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Incorporating Spatial Complexity into
Economic Models of Land Markets and

Land Use Change

Yong Chen, Elena G. Irwin, and Ciriyam Jayaprakash

Recent work in regional science, geography, and urban economics has advanced spatial mod-
eling of land markets and land use by incorporating greater spatial complexity, including mul-
tiple sources of spatial heterogeneity, multiple spatial scales, and spatial dynamics. Doing so
has required a move away from relying solely on analytical models to partial or full reliance
on computational methods that can account for these added features of spatial complexity. In
the first part of the paper, we review economic models of urban land development that have
incorporated greater spatial complexity, focusing on spatial simulation models with spatial en-
dogenous feedbacks and multiple sources of spatial heterogeneity. The second part of the pa-
per presents a spatial simulation model of exurban land development using an auction model
to represent household bidding that extends the traditional Capozza and Helsley (1990) model
of urban growth to account for spatial dynamics in the form of local land use spillovers and
spatially heterogeneous land characteristics.
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The classic urban bid rent model (or the mono-
centric model as it is often called) is one of the
most important theoretical developments in urban
economics and urban growth models. The basic
intuition of the model—that transportation costs
to an urban center are capitalized into land rents,
leading to a systematic pattern of land uses and
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density around the urban center—provides an ele-
gant and mathematically tractable microeconomic
model of household and firm location choices that
fully characterizes spatial equilibrium land rents
and the pattern of land uses within a city. First in-
troduced by Alonso (1964) and further elaborated
by Mills (1967) and Muth (1969), this model has
spawned a voluminous literature and numerous
theoretical extensions, including dynamic models
that consider land development decisions (Capoz-
za and Helsley 1989), nonmonocentric models that
explain the emergence of cities as the result of
spatial externalities (Ogawa and Fujita 1980, Fu-
jita and Ogawa 1982), and extensions of the basic
new economic geography model (Krugman 1991)
to include a land market in continuous space (Fu-
jita and Krugman 1995). Despite these advances,
the shortcomings of the basic model have also
been well articulated, including the greatly sim-
plified representation of space as distance to the
city center and the static or long-run nature of the
spatial equilibrium assumption that rests on cost-
less migration of firms and people across space.
More recent efforts in economics and geogra-
phy have succeeded in moving beyond the tradi-
tional representation of space as distance to the
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urban center to more complex representations of
space, including multiple sources of spatial het-
erogeneity, multiple spatial scales, and spatial dy-
namics. Doing so has required a move away from
relying solely on analytical models to partial or
full reliance on spatial simulation methods that
can account for these added features of spatial
complexity. In addition, it has led to questions
regarding the theory of urban land markets and
how best to modify the traditional urban bid rent
theory to account for these additional sources of
spatial complexity. In particular, the assumption
of a spatial equilibrium, which forces any loca-
tional advantage or disadvantage to be fully offset
by land prices so that households are indifferent
to location, presents challenges to modeling se-
quential price adjustments, location choices, and
land use change over time. The instantaneous ad-
justment of prices to any change in market condi-
tions or locational attributes is a simple yet power-
ful means of modeling spatial variations in prices
and their adjustment over time. However, this
approach ignores any short-run constraints that
would prevent prices from fully adjusting and
instead assumes that the long-run spatial equilib-
rium is immediate. Under such conditions, only
exogenous sources of change over time, such as
regional population or income growth, can gener-
ate price and land use changes over time. Recur-
sive modeling of endogenous feedback effects,
such as local land use spillovers, congestion, or
agglomeration that naturally would cause a se-
quence of price and land use adjustments over
space and time, is not possible. This greatly limits
the representation of spatial dynamics, as we elabo-
rate on below.

The purpose of this paper is, first, to review
microeconomic models of urban land use and
growth that have incorporated spatial dynamics
and multiple sources of spatial heterogeneity, and
second, to present a spatial simulation model of
exurban land development that uses a household
bidding model to extend the traditional Capozza
and Helsley (1990) model of urban growth to ac-
count for spatial dynamics and heterogeneity.

Defining Spatial Complexity

It is useful to start by being explicit about what is
meant by “spatial complexity.” Following Figure
1, we define spatial complexity as a continuum
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that begins at one end with models in which space
is omitted altogether and extends to models with
dynamic spatial feedback effects with multiple
sources of spatial heterogeneity. Examples in the
urban land use literature include early models of
optimal land development that focused on the
temporal aspect of the landowner’s decision with
no explicit representation of location or space
(e.g., Arnott and Lewis 1979, Arnott 1980). The
first order of spatial complexity is represented by
models in which space is exogenous and defined
by a single dimension, i.e., space is a “featureless
plane” with the exception of a single source of
exogenous variation that differentiates it. The ba-
sic monocentric model provides the quintessential
example of this first-order spatial model: exoge-
nously defined distance from the city center leads
to locations distinguished only by varying trans-
portation costs that constrain the location choices
of households and firms and lead to systematic
spatial patterns. These models may be static or
dynamic.

Models in which multiple sources of exoge-
nously defined spatial heterogeneity are included
represent the next level of spatial complexity. Wu
and Plantinga (2003) provide such an example in
which distance to exogenously determined open
space adds another dimension of space over which
households must optimize their location choices.
Equilibrium land rents are a function of both dis-
tance to the central business district and these
other spatial features. Given an analytical expres-
sion for land rents as a function of heterogeneous
space, spatial simulation is used to describe the
spatial equilibrium patterns that result within the
context of an open city model.

Static or long-run equilibrium models with
endogenous spatial feedbacks represent a third
level of spatial complexity. These models account
for the feedback process in a simultaneous fash-
ion so that the equilibrium outcome is one in
which each individual’s choice is consistent with
the endogenous feedback. These feedbacks can
manifest themselves at the same spatial scale
(e.g., interactions among individuals or among ju-
risdictions) or across spatial scales (e.g., individ-
ual choices that determine some endogenous out-
come at a neighborhood or jurisdictional level).
Turner (2005) provides an example of local spa-
tial interactions among households, in which he
presents a game theoretic model of household lo-
cation with local open space spillovers and com-
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Figure 1. Types of Spatial Complexity That Have Been Incorporated into Urban Land Market

Models

Note: “Dynamic” may refer to a process that is said to be a dynamic equilibrium or out of equilibrium. We do not distinguish

between these for the purposes of this paper.

muting costs to the city center. Rather than spatial
simulation, the resulting equilibrium land use pat-
tern is deduced by a series of proofs. Differences
in market conditions and the timing of residential
moves result in differences in price gradients and
the timing of development at a particular location,
but in all cases the model yields predictions of a
densely occupied center, scattered development in
the suburban areas, and vacant land beyond the
outer suburban edge. Tajibaeva, Haight, and Po-
lasky (2008) provide an example of interactions
among jurisdictions in a multi-centric urban eco-
nomic model with open space amenities. Public
open space is optimally allocated by local govern-
ments, but open space amenities spill over across
local areas and influence the long-run equilibrium
pattern of open space and residential land use.
Structural empirical models of household loca-

tional choice (e.g., Bayer, Keohane, and Timmins
2009, Klaiber and Phaneuf 2010, Smith et al.
2004, Walsh 2007), in which local public goods
such as air quality, open space, or education are
modeled as endogenous to household location
choices at a neighborhood scale, provide exam-
ples of static models that consider endogenous
interactions across individual and neighborhood
scales. These models are closed by an analogous
spatial equilibrium condition, but one that ac-
counts for the heterogeneity of households and
for the endogenous feedback effect between indi-
vidual location and neighborhood characteristics:
a sorting equilibrium is defined as a set of indi-
vidual location decisions that are optimal given
the location decisions of all other individuals in
the population (e.g., Bayer and Timmins 2005,
Epple and Sieg 1999).
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Spatial dynamic models represent a further level
of spatial complexity. These models take both
spatial and temporal dynamics into account by
representing a spatially dependent dynamic proc-
ess in which a change over time at one location is
dependent on the state or changes in the state at
other locations (Smith, Sanchirico, and Wilen
2009). Brock and Xepapadeas (2008) and Bouce-
kkine, Camacho, and Zou (2009) provide exam-
ples of spatial dynamic models in which space is
modeled as a one-dimensional homogenous line
and spatial interaction is modeled as a diffusion
process in which capital flows from places with
higher stocks to places with lower stocks. Desmet
and Rossi-Hansberg (2010) adapt this approach to
model regional spatial dynamics by adding a
more complicated form of interaction. Specifi-
cally, counties make investment decisions on in-
novation to generate high productivity within the
counties so as to attract capital flow through trade
surplus. Over time, the benefits from the innova-
tion diffuse over space with no cost.

Models that combine both spatial dynamics and
multiple sources of spatial heterogeneity repre-
sent models with a high degree of spatial com-
plexity. These models are analytically intractable
and require spatial simulation to characterize the
results. While greater spatial complexity is not al-
ways a desirable model trait, accounting for both
spatial dynamics and multiple sources of spatial
heterogeneity is essential for models of land use
change in which multiple types of endogenous in-
teractions may be present and many sources of
spatial heterogeneity (in the physical attributes of
land that is developable and its multiple loca-
tional features, e.g., proximity to employment or
shopping areas) can influence individual land use
and location decisions. For this reason, we focus
the remaining, more in-depth discussion of litera-
ture on models of land development that have
incorporated both spatial dynamics and spatial
heterogeneity. We also focus on those models
that contain an explicit structural model of land or
housing markets. Because almost all empirical
models of land markets are reduced form, we omit
a discussion of econometric land use models." An
exception is Murphy (2007), who develops a mi-
croeconomic dynamic spatial model of land de-
velopment that is estimated at a parcel scale. His

! For a broader review of urban land use change models that includes
discussion of econometric models, see Irwin (2010).
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model focuses on the role of costs in determining
the developer’s optimal timing and amount of
housing services. Because the focus is on this
rather than on spatial dynamics or agent interac-
tions, we omit it from our discussion here. None-
theless, this modeling approach provides a com-
pelling means to parameterizing the dynamic spa-
tial simulation models that we review here, and
further work on integrating this dynamic empiri-
cal estimation approach with spatial simulation is
likely to be quite fruitful.

Spatial Simulation Models of Land Markets
and Land Use Change

Structural models of land markets that incorporate
both spatial dynamics and heterogeneity consti-
tute a small but growing body of work. We ac-
knowledge key model developments by research-
ers who have made important contributions while
also attempting to provide a critical assessment of
this work as a guide for future work. A distin-
guishing feature of these models is the way in
which price formation is modeled. In some cases,
the assumption of spatial equilibrium is employed
to derive a set of spatial equilibrium prices that
evolve over time in response to exogenous
changes. In other cases, agent-based models® are
used to derive individual prices of land or houses
that are the result of bilateral trades explicitly
modeled among heterogeneous buyers and sell-
ers. The advantage of the latter is their ability to
account for so-called “out of equilibrium” dy-
namics (or what others might call transitional or
short-run equilibrium dynamics) that can account
for endogenous interactions or feedbacks in a
recursive manner.

Caruso et al. (2007) provides an example of the
first approach, in which the evolution of land use
patterns is modeled over time using a conditional
spatial equilibrium approach that adjusts in each
time period following the entrant of a new mi-
grant. Subsequent changes in land uses generate
local spillovers that influence the desirability of
nearby locations. This interaction creates an en-
dogenous local feedback effect that generates
local spatial dynamics. A spatial simulation mod-
el is needed to account for the incremental change

% For a more comprehensive discussion of issues related specifically
to agent-based models of land markets, see Parker and Filatova (2008)
and Parker et al. (2003).
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in land use pattern that is capitalized into land
rents that influence the next round of decision
making. The model is simulated over many peri-
ods to study the implications of these multiple
sources of spatial heterogeneity for the evolution
of residential development patterns. Various pat-
terns of residential land use clustering and scat-
tering emerge depending on the magnitude and
spatial scale of the land use spillovers. The ap-
proach is innovative because it demonstrates how
local spatial dynamics can arise from a microeco-
nomic model of location choice and land use and
influence land use patterns at a regional scale.
However, it also points to the awkwardness of the
spatial equilibrium assumption in a model that
seeks to explicitly represent local spatial dyna-
mics. At the beginning of each period, the new
migrant is assumed to have monopsony power,
which allows him to pay only the reservation price
of the farmer, and thus is able to choose the loca-
tion that generates the largest utility gain. Only
after the new migrant chooses a location are
prices assumed to adjust to a spatial equilibrium,
implying that all market power is then transferred
to landowners so that each household must pay its
maximum willingness to pay (WTP) and is indif-
ferent to location. This awkward set of assump-
tions is one solution to modeling spatial differ-
ences in utility that lead to sequential location
choices. Otherwise, if a spatial equilibrium were
continuously imposed, the spillover effects of any
land use change would be fully and instantane-
ously capitalized in price and new migrants would
always be indifferent to location. If households
are always indifferent to location, then it is im-
possible to sequentially order their location or
land use choices. These modeling trade-offs high-
light the difficulty of incorporating recursive spa-
tial dynamics into a traditional spatial equilibrium
framework.

Because they depart from aggregate market
equilibrium assumptions, agent-based models of-
fer a means of explicitly representing recursive
interactions, price adjustments, and the sequenc-
ing of location and land use decisions over time
and space. Given the initial specifications of the
economic system, the transitional dynamics are
driven solely by agent trading that is not typically
subject to an aggregate market-clearing constraint
or other market-level equilibrium conditions. How-
ever, the lack of an aggregate market-clearing
condition opens up difficult questions about how
agent bidding, price formation, and the possibility
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of spatial arbitrage should be modeled. The endo-
geneity of land rents presents a challenge to de-
riving agents’ willingness to pay for a particular
location from the standard constrained utility
maximization framework, since the budget con-
straint includes the market rent of per-unit hous-
ing (or land) at that location, which is of course
endogenous to the household’s bid. The assump-
tion of a spatial equilibrium solves this problem
by ensuring that the household’s bid and the mar-
ket rent for each location are consistent with each
other.

Parker and Filatova (2008) discuss this problem
and other theoretical and methodological chal-
lenges associated with implementing agent-based
land market models. They suggest several ap-
proaches to modeling agent bidding, ranging from
ad hoc specifications of agents’ WTP functions, to
an approach that assumes that agents form ex-
pectations over the market price of housing (or
land) at a given location and then derive their
WTP function from a constrained utility-maximi-
zation problem given this expected price. Agents
act in response to expected prices and update
their beliefs over time as they observe the realized
market price for a given location. While this is a
plausible approach and one that is theoretically
grounded in utility maximization, it relies on the
researcher having information about how agents
form these expectations and how they modify
their beliefs about prices given observed realiza-
tions of market prices. Given the dearth of em-
pirical data on how households, landowners, and
developers form expectations,’ this is a challeng-
ing approach to implement and raises the usual
concerns about model robustness.

A central question in spatial models of land use
change is how locational advantages or disad-
vantages should be reflected in bids and market
prices associated with housing or land at a par-
ticular location. The spatial equilibrium assump-
tion solves this question by assuming that any
locational difference over which households have
preferences is exactly offset by equilibrium prices
that instantaneously adjust to these differences.
The implicit assumption is that competition

* In contrast, because data on traders are much more readily available,
a good deal of work has been done on how expectations are formed by
agents in agent-based models (ABMs) of financial markets for finan-
cial assets [e.g., see excellent summaries of the literature in LeBaron
(2006), Hommes (2006), Tesfatsion (2006), and Duffy (2006)].
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among many footloose households for the more
desirable land parcels results in equilibrium rents
that are equal to households’ full WTP, so that in
equilibrium households are indifferent to loca-
tion. Because each land parcel is assumed to be
unique, landowner competition is ignored and all
gains from trade accrue to landowners. The spa-
tial equilibrium assumption is most appropriate
for large urban areas, in which households are
mobile, land is scarce, and many households
compete for unique locations. In contrast, ex-
urban regions are characterized by plentiful land
and a limited number of households. This basic
difference has far-reaching implications: instead
of fully capitalizing households’ WTP for each
parcel, the market price for exurban land is de-
termined by a limited number of households that
compete and the decisions of multiple landowners
who own similar parcels. Under such conditions,
the transacted market price does not necessarily
correspond to the household’s maximum WTP,
and thus an alternative approach to modeling
household bids and landowner expectations is
needed.

Agent-based models provide a means of model-
ing transitional or short-run dynamics in the ab-
sence of an exogenous growth mechanism or con-
straint, but require an alternative approach to
modeling price formation. While some have de-
veloped agent-based models of housing markets
with aggregate hedonic pricing models (e.g.,
Miller et al. 2004, Waddell et al. 2003), others
have taken advantage of the disaggregation of
agent-based models by explicitly modeling price
formation as the result of housechold offer bids,
seller ask bids, and the interactions between indi-
vidual buyers and sellers. These models differ in
how these market interactions are modeled and, in
particular, in how agents’ WTP, willingness to ac-
cept (WTA), and perceptions of market competi-
tiveness are accounted for in their formulation of
optimal offer and ask bids. Filatova, Parker, and
van der Veen (2009) and Filatova, van der Veen,
and Parker (2009) begin with an ad hoc speci-
fication of households’ WTP function as

2
wrp- XU
b+U

where Y is income net of transportation costs and
expenditures on a composite good, U is house-
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hold utility, and b is a parameter that is assumed
to represent the price of the composite good. This
WTP function mimics standard demand relation-
ships, such as increasing WTP with income. Ex-
penditures on the composite good enter indirectly:
given the functional form assumption, households
never spend all their income net of transportation
costs on housing and thus, implicitly, the remain-
ing income is spent on the composite good. Be-
cause households never will spend all their net
income on housing, this specification of WTP is
not comparable to the urban economic spatial
equilibrium model of bidding, in which house-
holds are always assumed to spend all their resid-
ual income (net transportation costs and a fixed
amount on the composite good) on housing. In-
stead of being defined by a set of prices, a spatial
equilibrium is defined in a static sense: an equi-
librium is reached when no further incentives
exist for a household to enter the region or for a
household to sell its property, i.e., all gains from
trade have been exhausted given current bids and
offers, resulting in constant population, prices,
and land use pattern. A logical next step, and one
that the authors are currently pursuing (Parker
and Filatova 2011), is to introduce household re-
bidding and relocation, so that existing households
can readjust their housing consumption if their
location has become suboptimal over time. This is
particularly important for considering the dy-
namic effects of local spatial spillovers, such as
the loss of open space or rising congestion levels,
that generate feedbacks and will cause additional
market and land use adjustments.

To account for agents’ responses to market con-
ditions, Filatova, Parker, and van der Veen (2009)
and Filatova, van der Veen, and Parker (2009)
follow a logical two-step approach proposed by
Parker and Filatova (2008) in which the individ-
ual WTP and WTA bids are first specified as
above and then adjusted by a multiplicative factor
(1+¢), where ¢ = (NB — NS)/(NB + NS), NB =
number of buyers and NS = number of sellers.*
This allows bidding to be adjusted based on agent
perceptions of market conditions, so that individ-
ual offer (ask) bids will increase (decrease) as the
number of buyers (sellers) increases. Given posi-

4 This approach to modeling price adjustments follows standard
models used in agent-based computational finance models, e.g., for
representing the “market-oriented traders” pricing strategy (LeBaron
2006).
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tive gains from trade (i.e., offer bid > ask bid),
then the transaction price is set assuming that the
buyer and seller divide these gains equally (i.e.,
the transaction price is the arithmetic mean of the
offer and ask bids). Filatova, Parker, and van der
Veen (2009) find that the transaction prices of
identical locations are not the same over time
because of changes in the market conditions (NB
and NS) that are reflected in the bids. The authors
call this an emergent property of the model, since
changes in NB and NS are endogenously deter-
mined in the model. This is a potentially interest-
ing feature of the model. However, the diver-
gence in prices over time can also be explained
by the fact that the model does not consider re-
bidding by households, so that once a location is
occupied by a household, no other household may
bid for it. As a result, the price is frozen at the
time of the initial development. With rebidding
and in the absence of endogenous feedbacks or
other sources of spatial heterogeneity that would
cause the characteristics of two identically located
parcels to differ over time, this divergence would
disappear as a result of land prices that would
subsequently adjust to current market conditions.
Magliocca et al. (2011, forthcoming) follow a
strategy somewhat similar to that of Filatova and
coauthors to model the household bidding proc-
ess. First, optimal rents for a given house by a
particular household are determined by calculat-
ing the amount the household is willing to pay
subject to the constraint that its resulting utility is
equal to the highest utility that is possible given the
houses that are on the market. This ensures that
the bids reflect the specific features of a housing
type and location, analogous to the spatial equi-
librium assumption in the traditional model. This
amount is then adjusted upwards or downwards
depending on the degree of housing market com-
petition, which is determined by the number of
bidders relative to the number of available houses,
and by the magnitude of the potential surplus that
a household could obtain if it did not have to pay
above the developer’s ask price. In contrast to
other agent-based models, the model developed
by Magliocca et al. (2011, forthcoming) includes
both a land and housing market and thus explic-
itly models the market interactions of farmers and
housing developers, in addition to those between
developers and households. Farmers and develop-
ers employ various strategies to form expectations
about future returns from selling and developing
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rural land respectively and formulate optimal of-
fer and ask bids based on these expectations that
seek to maximize their respective profits. Mag-
liocca et al. provide the most serious treatment of
price expectations in an agent-based land market
model to date, allowing for a number of different
strategies and exploring how various approaches
influence market outcomes. For example, each
farmer is randomly assigned a set of prediction
models that vary in the length of time over which
past prices matter, the functional form of the ef-
fect of past prices on current prices, and the in-
fluence of landowner competition. Farmers adapt
their prediction models according to the success
of past predictions. In addition, the model allows
for household rebidding: each household is ran-
domly assigned a “residence time” when they ini-
tially move into a house. When the household’s
residence time is exceeded, they re-enter the
housing market as buyers and the house that they
occupied is put back on the market. Current resi-
dents and in-migrants are then able to bid on ex-
isting houses, which provides a means of updat-
ing housing prices based on current conditions.

Magliocca et al. (2011, forthcoming) param-
eterize their model using secondary data from the
Census of Agriculture, Bureau of Transportation
Statistics, and U.S. Census Bureau, as well as pa-
rameter estimates of developer infrastructure and
on-site costs and locational demand parameters
from the literature. The model is applied to a grid-
ded, 10-square-mile landscape and run over a 20-
year time period. The model predicts sprawl and
leapfrog patterns of development as a result of the
various sources of heterogeneity in the model: the
agricultural productivity of land parcels, consum-
ers’ housing preferences, and farmers’ and devel-
opers’ expectations of future prices.

Ettema (2011) takes a different approach to price
formation. Rather than deriving explicit WTP or
WTA functions and then adjusting according to
market conditions, he models households’ re-
sponses to a stated list price for a given house.
These responses are shaped by subjective prob-
abilities that reflect their perception of the market
competitiveness of a given list price for a given
house, which is determined by the deviation of
the list price from its mean price. Based on this,
each buyer formulates a probability that she will
be offered a house at that price and each seller
formulates a probability that she will sell her
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house at that price within a certain time period. A
seller will simply attempt to maximize the list
price at which she offers a given house. A buyer’s
optimal choice is determined by a given list price
L of a house that maximizes her expected utility
from the house, where her expected utility is the
weighted sum of her utility from obtaining the
house at the given price L and a slightly higher
price L+a,, where the weights are equal to the
respective probabilities of obtaining the house at
prices L and L+a,. These probabilities are modi-
fied over time by individuals using a Bayesian
updating rule based on past transactions simu-
lated by the model. An advantage of this ap-
proach is that it incorporates the agent’s percep-
tions of market conditions into her optimal choice
in a probabilistic manner that is reflected in her
optimal bidding behavior. However, it is unclear
that modeling these subjective probabilities as a
function of deviations from the mean of past
prices captures the relevant factors that determine
market competitiveness, especially over time. For
example, exogenous population migration over
time will force household offer bids to become
more competitive over time. From this vantage
point, an explicit accounting of the relative num-
bers of buyers and sellers is more sensible. An-
other problem with this formulation is that it re-
lies on very limited heterogeneity in housing attri-
butes in order to formulate deviations from a
mean price. Implementing this approach could be
much more problematic in a spatial model, in
which every house or lot is potentially distinct from
every other one.

In concluding this discussion of spatial simula-
tion models, it is useful to contrast the approaches
taken by agent-based models to modeling price
formation with the traditional urban economic
spatial equilibrium models. Because agent-based
models seek to relax the restrictive assumptions
of the traditional model, they must grapple with
additional questions of market conditions and
specification that are sidestepped by the spatial
equilibrium assumption. This challenge combined
with the complications that arise from adding
spatial complexity to the model make deriving a
fully structural modeling of price formation a
difficult problem to solve. The difficulty arises
because the model must simultaneously account
on one hand for the heterogeneous and possibly
unique set of spatial attributes that distinguishes
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one location from another, and, on the other hand,
for market conditions, including the relative num-
ber of buyers and sellers, the substitutability of
locations, and heterogeneity among households or
landowners. Spatial equilibrium models solve this
complex set of issues by imposing an implicit set
of assumptions about market conditions, namely a
large number of buyers and a lack of competition
among landowners, so that competition among
households for more desirable locations forces
households to bid all residual income—i.e., in-
come net of transportation costs and optimal ex-
penditures on a composite good for a given utility
level or population level—on land or housing.
Because desirable land is scarce and landowners
do not compete (since each location is assumed to
be unique), landowners are able to extract from
households the full value of their land parcel.
Thus, the resulting transaction price is equal to
the household’s maximum WTP and all gains
from trade accrue to the landowner.

Agent-based models offer a methodological ap-
proach that can relax these implicit assumptions
about market conditions, but doing so requires an
alternative means of deriving household bids and
market prices. The approaches by Filatova and
collaborators and by Magliocca and collaborators
model price formation explicitly as a three-step
process:’ (i) a WTP function is specified to repre-
sent the individual-level demand for location (and,
in the case of the two Magliocca et al. papers,
housing type), (ii) bid prices are formulated by
taking account of market conditions (excess de-
mand or supply for a given housing type or land
parcel), and (iii) given favorable terms of trade,
the transaction (i.e., market) price is determined
by dividing the gains from trade between the
buyer and seller. The approach imposes a set of
assumptions about bidding and how market con-
ditions influence the bidding process, following
models of agents’ pricing strategies developed in
agent-based financial economics. By explicitly
modeling how market conditions affect bidding
and how the subsequent gains from trade are di-
vided, these models allow for consideration of
how other types of market conditions (e.g., a buy-
ers market) influence spatial price and land use
outcomes. However, because they impose the
WTP functions, offer bids, and determination of

’ We are grateful to Tatiana Filatova for pointing this out to us.
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transaction prices rather than deriving these from
an underlying model of agent behavior (e.g., util-
ity or profit maximization), the models are not
fully “structural.” Nonetheless, they do incorpo-
rate many basic microeconomic fundamentals that
have been omitted by most other agent-based
models, and as such make substantial contribu-
tions to land use modeling and agent-based com-
putational economics.

A Dynamic Model of Residential Land
Development with Spatial Complexity

In the remainder of the paper, we present a spatial
simulation model that we are currently develop-
ing (Chen, Jayaprakash, and Irwin 2010) that pro-
vides a framework for a fully structural approach
to modeling household bidding and price forma-
tion. This spatial simulation model is derived
from a set of models in which farmers optimally
choose the timing of land conversion, residents
optimally select and bid for land parcels, and land
developers optimally choose the parcels to con-
vert. Following Capozza and Helsley (1990), the
model is made dynamic by stochastic income
growth that causes migration of households from
the outside world into the growing exurban re-
gion.® Income growth bids up urban land rents
and leads to conversion of agricultural land at the
urban boundary to a residential use. We build on
this spatial model of urban growth by incorporat-
ing spatial dynamics, in the form of endogenous
feedbacks from development that influence the
spatial distribution of open space over which resi-
dents have preference. In addition, land parcels
are distinguished by three sources of spatial het-
erogeneity: (i) commuting cost, which depends on
distance to the urban center, (ii) agricultural yield,
which determines the reservation rent of the farm-
ers, and (iii) conversion cost, which affects the
net returns to land development.

The key innovation of our modeling approach
is in the household bidding model. Rather than
deriving a WTP function from the household’s
utility maximization problem, we use an auction

® As in the open city model of Capozza and Helsley (1990), we ab-
stract from the causes of income growth and take this as the exogenous
determinant of growth in our region. We ignore housing markets in the
areas outside the exurban region we model, and assume that the maxi-
mum utility that is attaining outside our region is determined by a
reservation utility, U, that is fixed and exogenous.
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model to derive the household’s optimal bid, ac-
counting for preferences, income, market condi-
tions, and uncertainty over future growth. Spe-
cifically, households identify their optimal bid by
choosing the bid that maximizes their expected
surplus, defined as the differences between their
maximum WTP and their actual bid for the land.
The expectation is taken based on the probability
that their bid is the winning bid of all N bidders
against whom they are bidding for any given par-
cel. Any surplus that is achieved with a winning
bid that is less than the household’s maximum
WTP is assumed to be spent on the composite
good, thus generating a higher utility for that
household. This leads to the principal difference
between our modeling framework and that of the
traditional spatial equilibrium model: in the small
N case, utility is not equalized across all loca-
tions, and thus it is possible to sequentially order
household location choices in time and space,
something that is critical for modeling transitional
spatial dynamics.

To further clarify how our approach to price
formation compares to the traditional spatial equi-
librium model and the agent-based approaches
discussed above, note that the household’s maxi-
mum bid is equal to its maximum WTP, which
corresponds to the spatial equilibrium bid. Under
conditions that correspond to a seller’s market
(i.e., a large number of competing bidders), house-
holds will bid their maximum WTP, resulting in
the same equilibrium set of prices as the spatial
equilibrium model. However, when the number
of competing bidders is sufficiently small (the
“small N case), households are not forced to bid
their maximum WTP, and thus the winning bid
will be less than their maximum WTP, resulting in
transaction prices that are less than the long-run
spatial equilibrium prices. Land conversion oc-
curs if the winning household’s bid for a parti-
cular parcel is equal to or greater than the land-
owner’s reservation rent (described in further de-
tail below). Gains from trade are determined by
two mechanisms: (i) the household’s surplus is
the difference between its maximum WTP and its
winning bid, which is equal to the transaction
price, and (ii) landowner surplus is the difference
between his or her reservation rent and the trans-
action price. Thus, household WTP and offer bids,
landowner ask bids, and transaction prices are all
derived from a fully structural model of house-
hold utility maximization and landowner expected
profit maximization.
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While in theory this model can be solved for
the “small N” case, in practice this presents non-
trivial computational challenges. We are currently
working on these challenges (Chen, Jayaprakash,
and Irwin 2010), but have not fully solved them.
Here we describe the general household bidding
model, but present the model simulation for the
“large N” case only. This greatly simplifies the
analysis and corresponds to the spatial equilib-
rium case in which households bid their maxi-
mum WTP and landowners receive the entire gain
from trade. We demonstrate how the model can
be applied to an actual landscape to explore the
mechanisms that underlie the highly scattered
patterns that we observe in an exurban county—
Carroll County, Maryland, which is part of the
Baltimore—Washington, D.C., metropolitan area.

Theoretical Model of Residential Land
Development

We start with a two-dimensional grid of an ex-
urban landscape that is comprised of land parcels
that are of constant size and each owned by an
individual landowner who uses the land in agri-
culture. Contained within the grid is an urban
center that represents the urban area to which all
urban residents must commute for all employ-
ment and consumption. This exurban region is
modeled as a small open area into which utility-
maximizing urban residents migrate from the rest
of the world as determined by maximum utility
differences from residing within versus outside
the region. To incorporate spatial interactions and
heterogeneity, we assume that each land parcel is
owned by an individual landowner and is indexed
by a unique location i on the two-dimensional
grid. Land parcels are distinguished by distance
to the urban center z; and parcel-specific attributes
A; and x; that represent local amenities and physi-
cal characteristics of each parcel respectively.
Specifically, we define 4; as a scalar that repre-
sents the proportion of surrounding undeveloped
land within a given neighborhood of parcel i.
Thus, while it is exogenous to the landowner of
parcel i, A; is a spatial dynamic variable that
evolves over time in the model and generates re-
cursive spatial interactions among neighboring
landowners. On the other hand, we assume that
the vector x; includes slope, soil type, and quality
variables that influence the productivity of the
land in an agricultural use and that also can influ-
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ence the costs of converting the land to a residen-
tial use. These variables are assumed to be ex-
ogenous and constant, but to vary spatially across
parcels.

Following Capozza and Helsley (1990), we
model the decision of agricultural landowners to
convert their land parcel to a residential use in re-
sponse to a growing demand for new housing
from identical households entering the exurban
region. Household demand for residential land is
driven by the stochastic growth of household in-
come, denoted by Y(7), Y(¢) = gt + oB(f), where g
> 0 is the drift parameter, o* is the variance of
income, and B(¢) is a driftless Brownian motion
term with unit variance. Households derive utility
based on the consumption of a numeraire good X,
fixed parcel size L, and parcel-specific amenity
A, UX;; L, A4). Assuming L is fixed at one unit
of land, the budget constraint in time ¢ for a
household living at location (z;,4;) is Y(¢) = PxX;
+ R(t,z;,A;) + Tz;, where R(t,z;, A;) is the urban
land rent paid by the household for parcel i, and T'
is the per-unit transportation costs. Following the
standard approach, the household’s maximum WTP
is derived by imposing the conditions of a long-
run spatial equilibrium. For the case of the open
city model, this is determined by the equalization
of household utility across all locations to the res-
ervation utility associated with the maximum util-
ity that can be attained outside the region, U,. As-
suming a monotonic utility function, one can in-
vert the utility associated with a specific parcel i,
U(X;L,A) = U, to obtain X; = U '(Uy; L, 4,),
which then represents the minimum consumption
of X; needed to obtain U, for a given L and 4;.
The household’s maximum WTP for land parcel i,
denoted as V;, is defined as the bid that leaves the
household indifferent between locating in or out
of the region:

V,-(t,Z,.,Ai) = Y(t)_Vo(Z,'sAion):

where Vy = Tz; + PXU’I(UO;L,A,-) is the house-
hold’s minimum expenditures on transportation
costs and the numeraire good needed to obtain the
minimum level of utility U,. Note that V; is the
maximum the household is able to pay for parcel i

7 Because households will trade off their consumption of X with the
local amenity associated with parcel 7, their optimal consumption of X
will vary across parcels, and therefore we write X;.
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and still be indifferent to living within the region
rather than preferring to live outside the region.

Departing now from the familiar urban eco-
nomic model that is used by Capozza and Helsley
(1990) and many others, we model the house-
hold’s optimal bid as a function of V;, which in
turn is a function of their income Y(¢) and the
specific attributes associated with parcel i. Drop-
ping the subscript i for notational simplicity, we
define the household’s optimal bid function as
b(V), which is determined in a first price sealed
auction according to the following maximization
problem. Households seek to formulate a bid, w,
that maximizes their utility by increasing the
amount of income that remains after the residen-
tial land payment V' — w. Implicitly, this income
residual is used to purchase more of the compos-
ite good and results in greater utility. Because
bids are a function of distance and amenities, the
income residual and thus the utility from any win-
ning bid will vary across space. However, house-
holds must also compete with other buyers and
thus have an incentive to increase their bid w to
improve their chances of winning the bid. The
probability that the household wins the auction
with any given w is determined by the probability
that all other bids by other households are less
than w. Taking these two competing forces into
account, we formulate the following optimal bid-
ding problem:

) max, {(V =w)F"™" [67 (W)]},

where F is the cumulative probability distribution
of the random variable V, with w = b(V) or V' =
b (w). Intuitively, given that the household’s bid
w  is monotonically increasing in V, then we can
write F as a function of W, b'(w). Then F"'[b~
'(w)] is the joint probability that the bids of all
other N—1 households for a given parcel, which
are private information, are less than the house-
hold’s bid, w, for that parcel. Thus the expression
in equation (1) represents the household’s ex-
pected income residual conditional on winning
the bid. Since ¥ obeys a simple stochastic differ-
ential equation with a drift and Wiener noise, F
can be obtained analytically. Taking the deriva-
tive with respect to w in equation (1) and rear-
ranging yields

dF"'(v)

FY w]= -w) T

dv
V=b"(w)—.
| (W)=

Incorporating Spatial Complexity into Economic Models of Land Markets 331

Multiplying both sides by db/dV, rearranging
further, and given that w = b(}V'), then we can
write

db dFY v 1
Doy _L
dv v F" (V)
which can be rewritten as
N-1 N-1
b ) +b(V) a ) _ v () .
dv dv dv

Note that the left-hand side is the derivative of
b(V)FN"!(V). Rearranging once again, letting u =
v, and taking the integral of both sides over u
from —oo to V yields an analytical expression for
the household’s bid rent function for land as an
integral over a known distribution function:

v d N-1
2) b(V)=FN+(V)jwduu ’;u :

Thus for any given V(¢,z,A4) and given F and N
we can in theory calculate the household’s opti-
mal bid for a given parcel. For parcel i, this bid is
a function of exogenously and endogenous spatial
features of the landscape, distance to the urban
center z; and surrounding open space amenities 4;,
respectively, and the number of other bidders
against which the household is competing for par-
cel i, N;— 1. Thus it accounts for both the spatial
complexity of the landscape as well as market
conditions in deriving the household’s bid from a
structural model of utility maximization. Given
the winning bid for parcel i, landowners take the
winning bid as the residential rent, i.e., R(¢, z;, 4,)
=b(V).

In practice, evaluating equation (2) clearly de-
pends on being able to evaluate the integral over

N-1
y 4E0)
a,

The fact that V; obeys a simple constant drift
Brownian motion makes an analytic solution pos-
sible when b(V;) = V;, which is the spatial equi-
librium case in which household bids are equal to
their maximum WTP. This approach is followed
by Capozza and Helsley (1990). For small values
of N, however, b(V;) < V;, and it is not possible to
evaluate this analytically. One can potentially
evaluate the integral numerically and tabulated or
approximated by splines, but this is computation-
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ally challenging. In the remainder of this section,
we present the results for the “large N” case,
which corresponds to b(V;) = V;. Given that this is
also the case considered by Capozza and Helsley
(1990), the remainder of our model set-up follows
their model with the exception that we distinguish
the landowner and developer decisions and we al-
low for heterogeneous returns and costs. Speci-
fically, equations (3)—(9) below are reproduced
from Capozza and Helsley (1990) with these ad-
justments added.

Land in agriculture earns an agricultural rent of
R, per unit of land. Because land is heterogene-
ous, R, is a function of x;, the physical attributes
of parcel i that influence agricultural returns such
as slope and soil quality. Each landowner is as-
sumed to own a unique parcel of agricultural land
and faces the decision of when to sell his land to a
developer, at which point it is assumed to be in-
stantaneously and irreversibly converted to urban
use. The expected net present value in time period
7 =t of a unit of agricultural land at z > z" outside
the city boundary z* that is converted into urban
use at time T = ¢ + s is given by

() PR.(t,5,2,4,x)
=E :Hdr e "R (x,) ,

i

+ " R(v.z4)e" " dT | R(t,2,,4,)

where s is the stopping time and r is the discount
rate. Note that the first term is the present value
of land in agriculture up to the time of sale, ¢ + s.
Given the assumptions regarding stochastic in-
come growth and setting T = ¢ + 5, we can rewrite
R(t,z;,A)) as

(4) R(t+s,z,4)=R(t,z;,,4)+ gs+cB(s).

Given this, the expected value in period ¢ of urban
land in period ¢ + s can be written as

(5) E{R(t+5,2, 4 | R(t,2,, 4)}

:lE{[R(t+s,zi,Al.)+§}e” |R(t,zl.,A7.)}.
r r

Given equations (4) and (5), Capozza and Helsley

Agricultural and Resource Economics Review

(1990) show that equation (3) can be rewritten as

(6)

R
P (t,8,z,,4,x)=—
-

+1E{[R(t+s,zi,Al.)+§—Ra}e'” |R(z,z,.,A,.)}.
r r

The landowner’s problem is to choose the optimal
time T = ¢~ to sell land such that his expected net
present value of the land is maximized. This opti-
mal time corresponds to the level of urban land
rent at time ¢, referred to as the reservation rent
and denoted as R". Stochastic income growth im-
plies that R(#,z;,A;) is a random process but the
process is stationary and therefore R* is inde-
pendent of time. Thus the decision to sell will
occur as soon as the random process R(t,z;, 4;)
equals R" for the first time. Substituting this into
equation (6) and letting s = ¢~ — ¢ yields the fol-
lowing expression for the expected price of agri-
cultural land conditional on R ":

(7
E{Pa(t7ziaA,'9x,'7R*)}
= £+1{R* +§—RQ}E{e’<"'> |R(t,z,,4),R}.
r r r

To evaluate this expected value of agricultural
land at a time when R(t,z;, 4;) = R", we need to
evaluate E{e""|R(t,z,4),R"} for the ex-
pected value of e, where ¢ is the first pas-
sage time for R(z, o, A) to reach R . Capozza and
Helsley (1990) show that, given an analytical ex-
pression for the moment-generating function for
t", the expected price of agricultural land can be
written as

®)  E{R(tz,4.x.R)}

R, 1] . e RO
S 2R +§_Ra R Rz AN
r r r

where

oo (\/g2 +26°r -2)
—_—.
c

The reservation rent is the value of R that maxi-
mizes equation (8), which is given by
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) R =R -£+a,
r

where o represents the price of uncertainty.

Given R(t,z;,4;) > R*, the landowner of parcel i
will seek to sell land to the land developer. How-
ever, the land developer must also cover the costs
of converting the land parcel to a residential use.
Let these costs be represented by C(x;), so that
conversion costs are spatially heterogeneous and
depend on the physical features of the land parcel.
The land developer will consider purchasing par-
cel i and developing it only if

(10) R(t,z,4)> R +C(x,).

Otherwise, parcel i will remain unsold and unde-
veloped. When the land developer is faced with
multiple land parcels for which equation (10)
holds, he will choose to convert the parcel that
maximizes his one-time profit from developing in
period ¢, R(t,z;,A;) — R - C(x;). Given parcel i
that maximizes profits in period #, conversion of
parcel i to a residential use is assumed to be in-
stantancous and is immediately occupied by a
household.

The temporal and spatial sequencing of events
in the model is as follows. At the beginning of
each period ¢, income growth is realized, bidding
occurs, and decisions to sell and convert land are
made by the landowners and land developer re-
spectively. Given land conversion in period ¢, 4;
is updated for every parcel i at the end of period 7.
At a given income level, the parcels with better
proximity to urban centers, higher amenities, lower
agricultural yields, and lower conversion cost will
become developed first. As land conversion pro-
ceeds, ceteris paribus, the reservation rent re-
quired by farmers (R") and the developer [R"~ +
C(x;)] will increase because parcels with low ag-
ricultural yields and conversion cost will be con-
verted first. The residential rent for developable
parcels will become less compared to the newly
developed parcels because, ceteris paribus,
parcels closer to urban centers and with higher
amenities are developed first. However, income
growth over time will also lead to higher rents
paid on all parcels of developed land. Given in-
come growth (i.e., g > 0), urban land rents will
increase over time and additional agricultural land
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will be sold and developed for new residential
use. In the absence of further income growth (g =
0), a static long-run equilibrium is reached when
the residential rent on any agricultural parcel i is
insufficient to cover the reservation rent R* and
the conversion cost C(x;).*

Simulation Details and Model Results

Given this specification of household and land-
owner behavior, we implement the model using a
spatial simulation framework for Carroll County,
Maryland, an exurban county located to the north-
west of Baltimore and to the north of Washing-
ton, D.C. (Figure 2). Carroll County was a pre-
dominantly rural county until 1960, at which
point migration into the county began to increase.
Between 1980 and 2000, population grew by 55
percent, from just under 100,000 to over 150,000.
This growth has resulted in the county shifting
away from a predominantly agriculture-based land-
scape to one with a large portion of the landscape
developed. The largest portion of the developed
land is single-family residential dwellings. Since
1990, 95 percent of the development in the
county has been some form of residential devel-
opment (Wrenn 2011). Our goal is to provide an
initial exploration of whether our model can ex-
plain the observed patterns of residential land use
patterns in this study region. In particular, we
observe a mix of fragmented and clustered resi-
dential development and persistent leapfrog de-
velopment over time (Zhang, Wrenn, and Irwin
2011).

To operationalize the land conversion model
for this landscape, we begin by creating a grid for
the county defined by a cell size of 1 km®. We use
GIS data on land development patterns in Carroll
County as of 1990 to initialize the model and
overlay the 1 km?® grid to generate the pattern of
land development at this spatial resolution. We
refer interchangeably to a land parcel i and cell i.
As a first step in exploring the land use change
pattern, we distinguish only between the devel-
oped and undeveloped land. All agricultural land
is considered to be undeveloped land. The dis-

8 Because the stochastic term in the income is normally distributed,
the income level in each period is unbounded. For simplicity, the stop-
ping criterion for the long-run static equilibrium is chosen so that the
mean income level is insufficient to cover the threshold rent and the
conversion cost.
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Figure 2. Carroll County, Maryland

tinction among the residential, commercial, and
industrial land uses is ignored. Because the theo-
retical model is limited to a single density, size,
and type of developed land use, this simulation is
clearly an oversimplification of the actual devel-
opment process. Local land use amenities A4; are
calculated as the percentage of open space within
the eight neighboring parcels for each parcel i.
For instance, a parcel with four undeveloped neigh-
bors has a value of 4;=0.5. As land development
occurs in each time period, 4; will also change
for some parcels, and therefore 4; is updated for
each parcel i at the end of each round of simu-
lated land conversion.

In addition to this source of local spatial inter-
action among neighboring land parcels, three
types of spatial heterogeneity are considered: the
commuting cost, which depends on the parcel’s
accessibility to one or more urban centers; the
agricultural yield, which determines the reserva-
tion rent of the farmers; and the conversion cost,
which affects the site choice of the land devel-
oper. For each spatial variable, we calculated the
aggregate values at this same 1 km® grid scale.
Carroll County contains three small urban centers
(Westminster, Sykesville, and Mount Airy). The
City of Westminster, located at the center of Car-
roll County, is the largest urban center in the
county. Because many of the residents in Carroll
County commute to Baltimore and Washington

Z7% 7

Baltimore Y
Metropolitan ¢ 2F L

D.C. and their environs, we use the towns of
Sykesville and Mt. Airy as proxy for these desti-
nations. We calculate commuting costs as the sum
of the distance from the centroid of each grid cell
to each of these three destinations via the major
roads network in Carroll County. Spatial variation
in agricultural rents at the same scale are proxied
using data on corn yields. This agricultural yield
is obtained from the Soil Data Mart website
(USDA), with corn chosen as the standard crop.
The yield data are estimated values assuming that
the land is subject to “a high level of manage-
ment.” These values are observed at the spatial
scale of soil type polygons. The 1 km® was over-
laid in the soil polygons and an area-weighted
mean yield value was derived for each grid cell.
The conversion cost of each parcel is also based
on these data. For each soil type in the Soil Sur-
vey Area (SSA) data, a rating is given that pro-
vides an indication of the soil’s suitability for
urban development. This categorical rating was
converted into a numerical value and a mean
value derived for each grid cell. All data were
created using ArcGIS and imported into NetLogo
to perform the model simulation.’

To operationalize the model, specification of
preference, income, and transportation cost pa-

° For further details, see Chen (2009).
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rameters is necessary. First, we assume that resi-
dential migrants have a preference of the Cobb-
Douglas form, U(X,;L,4)= X" (A4L)*", where
the local amenity 4; and the parcel size L are non-
separable. For the baseline specification, we as-
sume that o,; = 0.8 and o, = 0.2. Second, based on
our analysis of the 1990 and 2000 U.S. Census
income data for Carroll County, we parameterize
income growth as a Brownian motion with drift
2=0.5 and standard variation ¢ = 0.5.'° The ini-
tial income level is set at Y (¢ = 0) = 6, which en-
sures that under the baseline specification the
number of developed cells equals approximately
the number of developed cells in the real land-
scape in year 2000. Next, we consider transporta-
tion costs. In Carroll County, the fuel cost of com-
muting is minimal. However, the opportunity cost
of travel time can still be significant in determin-
ing the choice of location. We assume that the
unit travel cost 7 equals 2, so that the commuting
cost is roughly 5 percent of the income. Lastly,
we set the price for the composite good P, = 1
and the reservation utility level at U, = 2. The
model is initialized with the 1990 land develop-
ment pattern. The ending time of the simulation is
chosen so that the number of developed parcels
roughly equals the total number of developed
patches in Carroll County in 2000.

The averaged results of 100 simulations are
summarized in Table 1. Various approaches to
model validation are possible. The simplest ap-
proach is to assume that if the location of a de-
veloped parcel in the simulation coincides with
the location of a developed parcel in the real data,
then it is considered to be a correct prediction.
The total number of these parcels is reported in
Table 1 as the number of correct predictions of
“Type A.” On average, the model simulations
correctly predict 40 percent of the parcels that are
actually developed in 2000. However, this is a
very stringent criterion for model validation. We
relax this criterion to allow for near misses. Spe-
cifically, if the simulation predicts development
of either the parcel that is actually developed in
2000 or at least one of the parcel’s immediate
neighbors, then it is considered to be a correct

1% An annual income growth rate of 4 percent will generate roughly a
50 percent income growth at the end of the tenth year. The sigma value
implies that roughly 70 percent of the residents have an annual income
growth in the range [-4%, 4%].

Incorporating Spatial Complexity into Economic Models of Land Markets 335

prediction. The total number of these parcels is
reported in Table 1 as the number of correct pre-
dictions of “Type B.” On average, 80 percent of
the developed parcels in the 2000 data have at
least one neighboring parcel (or itself) that is de-
veloped in our simulation results. By comparison,
given that 174 of 1,016 available cells are actu-
ally developed in Carroll County as of 2000, a
completely random model of development gener-
ates a 17 percent chance of predicting the correct
“Type A” location of a developed cell that is ob-
served in the real data, and a 60 percent chance of
predicting the correct “Type B” location of a de-
veloped cell.

Figure 3 illustrates the output from a represen-
tative model run and compares this output to the
aggregated urban land use pattern from 2000.
Visual inspection shows some similarity between
the simulated and real patterns. However, closer
inspection shows that in areas around the urban
centers, the simulated land use pattern is not as
clustered as the real land use pattern, whereas in
the areas away from urban center, it is not as
scattered. To further compare the simulated land
use pattern with that of the real data, several pat-
tern metrics are generated using Fragstats, the
landscape metrics software package.'' To quanti-
tatively measure land use pattern, we require meas-
ures that capture the characteristics of developed
land use patches as well as measures that capture
the spatial relation among different patches of
development. For all developed land use patches,
we calculate the mean area (m”), mean perimeter
length (m), and the total number of patches for
each simulation run. To measure the shape com-
plexity of developed patches, we use the perime-
ter-area ratio index and the shape index. The pe-
rimeter-area ratio index is equal to the ratio of the
patch perimeter (m) to its area (m®). The shape
index is calculated using a raster format. It is
equal to the patch perimeter (measured in terms
of the number of cells that comprise the perime-
ter) divided by the minimum perimeter possible
(also measured in the number of cells) for a patch
of the same area. In both cases, the higher the
ratio, the more complex is the shape. In addition,
we use the fractal dimension index to quantify the
cross-scale regularity in the spatial pattern by
measuring the relationship between the perimeter

! For a full discussion of these metrics, see McGarigal et al. (2002).
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Table 1. Model Validation Using “Type A” and “Type B” Evaluation Methods

Simulation Result Mean® Min.* Max.* Std.
Number of developed parcels 142 126 153 5.2
Number of correct prediction A 50 41 573
29) 24) (33)
Number of correct prediction B 137 128 144 3.7
(79) (74) (83)

Number of developed parcels in 2000: 174

* Percentages in parentheses.

Observed

Simulated

Figure 3. Observed and Simulated 2000 Carroll County, Maryland, Urban Land Use Pattern

Note: The observed land use pattern is aggregated to a 1 km® grid cell so that it is comparable to the model output at the same
scale. On the left, dark cells indicate the location of predominantly developed land. In the simulated version (on the right), dark
cells indicate the location of land development as predicted by the model.

and the area across different sizes of patches. This
measure is defined as two times the logarithm of
the patch perimeter (m) divided by the logarithm
of patch area (m?). A fractal dimension of greater
than one indicates an increase in shape complex-
ity. Finally, to capture the spatial relationship be-
tween the developed and undeveloped patches,
the edge contrast index is used to measure the
total amount of contrasting edges between devel-
oped and undeveloped land patches that share the
same edge. The results from the observed and
simulated landscapes are summarized in Table 2.
The first row specifies the pattern metrics used.

The second row lists the values of the pattern
metrics for the real land use pattern in 2000. The
third row gives the mean value for the 100 simu-
lations. The fourth row shows the standard devia-
tion of the simulations. We find that the simulated
land use pattern differs significantly from the ob-
served land use pattern. Except for the shape in-
dex, all pattern metrics for the real land use pat-
tern lie beyond two standard deviations from
those of the simulated patterns, suggesting that the
probability for the model to regenerate the same
metrics as in the data is approximately less than
10 percent.
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Table 2. Comparison of Selected Landscape Metrics Applied to Simulated and Actual Land Use

Patterns
PATTERN AT THE COUNTY LEVEL

Number of Patches Mean Area Total Edges
Data 2000 39 2,597 353,000
Simulation 48 2,132 426,750
(std.) (4.44) (207.60) (15,197.00)

Fractal Dimension Perimeter-Area Ratio Shape Index Edge Contrast
Data 2000 1.02 329 1.27 91
Simulation 1.03 354 1.31 96
(std.) (0.00) (0.67) (0.05) (1.09)

PATTERN OF THE DEVELOPED LAND USE

Number of Patches Mean Area Total Edges
Data 2000 38 458 353,000
Simulation 47 306 426,750
(std.) (4.40) (32.10) (15,197.00)

Fractal Dimension Perimeter-Area Ratio Shape Index Edge Contrast
Data 2000 1.02 33.6 1.18 91.5
Simulation 1.02 1.23 96.5
(std.) (0.00) (0.67) (0.04) (1.08)

Discussion of Model Results and Limitations

In comparing the actual and simulated patterns of
development, we find that the simulation model
performs reasonably well in terms of predicting
the location of exurban development, but that
additional work is needed to reproduce these
quantitative features of the observed land use
pattern. For example, the model simulation gen-
erates too many patches and the patch sizes on
average are too small. Nonetheless, the utility of
this approach is evident. By developing a fully
structural model of optimal household location
demand and optimal land conversion by land-
owners and developers, this approach links the
microeconomic foundations of land use with ex-
plicit predictions of land development and the
evolution of land use patterns. Thus it is possible
to explore how changes in underlying preference
or cost parameters would be predicted to alter
patterns of development. In so doing, this model
is similar to other spatial simulation models that
incorporate spatial dynamics and heterogeneity
that are reviewed in the first part of this paper.
Because we also rely on the simplifying assump-
tion of a spatial equilibrium, the model presented

here is most closely related to Caruso et al.
(2007). Like the model results reported in Caruso
et al. (2007), our model generates predictions of
varying degrees of clustered and scattered urban
land use patterns. However, unlike the model set-
up in Caruso et al. (2007), we do not impose ad-
ditional assumptions about market power and its
transfer from a single migrant to the landowner.
Instead, we maintain the assumptions of the spa-
tial equilibrium model, in which market power
resides with the landowner, and households’ bids
are always equal to their maximum WTP. For this
reason, households are indifferent to location,
which, as we argued earlier, prevents us from
assigning a specific household to a specific loca-
tion. However, in this version of our model, all
households are homogeneous and therefore it is
not necessary to keep track of each household and
its location. Instead, increasing residential land
rents, which increase with income growth and are
higher for more desirable locations (i.e., locations
that are closer to the city and have higher ameni-
ties), determine the amount and location of land
conversion, along with the landowner’s reserva-
tion rent and the land developer’s conversion costs.
In a model with preference or income heterogene-
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ity, an alternative approach would be needed
since the spatial equilibrium assumption of utility
indifference across all locations is no longer an
appropriate assumption. Spatial arbitrage is possi-
ble as households sort themselves across loca-
tions, and thus accounting for utility differences
across space is necessary in order to identify se-
quential land conversion in space and time. This
is a much harder model to implement since we
can no longer assume that a household’s bid is
equal to the maximum WTP, i.e., b(V;) # V;, and
thus requires numerical evaluation of the house-
hold bid function in equation (2).

In addition to its continued reliance on the spa-
tial equilibrium assumption, the current model’s
most substantial limitation in its implementation
is the lack of empirically estimated parameter
values in the utility and cost functions. Ideally,
one would derive an estimable model from the
structural models of household location choice
and land conversion decisions and estimate the
parameters of the spatial simulation model in this
way. Given a lack of data on household charac-
teristics and land development costs, we are un-
able to do this in our current implementation of
the model. However, such an approach is possible
and certainly preferred to the calibration of pa-
rameters that we do here. However, empirical
specification requires structural empirical estima-
tion of the underlying behavioral models. While
much progress has been made recently in esti-
mating structural household location choice mod-
els, these models still rely on static long-run equi-
librium assumptions. Dynamic models of house-
hold location and land development decisions are
currently in their infancy (e.g., Bayer et al. 2010,
Murphy 2007, Paciorek 2010) and extremely chal-
lenging to implement, given the data require-
ments and number of structural parameters to be
estimated. Nonetheless, this approach to parame-
ter specification of spatial simulation models
holds much promise by marrying the empirical
estimation of structural parameters with spatial
simulation that is needed to evaluate non-mar-
ginal changes and spatial dynamic feedbacks.

Concluding Comments

Our review of models that incorporate greater
spatial complexity highlights progress that has
been made in incorporating spatial dynamics and
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spatial and agent heterogeneity into land market
models. We discuss a few of the many challenges
involved in developing such models, in particular
the challenges of deriving optimal household and
landowner bidding functions and market price
formation from structural microeconomic models.
We develop a model that provides a framework
for a fully structural approach to modeling house-
hold bidding and price formation, but stop short
of fully developing this model given the compu-
tational challenges involved.

While there are many unanswered questions
that remain, we conclude with a line of question-
ing that is critical if agent-based modeling is to
take a firmer hold in economics. That is, how
does the inclusion of specific agent-based model
features that are ignored by the traditional spatial
equilibrium models, such as short-run transitional
dynamics that arise from local interactions, alter
the equilibrium predictions of the model? Since it
is possible to use agent-based models to explicitly
consider short-run dynamics that are overlooked
in the traditional spatial equilibrium model, we
should understand if and how these short-run ef-
fects matter; e.g., do short-run dynamics matter
only for the transitional dynamics or if they also
alter the long-run equilibrium of the system? Does
the system eventually reach a spatial equilibrium
when such features are considered? And if so, is
it the same spatial equilibrium as that which is
achieved when these features are ignored and the
spatial equilibrium is assumed to be instantane-
ously reached? And if not, under what conditions
does the system diverge? Most importantly, does
consideration of short-run dynamics provide a
more robust explanation of the changes in land
markets or land use patterns that are observed in
reality and not well explained by the traditional
urban growth models?

Exploration of such questions requires further
improvements in agent-based models that make
them comparable to the traditional urban eco-
nomic models of land markets and land use pat-
terns. Comparability requires (i) rebidding, so that
land prices can evolve over time with market
conditions regardless of whether the land is occu-
pied or not, and (ii) that the household’s maxi-
mum value of the WTP function be equal to the
household’s bid in spatial equilibrium. In addi-
tion, the household’s optimal bid should be de-
rived from a fully structural model in which the
optimal bidding process accounts simultaneously
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for the spatial variation at an individual plot level
and market conditions that can deviate from those
in spatial equilibrium. While none of the models
we review here nor the model that we present
accomplish all of these tasks, meaningful pro-
gress has been made. Much more work remains to
develop agent-based models of land markets and
spatial dynamics that can answer these and other
questions, making this an exciting area for future
research.
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