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Incorporating Spatial Complexity into 
Economic Models of Land Markets and 
Land Use Change 
 
Yong Chen, Elena G. Irwin, and Ciriyam Jayaprakash 
 
 Recent work in regional science, geography, and urban economics has advanced spatial mod-

eling of land markets and land use by incorporating greater spatial complexity, including mul-
tiple sources of spatial heterogeneity, multiple spatial scales, and spatial dynamics. Doing so 
has required a move away from relying solely on analytical models to partial or full reliance 
on computational methods that can account for these added features of spatial complexity. In 
the first part of the paper, we review economic models of urban land development that have 
incorporated greater spatial complexity, focusing on spatial simulation models with spatial en-
dogenous feedbacks and multiple sources of spatial heterogeneity. The second part of the pa-
per presents a spatial simulation model of exurban land development using an auction model 
to represent household bidding that extends the traditional Capozza and Helsley (1990) model 
of urban growth to account for spatial dynamics in the form of local land use spillovers and 
spatially heterogeneous land characteristics. 
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The classic urban bid rent model (or the mono-
centric model as it is often called) is one of the 
most important theoretical developments in urban 
economics and urban growth models. The basic 
intuition of the model—that transportation costs 
to an urban center are capitalized into land rents, 
leading to a systematic pattern of land uses and 

density around the urban center—provides an ele-
gant and mathematically tractable microeconomic 
model of household and firm location choices that 
fully characterizes spatial equilibrium land rents 
and the pattern of land uses within a city. First in-
troduced by Alonso (1964) and further elaborated 
by Mills (1967) and Muth (1969), this model has 
spawned a voluminous literature and numerous 
theoretical extensions, including dynamic models 
that consider land development decisions (Capoz-
za and Helsley 1989), nonmonocentric models that 
explain the emergence of cities as the result of 
spatial externalities (Ogawa and Fujita 1980, Fu-
jita and Ogawa 1982), and extensions of the basic 
new economic geography model (Krugman 1991) 
to include a land market in continuous space (Fu-
jita and Krugman 1995). Despite these advances, 
the shortcomings of the basic model have also 
been well articulated, including the greatly sim-
plified representation of space as distance to the 
city center and the static or long-run nature of the 
spatial equilibrium assumption that rests on cost-
less migration of firms and people across space. 
 More recent efforts in economics and geogra-
phy have succeeded in moving beyond the tradi-
tional representation of space as distance to the 
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urban center to more complex representations of 
space, including multiple sources of spatial het-
erogeneity, multiple spatial scales, and spatial dy-
namics. Doing so has required a move away from 
relying solely on analytical models to partial or 
full reliance on spatial simulation methods that 
can account for these added features of spatial 
complexity. In addition, it has led to questions 
regarding the theory of urban land markets and 
how best to modify the traditional urban bid rent 
theory to account for these additional sources of 
spatial complexity. In particular, the assumption 
of a spatial equilibrium, which forces any loca-
tional advantage or disadvantage to be fully offset 
by land prices so that households are indifferent 
to location, presents challenges to modeling se-
quential price adjustments, location choices, and 
land use change over time. The instantaneous ad-
justment of prices to any change in market condi-
tions or locational attributes is a simple yet power-
ful means of modeling spatial variations in prices 
and their adjustment over time. However, this 
approach ignores any short-run constraints that 
would prevent prices from fully adjusting and 
instead assumes that the long-run spatial equilib-
rium is immediate. Under such conditions, only 
exogenous sources of change over time, such as 
regional population or income growth, can gener-
ate price and land use changes over time. Recur-
sive modeling of endogenous feedback effects, 
such as local land use spillovers, congestion, or 
agglomeration that naturally would cause a se-
quence of price and land use adjustments over 
space and time, is not possible. This greatly limits 
the representation of spatial dynamics, as we elabo-
rate on below. 
 The purpose of this paper is, first, to review 
microeconomic models of urban land use and 
growth that have incorporated spatial dynamics 
and multiple sources of spatial heterogeneity, and 
second, to present a spatial simulation model of 
exurban land development that uses a household 
bidding model to extend the traditional Capozza 
and Helsley (1990) model of urban growth to ac-
count for spatial dynamics and heterogeneity. 
 
Defining Spatial Complexity 
 
It is useful to start by being explicit about what is 
meant by “spatial complexity.” Following Figure 
1, we define spatial complexity as a continuum 

that begins at one end with models in which space 
is omitted altogether and extends to models with 
dynamic spatial feedback effects with multiple 
sources of spatial heterogeneity. Examples in the 
urban land use literature include early models of 
optimal land development that focused on the 
temporal aspect of the landowner’s decision with 
no explicit representation of location or space 
(e.g., Arnott and Lewis 1979, Arnott 1980). The 
first order of spatial complexity is represented by 
models in which space is exogenous and defined 
by a single dimension, i.e., space is a “featureless 
plane” with the exception of a single source of 
exogenous variation that differentiates it. The ba-
sic monocentric model provides the quintessential 
example of this first-order spatial model: exoge-
nously defined distance from the city center leads 
to locations distinguished only by varying trans-
portation costs that constrain the location choices 
of households and firms and lead to systematic 
spatial patterns. These models may be static or 
dynamic. 
 Models in which multiple sources of exoge-
nously defined spatial heterogeneity are included 
represent the next level of spatial complexity. Wu 
and Plantinga (2003) provide such an example in 
which distance to exogenously determined open 
space adds another dimension of space over which 
households must optimize their location choices. 
Equilibrium land rents are a function of both dis-
tance to the central business district and these 
other spatial features. Given an analytical expres-
sion for land rents as a function of heterogeneous 
space, spatial simulation is used to describe the 
spatial equilibrium patterns that result within the 
context of an open city model. 
 Static or long-run equilibrium models with 
endogenous spatial feedbacks represent a third 
level of spatial complexity. These models account 
for the feedback process in a simultaneous fash-
ion so that the equilibrium outcome is one in 
which each individual’s choice is consistent with 
the endogenous feedback. These feedbacks can 
manifest themselves at the same spatial scale 
(e.g., interactions among individuals or among ju-
risdictions) or across spatial scales (e.g., individ-
ual choices that determine some endogenous out-
come at a neighborhood or jurisdictional level). 
Turner (2005) provides an example of local spa-
tial interactions among households, in which he 
presents a game theoretic model of household lo-
cation with local open space spillovers and com- 
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Figure 1. Types of Spatial Complexity That Have Been Incorporated into Urban Land Market 
Models 
Note: “Dynamic” may refer to a process that is said to be a dynamic equilibrium or out of equilibrium. We do not distinguish 
between these for the purposes of this paper. 

 
 
muting costs to the city center. Rather than spatial 
simulation, the resulting equilibrium land use pat-
tern is deduced by a series of proofs. Differences 
in market conditions and the timing of residential 
moves result in differences in price gradients and 
the timing of development at a particular location, 
but in all cases the model yields predictions of a 
densely occupied center, scattered development in 
the suburban areas, and vacant land beyond the 
outer suburban edge. Tajibaeva, Haight, and Po-
lasky (2008) provide an example of interactions 
among jurisdictions in a multi-centric urban eco-
nomic model with open space amenities. Public 
open space is optimally allocated by local govern-
ments, but open space amenities spill over across 
local areas and influence the long-run equilibrium 
pattern of open space and residential land use. 
Structural empirical models of household loca-

tional choice (e.g., Bayer, Keohane, and Timmins 
2009, Klaiber and Phaneuf 2010, Smith et al. 
2004, Walsh 2007), in which local public goods 
such as air quality, open space, or education are 
modeled as endogenous to household location 
choices at a neighborhood scale, provide exam-
ples of static models that consider endogenous 
interactions across individual and neighborhood 
scales. These models are closed by an analogous 
spatial equilibrium condition, but one that ac-
counts for the heterogeneity of households and 
for the endogenous feedback effect between indi-
vidual location and neighborhood characteristics: 
a sorting equilibrium is defined as a set of indi-
vidual location decisions that are optimal given 
the location decisions of all other individuals in 
the population (e.g., Bayer and Timmins 2005, 
Epple and Sieg 1999). 
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 Spatial dynamic models represent a further level 
of spatial complexity. These models take both 
spatial and temporal dynamics into account by 
representing a spatially dependent dynamic proc-
ess in which a change over time at one location is 
dependent on the state or changes in the state at 
other locations (Smith, Sanchirico, and Wilen 
2009). Brock and Xepapadeas (2008) and Bouce-
kkine, Camacho, and Zou (2009) provide exam-
ples of spatial dynamic models in which space is 
modeled as a one-dimensional homogenous line 
and spatial interaction is modeled as a diffusion 
process in which capital flows from places with 
higher stocks to places with lower stocks. Desmet 
and Rossi-Hansberg (2010) adapt this approach to 
model regional spatial dynamics by adding a 
more complicated form of interaction. Specifi-
cally, counties make investment decisions on in-
novation to generate high productivity within the 
counties so as to attract capital flow through trade 
surplus. Over time, the benefits from the innova-
tion diffuse over space with no cost. 
 Models that combine both spatial dynamics and 
multiple sources of spatial heterogeneity repre-
sent models with a high degree of spatial com-
plexity. These models are analytically intractable 
and require spatial simulation to characterize the 
results. While greater spatial complexity is not al-
ways a desirable model trait, accounting for both 
spatial dynamics and multiple sources of spatial 
heterogeneity is essential for models of land use 
change in which multiple types of endogenous in-
teractions may be present and many sources of 
spatial heterogeneity (in the physical attributes of 
land that is developable and its multiple loca-
tional features, e.g., proximity to employment or 
shopping areas) can influence individual land use 
and location decisions. For this reason, we focus 
the remaining, more in-depth discussion of litera-
ture on models of land development that have 
incorporated both spatial dynamics and spatial 
heterogeneity. We also focus on those models 
that contain an explicit structural model of land or 
housing markets. Because almost all empirical 
models of land markets are reduced form, we omit 
a discussion of econometric land use models.1 An 
exception is Murphy (2007), who develops a mi-
croeconomic dynamic spatial model of land de-
velopment that is estimated at a parcel scale. His 
                                                                                    

1 For a broader review of urban land use change models that includes 
discussion of econometric models, see Irwin (2010). 

model focuses on the role of costs in determining 
the developer’s optimal timing and amount of 
housing services. Because the focus is on this 
rather than on spatial dynamics or agent interac-
tions, we omit it from our discussion here. None-
theless, this modeling approach provides a com-
pelling means to parameterizing the dynamic spa-
tial simulation models that we review here, and 
further work on integrating this dynamic empiri-
cal estimation approach with spatial simulation is 
likely to be quite fruitful. 
 
Spatial Simulation Models of Land Markets 
and Land Use Change 
 
Structural models of land markets that incorporate 
both spatial dynamics and heterogeneity consti-
tute a small but growing body of work. We ac-
knowledge key model developments by research-
ers who have made important contributions while 
also attempting to provide a critical assessment of 
this work as a guide for future work. A distin-
guishing feature of these models is the way in 
which price formation is modeled. In some cases, 
the assumption of spatial equilibrium is employed 
to derive a set of spatial equilibrium prices that 
evolve over time in response to exogenous 
changes. In other cases, agent-based models2 are 
used to derive individual prices of land or houses 
that are the result of bilateral trades explicitly 
modeled among heterogeneous buyers and sell-
ers. The advantage of the latter is their ability to 
account for so-called “out of equilibrium” dy-
namics (or what others might call transitional or 
short-run equilibrium dynamics) that can account 
for endogenous interactions or feedbacks in a 
recursive manner. 
 Caruso et al. (2007) provides an example of the 
first approach, in which the evolution of land use 
patterns is modeled over time using a conditional 
spatial equilibrium approach that adjusts in each 
time period following the entrant of a new mi-
grant. Subsequent changes in land uses generate 
local spillovers that influence the desirability of 
nearby locations. This interaction creates an en-
dogenous local feedback effect that generates 
local spatial dynamics. A spatial simulation mod-
el is needed to account for the incremental change 
                                                                                    

2 For a more comprehensive discussion of issues related specifically 
to agent-based models of land markets, see Parker and Filatova (2008) 
and Parker et al. (2003). 
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in land use pattern that is capitalized into land 
rents that influence the next round of decision 
making. The model is simulated over many peri-
ods to study the implications of these multiple 
sources of spatial heterogeneity for the evolution 
of residential development patterns. Various pat-
terns of residential land use clustering and scat-
tering emerge depending on the magnitude and 
spatial scale of the land use spillovers. The ap-
proach is innovative because it demonstrates how 
local spatial dynamics can arise from a microeco-
nomic model of location choice and land use and 
influence land use patterns at a regional scale. 
However, it also points to the awkwardness of the 
spatial equilibrium assumption in a model that 
seeks to explicitly represent local spatial dyna-
mics. At the beginning of each period, the new 
migrant is assumed to have monopsony power, 
which allows him to pay only the reservation price 
of the farmer, and thus is able to choose the loca-
tion that generates the largest utility gain. Only 
after the new migrant chooses a location are 
prices assumed to adjust to a spatial equilibrium, 
implying that all market power is then transferred 
to landowners so that each household must pay its 
maximum willingness to pay (WTP) and is indif-
ferent to location. This awkward set of assump-
tions is one solution to modeling spatial differ-
ences in utility that lead to sequential location 
choices. Otherwise, if a spatial equilibrium were 
continuously imposed, the spillover effects of any 
land use change would be fully and instantane-
ously capitalized in price and new migrants would 
always be indifferent to location. If households 
are always indifferent to location, then it is im-
possible to sequentially order their location or 
land use choices. These modeling trade-offs high-
light the difficulty of incorporating recursive spa-
tial dynamics into a traditional spatial equilibrium 
framework. 
 Because they depart from aggregate market 
equilibrium assumptions, agent-based models of-
fer a means of explicitly representing recursive 
interactions, price adjustments, and the sequenc-
ing of location and land use decisions over time 
and space. Given the initial specifications of the 
economic system, the transitional dynamics are 
driven solely by agent trading that is not typically 
subject to an aggregate market-clearing constraint 
or other market-level equilibrium conditions. How-
ever, the lack of an aggregate market-clearing 
condition opens up difficult questions about how 
agent bidding, price formation, and the possibility 

of spatial arbitrage should be modeled. The endo-
geneity of land rents presents a challenge to de-
riving agents’ willingness to pay for a particular 
location from the standard constrained utility 
maximization framework, since the budget con-
straint includes the market rent of per-unit hous-
ing (or land) at that location, which is of course 
endogenous to the household’s bid. The assump-
tion of a spatial equilibrium solves this problem 
by ensuring that the household’s bid and the mar-
ket rent for each location are consistent with each 
other. 
 Parker and Filatova (2008) discuss this problem 
and other theoretical and methodological chal-
lenges associated with implementing agent-based 
land market models. They suggest several ap-
proaches to modeling agent bidding, ranging from 
ad hoc specifications of agents’ WTP functions, to 
an approach that assumes that agents form ex-
pectations over the market price of housing (or 
land) at a given location and then derive their 
WTP function from a constrained utility-maximi-
zation problem given this expected price. Agents 
act in response to expected prices and update 
their beliefs over time as they observe the realized 
market price for a given location. While this is a 
plausible approach and one that is theoretically 
grounded in utility maximization, it relies on the 
researcher having information about how agents 
form these expectations and how they modify 
their beliefs about prices given observed realiza-
tions of market prices. Given the dearth of em-
pirical data on how households, landowners, and 
developers form expectations,3 this is a challeng-
ing approach to implement and raises the usual 
concerns about model robustness. 
 A central question in spatial models of land use 
change is how locational advantages or disad-
vantages should be reflected in bids and market 
prices associated with housing or land at a par-
ticular location. The spatial equilibrium assump-
tion solves this question by assuming that any 
locational difference over which households have 
preferences is exactly offset by equilibrium prices 
that instantaneously adjust to these differences. 
The implicit assumption is that competition 

                                                                                    
3 In contrast, because data on traders are much more readily available, 

a good deal of work has been done on how expectations are formed by 
agents in agent-based models (ABMs) of financial markets for finan-
cial assets [e.g., see excellent summaries of the literature in LeBaron 
(2006), Hommes (2006), Tesfatsion (2006), and Duffy (2006)]. 
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among many footloose households for the more 
desirable land parcels results in equilibrium rents 
that are equal to households’ full WTP, so that in 
equilibrium households are indifferent to loca-
tion. Because each land parcel is assumed to be 
unique, landowner competition is ignored and all 
gains from trade accrue to landowners. The spa-
tial equilibrium assumption is most appropriate 
for large urban areas, in which households are 
mobile, land is scarce, and many households 
compete for unique locations. In contrast, ex-
urban regions are characterized by plentiful land 
and a limited number of households. This basic 
difference has far-reaching implications: instead 
of fully capitalizing households’ WTP for each 
parcel, the market price for exurban land is de-
termined by a limited number of households that 
compete and the decisions of multiple landowners 
who own similar parcels. Under such conditions, 
the transacted market price does not necessarily 
correspond to the household’s maximum WTP, 
and thus an alternative approach to modeling 
household bids and landowner expectations is 
needed. 
 Agent-based models provide a means of model-
ing transitional or short-run dynamics in the ab-
sence of an exogenous growth mechanism or con-
straint, but require an alternative approach to 
modeling price formation. While some have de-
veloped agent-based models of housing markets 
with aggregate hedonic pricing models (e.g., 
Miller et al. 2004, Waddell et al. 2003), others 
have taken advantage of the disaggregation of 
agent-based models by explicitly modeling price 
formation as the result of household offer bids, 
seller ask bids, and the interactions between indi-
vidual buyers and sellers. These models differ in 
how these market interactions are modeled and, in 
particular, in how agents’ WTP, willingness to ac-
cept (WTA), and perceptions of market competi-
tiveness are accounted for in their formulation of 
optimal offer and ask bids. Filatova, Parker, and 
van der Veen (2009) and Filatova, van der Veen, 
and Parker (2009) begin with an ad hoc speci-
fication of households’ WTP function as 
 

  
2

2WTP ,Y U
b U
×

=
+

 

 
where Y is income net of transportation costs and 
expenditures on a composite good, U is house-

hold utility, and b is a parameter that is assumed 
to represent the price of the composite good. This 
WTP function mimics standard demand relation-
ships, such as increasing WTP with income. Ex-
penditures on the composite good enter indirectly: 
given the functional form assumption, households 
never spend all their income net of transportation 
costs on housing and thus, implicitly, the remain-
ing income is spent on the composite good. Be-
cause households never will spend all their net 
income on housing, this specification of WTP is 
not comparable to the urban economic spatial 
equilibrium model of bidding, in which house-
holds are always assumed to spend all their resid-
ual income (net transportation costs and a fixed 
amount on the composite good) on housing. In-
stead of being defined by a set of prices, a spatial 
equilibrium is defined in a static sense: an equi-
librium is reached when no further incentives 
exist for a household to enter the region or for a 
household to sell its property, i.e., all gains from 
trade have been exhausted given current bids and 
offers, resulting in constant population, prices, 
and land use pattern. A logical next step, and one 
that the authors are currently pursuing (Parker 
and Filatova 2011), is to introduce household re-
bidding and relocation, so that existing households 
can readjust their housing consumption if their 
location has become suboptimal over time. This is 
particularly important for considering the dy-
namic effects of local spatial spillovers, such as 
the loss of open space or rising congestion levels, 
that generate feedbacks and will cause additional 
market and land use adjustments. 
 To account for agents’ responses to market con-
ditions, Filatova, Parker, and van der Veen (2009) 
and Filatova, van der Veen, and Parker (2009) 
follow a logical two-step approach proposed by 
Parker and Filatova (2008) in which the individ-
ual WTP and WTA bids are first specified as 
above and then adjusted by a multiplicative factor 
(1 + ε), where ε = (NB – NS ) / (NB + NS ), NB = 
number of buyers and NS = number of sellers.4 
This allows bidding to be adjusted based on agent 
perceptions of market conditions, so that individ-
ual offer (ask) bids will increase (decrease) as the 
number of buyers (sellers) increases. Given posi-
                                                                                    

4 This approach to modeling price adjustments follows standard 
models used in agent-based computational finance models, e.g., for 
representing the “market-oriented traders” pricing strategy (LeBaron 
2006). 
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tive gains from trade (i.e., offer bid ≥ ask bid), 
then the transaction price is set assuming that the 
buyer and seller divide these gains equally (i.e., 
the transaction price is the arithmetic mean of the 
offer and ask bids). Filatova, Parker, and van der 
Veen (2009) find that the transaction prices of 
identical locations are not the same over time 
because of changes in the market conditions (NB 
and NS ) that are reflected in the bids. The authors 
call this an emergent property of the model, since 
changes in NB and NS are endogenously deter-
mined in the model. This is a potentially interest-
ing feature of the model. However, the diver-
gence in prices over time can also be explained 
by the fact that the model does not consider re-
bidding by households, so that once a location is 
occupied by a household, no other household may 
bid for it. As a result, the price is frozen at the 
time of the initial development. With rebidding 
and in the absence of endogenous feedbacks or 
other sources of spatial heterogeneity that would 
cause the characteristics of two identically located 
parcels to differ over time, this divergence would 
disappear as a result of land prices that would 
subsequently adjust to current market conditions. 
 Magliocca et al. (2011, forthcoming) follow a 
strategy somewhat similar to that of Filatova and 
coauthors to model the household bidding proc-
ess. First, optimal rents for a given house by a 
particular household are determined by calculat-
ing the amount the household is willing to pay 
subject to the constraint that its resulting utility is 
equal to the highest utility that is possible given the 
houses that are on the market. This ensures that 
the bids reflect the specific features of a housing 
type and location, analogous to the spatial equi-
librium assumption in the traditional model. This 
amount is then adjusted upwards or downwards 
depending on the degree of housing market com-
petition, which is determined by the number of 
bidders relative to the number of available houses, 
and by the magnitude of the potential surplus that 
a household could obtain if it did not have to pay 
above the developer’s ask price. In contrast to 
other agent-based models, the model developed 
by Magliocca et al. (2011, forthcoming) includes 
both a land and housing market and thus explic-
itly models the market interactions of farmers and 
housing developers, in addition to those between 
developers and households. Farmers and develop-
ers employ various strategies to form expectations 
about future returns from selling and developing 

rural land respectively and formulate optimal of-
fer and ask bids based on these expectations that 
seek to maximize their respective profits. Mag-
liocca et al. provide the most serious treatment of 
price expectations in an agent-based land market 
model to date, allowing for a number of different 
strategies and exploring how various approaches 
influence market outcomes. For example, each 
farmer is randomly assigned a set of prediction 
models that vary in the length of time over which 
past prices matter, the functional form of the ef-
fect of past prices on current prices, and the in-
fluence of landowner competition. Farmers adapt 
their prediction models according to the success 
of past predictions. In addition, the model allows 
for household rebidding: each household is ran-
domly assigned a “residence time” when they ini-
tially move into a house. When the household’s 
residence time is exceeded, they re-enter the 
housing market as buyers and the house that they 
occupied is put back on the market. Current resi-
dents and in-migrants are then able to bid on ex-
isting houses, which provides a means of updat-
ing housing prices based on current conditions. 
 Magliocca et al. (2011, forthcoming) param-
eterize their model using secondary data from the 
Census of Agriculture, Bureau of Transportation 
Statistics, and U.S. Census Bureau, as well as pa-
rameter estimates of developer infrastructure and 
on-site costs and locational demand parameters 
from the literature. The model is applied to a grid-
ded, 10-square-mile landscape and run over a 20-
year time period. The model predicts sprawl and 
leapfrog patterns of development as a result of the 
various sources of heterogeneity in the model: the 
agricultural productivity of land parcels, consum-
ers’ housing preferences, and farmers’ and devel-
opers’ expectations of future prices. 
 Ettema (2011) takes a different approach to price 
formation. Rather than deriving explicit WTP or 
WTA functions and then adjusting according to 
market conditions, he models households’ re-
sponses to a stated list price for a given house. 
These responses are shaped by subjective prob-
abilities that reflect their perception of the market 
competitiveness of a given list price for a given 
house, which is determined by the deviation of 
the list price from its mean price. Based on this, 
each buyer formulates a probability that she will 
be offered a house at that price and each seller 
formulates a probability that she will sell her 
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house at that price within a certain time period. A 
seller will simply attempt to maximize the list 
price at which she offers a given house. A buyer’s 
optimal choice is determined by a given list price 
L of a house that maximizes her expected utility 
from the house, where her expected utility is the 
weighted sum of her utility from obtaining the 
house at the given price L and a slightly higher 
price L+α2, where the weights are equal to the 
respective probabilities of obtaining the house at 
prices L and L+α2. These probabilities are modi-
fied over time by individuals using a Bayesian 
updating rule based on past transactions simu-
lated by the model. An advantage of this ap-
proach is that it incorporates the agent’s percep-
tions of market conditions into her optimal choice 
in a probabilistic manner that is reflected in her 
optimal bidding behavior. However, it is unclear 
that modeling these subjective probabilities as a 
function of deviations from the mean of past 
prices captures the relevant factors that determine 
market competitiveness, especially over time. For 
example, exogenous population migration over 
time will force household offer bids to become 
more competitive over time. From this vantage 
point, an explicit accounting of the relative num-
bers of buyers and sellers is more sensible. An-
other problem with this formulation is that it re-
lies on very limited heterogeneity in housing attri-
butes in order to formulate deviations from a 
mean price. Implementing this approach could be 
much more problematic in a spatial model, in 
which every house or lot is potentially distinct from 
every other one. 
 In concluding this discussion of spatial simula-
tion models, it is useful to contrast the approaches 
taken by agent-based models to modeling price 
formation with the traditional urban economic 
spatial equilibrium models. Because agent-based 
models seek to relax the restrictive assumptions 
of the traditional model, they must grapple with 
additional questions of market conditions and 
specification that are sidestepped by the spatial 
equilibrium assumption. This challenge combined 
with the complications that arise from adding 
spatial complexity to the model make deriving a 
fully structural modeling of price formation a 
difficult problem to solve. The difficulty arises 
because the model must simultaneously account 
on one hand for the heterogeneous and possibly 
unique set of spatial attributes that distinguishes 

one location from another, and, on the other hand, 
for market conditions, including the relative num-
ber of buyers and sellers, the substitutability of 
locations, and heterogeneity among households or 
landowners. Spatial equilibrium models solve this 
complex set of issues by imposing an implicit set 
of assumptions about market conditions, namely a 
large number of buyers and a lack of competition 
among landowners, so that competition among 
households for more desirable locations forces 
households to bid all residual income—i.e., in-
come net of transportation costs and optimal ex-
penditures on a composite good for a given utility 
level or population level—on land or housing. 
Because desirable land is scarce and landowners 
do not compete (since each location is assumed to 
be unique), landowners are able to extract from 
households the full value of their land parcel. 
Thus, the resulting transaction price is equal to 
the household’s maximum WTP and all gains 
from trade accrue to the landowner. 
 Agent-based models offer a methodological ap-
proach that can relax these implicit assumptions 
about market conditions, but doing so requires an 
alternative means of deriving household bids and 
market prices. The approaches by Filatova and 
collaborators and by Magliocca and collaborators 
model price formation explicitly as a three-step 
process:5 (i) a WTP function is specified to repre-
sent the individual-level demand for location (and, 
in the case of the two Magliocca et al. papers, 
housing type), (ii) bid prices are formulated by 
taking account of market conditions (excess de-
mand or supply for a given housing type or land 
parcel), and (iii) given favorable terms of trade, 
the transaction (i.e., market) price is determined 
by dividing the gains from trade between the 
buyer and seller. The approach imposes a set of 
assumptions about bidding and how market con-
ditions influence the bidding process, following 
models of agents’ pricing strategies developed in 
agent-based financial economics. By explicitly 
modeling how market conditions affect bidding 
and how the subsequent gains from trade are di-
vided, these models allow for consideration of 
how other types of market conditions (e.g., a buy-
ers market) influence spatial price and land use 
outcomes. However, because they impose the 
WTP functions, offer bids, and determination of 
                                                                                    

5 We are grateful to Tatiana Filatova for pointing this out to us. 
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transaction prices rather than deriving these from 
an underlying model of agent behavior (e.g., util-
ity or profit maximization), the models are not 
fully “structural.” Nonetheless, they do incorpo-
rate many basic microeconomic fundamentals that 
have been omitted by most other agent-based 
models, and as such make substantial contribu-
tions to land use modeling and agent-based com-
putational economics. 
 
A Dynamic Model of Residential Land 
Development with Spatial Complexity 
 
In the remainder of the paper, we present a spatial 
simulation model that we are currently develop-
ing (Chen, Jayaprakash, and Irwin 2010) that pro-
vides a framework for a fully structural approach 
to modeling household bidding and price forma-
tion. This spatial simulation model is derived 
from a set of models in which farmers optimally 
choose the timing of land conversion, residents 
optimally select and bid for land parcels, and land 
developers optimally choose the parcels to con-
vert. Following Capozza and Helsley (1990), the 
model is made dynamic by stochastic income 
growth that causes migration of households from 
the outside world into the growing exurban re-
gion.6 Income growth bids up urban land rents 
and leads to conversion of agricultural land at the 
urban boundary to a residential use. We build on 
this spatial model of urban growth by incorporat-
ing spatial dynamics, in the form of endogenous 
feedbacks from development that influence the 
spatial distribution of open space over which resi-
dents have preference. In addition, land parcels 
are distinguished by three sources of spatial het-
erogeneity: (i) commuting cost, which depends on 
distance to the urban center, (ii) agricultural yield, 
which determines the reservation rent of the farm-
ers, and (iii) conversion cost, which affects the 
net returns to land development. 
 The key innovation of our modeling approach 
is in the household bidding model. Rather than 
deriving a WTP function from the household’s 
utility maximization problem, we use an auction 

                                                                                    
6 As in the open city model of Capozza and Helsley (1990), we ab-

stract from the causes of income growth and take this as the exogenous 
determinant of growth in our region. We ignore housing markets in the 
areas outside the exurban region we model, and assume that the maxi-
mum utility that is attaining outside our region is determined by a 
reservation utility, U0, that is fixed and exogenous. 

model to derive the household’s optimal bid, ac-
counting for preferences, income, market condi-
tions, and uncertainty over future growth. Spe-
cifically, households identify their optimal bid by 
choosing the bid that maximizes their expected 
surplus, defined as the differences between their 
maximum WTP and their actual bid for the land. 
The expectation is taken based on the probability 
that their bid is the winning bid of all N bidders 
against whom they are bidding for any given par-
cel. Any surplus that is achieved with a winning 
bid that is less than the household’s maximum 
WTP is assumed to be spent on the composite 
good, thus generating a higher utility for that 
household. This leads to the principal difference 
between our modeling framework and that of the 
traditional spatial equilibrium model: in the small 
N case, utility is not equalized across all loca-
tions, and thus it is possible to sequentially order 
household location choices in time and space, 
something that is critical for modeling transitional 
spatial dynamics. 
 To further clarify how our approach to price 
formation compares to the traditional spatial equi-
librium model and the agent-based approaches 
discussed above, note that the household’s maxi-
mum bid is equal to its maximum WTP, which 
corresponds to the spatial equilibrium bid. Under 
conditions that correspond to a seller’s market 
(i.e., a large number of competing bidders), house-
holds will bid their maximum WTP, resulting in 
the same equilibrium set of prices as the spatial 
equilibrium model. However, when the number 
of competing bidders is sufficiently small (the 
“small N” case), households are not forced to bid 
their maximum WTP, and thus the winning bid 
will be less than their maximum WTP, resulting in 
transaction prices that are less than the long-run 
spatial equilibrium prices. Land conversion oc-
curs if the winning household’s bid for a parti-
cular parcel is equal to or greater than the land-
owner’s reservation rent (described in further de-
tail below). Gains from trade are determined by 
two mechanisms: (i) the household’s surplus is 
the difference between its maximum WTP and its 
winning bid, which is equal to the transaction 
price, and (ii) landowner surplus is the difference 
between his or her reservation rent and the trans-
action price. Thus, household WTP and offer bids, 
landowner ask bids, and transaction prices are all 
derived from a fully structural model of house-
hold utility maximization and landowner expected 
profit maximization. 
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 While in theory this model can be solved for 
the “small N ” case, in practice this presents non-
trivial computational challenges. We are currently 
working on these challenges (Chen, Jayaprakash, 
and Irwin 2010), but have not fully solved them. 
Here we describe the general household bidding 
model, but present the model simulation for the 
“large N ” case only. This greatly simplifies the 
analysis and corresponds to the spatial equilib-
rium case in which households bid their maxi-
mum WTP and landowners receive the entire gain 
from trade. We demonstrate how the model can 
be applied to an actual landscape to explore the 
mechanisms that underlie the highly scattered 
patterns that we observe in an exurban county—
Carroll County, Maryland, which is part of the 
Baltimore–Washington, D.C., metropolitan area. 
 
Theoretical Model of Residential Land 
Development 
 
We start with a two-dimensional grid of an ex-
urban landscape that is comprised of land parcels 
that are of constant size and each owned by an 
individual landowner who uses the land in agri-
culture. Contained within the grid is an urban 
center that represents the urban area to which all 
urban residents must commute for all employ-
ment and consumption. This exurban region is 
modeled as a small open area into which utility-
maximizing urban residents migrate from the rest 
of the world as determined by maximum utility 
differences from residing within versus outside 
the region. To incorporate spatial interactions and 
heterogeneity, we assume that each land parcel is 
owned by an individual landowner and is indexed 
by a unique location i on the two-dimensional 
grid. Land parcels are distinguished by distance 
to the urban center zi and parcel-specific attributes 
Ai and xi that represent local amenities and physi-
cal characteristics of each parcel respectively. 
Specifically, we define Ai as a scalar that repre-
sents the proportion of surrounding undeveloped 
land within a given neighborhood of parcel i. 
Thus, while it is exogenous to the landowner of 
parcel i, Ai is a spatial dynamic variable that 
evolves over time in the model and generates re-
cursive spatial interactions among neighboring 
landowners. On the other hand, we assume that 
the vector xi includes slope, soil type, and quality 
variables that influence the productivity of the 
land in an agricultural use and that also can influ-

ence the costs of converting the land to a residen-
tial use. These variables are assumed to be ex-
ogenous and constant, but to vary spatially across 
parcels. 
 Following Capozza and Helsley (1990), we 
model the decision of agricultural landowners to 
convert their land parcel to a residential use in re-
sponse to a growing demand for new housing 
from identical households entering the exurban 
region. Household demand for residential land is 
driven by the stochastic growth of household in-
come, denoted by Y (t), Y (t) = gt + σB(t), where g 
> 0 is the drift parameter, σ2 is the variance of 
income, and B(t) is a driftless Brownian motion 
term with unit variance. Households derive utility 
based on the consumption of a numeraire good X, 
fixed parcel size L, and parcel-specific amenity 
Ai, U (Xi ; L, Ai).7 Assuming L is fixed at one unit 
of land, the budget constraint in time t for a 
household living at location (zi, Ai) is Y(t) = PX Xi 
+ R (t, zi, Ai) + Tzi, where R(t, zi, Ai) is the urban 
land rent paid by the household for parcel i, and T 
is the per-unit transportation costs. Following the 
standard approach, the household’s maximum WTP 
is derived by imposing the conditions of a long-
run spatial equilibrium. For the case of the open 
city model, this is determined by the equalization 
of household utility across all locations to the res-
ervation utility associated with the maximum util-
ity that can be attained outside the region, U0. As-
suming a monotonic utility function, one can in-
vert the utility associated with a specific parcel i, 
U (Xi; L, Ai) = U0, to obtain Xi = U –1(U0; L, Ai), 
which then represents the minimum consumption 
of Xi needed to obtain U0 for a given L and Ai. 
The household’s maximum WTP for land parcel i, 
denoted as Vi , is defined as the bid that leaves the 
household indifferent between locating in or out 
of the region: 

  0 0( , , ) ( ) ( , , ),i i i i iV t z A Y t V z A U= −  

where V0 = Tz i + PXU –1(U0; L, Ai) is the house-
hold’s minimum expenditures on transportation 
costs and the numeraire good needed to obtain the 
minimum level of utility U0. Note that Vi is the 
maximum the household is able to pay for parcel i 
                                                                                    

7 Because households will trade off their consumption of X with the 
local amenity associated with parcel i, their optimal consumption of X 
will vary across parcels, and therefore we write Xi. 
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and still be indifferent to living within the region 
rather than preferring to live outside the region. 
 Departing now from the familiar urban eco-
nomic model that is used by Capozza and Helsley 
(1990) and many others, we model the house-
hold’s optimal bid as a function of Vi, which in 
turn is a function of their income Y (t) and the 
specific attributes associated with parcel i. Drop-
ping the subscript i for notational simplicity, we 
define the household’s optimal bid function as 
b (V ), which is determined in a first price sealed 
auction according to the following maximization 
problem. Households seek to formulate a bid, w, 
that maximizes their utility by increasing the 
amount of income that remains after the residen-
tial land payment V – w. Implicitly, this income 
residual is used to purchase more of the compos-
ite good and results in greater utility. Because 
bids are a function of distance and amenities, the 
income residual and thus the utility from any win-
ning bid will vary across space. However, house-
holds must also compete with other buyers and 
thus have an incentive to increase their bid w to 
improve their chances of winning the bid. The 
probability that the household wins the auction 
with any given w is determined by the probability 
that all other bids by other households are less 
than w. Taking these two competing forces into 
account, we formulate the following optimal bid-
ding problem: 

 (1) 1 1max {( )  [ ( )]},N
w V w F b w− −−  

where F is the cumulative probability distribution 
of the random variable V, with w = b (V ) or V = 
b-1 (w). Intuitively, given that the household’s bid 
w  is monotonically increasing in V, then we can 
write F as a function of W, b –1(w). Then F N–1 [b –

1 (w)] is the joint probability that the bids of all 
other N – 1 households for a given parcel, which 
are private information, are less than the house-
hold’s bid, w, for that parcel. Thus the expression 
in equation (1) represents the household’s ex-
pected income residual conditional on winning 
the bid. Since V obeys a simple stochastic differ-
ential equation with a drift and Wiener noise, F 
can be obtained analytically. Taking the deriva-
tive with respect to w in equation (1) and rear-
ranging yields 

1
1 1 1( )[ ( )] ( ) | ( )

N
N dF v dVF b w V w V b w

dV dw

−
− − −= − = . 

Multiplying both sides by db /dV, rearranging 
further, and given that w = b (V ), then we can 
write 

  
1

1

( ) 1[ ( )]
( )

N

N

db dF VV b V
dV dV F V

−

−= − , 

which can be rewritten as 

  
1 1

1 ( ) ( )( ) ( )
N N

Ndb dF V dF VF V b V V
dV dV dV

− −
− + = . 

Note that the left-hand side is the derivative of 
b (V )FN – 1(V ). Rearranging once again, letting u = 
v, and taking the integral of both sides over u 
from –∞ to V yields an analytical expression for 
the household’s bid rent function for land as an 
integral over a known distribution function: 

(2) 
1 

1  

1( )  
( )

NV

N

dFb V du u
duF V

−

− −∞
= ∫ . 

Thus for any given V (t ,z , A) and given F and N 
we can in theory calculate the household’s opti-
mal bid for a given parcel. For parcel i, this bid is 
a function of exogenously and endogenous spatial 
features of the landscape, distance to the urban 
center zi and surrounding open space amenities Ai, 
respectively, and the number of other bidders 
against which the household is competing for par-
cel i, Ni – 1. Thus it accounts for both the spatial 
complexity of the landscape as well as market 
conditions in deriving the household’s bid from a 
structural model of utility maximization. Given 
the winning bid for parcel i, landowners take the 
winning bid as the residential rent, i.e., R (t, zi, Ai) 
= b (Vi). 
 In practice, evaluating equation (2) clearly de-
pends on being able to evaluate the integral over 

  
1( )N

i
i

i

dF V
V

dV

−

. 

The fact that Vi obeys a simple constant drift 
Brownian motion makes an analytic solution pos-
sible when b (Vi) = Vi , which is the spatial equi-
librium case in which household bids are equal to 
their maximum WTP. This approach is followed 
by Capozza and Helsley (1990). For small values 
of N, however, b (Vi) < Vi, and it is not possible to 
evaluate this analytically. One can potentially 
evaluate the integral numerically and tabulated or 
approximated by splines, but this is computation-
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ally challenging. In the remainder of this section, 
we present the results for the “large N” case, 
which corresponds to b (Vi) = Vi. Given that this is 
also the case considered by Capozza and Helsley 
(1990), the remainder of our model set-up follows 
their model with the exception that we distinguish 
the landowner and developer decisions and we al-
low for heterogeneous returns and costs. Speci-
fically, equations (3)–(9) below are reproduced 
from Capozza and Helsley (1990) with these ad-
justments added. 
 Land in agriculture earns an agricultural rent of 
Rα per unit of land. Because land is heterogene-
ous, Rα is a function of xi, the physical attributes 
of parcel i that influence agricultural returns such 
as slope and soil quality. Each landowner is as-
sumed to own a unique parcel of agricultural land 
and faces the decision of when to sell his land to a 
developer, at which point it is assumed to be in-
stantaneously and irreversibly converted to urban 
use. The expected net present value in time period 
τ = t of a unit of agricultural land at z > z* outside 
the city boundary z* that is converted into urban 
use at time τ = t + s is given by 
 

(3)   
 ( )
 

 ( )
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 ( ) ,

( , ) | ( , , )

i i i

t s r t
it

r t
i i i it s
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α

+ − τ−
α

∞ − τ−

+
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∫

 

 
where s is the stopping time and r is the discount 
rate. Note that the first term is the present value 
of land in agriculture up to the time of sale, t + s. 
Given the assumptions regarding stochastic in-
come growth and setting τ = t + s, we can rewrite 
R(τ, z i, A i) as 
 

(4) ( , , ) ( , , ) ( )i i i iR t s z A R t z A gs B s+ = + + σ . 

 
Given this, the expected value in period t of urban 
land in period t + s can be written as 
 

(5)  { ( , , | ( , , )}
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Given equations (4) and (5), Capozza and Helsley 

(1990) show that equation (3) can be rewritten as 
 
(6) 
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The landowner’s problem is to choose the optimal 
time τ = t * to sell land such that his expected net 
present value of the land is maximized. This opti-
mal time corresponds to the level of urban land 
rent at time t *, referred to as the reservation rent 
and denoted as R *. Stochastic income growth im-
plies that R (t, zi, Ai) is a random process but the 
process is stationary and therefore R * is inde-
pendent of time. Thus the decision to sell will 
occur as soon as the random process R (t, zi, Ai) 
equals R * for the first time. Substituting this into 
equation (6) and letting s = t * – t yields the fol-
lowing expression for the expected price of agri-
cultural land conditional on R *: 
 
(7) 
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To evaluate this expected value of agricultural 
land at a time when R (t, zi, Ai) = R*, we need to 
evaluate ( * ) *{ | ( , , ), }r t t

i iE e R t z A R− −  for the ex-
pected value of ( * )r t te− − , where t * is the first pas-
sage time for R (t, α, A) to reach R *. Capozza and 
Helsley (1990) show that, given an analytical ex-
pression for the moment-generating function for 
t *, the expected price of agricultural land can be 
written as 
 
(8)        *

[ * ( , , )]*
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i i i
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where 

  
2 2

2

( 2 )g r g+ σ −
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σ
. 

 
The reservation rent is the value of R * that maxi-
mizes equation (8), which is given by 
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 (9) * 1gR R
r

−
α= − + α , 

 
where α represents the price of uncertainty. 
 Given R(t, zi , Ai) ≥ R*, the landowner of parcel i 
will seek to sell land to the land developer. How-
ever, the land developer must also cover the costs 
of converting the land parcel to a residential use. 
Let these costs be represented by C(xi), so that 
conversion costs are spatially heterogeneous and 
depend on the physical features of the land parcel. 
The land developer will consider purchasing par-
cel i and developing it only if 
 
(10) *( , , ) ( )i i iR t z A R C x≥ + . 
 
Otherwise, parcel i will remain unsold and unde-
veloped. When the land developer is faced with 
multiple land parcels for which equation (10) 
holds, he will choose to convert the parcel that 
maximizes his one-time profit from developing in 
period t, R(t, zi , Ai) – R* – C(xi). Given parcel i 
that maximizes profits in period t, conversion of 
parcel i to a residential use is assumed to be in-
stantaneous and is immediately occupied by a 
household. 
 The temporal and spatial sequencing of events 
in the model is as follows. At the beginning of 
each period t, income growth is realized, bidding 
occurs, and decisions to sell and convert land are 
made by the landowners and land developer re-
spectively. Given land conversion in period t, Ai 
is updated for every parcel i at the end of period t. 
At a given income level, the parcels with better 
proximity to urban centers, higher amenities, lower 
agricultural yields, and lower conversion cost will 
become developed first. As land conversion pro-
ceeds, ceteris paribus, the reservation rent re-
quired by farmers (R* ) and the developer [R * + 
C(xi)] will increase because parcels with low ag-
ricultural yields and conversion cost will be con-
verted first. The residential rent for developable 
parcels will become less compared to the newly 
developed parcels because, ceteris paribus, 
parcels closer to urban centers and with higher 
amenities are developed first. However, income 
growth over time will also lead to higher rents 
paid on all parcels of developed land. Given in-
come growth (i.e., g > 0), urban land rents will 
increase over time and additional agricultural land 

will be sold and developed for new residential 
use. In the absence of further income growth (g = 
0), a static long-run equilibrium is reached when 
the residential rent on any agricultural parcel i is 
insufficient to cover the reservation rent R * and 
the conversion cost C(xi).8 
 
Simulation Details and Model Results 
 
Given this specification of household and land-
owner behavior, we implement the model using a 
spatial simulation framework for Carroll County, 
Maryland, an exurban county located to the north-
west of Baltimore and to the north of Washing-
ton, D.C. (Figure 2). Carroll County was a pre-
dominantly rural county until 1960, at which 
point migration into the county began to increase. 
Between 1980 and 2000, population grew by 55 
percent, from just under 100,000 to over 150,000. 
This growth has resulted in the county shifting 
away from a predominantly agriculture-based land-
scape to one with a large portion of the landscape 
developed. The largest portion of the developed 
land is single-family residential dwellings. Since 
1990, 95 percent of the development in the 
county has been some form of residential devel-
opment (Wrenn 2011). Our goal is to provide an 
initial exploration of whether our model can ex-
plain the observed patterns of residential land use 
patterns in this study region. In particular, we 
observe a mix of fragmented and clustered resi-
dential development and persistent leapfrog de-
velopment over time (Zhang, Wrenn, and Irwin 
2011). 
 To operationalize the land conversion model 
for this landscape, we begin by creating a grid for 
the county defined by a cell size of 1 km2. We use 
GIS data on land development patterns in Carroll 
County as of 1990 to initialize the model and 
overlay the 1 km2 grid to generate the pattern of 
land development at this spatial resolution. We 
refer interchangeably to a land parcel i and cell i. 
As a first step in exploring the land use change 
pattern, we distinguish only between the devel-
oped and undeveloped land. All agricultural land 
is considered to be undeveloped land. The dis- 

                                                                                    
8 Because the stochastic term in the income is normally distributed, 

the income level in each period is unbounded. For simplicity, the stop-
ping criterion for the long-run static equilibrium is chosen so that the 
mean income level is insufficient to cover the threshold rent and the 
conversion cost.  
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tinction among the residential, commercial, and 
industrial land uses is ignored. Because the theo-
retical model is limited to a single density, size, 
and type of developed land use, this simulation is 
clearly an oversimplification of the actual devel-
opment process. Local land use amenities Ai are 
calculated as the percentage of open space within 
the eight neighboring parcels for each parcel i. 
For instance, a parcel with four undeveloped neigh-
bors has a value of Ai = 0.5. As land development 
occurs in each time period, Ai will also change 
for some parcels, and therefore Ai is updated for 
each parcel i at the end of each round of simu-
lated land conversion. 
 In addition to this source of local spatial inter-
action among neighboring land parcels, three 
types of spatial heterogeneity are considered: the 
commuting cost, which depends on the parcel’s 
accessibility to one or more urban centers; the 
agricultural yield, which determines the reserva-
tion rent of the farmers; and the conversion cost, 
which affects the site choice of the land devel-
oper. For each spatial variable, we calculated the 
aggregate values at this same 1 km2 grid scale. 
Carroll County contains three small urban centers 
(Westminster, Sykesville, and Mount Airy). The 
City of Westminster, located at the center of Car-
roll County, is the largest urban center in the 
county. Because many of the residents in Carroll 
County commute to Baltimore and Washington 

D.C. and their environs, we use the towns of 
Sykesville and Mt. Airy as proxy for these desti-
nations. We calculate commuting costs as the sum 
of the distance from the centroid of each grid cell 
to each of these three destinations via the major 
roads network in Carroll County. Spatial variation 
in agricultural rents at the same scale are proxied 
using data on corn yields. This agricultural yield 
is obtained from the Soil Data Mart website 
(USDA), with corn chosen as the standard crop. 
The yield data are estimated values assuming that 
the land is subject to “a high level of manage-
ment.” These values are observed at the spatial 
scale of soil type polygons. The 1 km2 was over-
laid in the soil polygons and an area-weighted 
mean yield value was derived for each grid cell. 
The conversion cost of each parcel is also based 
on these data. For each soil type in the Soil Sur-
vey Area (SSA) data, a rating is given that pro-
vides an indication of the soil’s suitability for 
urban development. This categorical rating was 
converted into a numerical value and a mean 
value derived for each grid cell. All data were 
created using ArcGIS and imported into NetLogo 
to perform the model simulation.9 
 To operationalize the model, specification of 
preference, income, and transportation cost pa-

                                                                                    
9 For further details, see Chen (2009). 
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rameters is necessary. First, we assume that resi-
dential migrants have a preference of the Cobb-
Douglas form, 1 2( ; , ) ( ) ,i i i iU X L A X A Lα α=  where 
the local amenity Ai and the parcel size L are non-
separable. For the baseline specification, we as-
sume that α1 = 0.8 and α2 = 0.2. Second, based on 
our analysis of the 1990 and 2000 U.S. Census 
income data for Carroll County, we parameterize 
income growth as a Brownian motion with drift 
g = 0.5 and standard variation σ = 0.5.10 The ini-
tial income level is set at Y (t = 0) = 6, which en-
sures that under the baseline specification the 
number of developed cells equals approximately 
the number of developed cells in the real land-
scape in year 2000. Next, we consider transporta-
tion costs. In Carroll County, the fuel cost of com-
muting is minimal. However, the opportunity cost 
of travel time can still be significant in determin-
ing the choice of location. We assume that the 
unit travel cost T equals 2, so that the commuting 
cost is roughly 5 percent of the income. Lastly, 
we set the price for the composite good Px = 1 
and the reservation utility level at U0 = 2. The 
model is initialized with the 1990 land develop-
ment pattern. The ending time of the simulation is 
chosen so that the number of developed parcels 
roughly equals the total number of developed 
patches in Carroll County in 2000. 
 The averaged results of 100 simulations are 
summarized in Table 1. Various approaches to 
model validation are possible. The simplest ap-
proach is to assume that if the location of a de-
veloped parcel in the simulation coincides with 
the location of a developed parcel in the real data, 
then it is considered to be a correct prediction. 
The total number of these parcels is reported in 
Table 1 as the number of correct predictions of 
“Type A.” On average, the model simulations 
correctly predict 40 percent of the parcels that are 
actually developed in 2000. However, this is a 
very stringent criterion for model validation. We 
relax this criterion to allow for near misses. Spe-
cifically, if the simulation predicts development 
of either the parcel that is actually developed in 
2000 or at least one of the parcel’s immediate 
neighbors, then it is considered to be a correct 

                                                                                    
10 An annual income growth rate of 4 percent will generate roughly a 

50 percent income growth at the end of the tenth year. The sigma value 
implies that roughly 70 percent of the residents have an annual income 
growth in the range [–4%, 4%]. 

prediction. The total number of these parcels is 
reported in Table 1 as the number of correct pre-
dictions of “Type B.” On average, 80 percent of 
the developed parcels in the 2000 data have at 
least one neighboring parcel (or itself) that is de-
veloped in our simulation results. By comparison, 
given that 174 of 1,016 available cells are actu-
ally developed in Carroll County as of 2000, a 
completely random model of development gener-
ates a 17 percent chance of predicting the correct 
“Type A” location of a developed cell that is ob-
served in the real data, and a 60 percent chance of 
predicting the correct “Type B” location of a de-
veloped cell. 
 Figure 3 illustrates the output from a represen-
tative model run and compares this output to the 
aggregated urban land use pattern from 2000. 
Visual inspection shows some similarity between 
the simulated and real patterns. However, closer 
inspection shows that in areas around the urban 
centers, the simulated land use pattern is not as 
clustered as the real land use pattern, whereas in 
the areas away from urban center, it is not as 
scattered. To further compare the simulated land 
use pattern with that of the real data, several pat-
tern metrics are generated using Fragstats, the 
landscape metrics software package.11 To quanti-
tatively measure land use pattern, we require meas-
ures that capture the characteristics of developed 
land use patches as well as measures that capture 
the spatial relation among different patches of 
development. For all developed land use patches, 
we calculate the mean area (m2), mean perimeter 
length (m), and the total number of patches for 
each simulation run. To measure the shape com-
plexity of developed patches, we use the perime-
ter-area ratio index and the shape index. The pe-
rimeter-area ratio index is equal to the ratio of the 
patch perimeter (m) to its area (m2). The shape 
index is calculated using a raster format. It is 
equal to the patch perimeter (measured in terms 
of the number of cells that comprise the perime-
ter) divided by the minimum perimeter possible 
(also measured in the number of cells) for a patch 
of the same area. In both cases, the higher the 
ratio, the more complex is the shape. In addition, 
we use the fractal dimension index to quantify the 
cross-scale regularity in the spatial pattern by 
measuring the relationship between the perimeter 

                                                                                    
11 For a full discussion of these metrics, see McGarigal et al. (2002). 
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Table 1.  Model Validation Using “Type A” and “Type B” Evaluation Methods 

Simulation Result Meana Min.a Max.a Std. 

Number of developed parcels 142 126 153 5.2 

Number of correct prediction A 50 
(29) 

41 
(24) 

573 
(33) 

 

Number of correct prediction B 137 
(79) 

128 
(74) 

144 
(83) 

3.7 

Number of developed parcels in 2000: 174     
a Percentages in parentheses.  
 
 

 

  

Observed Simulated 

Figure 3. Observed and Simulated 2000 Carroll County, Maryland, Urban Land Use Pattern 
Note: The observed land use pattern is aggregated to a 1 km2 grid cell so that it is comparable to the model output at the same 
scale. On the left, dark cells indicate the location of predominantly developed land. In the simulated version (on the right), dark 
cells indicate the location of land development as predicted by the model. 

 

 
 
and the area across different sizes of patches. This 
measure is defined as two times the logarithm of 
the patch perimeter (m) divided by the logarithm 
of patch area (m2). A fractal dimension of greater 
than one indicates an increase in shape complex-
ity. Finally, to capture the spatial relationship be-
tween the developed and undeveloped patches, 
the edge contrast index is used to measure the 
total amount of contrasting edges between devel-
oped and undeveloped land patches that share the 
same edge. The results from the observed and 
simulated landscapes are summarized in Table 2. 
The first row specifies the pattern metrics used. 

The second row lists the values of the pattern 
metrics for the real land use pattern in 2000. The 
third row gives the mean value for the 100 simu-
lations. The fourth row shows the standard devia-
tion of the simulations. We find that the simulated 
land use pattern differs significantly from the ob-
served land use pattern. Except for the shape in-
dex, all pattern metrics for the real land use pat-
tern lie beyond two standard deviations from 
those of the simulated patterns, suggesting that the 
probability for the model to regenerate the same 
metrics as in the data is approximately less than 
10 percent. 
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Table 2. Comparison of Selected Landscape Metrics Applied to Simulated and Actual Land Use 
Patterns 

PATTERN AT THE COUNTY LEVEL 

 Number of Patches Mean Area Total Edges  
Data 2000 39 2,597 353,000  
Simulation 48 2,132 426,750  
(std.) (4.44) (207.60) (15,197.00)  

 Fractal Dimension Perimeter-Area Ratio Shape Index Edge Contrast 
Data 2000 1.02 32.9 1.27 91 
Simulation 1.03 35.4 1.31 96 
(std.) (0.00) (0.67) (0.05) (1.09) 

PATTERN OF THE DEVELOPED LAND USE 

 Number of Patches Mean Area Total Edges  
Data 2000 38 458 353,000  
Simulation 47 306 426,750  
(std.) (4.40) (32.10) (15,197.00)  

 Fractal Dimension Perimeter-Area Ratio Shape Index Edge Contrast 
Data 2000 1.02 33.6 1.18 91.5 
Simulation 1.02 36 1.23 96.5 
(std.) (0.00) (0.67) (0.04) (1.08) 

 

 
Discussion of Model Results and Limitations 
 
In comparing the actual and simulated patterns of 
development, we find that the simulation model 
performs reasonably well in terms of predicting 
the location of exurban development, but that 
additional work is needed to reproduce these 
quantitative features of the observed land use 
pattern. For example, the model simulation gen-
erates too many patches and the patch sizes on 
average are too small. Nonetheless, the utility of 
this approach is evident. By developing a fully 
structural model of optimal household location 
demand and optimal land conversion by land-
owners and developers, this approach links the 
microeconomic foundations of land use with ex-
plicit predictions of land development and the 
evolution of land use patterns. Thus it is possible 
to explore how changes in underlying preference 
or cost parameters would be predicted to alter 
patterns of development. In so doing, this model 
is similar to other spatial simulation models that 
incorporate spatial dynamics and heterogeneity 
that are reviewed in the first part of this paper. 
Because we also rely on the simplifying assump-
tion of a spatial equilibrium, the model presented 

here is most closely related to Caruso et al. 
(2007). Like the model results reported in Caruso 
et al. (2007), our model generates predictions of 
varying degrees of clustered and scattered urban 
land use patterns. However, unlike the model set-
up in Caruso et al. (2007), we do not impose ad-
ditional assumptions about market power and its 
transfer from a single migrant to the landowner. 
Instead, we maintain the assumptions of the spa-
tial equilibrium model, in which market power 
resides with the landowner, and households’ bids 
are always equal to their maximum WTP. For this 
reason, households are indifferent to location, 
which, as we argued earlier, prevents us from 
assigning a specific household to a specific loca-
tion. However, in this version of our model, all 
households are homogeneous and therefore it is 
not necessary to keep track of each household and 
its location. Instead, increasing residential land 
rents, which increase with income growth and are 
higher for more desirable locations (i.e., locations 
that are closer to the city and have higher ameni-
ties), determine the amount and location of land 
conversion, along with the landowner’s reserva-
tion rent and the land developer’s conversion costs. 
In a model with preference or income heterogene-
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ity, an alternative approach would be needed 
since the spatial equilibrium assumption of utility 
indifference across all locations is no longer an 
appropriate assumption. Spatial arbitrage is possi-
ble as households sort themselves across loca-
tions, and thus accounting for utility differences 
across space is necessary in order to identify se-
quential land conversion in space and time. This 
is a much harder model to implement since we 
can no longer assume that a household’s bid is 
equal to the maximum WTP, i.e., b (Vi ) ≠ Vi, and 
thus requires numerical evaluation of the house-
hold bid function in equation (2). 
 In addition to its continued reliance on the spa-
tial equilibrium assumption, the current model’s 
most substantial limitation in its implementation 
is the lack of empirically estimated parameter 
values in the utility and cost functions. Ideally, 
one would derive an estimable model from the 
structural models of household location choice 
and land conversion decisions and estimate the 
parameters of the spatial simulation model in this 
way. Given a lack of data on household charac-
teristics and land development costs, we are un-
able to do this in our current implementation of 
the model. However, such an approach is possible 
and certainly preferred to the calibration of pa-
rameters that we do here. However, empirical 
specification requires structural empirical estima-
tion of the underlying behavioral models. While 
much progress has been made recently in esti-
mating structural household location choice mod-
els, these models still rely on static long-run equi-
librium assumptions. Dynamic models of house-
hold location and land development decisions are 
currently in their infancy (e.g., Bayer et al. 2010, 
Murphy 2007, Paciorek 2010) and extremely chal-
lenging to implement, given the data require-
ments and number of structural parameters to be 
estimated. Nonetheless, this approach to parame-
ter specification of spatial simulation models 
holds much promise by marrying the empirical 
estimation of structural parameters with spatial 
simulation that is needed to evaluate non-mar-
ginal changes and spatial dynamic feedbacks. 
 
Concluding Comments 
 
Our review of models that incorporate greater 
spatial complexity highlights progress that has 
been made in incorporating spatial dynamics and 

spatial and agent heterogeneity into land market 
models. We discuss a few of the many challenges 
involved in developing such models, in particular 
the challenges of deriving optimal household and 
landowner bidding functions and market price 
formation from structural microeconomic models. 
We develop a model that provides a framework 
for a fully structural approach to modeling house-
hold bidding and price formation, but stop short 
of fully developing this model given the compu-
tational challenges involved. 
 While there are many unanswered questions 
that remain, we conclude with a line of question-
ing that is critical if agent-based modeling is to 
take a firmer hold in economics. That is, how 
does the inclusion of specific agent-based model 
features that are ignored by the traditional spatial 
equilibrium models, such as short-run transitional 
dynamics that arise from local interactions, alter 
the equilibrium predictions of the model? Since it 
is possible to use agent-based models to explicitly 
consider short-run dynamics that are overlooked 
in the traditional spatial equilibrium model, we 
should understand if and how these short-run ef-
fects matter; e.g., do short-run dynamics matter 
only for the transitional dynamics or if they also 
alter the long-run equilibrium of the system? Does 
the system eventually reach a spatial equilibrium 
when such features are considered? And if so, is 
it the same spatial equilibrium as that which is 
achieved when these features are ignored and the 
spatial equilibrium is assumed to be instantane-
ously reached? And if not, under what conditions 
does the system diverge? Most importantly, does 
consideration of short-run dynamics provide a 
more robust explanation of the changes in land 
markets or land use patterns that are observed in 
reality and not well explained by the traditional 
urban growth models? 
 Exploration of such questions requires further 
improvements in agent-based models that make 
them comparable to the traditional urban eco-
nomic models of land markets and land use pat-
terns. Comparability requires (i) rebidding, so that 
land prices can evolve over time with market 
conditions regardless of whether the land is occu-
pied or not, and (ii) that the household’s maxi-
mum value of the WTP function be equal to the 
household’s bid in spatial equilibrium. In addi-
tion, the household’s optimal bid should be de-
rived from a fully structural model in which the 
optimal bidding process accounts simultaneously 
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for the spatial variation at an individual plot level 
and market conditions that can deviate from those 
in spatial equilibrium. While none of the models 
we review here nor the model that we present 
accomplish all of these tasks, meaningful pro-
gress has been made. Much more work remains to 
develop agent-based models of land markets and 
spatial dynamics that can answer these and other 
questions, making this an exciting area for future 
research. 
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