 degree days row, it indicates that 57%, 19%, and 2% of 
counties had deviations larger than 200, 800, and 1,400 degree days, respectively.  Panel B repeats this exercise after subtracting 
the deviation between a states’ yearly weather realization and the states’ long run average (rather than the national deviation). 



TABLE 4A:  SAMPLE MEANS BY QUARTILES OF TEMPERATURE NORMALS 
January Temperature Normals April Temperature Normals

Quartile 1 2 3 4 F-Stat 1 2 3 4 F-St

Farmland values ($1/ac):

at

Value of Land/Bldg 1,196.9 1,518.2 1,403.3 1,889.5 20.7 1,040.5 1,733.5 1,802.0 1,570.1 52.6
Soil Characteristics:
K Factor 0.30 0.33 0.33 0.28 39.3 0.30 0.32 0.33 0.29 23.9
Slope Length 247.9 235.2 210.4 316.0 6.9 266.5 234.2 278.3 225.1 4.0
Fraction Flood-Prone 0.10 0.14 0.19 0.19 14.3 0.11 0.13 0.20 0.18 12.4
Fraction Sand 0.04 0.02 0.02 0.16 31.5 0.03 0.04 0.02 0.16 29.5
Fraction Clay 0.21 0.16 0.20 0.36 28.5 0.19 0.19 0.22 0.34 15.4
Fraction Irrigated 0.03 0.07 0.06 0.09 12.8 0.04 0.07 0.08 0.06 6.7
Permeability 2.24 1.92 2.05 3.51 20.0 2.13 2.12 2.04 3.55 17.6
Moisture Capacity 0.18 0.19 0.17 0.14 145.0 0.18 0.19 0.17 0.14 88.5
Wetlands 0.07 0.04 0.04 0.11 43.3 0.07 0.03 0.04 0.12 55.7
Salinity 0.05 0.02 0.01 0.03 12.1 0.05 0.02 0.02 0.02 14.4
Socioeconomic and Locational Attributes:
Pop Density 33.0 65.4 50.5 95.1 17.9 28.1 67.8 84.8 72.4 27.4
Per Capita Income 16,573 16,755 15,136 15,280 15.4 16,432 16,648 16,193 14,525 20.8
Latitude 44.54 40.63 36.74 32.35 854.0 44.51 40.37 36.62 31.84 1108.9

July Temperature Normals October Temperature Normals
Quartile 1 2 3 4 F-Stat 1 2 3 4 F-St

Farmland values ($1/ac):

at

Value of Land/Bldg 1,120.0 1,775.6 1,606.9 1,506.0 26.0 1,018.5 1,816.8 1,653.9 1,728.5 60.3
Soil Characteristics:
K Factor 0.32 0.30 0.32 0.30 13.8 0.31 0.31 0.33 0.29 20.2
Slope Length 280.5 245.5 255.6 218.9 5.0 270.5 218.0 230.5 275.0 9.8
Fraction Flood-Prone 0.12 0.13 0.17 0.19 7.1 0.11 0.14 0.17 0.20 12.3
Fraction Sand 0.03 0.05 0.03 0.14 23.9 0.03 0.04 0.03 0.15 24.1
Fraction Clay 0.18 0.21 0.21 0.33 16.1 0.18 0.20 0.20 0.35 22.8
Fraction Irrigated 0.05 0.06 0.07 0.06 3.4 0.04 0.06 0.06 0.08 6.0
Permeability 2.05 2.34 2.04 3.28 15.8 2.14 2.09 2.11 3.43 15.2
Moisture Capacity 0.17 0.18 0.18 0.15 63.6 0.18 0.19 0.17 0.14 81.4
Wetlands 0.06 0.05 0.05 0.10 23.4 0.07 0.04 0.04 0.11 41.4
Salinity 0.05 0.04 0.01 0.02 13.7 0.05 0.01 0.01 0.02 16.8
Socioeconomic and Locational Attributes:
Pop Density 30.2 84.3 59.4 67.6 21.3 21.0 83.5 62.5 92.2 50.2
Per Capita Income 16,583 16,483 16,118 14,741 17.8 16,319 16,813 15,989 14,857 12.7
Latitude 44.33 40.83 37.18 32.47 678.6 44.57 39.97 36.63 32.15 951.7  
Notes: All dollar figures in 2002 constant dollars.  The entries report the results of weighted regressions where the dependent 
variable is noted in the row headings and the weight is the square root of the acres of farmland.  The entries are the parameter 
estimates from dummy variables for quartiles of the relevant climate normal, so they report the mean of each variable by quartile.  
Climate normals are defined as the 1970-2000 average of temperature and precipitation, by county.  The F-statistics are from 
tests of equality of the means across the quartiles.  The regressions are fit with data from the 1978, 1982, 1987, 1992, 1997, and 
2002 Censuses, so they adjust for year fixed effects to account for national differences across years.  The variance-covariance 
matrix allows for a county-specific variance component.  See the text for further details. 



TABLE 4B:  SAMPLE MEANS BY QUARTILES OF PRECIPITATIONS NORMALS 
January Precipitation Normals April Precipitation Normals

Quartile 1 2 3 4 F-Stat 1 2 3 4 F-St

Farmland values ($1/ac):

at

Value of Land/Bldg 914.3 1,708.4 2,366.4 2,228.5 217.2 1,026.7 1,717.3 2,335.8 1,962.7 148.9

Soil Characteristics:
K Factor 0.30 0.32 0.32 0.29 15.0 0.31 0.29 0.31 0.35 90.7
Slope Length 261.3 258.4 244.9 209.6 3.2 312.0 195.9 189.4 164.7 46.1
Fraction Flood-Prone 0.12 0.15 0.19 0.22 12.6 0.13 0.12 0.13 0.27 35.1
Fraction Sand 0.03 0.06 0.06 0.18 29.3 0.05 0.11 0.07 0.02 42.5
Fraction Clay 0.26 0.21 0.18 0.19 6.3 0.23 0.27 0.20 0.16 11.8
Fraction Irrigated 0.05 0.05 0.08 0.08 4.5 0.08 0.05 0.02 0.05 40.1
Permeability 2.13 2.28 2.59 3.65 18.9 2.32 2.99 2.52 1.75 28.3
Moisture Capacity 0.18 0.18 0.16 0.15 50.3 0.17 0.17 0.18 0.18 19.8
Wetlands 0.04 0.06 0.08 0.17 73.2 0.04 0.09 0.09 0.10 49.8
Salinity 0.04 0.02 0.01 0.01 25.7 0.05 0.01 0.00 0.00 45.7
Socioeconomic and Locational Attributes:
Pop Density 13.4 80.8 139.2 101.2 94.9 24.9 72.3 138.2 85.5 62.1
Per Capita Income 16,087 16,236 16,364 14,976 8.0 15,963 16,670 16,940 14,340 64.9
Latitude 41.12 38.86 37.11 34.96 97.8 40.63 38.41 38.42 35.97 86.5

July Precipitation Normals October Precipitation Normals
Quartile 1 2 3 4 F-Stat 1 2 3 4 F-St

Farmland values ($1/ac):

at

Value of Land/Bldg 1,115.4 1,402.6 2,233.6 2,166.2 139.5 1,030.7 1,994.9 1,957.2 1,926.8 110.7
Soil Characteristics:
K Factor 0.32 0.30 0.32 0.25 38.6 0.31 0.29 0.30 0.33 25.2
Slope Length 325.6 194.2 185.6 161.4 53.9 309.6 210.5 181.3 169.1 44.3
Fraction Flood-Prone 0.16 0.14 0.16 0.12 3.9 0.14 0.08 0.16 0.24 52.5
Fraction Sand 0.03 0.04 0.03 0.28 45.3 0.03 0.11 0.11 0.04 26.3
Fraction Clay 0.29 0.17 0.21 0.10 35.2 0.22 0.25 0.15 0.29 14.6
Fraction Irrigated 0.07 0.06 0.02 0.04 18.7 0.08 0.02 0.02 0.05 29.0
Permeability 1.93 2.36 1.89 5.23 49.6 2.14 2.89 3.03 2.15 12.6
Moisture Capacity 0.16 0.19 0.19 0.15 122.7 0.17 0.18 0.16 0.16 12.6
Wetlands 0.03 0.07 0.10 0.17 143.7 0.04 0.09 0.10 0.11 80.5
Salinity 0.05 0.02 0.00 0.00 46.7 0.05 0.01 0.01 0.01 35.1
Socioeconomic and Locational Attributes:
Pop Density 33.6 51.0 117.0 104.8 47.3 21.2 97.0 99.9 102.6 67.8
Per Capita Income 15,835 16,391 16,665 15,260 11.0 16,299 16,300 15,415 15,370 8.1
Latitude 39.50 40.49 39.74 34.84 88.5 41.59 38.80 36.40 34.39 154.3  
Notes: See notes to Table 4A. 



TABLE 5:  HEDONIC ESTIMATES OF IMPACT OF BENCHMARK CLIMATE CHANGE SCENARIO ON 
AGRICULTURAL LAND VALUES (IN BILLIONS OF 2002 DOLLARS), 1978-2002 

Specification:
Weights: [0] [1] [0] [1] [0] [1] [0] [1]
Single Census Year
1978 131.9 131.1 141.2 154.7 321.3 255.6 288.7 174.9

(49.0) (48.4) (51.5) (42.6) (59.0) (41.8) (66.8) (45.2)

1982 36.3 36.1 19.2 40.8 203.3 154.6 217.6 80.8
(40.0) (35.9) (40.3) (34.7) (56.0) (38.8) (66.5) (49.9)

1987 -55.9 -9.6 -49.3 -8.7 45.9 51.3 47.8 13.3
(35.8) (29.9) (37.4) (28.0) (47.4) (28.0) (54.3) (32.6)

1992 -50.4 -23.0 -32.9 -8.1 22.3 46.4 17.1 8.4
(48.3) (43.3) (44.0) (33.9) (59.1) (30.2) (65.0) (32.9)

1997 -117.0 -55.5 -89.0 -33.5 25.5 65.8 78.1 40.3
(43.3) (48.7) (45.7) (39.5) (54.3) (29.4) (60.7) (33.4)

2002 -288.6 -139.5 -202.1 -101.0 -8.8 60.9 17.7 13.2
(79.9) (78.2) (75.9) (62.3) (88.5) (47.0) (93.2) (50.1)

Pooled 1978-2002
All Counties -68.1 -15.5 -42.2 0.4 86.9 101.9 114.6 67.0

(38.1) (39.7) (40.2) (34.2) (48.6) (28.3) (52.4) (31.3)

Dryland Counties -61.9 -26.6 -42.9 -9.9 61.9 78.0 85.2 48.9
(24.3) (28.5) (28.0) (24.6) (35.5) (17.9) (38.8) (21.3)

Irrigated Counties -6.2 11.1 0.7 10.2 25.0 23.9 29.4 18.1
(13.8) (11.2) (12.2) (9.7) (13.1) (10.4) (13.6) (10.0)

Soil Variables No No Yes Yes Yes Yes Yes Yes
Socioecon. Vars No No Yes Yes Yes Yes Yes Yes
State Fixed-Effects No No No No Yes Yes Yes Yes
Latitude No No No No No No Yes Yes

A B C D

Notes: All dollar figures in billions of 2002 constant dollars.  The entries are the predicted impact on agricultural land values of 
the benchmark uniform increases of 5 degree Fahrenheit and 8% precipitation from the estimation of 56 different hedonic 
models, noted as equation (3) in the text.  The standard errors of the predicted impacts are reported in parentheses.  The 56 
different sets of estimates of the national impact on land values are the result of 7 different data samples, 4 specifications, and 2 
assumptions about the correct weights.  The data samples are denoted in the row headings.  There is a separate sample for each of 
the Census years and the seventh is the result of pooling data from the six Censuses.  The specification details are noted in the 
row headings at the bottom of the table. The weights used in the regressions are reported in the top row and are as follows: 
[0]=unweighted; [1]=square root of acres of farmland.  The estimated impacts are reported separately for dryland and irrigated 
counties for the pooled sample.  See the text for further details. 
 



TABLE 6A:  FIXED-EFFECTS ESTIMATES OF AGRICULTURAL PROFIT MODELS: MARGINAL EFFECTS AND HYPOTHESIS TESTS 

(1) (2) (3) (4)
1(Dryland) * Growing Season Degree Days -0.0018 -0.0019 0.0015 0.0016

(0.0007) (0.0008) (0.0006) (0.0006)

1(Irrigated) * Growing Season Degree Days -0.0049 -0.0049 -0.0026 -0.0026
(0.0024) (0.0024) (0.0022) (0.0022)

1(Dryland) * Growing Season Total Precip -0.3586 -0.3536 0.1675 0.1721
(0.1014) (0.1015) (0.1065) (0.1075)

1(Irrigated) * Growing Season Total Precip 0.6568 0.6583 1.1759 1.2104
(0.3975) (0.3968) (0.3858) (0.3875)

P-Values from Tests of Equality of Marginal Effects by Irrigation Status:
Degree Days 0.165 0.173 0.054 0.047

Total Precip 0.012 0.012 0.009 0.007

P-Values from Tests that Listed Variables are Jointly Equal to Zero:
Soil Characteristics: --- 0.162 --- 0.542
County Fixed Effects 0.001 0.001 0.001 0.001
Year Fixed Effects 0.001 0.001 --- ---
State by Year Fixed Effects --- --- 0.001 0.001

Soil Controls No Yes No Yes
County Fixed Effects Yes Yes Yes Yes
Year Fixed Effects Yes Yes No No
State*Year Fixed Effects No No Yes Yes

Notes: All dollar figures in 2002 constant dollars.  The entries in the first panel are the result of the estimation of version of equation (4) for agricultural profits that model the 
growing season degree days and total precipitation with quadratics.  The marginal effects and their heteroskedastic standard errors (in parentheses) of the weather variable are 
reported.  The marginal effects are evaluated at the mean of growing season degree days and growing season total precipitation.  These calculations are done separately by 
irrigation status.  The second and third panels report p-values from F-tests that subsets of the variables are jointly equal to zero.  The controls are listed in the row headings at the 
bottom of the table.  See the text for further details. 



TABLE 6B:  FIXED-EFFECTS ESTIMATES OF AGRICULTURAL PROFIT MODELS: PREDICTED IMPACT OF THREE GLOBAL WARMING SCENARIOS (IN 
BILLIONS OF 2002 DOLLARS) 

(1 ) (2 ) (3 ) (4 )
A . B e n c h m a rk  C lim a te  C h a n g e  M o d e l:
A ll C o u n tie s -1 .5 6 -1 .5 9 0 .7 8 0 .8 3

(0 .4 9 ) (0 .5 0 ) (0 .4 4 ) (0 .4 4 )
[0 .7 1 ] [0 .7 1 ] [0 .7 4 ] [0 .7 4 ]

B . H a d le y  2  C lim a te  C h a n g e  M o d e l M e d iu m  T e rm  (2 0 2 0 -2 0 4 9 ) :
A ll C o u n tie s -0 .8 3 -0 .8 8 0 .6 0 0 .5 1

(0 .7 5 ) (0 .7 6 ) (0 .7 2 ) (0 .7 3 )
[1 .1 5 ] [1 .1 5 ] [1 .1 6 ] [1 .1 6 ]

C . H a d le y  2  C lim a te  C h a n g e  M o d e l L o n g  T e rm  (2 0 7 0 -2 0 9 9 )
A ll C o u n tie s -1 .9 8 -2 .0 9 1 .2 7 1 .1 0

(1 .5 4 ) (1 .5 5 ) (1 .4 7 ) (1 .4 8 )
[2 .3 5 ] [2 .3 5 ] [2 .3 7 ] [2 .3 7 ]

D ry la n d  C o u n tie s : -1 .7 6 -1 .8 8 1 .2 9 1 .1 3
(1 .2 1 ) (1 .2 2 ) (1 .1 5 ) (1 .1 6 )

I r r ig a te d  C o u n tie s : -0 .2 2 -0 .2 0 -0 .0 2 -0 .0 3
(0 .8 6 ) (0 .8 6 ) (0 .7 8 ) (0 .7 8 )

Im p a c t o f  C h a n g e  in  D e g re e  D a y s -1 .6 7 -1 .8 0 0 .5 3 0 .3 4
(1 .5 2 ) (1 .5 3 ) (1 .4 5 ) (1 .4 6 )

Im p a c t o f  C h a n g e  in  T o ta l P re c ip ita tio n -0 .3 1 -0 .2 9 0 .7 4 0 .7 6
(0 .3 5 ) (0 .3 4 ) (0 .2 5 ) (0 .2 5 )

S o il C o n tro ls N o Y e s N o Y e s
C o u n ty  F ix e d  E ffe c ts Y e s Y e s Y e s Y e s
Y e a r  F ix e d  E ffe c ts Y e s Y e s N o N o
S ta te * Y e a r  F ix e d  E ffe c ts N o N o Y e s Y e s

Notes: All dollar figures in billions of 2002 constant dollars.  This table report predicted impacts of climate change on agricultural profits using the estimation results from the 
fitting of versions of equation (4) (summarized in Table 6A) and three climate change scenarios.  The impacts’ heteroskedastic consistent standard errors are in parentheses and the 
Conley ones are in square brackets.  Due to the nonlinear modeling of the weather variables, each county’s predicted impact is calculated as the discrete difference in per acre 
profits at the county’s predicted degree days and precipitation after climate change and its current climate (i.e., the average over the 1970-2000 period).  The resulting change in 
per acre profits is multiplied by the number of acres of farmland in the county and then the national effect is obtained by summing across all 2,262 counties in the sample.  The 
climate parameters from the irrigated (dryland) counties are used to calculate the effect for the irrigated (dryland) counties. The specifications correspond to the ones in Table 6A 
and the exact controls are listed at the bottom of the table.  See Table 6A and the text for further details. 



TABLE 7:  ALTERNATIVE FIXED-EFFECTS ESTIMATES OF HADLEY 2 LONG RUN CLIMATE CHANGE SCENARIO ON AGRICULTURAL PROFITS 
Hadley 2 Long Run (2070-2099)

Predicted Change Standard Error Percent Effect
(Billion dollars)

[A] Alternative Specifications
(1) Model Weather Vars Linearly: 1.46 (0.97) 4.5

(2) Model Weather Vars with Cubics: 4.74 (3.91) 14.7

(3) Model Weather Vars with Indicator Variables: 0.95 (1.94) 2.9

(4) Minimize the Influence of Outliers: -1.32 (1.51) -4.1

(5) Fully Interacted by State: -0.94 (12.37) -2.9

(6) Irrigation Cutoff = 5%: 1.01 (1.48) 3.1

(7) Irrigation Cutoff = 15%: 1.40 (1.56) 4.3

(8) Assume Equal Weather Coefficients in Dryland and Irrigated Counties: 1.26 (1.64) 3.9

(9) Growing Season = April-October: 0.65 (2.03) 2.0

(10) Two Growing Seasons, April-September and October-March: -1.80 (5.62) -5.6

(11) Unweighted Regression: -2.15 (4.12) -6.7

[B] Impacts on Farm Revenues, Expenditures, and Government Payments
Farm Revenues: 1.14 (2.96) 3.5

Farm Expenditures: 0.05 (2.36) 0.1

Government Payments: 0.48 (0.22) 1.5  
Notes: All dollar figures in billions of 2002 constant dollars.  The entries report predicted impacts of climate change on agricultural profits using the 
estimation results from alternative versions of equation (4) and the Hadley 2 Long Run climate change scenario.  All versions of equation (4) include 
controls for soil productivity and county and state by year fixed effects.  The impacts’ heteroskedastic consistent standard errors are in parentheses.  
The “Percent Effect” column reports the predicted change as a percent of mean annual agricultural profits in the 1987-2002 period. See Tables 6A and 
6B, as well as the text for further details. 



TABLE 8:  FIXED-EFFECTS ESTIMATES OF HADLEY 2 LONG RUN CLIMATE CHANGE SCENARIO ON 
AGRICULTURAL PROFIT MODELS, BY STATE 

State B illions of $s Std  E rror State P ercent 
(1a) (1b) (1c) (2a) (2b)
P ennsylvania 0 .57 (0.25) W est V irginia 276.5
South D akota 0 .54 (0.03) W yom ing 270.5
N evada 0 .51 (0.84) U tah 216.9
A rizona 0 .44 (0.73) South C aro lina 181.5
W yom ing 0.43 (0.34) N ew Jersey 146.0
South C arolina 0 .40 (0.17) N evada 107.4
G eorgia 0 .37 (0.58) A rizona 107.3
U tah 0 .36 (0.47) South D akota 81 .5
W ashington 0 .34 (0.63) P ennsylvania 65 .2
N ew Y ork 0 .24 (0.08) Louisiana 53 .4
K entucky 0.20 (0.20) G eorgia 49 .8
Louisiana 0 .18 (0.43) N ew Y ork 44 .9
O regon 0 .15 (0.36) W ashington 37.6
W est V irginia 0 .12 (0.13) N ew M exico  31 .5
M innesota 0 .10 (0.11) D elaware 30 .1
N ew M exico 0 .08 (0.04) O regon 28 .8
N orth D akota 0 .05 (0.05) K entucky 25.4
M issouri 0 .04 (0.04) R hode Island 20.0
Indiana 0 .04 (0.10) N orth D akota 12 .7
D elaware 0 .03 (0.01) M innesota 8 .0
M ichigan 0 .02 (0.03) V irginia 7 .1
N ew Jersey 0 .02 (0.02) Indiana 6 .2
M assachusetts 0 .01 (0.00) M assachusetts 5 .6
M aryland 0.01 (0.04) M issouri 5 .5
V irginia 0 .01 (0.05) M ichigan 4 .4
R hode Island 0.00 (0.00) M aryland 2.5
C onnecticut 0 .00 (0.00) C onnecticut -4 .2
N ew H am pshire -0 .01 (0.01) W isconsin -5.1
V erm ont -0 .01 (0.01) T exas -6.2
M aine -0.03 (0.03) O hio -7.8
T ennessee -0.04 (0.07) T ennessee -9.7
O hio -0.05 (0.08) Iowa -11 .5
A labam a -0.07 (0.19) Florida -13 .1
W isconsin -0.07 (0.05) A labam a -14 .6
  T exas -0 .10 (0.94) Illinois -16 .0
M ontana -0.12 (0.07) V erm ont -17 .7
Iowa -0.13 (0.16) N ebraska -21 .2
Idaho -0.14 (0.19) N orth C aro lina -22 .6
A rkansas -0 .20 (0.40) A rkansas -23 .2
Florida -0.20 (0.27) Idaho -23 .7
Illinois -0 .24 (0.18) K ansas -24 .5
M ississipp i -0 .25 (0.27) N ew H am pshire -29 .4
K ansas -0 .30 (0.14) M aine -39 .1
N orth C arolina -0.32 (0.14) M ontana -39 .4
N ebraska -0.35 (0.28) C alifornia -47 .6
O klahom a -0.58 (0.88) M issouri -67 .9
C olorado -0.61 (0.64) C olorado -106.5
C alifornia -2 .40 (1.64) O klahom a -136.8

P redicted  Im pact on S tate A gricultural P rofits (Largest to  Sm allest)

 
Notes: All Figures in billions of 2002 constant dollars.  The entries report state-level predicted impacts of climate change on 
agricultural profits using the estimation results from state-level versions of equation (4) and the Hadley 2 Long Run climate 
change scenario.  Growing season degree days and total precipitation are modeled with quadratics and their effects are allowed to 
vary in irrigated an dryland counties.  The specification also includes controls for soil productivity and county and year fixed 
effects.  There are a total of 22 parameters so this model cannot be estimated separately for the 11 states with fewer than 22 
counties in our sample.  Instead, we group these states together in 2 groups (AZ, NV) and (CT, DE, MA, MD, ME, NH, NJ, RI, 
VT) and estimate the model separately for each group.  See the text for more details.   



TABLE 9:  FIXED-EFFECTS ESTIMATES OF AGRICULTURAL YIELD MODELS 

(1a) (1b) (2a) (2b) (3a) (3b)
U.S. Total Value (Billion Dollars) 21.64 21.64 16.10 16.10 8.21 8.21
County Mean of Dep. Variable 85.63 85.63 31.72 31.72 2.96 2.96
U.S. Total Yield (Billion Bushels) 8.69 8.69 2.39 2.39 2.17 2.17

Predicted Impact of Hadley 2 Long Term (2070-2099) Scenario on Crop Yields
All Counties: -0.290 -0.110 -0.101 -0.012 0.268 0.021

(0.100) (0.080) (0.028) (0.019) (0.082) (0.066)

Percent of U.S. Total Yield -3.3 -1.3 -4.2 -0.5 12.4 1.0

Dryland Counties: -0.260 -0.100 -0.076 -0.012 0.281 0.034
(0.080) (0.060) (0.017) (0.013) (0.076) (0.057)

Irrigated Counties: -0.030 -0.010 -0.025 0.000 -0.013 -0.014
(0.050) (0.050) (0.020) (0.012) (0.025) (0.028)

Impact of Change in Temperature -0.450 -0.210 -0.155 -0.047 0.258 0.015
(0.090) (0.080) (0.027) (0.018) (0.082) (0.066)

Impact of Change in Precipitation 0.170 0.100 0.053 0.035 0.010 0.006
(0.050) (0.040) (0.011) (0.010) (0.009) (0.009)

Soil Controls Yes Yes Yes Yes Yes Yes
County Fixed Effects Yes Yes Yes Yes Yes Yes
Year Fixed Effects Yes No Yes No Yes No
State*Year Fixed Effects No Yes No Yes No Yes

Corn for Grain Wheat for GrainSoybeans

Notes: “U.S. Total Value” is expressed in billions of 2002 constant dollars.  The row “County Mean of Dependent Variable” is 
expressed in bushels per acre and “U.S. Total Yield” is in billions of bushels.  The other entries report predicted impacts of 
climate change on crop output (in billions of bushels) using the estimation results from versions of equation (4) and the Hadley 2 
Long Run climate change scenario.  In the versions of equation (4), the dependent variables are county-level total bushels of 
production per acre planted (production / acre planted) for corn for grain, soybeans, and wheat for grain.  The independent 
variables of interest are growing season degree days and precipitation, both of which are modeled with a quadratic and allowed to 
vary among dryland and irrigated counties.  The regressions all include controls for soil characteristics and county fixed effects 
and are weighted by the square root of the number of acres planted for the relevant crop.  Due to the nonlinear modeling of the 
weather variables, each county’s predicted change in bushels per acre is calculated as the discrete difference in per acre output at 
the county’s predicted degree days and precipitation after climate change and its current climate (i.e., the average over the 1970-
2000 period).  The resulting change in bushels per acre is multiplied by the number of acres of farmland in the county and then 
the national effect is obtained by summing across all counties in the sample.  There are 5,992 observations in columns 1a and 1b; 
4,320 in columns 2a and 2b; and 5,552 in columns 3a and 3b.   
 



FIGURE 1:  THEORETICAL RELATIONSHIP BETWEEN PROFITS PER ACRE AND TEMPERATURE 
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FIGURE 2A: AVERAGE GROWING SEASON DEGREE DAYS, BY COUNTY 1970-2000 

 
FIGURE 2B: AVERAGE GROWING SEASON TOTAL PRECIPITATION, BY COUNTY 1970-2000 



FIGURE 2C: AVERAGE PROFIT PER ACRE, BY COUNTY 1987-2002 
 

Notes: See the text for details on how counties were divided into the categories for Figures 2A, 2B, and 2C. 



FIGURE 3A: PREDICTED CHANGES IN GROWING SEASON DEGREE DAYS, BY STATE (HADLEY 2 LONG RUN)  

 
 
FIGURE 3B: PREDICTED CHANGES IN GROWING SEASON PRECIPITATION, BY STATE (HADLEY 2 LONG RUN)  

 
Notes: See the text for details on how counties were divided into the categories for Figures 3A and 3B. 



FIGURE 4:  ± 1 STANDARD ERROR OF HEDONIC ESTIMATES OF BENCHMARK CLIMATE CHANGE SCENARIO ON VALUE OF AGRICULTURAL LAND  

ees 
 and 8% precipitation from Table 5.  The midpoint of each line is the point estimate and the top and bottom of the lines are calculated as the point estimate plus and 

minus one standard error of the predicted impact, respectively.  See the text for further details.  
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Notes: All dollar values are in 2002 constant dollars.  Each line represents one of the 48 single year hedonic estimates of the impact of the benchmark increases of 5 degr
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FIGURE 

Notes: T

5A: ESTIMATED RELATIONSHIP BETWEEN PROFITS PER ACRE & GROWING SEASON DEGREE DAYS 

ure plots the results from 4 separate regressions for county-level profits per acre all of which are weighted by total agricultural acres.  The line 
“Year FE [ e]” plots the parameter estimates on indicator variables for deciles of the distribution of growing season degree days at the midpoint of each 
decile’s range.  As the title of the line indicates, this regression also includes year fixed effects.  The “Year & County FE [Decile]” and “State by Year & 
County le]” lines repeat this exercise but include year and county fixed effects and state by year and county fixed effects, respectively.  The “State by 
Year E [Quadratic]” line replaces the indicators variables with a quadratic in degree days and plots the conditional means at the midpoints of each 
decile’s ran
 
 
FIGURE IMATED RELATIONSHIP BETWEEN PROFITS PER ACRE & GROWING SEASON PRECIPITATION 

Notes: This figure replicates the graphical exercise in 5A, except for growing season precipitation (rather than growing season degree days). 
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FIGURE 6: PREDICTED IMPACT OF CLIMATE CHANGE ON STATE-LEVEL AGRICULTURAL PROFITS, HADLEY 2 LONG 
RUN SCENARIO 
 

 
 
 
Notes: See the text for details on how counties were divided into the three categories. 
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