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Stabilisation Targets, Technical Change and the Macroeconomic Costs 
of Climate Change Control 

 
Summary 
The issue of greenhouse gas (GHG) stabilization stands on three critical open questions. 
Namely, what are the impacts deriving from different levels of climate change and their 
distribution. What are the levels at which GHG concentration should be stabilized in 
order to avoid unacceptable impacts. And, finally, what are the costs and what are the 
instruments available to reach such stabilization targets. In the present paper, we address 
the latter question, in the specific attempt of shedding some light on the debated role of 
technological progress in lowering the costs of GHG stabilization. In particular, we use 
an optimal growth climate-economy model, where technical change is endogenously 
driven by learning by researching and learning by doing. In the model, when an 
ambitious stabilization target has to be reached, some additional technological 
innovation and diffusion is induced. The magnitude of this induced effect substantially 
affects the costs of stabilizing greenhouse gasses and may even make a well-designed 
climate policy a win-win strategy. A sensitivity analysis on the model crucial 
parameters is performed to account for structural and parametric uncertainties on 
learning effects, on the relationship between knowledge accumulation and the energy 
and carbon intensity of the economic system, and on the crowding out of investments in 
the energy sector R&D with respect to other research fields. 
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1. Introduction 

Technological change (TC hereafter) is a major force in a country’s economic growth. 

Since before the industrial revolution, economies and societies have evolved as a result of 

technological change. This evolution has been largely beneficial, even though asymmetrically 

distributed within and across societies. However, the economic growth fostered by technical 

changes has had and still has a large impact on natural resources and the global environment. 

Among these impacts, the release of large amounts of carbon into the atmosphere is certainly 

a potentially damaging one, at least in the long-run. The scientific consensus is that these 

emissions will contribute to changing the earth’s climate, with the consequent expected 

effects on e.g. average temperature, sea level, precipitation patterns, and consequently on 

agriculture production, coastal zone urban settings, biodiversity, vector born diseases, and so 

on.    

Controlling the influence of human activities on climate is not an easy task. The 

international agreements that have so far come into force have only had and will have a very 

small impact on greenhouse gas (GHG) atmospheric concentrations. Stabilizing these 

concentrations at, for example, twice the pre-industrial levels requires per capita global 

emissions to peak and then decline to (at least) half their 1990 value by the end of the twenty-

first century.1 This seems to be feasible only through drastic technological change in the 

energy sector, i.e. technological innovation is increasingly seen as the main way of 

reconciling the current fundamental conflict between economic activity and environmental 

protection. 

No one really believes or is ready to accept that the solution to the problem of climate 

change is to reduce the pace of economic growth. Instead, it is believed that changes in 

technology will bring about the long awaited de-coupling of economic growth from the 

generation of polluting emissions. There is a difference in attitude in this respect, though. 

Some maintain a faithful view that technological change, having a life of its own, will 

automatically solve the problem. Others express the conviction that the process of 

technological change by and large responds to impulses and incentives, and therefore has to 

be fostered by appropriate policy actions. 

 Technological change generally leads to the substitution of obsolete and dirty 

technologies with cleaner ones. It must be borne in mind, however, that technical change is 

not per se always environment-friendly, as it can lead to the emergence of new sectors and 

                                                 
1 See Bosetti, Galeotti, and Lanza (2004) for a detailed analysis. 
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industries with new kinds and degrees of pollution problems, like the generation of new 

harmful pollutants. There are therefore no substitutes for policy in directing the innovation 

efforts toward fostering economic growth and helping the environment at the same time (see 

the evidence in Galeotti, 2003). 

All the above remarks are reflected in climate-economy models, the main quantitative 

tools designed either to depict long-run energy and pollution scenarios or to assist in climate 

change policy analysis. Indeed, these models have traditionally accounted for the presence of 

technical change, albeit usually evolving in an exogenous fashion. More recently, however, 

models have been proposed where technology changes endogenously and/or its change is 

induced by deliberate choices of agents and government intervention. Both bottom-up and 

top-down models, a long standing distinction in energy-economy-environment modelling, 

have been recently modified in order to accommodate forms of endogenous technical change. 

As it turns out, the bottom-up approach has mostly experimented with the notion of Learning 

by Doing (LbD henceforth), while a few top-down models have entertained the notion of a 

stock of knowledge which accumulates over time via R&D spending. 

 We do not intend to review here the recent literature on the role of TC in the 

economics of climate change and on the endogenisation of TC in climate-economy models. 

This has been done elsewhere (see, for instance, Carraro and Galeotti, 2002, 2004; Löschel, 

2002; Sijm, 2004).2  Our intention here is rather  to  identify the main features that a model of 

technological change should possess (see Clarke and Weyant, 2002, for a similar exercise) 

and then develop a new climate-economy model in which most of these features are taken 

into account.  

 In the new model, dubbed FEEM-RICE v.3, that will be presented and tested in this 

paper, changes in technology affect the economy and climate through modifications of both 

the energy intensity of production and the carbon emission intensity of energy consumed. The 

driver of these intensity ratios is a new, crucial variable, deemed Energy Technical Change 

Index (ETCI), which is a convex combination of two stocks, an abatement-based one and an 

R&D-based one. These stocks are designed to capture the two main modes of endogenous 

TC, Learning-by-Doing (LbD) and Learning-by-Researching (LbR). We hypothesize that  

these two sources of technical change cannot easily substitute one another. 

 As there is basically little guidance to the calibration of the crucial TC parameters, in 

particular in the context of a regional climate-economy model of the world economy like the 

                                                 
2 A very recent exercise is the Innovation Modelling Comparison Project (IMCP), the results of which are 
summarized in Edenhofer, Lessmann, Kemfert, Grubb, and Köhler (2005). 
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one proposed in this paper, we carry out a number of optimisation runs in which the key TC 

parameters are modified and their impacts on the energy and carbon intensity in different 

regions of the world are quantified. This sensitivity analysis will enable us to test the 

robustness of the model, and to identify which parameters drive our main results. 

After having described and tested the model, this paper focuses on a few policy 

exercises designed to assess the effects and costs of measures aimed at stabilising GHG 

concentrations. In this paper we concentrate on the specific target of stabilizing CO2 

concentrations.3 Article 2 of the United Nations Framework Convention on Climate Change 

(UNFCCC) had established the central goal of “stabilization of greenhouse gases (GHGs) 

concentrations in the atmosphere” In its Third Assessment Report the IPCC, the scientific 

advisory board to the UNFCCC laid out various long-term stabilization scenarios for GHG 

concentrations with associated ranges of expected increases in global mean temperature 

(IPCC, 2001). 

In the light of these institutional endorsements, we follow the bulk of the literature and 

adopt in this paper a concentrations target.4 Because of the uncertainty characterizing long-

term stabilisation targets, we consider three alternative numerical values corresponding to 

more and less ambitious goals. 

 The remainder of the paper is as follows. Section 2 briefly surveys the recent literature 

on endogenous and induced technical change in climate-economy models, and identifies the 

main features that an ideal model should possess. Section 3 presents the FEEM-RICE v.3 

model and provides a technical discussion on how TC has been modelled. Section 4 discuss 

the model calibration procedure, while Section 5 tests the sensitivity of our formulation of 

technical change to changes in its main parameters. Section 6 presents the main results of our 

analysis of different stabilization scenarios and outlines the macroeconomic costs of 

alternative policy measures. Some concluding comments and suggestions for further research 

close the paper. 

                                                 
3 Let us stress that this is not the only target that could be selected. As a matter of fact, alternative goals could be 
adopted along the climate cycle. Different targets present advantages and shortcomings as thoroughly discussed 
by, for instance, Pershing and Tudela (2003) and Bosetti, Galeotti e Lanza (2004). In general, focusing on earlier 
stages (such as production or emissions) means having more precise information on what the required effort 
should be, but it may not produce effectively the desired effects, mainly because of the loose relationship 
between actions and climate damages. The reverse is true for targets imposed on later stages.  
4 See the papers forthcoming in the special issue of the Energy Journal (Edenhofer, Lessmann, Kemfert, Grubb, 
and Köhler, 2005). 
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2. Modelling Endogenous Technical Change: A Brief Overview 

Endogenous TC does not involve the mere passage of time, but it stems from 

deliberate research and the innovation decisions of economic agents. These decisions are 

influenced by a variety of economic factors, that are not limited to the changes in relative 

prices. In other words, endogenous TC refers to both shifts of the production isoquant, and 

shifts along the production isoquant. Policy measures adopted at the local, national or 

international level may play an important role in stimulating these technological changes. 

As noted by Clarke and Weyant (2002), theoretical work on endogenous TC is 

comprised of essentially two strands: innovation theory and endogenous growth theory.5 

Innovation theory has a microeconomic focus, looks at individual firms and industries, and 

stresses the incentives and the inefficiencies that result from the failure to share the benefits of 

the innovation activity. Endogenous growth theory has a macroeconomic focus, and analyses 

how investment in innovation by private agents can be a source of aggregate economic 

growth. 

Climate-economy models typically try to combine aspects of both theories. They both 

stress the importance of knowledge as being a public good and highlight the importance of 

spillovers, as the incomplete appropriability of the benefits from innovation by private firms 

creates positive externalities. Spillovers cause underinvestment in innovation. Most 

theoretical work shows and empirical work confirms that markets do not invest efficiently in 

innovation and that underinvestment is significant enough to warrant attention by policy 

makers. This situation is known as “innovation market failures” and should represent an 

essential aspect of endogenous TC modelling.  

It is a useful exercise to consider the main ingredients of endogenous TC and the 

various aspects of innovation market failures. Consideration of these elements will provide a 

sort of checklist that can be used against the climate-economy models incorporating 

endogenous TC that have appeared in the recent literature. And, above all, it will be useful to 

identify the main features of the new model that will be described below.  

Let us therefore summarize the main features that an ideal climate-economy model 

with endogenous TC should possess (see Clarke and Weyant, 2002): 

• Because spillovers are a fundamental source of economic growth, they ought to be 

incorporated in any model aiming to model the long-term process of TC. A full 

                                                 
5 This is not to say that theorizing in the field of TC is limited to these two areas only. Innovation and 
endogenous growth are the two areas most directly relevant for modeling endogenous TC in climate-economy 
models. 
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accounting of spillovers in climate-economy models is probably asking too much, as they 

occur within industries, across industries within countries, and across countries. Clearly, 

however, to account for intersectoral spillovers a model must be disaggregated by sector, 

while to account for international spillovers the model must include  regional 

disaggregation.  

• The difference between private and social returns associated with innovation activity 

ought to be acknowledged. Private returns to R&D tend to be appreciably smaller than 

social returns, in proportions of 20-30% to around 50% according to the empirical studies 

considered. 

• Climate-economy models with endogenous TC must specify the mechanism through 

which technological change takes place and the way it alters technology. The two 

mechanisms that have been considered to date are research and development spending and 

experience building. An advantage of the LbD approach is its simplicity and its reduced 

calibration requirements relative to the R&D approach. The latter, on the other hand, 

allows for more room for policy maneuvering (energy/environmental R&D can be 

subsidized or stimulated) and additional control variables to rely on. Clearly, neither 

approach is a complete picture of what goes on in reality, so  models  based on one or the 

other formulation inevitably miss something important. While no model can closely 

approximate the real world, the question is whether and at what modeling cost it is 

possible to account for both varieties of endogenous TC in a satisfactory manner. 

• Besides the choice between R&D vs. experience drivers, it is also important to specify 

where and how those drivers actually bring about a change in technology. One distinction 

is between energy and non-energy sector. Our modeling strategy is to start with 

endogenous TC in the energy industry, leaving other TCs as exogenous. While, as 

previously noted, it is true that intersectoral spillovers are important, it would probably be 

too complex to include the complex interrelations between energy technologies and other 

techonlogies. The resulting model would be too abstract or too cumbersome to be of any 

use. 

• It is worthwhile considering two sources of energy-saving or carbon-saving 

improvements: decarbonization of energy services and reduction in the energy intensity of 

economic activities. The second source is more complicated to account for since it 

involves R&D in sectors other than the energy industry. In the light of the previous 
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remark, modelers may consider assumimg that the evolution of the energy intensity of 

non-energy technologies is exogenously generated. 

• There are complementary sources of technological advance. One is public sector R&D: 

publicly financed research will accompany subsidies to private R&D in the form of TC 

fostering policies. Another source is intersectoral spillovers, already mentioned above. 

The final source of TC is major innovations and breakthroughs. What do these 

complementary sources tell us about modeling TC? The implication is that ultimately 

some technological progress must remain exogenous. 

• Technological heterogeneity is an important issue. One potential implication is 

discontinuous TC. Even if innovation is continuous and incremental in individual 

technologies, the aggregate production function’s response to innovation investment may 

be non-linear and exhibit discontinuities. What do endogenous TC models miss when they 

aggregate technologies? Aggregate models are not able to account for the relevance of 

emerging technologies and the associated notion that the allocation, not only the absolute 

level, of innovation is important. Models can in principle account for heterogenous 

technologies. Bottom-up models are best suited for the purpose, whereas top-down 

models can probably at most distinguish between carbon-intensive and non-carbon-

intensive technologies. 

• TC is an uncertain process. Uncertainty affects both the rate and direction of TC. It also 

characterizes the potential for new technologies, that is the extent to which individual 

technologies will respond to R&D or experience, and the heterogeneity and discontinuities 

in technology development. Essentially these are “parameter” uncertainties, where the 

parameters refer to the response of technology to innovative effort or R&D. The 

uncertainties can be addressed by basing that response on expected values of uncertain 

parameter distributions. 

• Innovation takes time and is risky. To the extent that markets have different preferences 

for risk and time than society preferences, markets will invest in innovation differently 

than would be socially optimal. Risk aversion and discounting start to play a role when we 

consider technological heterogeneity, and emerging environmental technologies in 

particular. This aspect can be then best addressed by bottom-up models which are capable 

of distinguishing between more mature and newer technologies, and between more and 

less competitive technologies. The deviation of private risk aversion and time preference 

from socially preferred values can however also be captured, though in an ad hoc fashion, 
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by bottom-up models that arbitrarily increase the price of R&D resources or adjust the 

spillover parameter(s) upward. 

• Not all investment activity can be captured by models assuming rational behavior. 

Entrepreneurial spirit can also guide innovation choices. While climate-economy models 

are likely to face serious difficulties in explicitly accounting for this aspect, they can 

nevertheless allow for an implication of quasi-rational, or routine-based behavior (as in 

evolutionary theories): the tendency to undertake research efforts on technologies already 

in use will bias private sector behavior toward dominant technologies. The effect is 

therefore similar to the one made in the previous point . 

• The very essence of evolutionary economics and historical evidence suggest that 

technological change evolves with a lot of inertia. It is, in other words, characterized by 

path dependence. This implies that the rate, and especially the direction, of TC may 

respond sluggishly to economic stimuli relative to the no-friction standard neoclassical 

models. More problematically, it also implies that what we do today affects how the 

economy will respond in the future, i.e. today’s actions redirect the future path of TC. 

Incorporating path dependence into climate-economy models is probably prohibitively 

complicated, unless perhaps if we resort to adding time lags to the process of technology 

development. 

• A final point refers to technology diffusion as opposed to technology innovation. One 

obvious way to account for this aspect is the introduction of time lags. This strategy does 

not do justice to the importance and implications of technological diffusion vis-à-vis 

technology development, but it may represent a reasonable shortcut, an acceptable 

compromise to make especially in top-down models. 

To date the literature includes only a few examples of climate-economy models where 

TC is explicitly endogenised. The list is however expanding (see Edenhofer, Lessmann, 

Kemfert, Grubb, and Köhler, 2005). As said above, we do not review these various models 

here. We simply mention these models and refer to Table 1 below for a picture showing 

which of the above ideal aspects each individual model does or does not address. 
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Table 1: Induced TC Features of Some Climate Models 

 

 R&D Learning 

 

 

Technology 

Spillovers 

Private/social 

returns to R&D

Opportunity 

cost of R&D 

ITC in 

non-

energy 

Energy 

saving 

ITC 

Carbon 

saving 

ITC 

Public 

R&D 

complemen

tary 

sources of 

TC 

Technological 

heterogeneity 

Technological 

uncertainty 

Path 

dependence 
Diffusion 

R&DICE yes no no yes no no yes yes yes no* no no 

ETC-RICE yes yes yes no yes no yes yes no no no no 

Demeter 1 no yes no no no yes yes yes yes yes no no 

MERGE no yes no no no yes yes yes yes  no** yes yes 

ERIS/MARKAL/

MESSAGE 
no yes 

no 
no no yes yes no no 

no 
yes yes 

Barreto & 

Kypreos 
yes yes 

yes 
no no yes yes no no 

no 
yes yes 

Entice yes no no yes no no yes yes no no no no 

Demeter 2 yes yes no no no yes yes yes yes no no no 

Entice-BR yes no no yes no no yes yes yes no no no 

WIAGEM yes no yes yes yes yes no yes yes no no no 

FEEM-RICE yes yes yes yes no yes yes yes no yes no no 

 

 
*  Uncertainty on technology is however discussed in Nordhaus, W. D. and Popp, D. (1997), “What is the value of Scientific Knowledge? An application to global  
    warming using the PRICE Model”, The Energy Journal, 18-1, 1-44  
** Uncertainty on technology is however discussed in Manne, A. S. and Richels, R.G. (2003), “Stabilizing Long-Term Temperature”, Working Paper, Stanford University 
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The models considered are, in the bottom-up energy systems class, versions of the 

multi-regional MESSAGE-MARKAL model (Messner, 1997; Barreto and Kypreos, 2002a; 

Criqui, Klaassen, and Schrattenholzer, 2000; Miketa and Schrattenholzer, 2002; Barreto and 

Kypreos, 2002b, 2004). These are dynamic linear programming models of the energy sector 

that are generally used in tandem with MACRO, a macro-economic model which provides 

economic data for the energy sector (Manne, 1981; see also Seebregts, Kram, Schaeffer, 

Stoffer, Kypreos, Barreto, Messner, and Schrattenholzer, 1999; Manne and Barreto, 2004). 

These models yield the optimal choice between several different technologies using given 

abatement costs and carbon emission targets. In addition, they feature a learning or experience 

curve describing technological progress as a function of accumulating experience with 

production (LbD for manufacturers) and with use (learning-by-using – LbU – for consumers) 

of a technology during its diffusion. 

Among top-down models, we consider Manne and Richels (1992)’s MERGE model, a 

regional intertemporal growth model which combines a top-down perspective on the 

remainder of the economy together with a bottom-up representation of the energy supply 

sector. In a recent version of the model (Manne and Richels, 2002), one of the previous two 

electric backstop technologies, the low-cost one, is replaced by a LbD process. Another model 

which exploits the notion of LbD to endogenize technical change is DEMETER, a global 

model proposed by van der Zwaan, Gerlagh, Klaassen, and Schrattenholzer (2002) (see also 

Gerlagh and van der Zwaan, 2000; Gerlagh, van der Zwaan, Hofkes, and Klaassen, 2000; 

Gerlagh and van der Zwaan, 2004). A macroeconomic (top-down) model is specified which  

distinguishes two different energy technologies, carbon and carbon-free. The costs of the 

latter are dependent upon the cumulative capacity installed. Thus the model is expanded with 

learning curves previously used in energy system (bottom-up) models.  

A recent evolution of DEMETER is the partial equilibrium model of energy supply 

and demand elaborated by Gerlagh and Lise (2003). DEMETER-2E, as it is called, entertains 

two energy technologies for the production of a carbon-rich and a carbon-poor input. R&D is 

combined with LbD: R&D-based knowledge is combined with capital and labour in a 

technology which produces more and more energy input over time thanks to LbD. 

An example of multi-region, multi-sector integrated assessment model with 

endogenous TC is Kemfert (2002)’s WIAGEM. In this recursive dynamic computable general 

equilibrium model, R&D spending affects the productivity of the energy input in the 

production process. More R&D therefore results in increased energy efficiency. It is to be 
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noticed that R&D enters the model as a flow, whereas most of the other R&D-based models 

adopt the stock of knowledge, accumulated through R&D investments, as the driver of TC. 

Finally, there are models of endogenous TC that extend the Nordhaus’ RICE/DICE 

family of models. In particular, we consider the optimal growth (regional) RICE model 

elaborated by Buonanno, Carraro, Castelnuovo, and Galeotti (2000) and Buonanno, Carraro 

and Galeotti (2002). This model, called ETC-RICE, extends Nordhaus and Yang (1996)’s 

RICE model to allow for a R&D-based formulation of endogenous TC. In the vein of Goulder 

and Mathai (2000), in subsequent work Castelnuovo, Galeotti, Gambarelli, and Vergalli 

(2005) specify a version of the ETC-RICE model that features instead an experience-based 

endogenous TC. 

The new version of the RICE/DICE model (Cf. Nordhaus and Boyer, 2000) is used by 

Nordhaus (2002) to lay out a model of endogenous innovation brought about by R&D efforts.  

Nordhaus’ work is extended by Popp (2004a) with his ENTICE model. As in Nordhaus, R&D 

is four times more costly than physical investment, to account for the divergent social and 

private rates of return associated with R&D. In addition, the author assumes that 50% of other 

R&D is crowded out by energy R&D, thus raising the opportunity cost of the latter.6 In a very 

recent variation, dubbed ENTICE-BR, Popp (2004b) extends the ENTICE model to also 

include an energy backstop technology. Finally, Popp (2004c) uses the ENTICE model to 

study the role of government subsidies to climate-friendly R&D. These are found to 

significantly increase R&D, but to have little effect on climate damages. 

 As it can be seen from this brief overview – and above all from Table 1 – existing 

models fall short of addressing the ideal features of endogenous TC that were outlined at the 

beginning of this section. This is why, in the next section, we will present a new model of 

endogenous TC that we hope will prove more satisfactory than previous ones. 

 

3. Modelling Endogenous Technical Change: The FEEM-RICE v.3 Model  

The FEEM-RICE v.3 model is an extended version of the RICE 99 model by Boyer 

and Nordhaus (2000).7 RICE 99 is a Ramsey-Koopmans single sector optimal growth model 

suitably extended to incorporate the interactions between economic activities and climate. 

There is one such model for each of the eight macro regions into which the world is divided: 

                                                 
6 As stated, unlike Nordhaus’ R&DICE model, Popp’s ENTICE model does not impose zero substitution 
possibilities between energy on the one hand and capital and labor on the other when research is endogenously 
determined. 
7 RICE 99 is an extension of the RICE 96 model described in Nordhaus and Yang (1996).  
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USA, Other High Income countries (OHI), OECD Europe (Europe), Russia and Eastern 

European countries (REE), Middle Income countries (MI), Lower Middle Income countries 

(LMI), China (CHN), and Low Income countries (LI).  

Within each region a central planner chooses the optimal paths of two control 

variables, fixed investment and carbon energy input, so as to maximize welfare, defined as the 

present value of per capita consumption. The value added created via production (net of 

climate change) according to a constant returns technology is used for investment and 

consumption, after subtraction of energy spending. The technology is Cobb-Douglas and 

combines inputs from capital, labour and carbon energy together with the level of technology. 

In RICE 99, population (taken to be equal to full employment) and technology levels grow 

over time in an exogenous fashion, whereas capital accumulation is governed by the optimal 

rate of investment.  

The production function of the original RICE 99 model is (n indexes regions, t time 

periods): 

 

),(]),(),(),()[,(),( 1 tnCEptnLtnCEtnKtnAtnQ E
nF

nn −= −− γααγ     (1)

  

where Q is output (gross of climate change effects), A the exogenously given level of 

technology and KF, CE and L are the inputs from physical capital, carbon energy and labour, 

respectively, and pE is fossil fuel price. Carbon emissions are proportional to carbon energy, 

that is: 

 

),( ),(),( tnCEtntnE ζ=          (2)

  

where E is industrial CO2 emissions, while ς is an idiosyncratic carbon intensity ratio which 

also exogenously declines over time. In this way, Nordhaus and Boyer (2000) make the 

assumption of a gradual, costless improvement of the green technology as time goes by. This 

treatment of technical change appears inadequate for a model designed to study issues related 

to climate change and climate policy. This is why we developed an extension of RICE 99 in 

which technical change is endogenous and responds to climate policy as well as to other 

economic and policy incentives.  

In FEEM-RICE v.3, we consider simultaneously both LbD and LbR as inputs of 

endogenous and induced technical change and we focus on the effects of technical change on 
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both the energy intensity of production and the carbon intensity of energy use. These features 

of the model allow us to address both energy-saving and energy-switching issues. To clarify 

this aspect it is perhaps useful to refer to a time-honoured concept in environmental 

economics, namely the Kaya’s identity, which in the present specific case reads as follows: 
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where E is world emissions, CE is carbon energy, and L is population. Hence, world 

emissions are a product of two ‘forces’: techno-economic forces, given by carbon intensity 

(E/CE) and energy intensity (CE/Y), and socio-economic forces, given by per capita output 

(Y/L), as well as demographic dynamics L. In addition to socio-economic forces – income and 

population – which are commonly modelled in endogenous growth models, our model allows 

us to endogenise both techno-economic forces, namely energy and carbon intensity. 

The main novelty of our new formulation hinges on the relationship between technical 

change and both Learning-by-Researching and Learning-by-Doing at the same time. We 

assume that energy-saving and climate-friendly innovation is brought about by R&D 

spending which contributes to the accumulation of the stock of existing knowledge.8 In 

addition to this Learning-by-Researching effect, the model also accounts for the effect of 

Learning-by-Doing, now modelled in terms of cumulated abatement efforts. Thus, our index 

of technical change, ETCI (Energy Technical Change Index), is defined as a convex 

combination of the stocks of knowledge and abatement: 

 
d

s
c

R tnABATtnKtnETCI ),(),(),( =        (4) 

 

where ),( tnK R  is the stock of knowledge and sABAT  represents the stock of cumulated 

abatement, in turn defined as: 

 

                                                 
8 Therefore, the focus is on energy-related R&D. It has to be pointed out that analysing R&D expenditure is 
complicated because (i) R&D is not always amenable to measurement and (ii) there is a great deal of uncertainty 
in the ability of R&D to generate technological change. These words of caution should be therefore borne in 
mind by the reader when going through the paper.  
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),()1(),()1,( tnABATtnABATtnABAT sBFAS δδ −+=+ .     (5)

  

ABATF the abatement flow, Aδ the learning factor, i.e. the amount of abatement which 

translates into a learning experience, and Bδ  being the depreciation rate of cumulated 

experience. The stock of knowledge ),( tnK R  accumulates in the usual fashion: 

 

),()1(),(&)1,( tnKtnDRtnK RRR δ−+=+ ,      (6) 

 

where Rδ  is the depreciation rate of knowledge. Without loss of generality, we assume that 

d=(1-c). 

 How does our index of energy technical change affect the rest of the economy? The 

variable ETCI is assumed to affect both energy intensity (i.e., the quantity of energy required 

to produce one unit of output) and carbon intensity (i.e., the level of carbonization of 

primarily used fuels). As seen in equation (1), the factors of production are labour, physical 

capital and carbon energy. Let us first consider the effect of technical progress on factor 

productivity (the energy-intensity effect). In our model, the production function (1) is 

replaced by the following equation: 

 

),(),(]),(),(),()[,(),( )()(1 tnCEtnptnLtnCEtnKtnAtnQ e
ETCIETCI

F
nn  −= −− γαγα    (1’) 

 

where:  

 

)],(exp[2
)],([

tnETCI
tnETCI

n

n
nn β

ϑαα
−−

==       (7)

  

and nn βθ  and  are region specific parameters, calibrated to have -in the base year- nα  exactly 

as in the original formulation of the production function. Thus, an increase in the 

endogenously determined ETCI reduces – ceteris paribus – the output elasticity of the energy 

input. It is worth noting that in (1’) ),( tnA , the Hick’s neutral component of technological 

progress, accounts for a fraction of technical change which evolves exogenously, thus 

following an explicit suggestion by Clarke and Weyant (2002). 
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 Let us now turn to the effect of energy technical change on the carbon intensity of 

energy consumption. As shown in (2), effective energy results from both fossil fuel use and 

(exogenous) technical change in the energy sector. In our model, we assume that ETCI serves 

the purpose of reducing, ceteris paribus, the level of carbon emissions. More precisely, 

equation (2) is replaced by: 

 

),(
)],(exp[2

1),()],(),,([),( tnCE
tnETCI

tntnETCItnCEhtnE
n

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−−
ς==

ψ
.  (2’) 

 

Again, parameters in equation (2’) have been calibrated in order to replicate the base year in 

the original formulation. Here an increase in ETCI progressively reduces the amount of 

emissions generated by a unit of fossil fuel consumed. Finally, we recognize that R&D 

spending absorbs some resources, that is: 

 

),(&),(),(),( tnDRtnItnCtnY ++= ,       (8) 

 

where Y is output net of climate change effects, C is consumption, I is gross fixed capital 

formation and R&D is research and development expenditures. 

In order to account for the difference between private and public return to investments 

in R&D, we follow Popp (2004a) and model the positive externality of knowledge creation by 

assuming that the return on R&D investment is four times higher than the one in physical 

capital. At the same time, the opportunity cost of crowding out other forms of R&D is 

obtained by subtracting four dollars of private investment from the physical capital stock for 

each dollar of R&D crowded out by energy R&D, so that the net capital stock for final good 

production becomes: 

 

)tnD*R*t) – (I(ntn K) tK(n ),(&4,)1)(,(1, λδ +−=+ ,     (9)

  

where λ , the crowding out parameter, represents the percentage of other R&D crowded out by 

energy R&D. 

The optimal dynamic path of all variables of the model is determined by solving an 

intertemporal optimisation problem. Control variables (physical investments, R&D investments and 

energy demand) are computed within a game-theory framework. Each country plays a non-cooperative 
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Nash game in a dynamic setting which yields an Open Loop Nash equilibrium. This allows us to 

account for externalities and spillovers and to analyse how policy measures are then influenced. In 

particular, the strategic underinvestments in R&D that were emphasised by Clark and Weyant (2002) 

(see Section 2 above) can be captured by our model. 

 

4. Calibration of the Baseline 

To further clarify our formulation of endogenous and induced technical change, let us 

highlight the dynamic interrelationships between the different variables and their role in the 

model. First of all, let us notice that R&D is a control variable, whereas the stock of 

knowledge and cumulated abatement are state variables. Therefore, R&D can be used 

strategically by regulators in each region of the model, whereas LbD is an output of the 

regulator’s strategic behaviour. This is quite clear at the beginning of the game (see Figure 1). 

At stage one, only LbR through R&D investments occurs. This modifies our index of energy 

technical change ETCI and yields some amount of abatement, i.e. some abatement experience 

which becomes LbD. Both LbR and LbD then affects ETCI in the subsequent stages. 

Figure 1: The Structure of Technical Change in FEEM RICE v.3 
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In short, the fundamental driver of technical progress is R&D investment. This induces 

knowledge accumulation and experience in emission abatement in various regions of the 

world. In turn, these variables move technology towards a more environment-friendly 

dynamic path.  

Our quite general solution to account for endogenous and induced technical change 

comes obviously at a cost. Basically, little information to calibrate the model parameters is 

available. The best strategy we can follow is to calibrate parameters in order to replicate, in 

the baseline, emissions of the SRES B2 scenario (IPCC, 2000), which are also the baseline 

emissions in the original RICE 99 model by Nordhaus and Boyer (2000).  

Given the high degree of freedom characterizing the calibration process, there exist 

many distinct baseline models representing different interpretations of what role the 

exogenous and endogenous components should play in the baseline.  

We emphasize this fact by using two versions of the FEEM-RICE v.3, called FAST 

and SLOW FEEM-RICE. The two versions primarily differ in the value of the learning factor, 

δA, defined as the rate at which accumulation of past abatement becomes effective experience. 

Therefore, it represents the effectiveness of Learning by Doing. In particular the FAST 

version of the model assumes a 10% learning factor as opposed to the 5% learning factor of 

the SLOW version. In addition to this, the two versions of the model differ in the magnitude 

of the crowding out effect of investment in energy R&D on other research investments, which 

in turn controls for the profitability of R&D investments. In particular, looking at (10) we set 

λ=0.25 in the FAST version and λ=0.5 in the SLOW version of the model respectively. 

Differences in these two key features imply a substantially different contribution of the 

exogenous versus the endogenous component of technical change in the baseline (see Table 

4). A comparison of the two versions – also with respect to the original RICE 99 model and 

with respect to FEEM-RICE without endogenous technical change – is shown in Tables 2 and 

3.  
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Table 2: Contributions of Different Technical Change Components to Lowering Carbon 
and Energy Intensity in the FAST version of FEEM-RICE v.3 - 1995-2105 
cumulated effects 

Baseline  Nordhaus 
RICE 99  

FEEM-RICE v.3  
with Exogenous TC 

FAST 
FEEM- 

RICE v.3 

FEEM-RICE with only 
Learning by Researching  

Carbon 
Energy/Production  -2.74%  -10.59%  -26.92%  -10.79%  

Carbon 
Emissions/Carbon 

Energy  -66.52%  -40.77%  -66.14%  -49.01%  
 
Table 3: Contributions of Different Technical Change Components to Lowering Carbon 

and Energy Intensity in the SLOW version of FEEM-RICE v.3 - 1995-2105 
Cumulated Effects 

Baseline  Nordhaus 
RICE 99  

FEEM-RICE v.3 
with Exogenous TC 

SLOW 
FEEM- 

RICE v.3  

FEEM-RICE with only 
Learning by Researching  

Carbon 
Energy/Production  -2.74%  -6.83%  -13.76%  -7.13%  

Carbon 
Emissions/Carbon 

Energy  -66.52%  -51.59%  -59.47%  -54.29%  
 

A few remarks are in order. TC – whether exogenous or endogenous – affects carbon 

intensity more than energy intensity. Thus, mostly carbon switching rather than energy 

saving. This feature is striking in the original RICE 99 model. The situation is less extreme in 

the FEEM-RICE models, especially in the FAST version, where more learning and less 

crowding out of R&D enhance the reduction of energy intensity relative to that of carbon 

intensity.  

Another aspect to note is that the exogenous component of TC remains prevalent. It 

accounts for between 60% and 80% of the whole effect. Moreover, the endogenous 

component is larger in the FAST version of FEEM RICE v.3 than in the SLOW version (see 

Table 4). The reason is the enhanced effectiveness of energy technical change in the FAST 

version, where energy R&D crowds out a smaller amount of other types of R&D and where 

LbD is faster.  
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Table 4: Exogenous and Endogenous Share of Total Energy Technical Change 
Measured as the Effect on the Carbon Intensity Index in the Baseline Scenario 
(1995-2105) 

 
Baseline  Exogenous TC Endogenous TC 

FAST FEEM-
RICE v.3  62%  38%  

SLOW FEEM-
RICE v.3  87%  13%  

 

Finally, notice that the effects shown in Tables 2-4 refer to the baseline scenario 

without any stabilisation target and/or climate policy. More relevant effects on and of 

technical change will be shown in the next section, where the control variables will be 

optimised to achieve a stabilisation target and to maximise welfare. In this new context, more 

technical change will become optimal (namely more R&D investments). Therefore, the 

endogenous component of energy technical change will be integrated by an induced 

component (which therefore reduces the share of the exogenous component. See Table 5 

below). The FEEM-RICE v.3 model enables us to disentangle the three components of 

technical change and to quantify the induced (additional) R&D investments in new energy 

technologies that it would be optimal to carry out in order to achieve a given stabilisation 

target.  

 

5. Induced Energy Technical Change and the Macroeconomic Cost of GHG Stabilisation  

The model described above has been used to analyse the macroeconomic implications 

of stabilising GHG concentrations at three different target levels: 450, 500 and 550 ppm in 

2100.9 We consider three different concentration levels owing to the uncertainty surrounding 

quantitative targets set in a distant future. In this section, we present selected results for the 

SLOW version of the model, which is less optimistic with respect to the future evolution of 

technical change, thus providing more conservative insights.  

We start by assessing how technical change reacts to the introduction of more 

stringent policy objectives. From Table 5 and from Figure 2 it appears that more ambitious 

targets imply an increasing investments in R&D and a greater incidence on the endogenous 

and induced components of energy technical change. In particular, the share of induced 

                                                 
9 The reader is reminded that the model is not a multi gas model and therefore accounts for CO2 emissions only.  
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technical change becomes 13.8% in the 450 ppm scenario, whereas the endogenous 

component (including the induced one) doubles with respect to the one in the baseline 

scenario.  

Table 5: Exogenous, Endogenous and Induced Share of Total Energy Technical Change 
Measured as the Effect on the Carbon Intensity Index in the Three Stabilisation 
Scenarios (1995- 2105) - SLOW FEEM-RICE v.3 

 
SLOW FEEM-RICE  Exogenous TC Endogenous TC Induced TC  
450 ppm scenario  74.8%  11.4%  13.8%  
500 ppm scenario  75.9%  11.6%  12.5%  
550 ppm scenario  79.4%  12.1%  8.5%  

 
 

Figure 2: The Dynamics of ETCI in the Three Stabilisation Scenarios 
SLOW FEEM RICE v.3 

 
 

Our index of energy technical change ETCI strongly increases as a reaction to the 

stabilisation target. ETCI reaches a peak after the mid of next century as a consequence of the 

large R&D investments that countries find it optimal to carry out from 2020 to 2050. Figure 3 

shows the time profile of the stock of knowledge induced by the three targets. Note the hump 

shape that gets more pronounced as the target becomes more stringent. This is also the case of 

induced LbD as revealed by Figure 4. 

 

 

 



 21

Figure 3: The Dynamics of Induced Knowledge in the Three Stabilisation Scenarios 
SLOW FEEM RICE v.3 
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Figure 4: The Dynamics of Induced LbD in the Three Stabilisation Scenarios 
SLOW FEEM RICE v.3 
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Even though the model takes into account crowding-out effects in R&D investments 

and even though the focus is only on energy R&D and the related knowledge accumulation, 

the path of technical change which is necessary to stabilise GHG concentrations at 450 ppm 

does not seem realistic. Also notice that between two-thirds and three-fourths of the change in 

ETCI is induced by the imposition of a stabilisation target (see Table 6). This again shows 

that R&D investment three to four times larger than those in the baseline would be necessary 

to achieve a stabilisation target (see figures 2-4). 

 

Table 6: Endogenous and Induced Share of Total Energy Technical Change Index. 
Percentage Variation Between 1995 and 2105 - SLOW FEEM-RICE v.3 

 
SLOW FEEM-RICE Endogenous TC Induced TC  
450 ppm scenario  24%  76%  
500 ppm scenario  29%  71%  
550 ppm scenario  37%  63%  

 

If we look at mitigation costs, the impact of stabilisation targets does not seem to be 

high, at least when costs are measured in terms of GDP losses: see, for example, Figure 5 for 

the more ambitious and costly target. There are two reasons. First, in the model GDP losses 

are lowered by the positive effects of stabilisation on the environment (in our model lower 

concentrations imply lower GDP losses). Second, losses in terms of consumption are 

compensated by an increase of investments, in particular investments in R&D. Similar 

conclusions can be shown when costs are defined in terms of welfare losses. In Figure 6 we 

present the percentage reduction in welfare for all three targets, both when ITC is allowed for 

and when it is not. The role of ITC in contributing to lessen the negative impact of 

stabilisation targets on welfare clearly emerges. 
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Figure 5: The GDP Cost of Stabilising GHG Concentrations at 450 ppm with and 
without Induced Technical Change 

 
 

Figure 6: Welfare Cost of Stabilising GHG Concentrations at 450 ppm with and without 
Induced Technical Change - SLOW FEEM RICE v.3 
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Figure 7: The Dynamics of Emissions in the Three Stabilisation Scenarios 
SLOW FEEM RICE v.3 
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Figure 7 reports the time profile of emissions as implied by the stabilisation targets. 

Relative to the ever-increasing baseline emissions, the constrained paths share a couple of 

common features: (i) the difference between ITC and no-ITC is always very small; (ii) a 

hump shape characterizes all patterns. Here the turning point comes earlier for the more 

stringent target, at around 2020-2025 in the 450 ppm case. Between 2045 and 2065 emissions 

start declining in the two remaining cases. 

 Finally, given the uncertainty concerning some crucial parameters of the model, we 

carried out an extensive sensitivity analysis that helped us to check the robustness of the 

model and of the conclusions we drew. Due to space limits we focus on the main parameters 

that define our specification of endogenous technical change. In particular, with the parameter 

c we control the role of researching vs. learning in the process of technical change, whereas 

with parameters β and ψ we control the impact of technical progress on energy intensity and 

carbon intensity respectively (see Figure 8). Again we show results only for the SLOW 

version of FEEM RICE v.3. The initial values of the main parameters are shown in Table 7 

below. 
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Figure 8: The Crucial Parameters of the Induced TC Model 
 

 
 

 

 
 
Table 7: Initial Parameter Values for the Technical Change Module of the Model 
 

Parameter β(n) ψ(n) c δP δA δB d 
Value (0.1-0.2) (0.9-1.2) 0.5 0.05 0.05 0.05 1-c 

 

 Extensive sensitivity analysis has been performed on the parameters β , ψ  and c. The 

results are shown in Tables 8-10. The most important conclusion is the high sensitivity of 

R&D expenditure with respect to the three coefficients. The less effective is technical change 

in reducing GHG emissions the higher the increase in energy-related R&D expenditure which 

is necessary to stabilise GHG concentrations. 

 

Table 8: Sensitivity With Respect To Energy-Saving Effect Controlling Parameter 
 

β  − 0.05 central 
value  + 0.05  + 0.1  

Atmospheric concentration of carbon (GTC) in 2100  1.29% -  -1.30%  -3.18%
Atmospheric temperature (deg C) in 2100  0.94% -  -1.13%  -2.78%
R&D Expenditure as % of GPD  -6.75% -  45.22%  116.05% 

 
Table 9: Sensitivity With Respect To Fuel-Switching Effect Controlling Parameter 
 

ψ  - 0.4  - 0.2  central 
value  + 0.2  + 0.4  

Atmospheric concentration of carbon (GTC) in 2100 2.69% 1.29% -  -1.16%  -2.21%

Atmospheric temperature (deg C) in 2100  1.86% 0.94% -  -0.92%  -1.81%
R&D Expenditure as % of GPD  -15.58% -6.75% -  5.18%  9.15% 

 
 

Learning by Doing

Learning by 
Researching 

Technical Progress
(ETCI Index) 

    Energy Intensity

    Carbon Intensity

d 

c 

β

ψ
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Table 10: Sensitivity With Respect To Different ETCI Formulations 
 

 c = 0.0  c = 0.25 c = 0.50 c = 0.75  c = 1.00  
Atmospheric concentration of carbon 
(GTC) in 2100  -2.52% -0.90% - 1.27%  0.27%
Atmospheric temperature (deg C) in 2100 -2.25% -1.05% - 1.00%  -0.29%
R&D Expenditure as % of GPD  -99.77% -57.39% - 61.66%  316.60% 

 

6. Concluding Remarks 

 This paper has presented a new climate-economy model with a detailed formulation of 

the process of endogenous and induced technical change. In the model, both Learning by 

Researching and Learning by Doing are explicitly accounted for through an index of energy 

technical change. This index of technical progress affects both the relationship between the 

variables of the macro-dynamic model and energy intensity and the one with carbon intensity. 

R&D investments induce the developments of environment-friendly technologies through 

which GHG emission abatement can be undertaken. At the same time, these abatement 

activities increase experience and produce learning, which enhance the effectiveness of 

environment-friendly technologies in reducing GHG emissions. The emission reduction takes 

place through both energy-saving and fuel-switching effects. In the model, the different 

components of technical change have a differentiated impact on both effects.  

The model has been used to assess the economic costs of achieving different 

stabilisation targets. Our results suggest that these costs can be small, if adequate R&D 

investments can be financed and undertaken. Therefore, models in which technical change is 

exogenous and/or stabilisation targets induce no change in the optimal trajectory of energy-

related innovation are likely to over-estimate the actual stabilisation costs.  

An extensive sensitivity analysis with respect to the main parameters of our 2x2 

formulation of technical change has been carried out. This sensitivity analysis has shown the 

robustness of the model when parameters are changed around the calibrated values and the 

consistency of the results when large changes in the parameters are imposed.  

Clearly our model together with its new formulation of technical change is not an 

ending point. The research agenda is rich. In particular, it would be useful to extend the model 

in order to include a non-energy sector, thus making it possible to have a better representation 

of fuel-switching dynamics. Second, the possibility of a growing effectiveness of carbon 

sequestration technologies could be accounted for in the model. Finally, and most 
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importantly, stochastic components of the process of technical change – and therefore 

uncertainty – should be modelled to develop a more realistic analysis of climate policy.  
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Appendix 
 
Other Model Equations 
 
In this appendix we reproduce the remaining equations that make up the whole model. These 
equations are reported here for the sake of completeness and are the same as the ones found in the 
original RICE 99 model. 
 

In each region, n, there is a social planner who maximizes the following utility function (n indexes the 
world’s regions, t are 10-year time spans): 
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where the pure time preference discount factor is given by: 
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and the pure rate of time preference ρ(v) is assumed to decline over time. 
 
The maximization problem is subject to: 
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List of variables: 
W = welfare  
U = instantaneous utility 
C = consumption 
L = population 
R = discount factor 
Q = production 
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Ω = damage 
A = productivity or technology index 
KF = capital stock 
CE = carbon energy 

pE = cost of carbon energy 

I = fixed investment  

E = carbon emissions 

MAT = atmospheric CO2 concentrations 
LU = land-use carbon emissions 
MUP = upper oceans/biosphere CO2 concentrations  
MLO = lower oceans CO2 concentrations  
F = radiative forcing 
T = temperature level 
q  = costs of extraction of industrial emissions 
 
 
List of parameters: 
α, γ  = parameters of production function 
δK = rate of depreciation of capital stock 
ζ = exogenous technical change effect of energy on CO2 emissions (carbon intensity)  
φ11, φ12, φ21, φ22, φ23, φ32, φ33 = parameters of the carbon transition matrix 
η = increase in radiative forcing due to doubling of CO2 concentrations from pre-industrial levels 
σ1, σ2 = temperature dynamics parameters  
λ = climate sensitivity parameter 
markupE = regional energy services markup 
θ1, θ2 = parameters of the damage function 

PI
ATM = pre-industrial atmospheric CO2 concentrations 

O = increase in radiative forcing over pre-industrial levels due to exogenous anthropogenic causes 
ρ  = discount rate 
TLO = lower ocean temperature 
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