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A Hybrid Land Conversion Model 
Incorporating Multiple End Uses 
 
Nikhil Kaza, Charles Towe, and Xin Ye 
 
 The need for models that forecast land use change spans many disciplines and encompasses 

many approaches. Pattern-based models were the first in which projections of change at spe-
cific locations in actual landscapes could be predicted. In contrast, recent economic models 
have modeled the underlying behavioral process that produces land use change. This paper 
combines attributes from each approach into a hybrid model using a multiple discrete con-
tinuous extreme value formulation that allows for multiple conversion types, while also esti-
mating the intensity of each type of conversion, which is an important but often overlooked di-
mension. We demonstrate the simulation routine, which successfully predicts a majority of 
growth by type, time, and location at a disaggregated scale, for a three-county region in Maryland. 
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Land use change has been forecasted using a 
number of techniques in various fields, including 
geography, planning, engineering, environmental 
science, and economics, for a variety of purposes, 
including evaluating policy outcomes. Each field, 
almost in isolation, has developed its own meth-
ods for modeling urban change and the attendant 
effects. Not surprisingly, these methods exploit 
the comparative advantage of each field and focus 
on outcomes conforming to their desired applica-
tion. 
 Early economic land use models, while spatial, 
were stylized representations of abstract homoge-
nous landscapes, and focused on distances to city 

centers. Geographers and natural scientists con-
structed models in which land use change could 
be modeled at specific locations in a heterogene-
ous environment. By gridding the landscape and 
applying algorithms based on past patterns of 
land use change, these researchers created a tech-
nique, commonly known as the pattern-based 
model, that is able to forecast land use change for 
any arbitrarily large geographic extent at any 
level of resolution, constrained only by comput-
ing power. 
 In contrast to the pattern-based models, which 
focused on replicated past patterns of develop-
ment, models developed by applied economists 
focus on the behavioral decisions of landowners. 
This approach, known as a process-based model, 
considers the landowner to be a utility-maximiz-
ing agent and adopts the land parcel, rather than 
grid, as the logical unit of analysis. These models 
are highly data-intensive, and therefore tend to be 
limited in geographic scope (single county or metro 
area in the United States). By limiting the geo-
graphic scope of the model, social scientists can 
evaluate policy mechanisms designed to alter fu-
ture development patterns, which cannot be done 
in the pattern-based model. 
 In the past few years the need to explore cross-
disciplinary and hybrid approaches has gained 
traction. The biosciences, for example, have grown 
more interested in the underlying process of land 
use and land cover change, and have increasingly 
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gravitated towards a perspective that integrates 
socioeconomic and demographic models of change 
with land cover/land use change (Irwin 2010). On 
a similar note, economists have begun to collabo-
rate with geographers in pursuit of agent-based 
models that are data-driven but that “may be 
viewed as more process-based and deductive than 
the statistical or mathematical models common in 
land change science, in which emphasis is placed 
on fitting parameters to observations” (Robinson 
et al. 2007, p. 32). 
 Continuing this cross-disciplinary tradition, in 
this paper we combine attributes from multiple 
methods to create a hybrid model capable of pro-
jecting both type and intensity of urban develop-
ment. Our model, which employs a multiple dis-
crete continuous extreme value (MDCEV) frame-
work following Bhat (2005) and Bhat and Sen 
(2006), allows us to forecast large-scale land 
conversion while still utilizing a data structure 
often seen only in economic models of land con-
version. The model also allows us to estimate 
multiple land use end states, including single-
family residential, multi-family residential, and 
other non-residential uses. By including a diver-
sity of outcomes, our model can identify broader 
land change trends, including conversion of agri-
cultural land into residential uses at the rural-sub-
urban fringe, the development of agricultural land 
into commercial and residential land at the subur-
ban-urban fringe, and infill development inside 
urban areas. While the latter two conversion types 
are often excluded from economists’ models, our 
model can more accurately capture current trends 
in land use changes. 
 This paper is part of an ongoing land use mod-
eling program and contributes to the literature in 
four primary ways: 
 

 We model the decision to convert land into 
a multiplicity of developed states: single-
family residential (SF), defined as any de-
tached single-family structure; multi-family 
residential (MF), which includes attached 
dwellings such as townhouses, condomini-
ums, and apartment buildings; and non-
residential (NR), which includes office 
buildings, retail establishments, and indus-
trial buildings. 

 We simultaneously estimate determinants 
of the intensity of development in terms 
of square footage of new construction. 

 We expand the traditional geographic 
scope of the land change model and dem-
onstrate it in a multi-county region in 
Maryland, operating at a meso-geographic 
resolution. 

 We demonstrate simulation outcomes and 
compare them to actual outcomes. Unlike 
the authors of much of the work in this 
area, we are not interested in a single out-
come; rather, we provide a mechanism to 
evaluate the outcome from multiple simu-
lations and compare them to observed land 
use change. 

 
The land use change model is also designed to be 
integrated with existing economic and demo-
graphic projection models, transportation models, 
and environmental impact models for the multi-
state Chesapeake Bay region. 
 We proceed as follows. First, we situate our 
model of land conversion in the economic litera-
ture. We then explain the econometric model in 
detail, justifying its inclusion by examining land 
use conversion data from Montgomery, Prince 
George’s, and Howard Counties in Maryland. We 
then present the results of the estimation proce-
dure and develop a simulation mechanism that 
illustrates the efficacy of this approach. 
 
Economic Model of Conversion 
 
The economic model of land conversion draws 
from both traditional spatial economic models, 
where individuals choose their location based on 
distance to city centers (Muth 1969, Mills 1967), 
as well as from models where that attempt to 
explain urban spatial structure is theorized to be 
the result of a series of interactions among eco-
nomic agents (Fujita and Ogawa 1982, Krugman 
1991, Steen 1986). Recent versions of the land 
conversion model consider, among other things, 
congestion effects among residential land uses, 
apply a real options approach to landowners’ de-
cisions, and explain patterns of growth more 
complicated than the stylized monocentric city 
(Capozza and Helsley 1990, Capozza and Li 
1994). The most recent land use change models 
meld these individual-based models with high-
resolution heterogeneous spatial data and land use 
regulations. 
 The advantage of economic models is their fo-
cus on individual decision makers in the conver-
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sion process. Since economic models require large 
computational resources and data, we propose 
combining grid based models with economic 
analyses. Specifically, we explore whether the pro-
cess of land use change can be analyzed by aggre-
gating landowners into a grid, as is done in the 
natural sciences and geography, in order to pro-
vide more flexibility in both geographic extent 
and data resolution. Through a positive side effect 
of this scaling up, the model’s output can be inte-
grated with transportation and ecological models, 
and can be used to address a more diverse set of 
policy questions. 
 Most economic models of land use change im-
plicitly assume that landowners base their conver-
sion decision on some version of a net present 
value decision rule, where the benefits of the 
status quo land use are weighed against the ex-
pected returns to conversion (Carrion-Flores and 
Irwin 2004, Parks 1995, Brownstone and De 
Vany 1991, Stavins and Jaffe 1990). Other mod-
els have incorporated a real options approach 
(Cunningham 2007, Towe, Nickerson, and Bock-
stael 2008) into this conversion rule, adding the 
notion that uncertainty in the estimated returns 
may delay the development decision. This ap-
proach may be appropriate for localized policy 
evaluation, but quickly becomes intractable for 
large multi-country regions. 
 Therefore, we aggregate the underlying parcel 
and other environmental information into a grid. 
An observation, in our analysis, is a grid cell rep-
resenting one-fourth of a square mile (~40 acres). 
Each of these grids have the option to convert 
land into one or more alternative uses. Using a 
grid for land use transformation analysis is not 
new (see, e.g., Kline 2003). Some grids have been 
constrained to include only single-family use, but 
many have the choice of commercial, single, or 
multi-family uses or some combination of the 
three.1 
 It is important to note that we aggregate from 
micro-level point data on parcels to attain the 
values used in each grid cell. Thus, this approach 
is only marginally less realistic than approaches 
that use circular buffers as parcel boundaries. 
However, aggregation of land conversion deci-
sions into a grid is not without its caveats, as it 
requires the assumption of homogeneity of land-
                                                                                    

1 There are many pockets of dense zoning and commercial use areas 
even in rural sections of Howard County. 

owners within each grid. This assumption is not 
without merit, as demonstrated by many decades 
of neighborhood-sorting research (see, e.g., Schell-
ing 1969, 1971), and more recently by policy re-
search promoting inclusionary zoning to alleviate 
neighborhood socioeconomic homogeneity. Cor-
relations between the different uses within our 
grids are very low, ranging from 0.005 for single-
family and commercial to 0.068 for single-family 
and multi-family, suggesting a great deal of ho-
mogeneity by existing type. 
 
Econometric Model 
 
One benefit of grid-level aggregation is the ability 
that many grids have the option to convert a grid 
cell into one or more uses. Of the 20,596 grids in 
the region, over 8,000 have potential to develop 
into more than one use and over 1,000 have po-
tential to develop into all three uses. The Multiple 
Discrete Continuous Extreme Value (MDCEV) 
model is therefore appropriate in these circum-
stances. The MDCEV model not only allows for 
the simultaneous selection of multiple end states 
but also estimates the intensity of each potential 
change, as measured by the square footage of new 
construction. This approach allows us to consider 
conversion choices other than single-family resi-
dential, thus capturing much of the development 
activity in suburban landscapes. Models of this 
type have often been used by environmental eco-
nomists, especially when modeling recreation de-
mand (Phaneuf and Smith 2005, Phaneuf, Kling, 
and Herriges 2000, von Haefen, Phaneuf, and 
Parsons 2004, von Haefen and Phaneuf 2005). 
The MDCEV model formulated here represents an 
advanced version of the random utility model 
(RUM), which allocates a fixed and exogenous ca-
pacity of development among a nontrivial choice 
set. Other applications of this kind of model in-
clude activity models, where time is allocated, or 
purchase decision models, where income is the 
allocated constraint (Bhat 2005, Bhat and Sen 
2006, Bhat 2008). 
 The first step in the process of estimation is to 
establish the capacity constraint for each grid. 
This constraint is obviously influenced but not 
completely determined by it. We calculate this ca-
pacity constraint using ordinary least squares re-
gressions based on past conversion activity (ela-
borated on in the next section). These regressions 
are used to predict the allowable square footage 
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of growth, B from the square footage “budget,” 
for the given time window and, as a function of 
zoning, existing structures, soils, slope, and ex-
cludable lands for each grid. 
 Each of the grids i can then choose to allocate 
this allowable square footage Bi among K alter-
native land uses. In the current model, K = 4 with 
single-family residential (SF), multi-family resi-
dential (MF), non-residential (NR), and no growth 
(NG).2 The presence of an NG alternative in the 
choice set ensures that at least one alternative is 
chosen. The allocation is performed by maxi-
mizing a utility function [equation (1)], which is 
both additive and non-linear, and modified based 
on a formulation proposed by Kim, Allenby, and 
Rossi (2002) to include a parameter measuring 
non-linear or diminishing marginal profitability in 
each alternative: 
 

(1)  1

1 [( 1) 1] exp( ' ),jK
j j j jj

j

U lu xα

=
≡ + − ⋅ β + ε

α∑  

 
where luj is the land use in square footage in each 
type (j = 1...K), and αj are parameters that need 
to be estimated along with the vector β. The 
vector xj includes the variables that determine the 
baseline value for each type of land use j, and εj is 
the random component of that baseline value. The 
αj parameter incorporates the satiation effects (di-
minishing marginal return). The exponent exp(βj x j 
+ εj) represents the baseline use value that con-
trols whether a grid cell chooses a conversion or 
not (the extensive margin), and the exponential 
form ensures that the utility is positive. The satia-
tion effects αj are constrained to be positive but 
less than 1 (i.e., 0 < αj < 1) to ensure that the 
function is increasing with respect to land use, 
since its first-order derivative is always positive. 
The negative second-order derivative captures the 
diminishing marginal effect. 
 Equation (1) is maximized subject to the con-
straint: 
 
(2) 1

K
jj lu B

=
=∑ , 

 
                                                                                    

2 This no-growth alternative represents the ability to allocate at least a 
portion of the budget to “no change,” which is observed quite often in 
land use models and is the subject of a significant amount of literature 
(Titman 1985, Capozza and Helsley 1990, Towe, Nickerson, and Bock-
stael 2008, Cunningham 2007, and others). 

where B is the allowable square footage for each 
grid, which differs across grid cells. From the 
Lagrangian, the following Kuhn-Tucker first-order 
conditions can be written out, as detailed by Bhat 
(2005): 
 
(3) 

1* *( 1) [exp( ' )] 0,  if 0j
j j j j j jlu x luα −α + β + ε −λ = >  

 
1* *( 1) [exp( ' )] 0,  if 0j

j j j j j jlu x luα −α + β + ε −λ < =  
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1
.

K

j
j
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=
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The econometric model specification assumes an 
extreme value distribution and assumes that the 
errors are independent of x, and independently 
distributed across the K alternatives.3 The prob-
ability that grid i chooses M of the K alternatives 
and does not choose K–M alternatives (or chooses 
with zero value) is: 
 
(4) 
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  *
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and *' ( 1) ln( 1)i i i iV x lu= β + α − ⋅ + . For the deri-
vation of this equation, see Bhat (2005, 2008). 
 When M = 1, the model degenerates to a stan-
dard multinomial logit model because the entire 
development capacity is allocated to the one cho-
sen alternative. The log-likelihood of this func-
tion is optimized using standard numerical opti-
mization techniques and the optimization routine 
specified by Byrd et al. (1995). 
 This MDCEV characterization has several use-
ful properties for this application. First, it allows 
heterogeneous conversion outcomes in a single 
grid within a single time period for discreteness 
                                                                                    

3 This can be relaxed by estimating a mixed MCDEV model (MMCDEV), 
much like a mixed Logit model. 
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when multiple choices can be made at one deci-
sion point, affirming partial substitutability of the 
choices and allowing the outcome where more 
than one conversion type occurs in the same grid 
and the same time period. For example, some 
grids may experience multi-family and commer-
cial or single-family and multi-family develop-
ment in the same grid at the same time. Second, it 
allows for a non-linear relationship within the 
selected choices. In the utility framework, this 
represents diminishing marginal utility, while in 
this context it represents diminishing marginal 
returns to conversion intensity. In other words, if 
a large commercial development is profitable in a 
grid, three large commercial developments will 
not be three times as profitable. 

Data and Variables in the Models 

Our application of the MDCEV model involves 
observations collected from two time intervals. 
The first interval, from 1995 to 2001, provides 
the data for estimating the capacity constraints; 
and the second interval, from 2002 to 2004, pro-
vides data for estimating the MDCEV allocation 
model. We estimate the capacity constraints as 
well as the observed intensive and extensive mar-
gin land conversion outcomes using grid-level 
aggregations of spatially explicit micro data for 
Montgomery, Prince George’s, and Howard Coun-
ties in Maryland, which are suburbs of Wash-
ington, D.C., and Baltimore, Maryland. Data from 
the Maryland Department of Planning’s “MDProp-
erty View” (MPV)—a property planning tool—
were combined with data on natural soils, land 
cover, easement, and travel time from the Mary-
land Statewide Transportation Model, which was 
developed by the National Center for Smart 
Growth Research and Education (Kaza, Knaap, 
and Meade 2008). MPV data were derived from 
assessment and taxation files from each county in 
the state, and include parcel-level attributes and 
each parcel’s spatial coordinates. Table 1 de-
scribes the data used to estimate capacity con-
straints, and Table 2 describes the data in the 
MDCEV model. 
 Figure 14 illustrates the current land use pat-
terns in the three-county region. While large por-
tions of the region have some type of develop-
                                                                                    

4 Color versions of Figures 1, 2, and 4–7 are available at AgEcon Search 
(http://ageconsearch.umn.edu/). 

ment, it is at a fairly low density. Very few grids 
are completely undeveloped, unless development 
is completely prohibited by the presence of fed-
eral lands and other undevelopable land uses. 
Grids closest to the Washington area have high 
single-family square footage; while predictably 
the nonresidential development follows the major 
highways. Multi-family development is sparse 
and is severely restricted by zoning in these sub-
urban counties. Nevertheless, there are a substan-
tial number of grids that show all three types of 
development. 
 It is important to note that we have taken great 
care to construct an estimation data set utilizing 
readily available data for all Maryland counties 
(and neighboring states) so the model can be ex-
panded to a statewide (or regional) model of land 
change. However, we chose to focus on the se-
lected counties because they are the suburban and 
exurban regions of two major cities, and as such 
are under development pressure for single and 
multi-family residential as well as non-residential 
development. 

Capacity Estimation 

As mentioned previously, we need to define a 
budget or capacity constraint in terms of square 
feet of potential structures by grid cell in order to 
estimate the MDCEV. The simplest calculation 
would employ zoning regulations, but this calcu-
lation represents the build-out capacity of ap-
proximately twenty years of residential growth, 
not the three-year growth period that is utilized in 
the model. Furthermore, directly applying the 
zoning code has at least two other major deficien-
cies. First, the zoning code provides the number 
of homes per acre, not a direct estimate of new 
construction square footage; second, the code 
does not provide guidance for the size of non-
residential activity. Therefore, we estimate the ca-
pacity, or budget, of a grid, using ordinary least 
squares for each development type. This estima-
tion is based on the observed new construction 
activity from our first time interval (1995 to 
2001), as represented by equation (5): 
 
(5) cLU Z D G= γ + σ + ρ + τ + ε , 
 
where LU is the development activity between 
1995 and 2001 in square feet, and c is SF, MF, 
and NR land uses. Z are variables representing 
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Table 1. Capacity Estimation Summary Statistics 

  SF model a MF model a NR model a 

  Mean S.D. Mean S.D. Mean S.D. 

OUTCOMES             

Conversion sq ft (1995–2000) 24,165 42,703 70,930 86,085 52,837 96,474 

VARIABLES            

% undevelopable 9.94 21.51 6.65 15.41 4.91 13.43 

% under easements 0.07 0.32 0.00 0.00 0.01 0.12 

Dwelling unit per acre 1.94 4.70 8.28 19.23 4.84 15.15 

sq ft SF zoning 134,326.60 37,742.44 86,462.91 56,301.79 72,781.57 59,553.32 

sq ft MF zoning 16,392.10 39,294.63 44,916.79 50,336.93 25,262.11 40,677.46 

sq ft comm zoning 2,436.84 11,413.53 12,605.06 29,046.67 21,146.61 35,512.74 

sq ft ind zoning 1,625.86 10,837.14 4,128.80 16,073.21 27,465.39 50,233.74 

sq ft SF 1994 55,791.89 64,938.06 32,215.50 49,999.04 37,181.62 59,092.63 

sq ft MF 1994 6,068.73 40,411.56 61,637.60 127,338.40 23,262.70 94,353.42 

sq ft comm 1994 5,612.10 55,714.11 33,124.35 179,484.00 63,145.18 195,652.60 

sq ft ind 1994 2,084.63 24,099.80 6,958.38 40,632.53 34,232.51 92,342.85 

% highly erodible 0.03 0.15 0.06 0.21 0.05 0.18 

% very highly erodible 0.13 0.29 0.15 0.30 0.19 0.33 

% runoff high 0.27 0.37 0.29 0.36 0.31 0.39 

% slope high 0.07 0.20 0.06 0.19 0.05 0.17 

% floodplain  0.06 0.13 0.08 0.14 0.06 0.13 

% land cover water 1970  0.00 0.03 0.00 0.02 0.00 0.04 

% land cover ag 1970 0.13 0.23 0.04 0.11 0.06 0.15 

% land cover forest 1970 0.22 0.25 0.22 0.22 0.16 0.21 

% land cover road 1970 0.00 0.01 0.00 0.01 0.00 0.03 

  N = 4,398 N = 311 N = 693 
a Conditional on non-zero square footage of conversion of this type from 1995 to 2000. 

 
 
zoning (area of each grid zoned for residential, 
commercial, or industrial), D are variables repre-
senting the existing constructed landscape as of 
1994, and G are other geographic grid-level attri-
butes (such as soil attributes, slopes, and the pro-
portion of land cover in forest, agriculture, or 
water). While capacity is determined through this 
equation, much of the capacity may not be real-
ized in actual development. 
 Results from these regressions are presented in 
Table 3. Using these individual regressions, we 
predict the capacity of new construction for each 
grid cell by type of development. The total ca-
pacity used in the MDCEV model is the sum of 
the predicted square footage across all types of 
land uses, or 

(6) · · ·ˆ c c c
i i i iB SF MF NR≡ + + . 

 
 MDCEV Model 
 
As mentioned before, the main outcomes of inter-
est are the square footage of new single-family 
residential, multi-family residential, and non-resi-
dential development from 2002 to 2004. The data 
included in the allocation model provide insight 
into the attraction and repelling effects of dif-
ferent types of development, not unlike estimates 
by Irwin and Bockstael (2002). In this context, 
the amount of existing square footage in each 
land use type controls for density of development 
(and, thus, population), as well as a predeter- 
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Table 2. MDCEV Summary Statistics 
Variables Mean S.D. Max 

Travel time to Baltimore 50.41 16.49 95.09 

Travel time to D.C. 36.34 13.03 92.59 

Travel  time to Annapolis 54.59 16.64 107.76 

Sq ft single family (neighborhood) 39,222 50,549 288,965 

Sq ft multifamily (neighborhood) 8,001 32,609 818,651 

Sq ft non-residential (neighborhood) 15,360 51,851 1,205,000 

Sq ft single family  39,182 64,997 605,107 

Sq ft multifamily  8,035 60,738 3,314,505 

Sq ft non-residential  15,318 87,180 3,137,262 

% agricultural land (neighborhood) 0.20 0.24 1.00 

% forest land (neighborhood) 0.34 0.24 1.00 

% agricultural land 0.20 0.30 1.00 

% forest land  0.34 0.33 1.00 

% in environmental preservation easements 0.03 0.13 1.00 

N = 20,596    

 

 
 
 
mined variable, which measures the application 
of existing zoning regulations and the general 
attractiveness of the area for development from 
the perspective of either supply or demand. The 
existing landscape configuration also assists in 
identifying the remaining prime areas for con-
version based on available capacity. The MDCEV 
econometric model estimated in this paper is de-
tailed in the following equations: 
 

(7) 1 [( 1) 1]NG
NG

NG

U NG α≡ + −
α
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  .SF MF NR NGU U U U U≡ + + +  
 
The utility of conversion into a particular land use 
type is dependent on X; grid-level attributes of 
existing single-family, multi-family, and non-resi-
dential square footage in 2001; NX , the neighbor-
ing grid characteristics; TT, the travel time vari-
ables; and P, the land variables representing pres-
ervation programs and policies both within the 
grid and in its neighboring grids. Each attribute is 
allowed to impact each choice heterogeneously. 
 The specific variables included in the model 
are meant to be proxies for the following: the ini-
tial land use of the grid, demand pressure, dis-
tance and accessibility measures, costs of devel-
opment, returns to alternative uses, zoning poli-
cies, and conservation or preservation easements 
(see Table 2 for detailed summary statistics). 
Variables included in all choice sets include vari- 
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Table 3. Capacity Model Estimates 

 SF model a MF model a NR model a 

Variables Coeff.  SE Coeff.  SE Coeff.  SE 

% undevelopable -18.41 31.48 -293.86 299.24 149.0259  287.3524

% under easements -554.76 2,092.55 n/a n/a -34,649.53 30,140.94

Dwelling unit per acre -110.00 165.99 257.10 301.96 -231.95 300.76

sq ft SF zoning -0.02 0.02 0.04 0.12 -0.13 0.09

sq ft MF zoning 0.21** 0.02 0.01 0.12 0.02 0.10

sq ft comm zoning -0.12** 0.06 0.16 0.21 -0.06 0.13

sq ft ind zoning -0.07 0.07 0.78** 0.34 0.30** 0.11

sq ft SF 1994 -0.11** 0.01 -0.41** 0.10 -0.17 0.07

sq ft MF 1994 -0.01 0.02 0.21** 0.04 0.01** 0.04

sq ft comm 1994 0.01 0.01 -0.09** 0.03 0.10 0.02

sq ft ind 1994 -0.04 0.03 -0.01 0.13 -0.06 0.05

% highly erodible -17,388.11** 4,985.38 -20,388.85 48,822.26 40,818.33 32,399.46

% very highly erodible -9,717.06** 3,456.38 -12,415.01 46,968.14 11,918.50 27,360.47

% runoff high 5,762.12* 2,901.99 -14,208.58 45,148.03 -33,130.52 26,015.70

% slope high 780.12 3,224.28 -13,745.38 24,116.79 -31,277.56 21,698.37

% floodplain  -812.77 5,264.25 -45,521.74 51,314.80 47,112.78 35,312.81

% land cover water 1970  -33,963.75 21,322.71 -150,671.30 204,512.70 -64,578.57 100,365.30

% land cover ag 1970 -39,342.11** 3,319.01 13,591.35 40,697.31 37,441.60 24,694.32

% land cover forest 1970 -27,106.84** 3,010.26 -61,013.89** 23,529.16 -8,118.66 18,361.14

% Land cover road 1970 -24,479.03 76,367.75 -166,338.70 418,742.50 49,885.90 125,725.10

Constant 41,652.28 3,435.71 90,738.27** 19,536.88 61,074.28** 13,615.79

 N = 4,398 N = 311 N = 693 

 R-Square 0.09 R-Square 0.25 R-Square 0.11 

 Adj. R 0.08 Adj. R 0.24 Adj. R 0.09 

a Conditional on non-zero square footage of conversion of this type from 1995 to 2000. 
Note: * represents significant at the < 0.10 level , ** represents significant at the < 0.05 level, and *** represents significant at the 
< 0.01 level. 
 
ables measuring of the existing square footage of 
construction by type in each cell. Neighborhood 
is defined as all the grids with first-order Queen 
contiguity. All of the square footage measures are 
included in log form in the models, though Table 2 
does not reflect this transformation. 
 Land preservation is an established priority of 
the state of Maryland, as demonstrated by the 
multitude of state and county preservation pro-
grams dating back to the mid-1970s. We’ve there-
fore included a measure of the amount of land in 
each grid cell in various permanent conservation 
and preservation easement programs. These vari-
ables represent an important policy variable 
(Lynch and Musser 2001, Towe, Nickerson, and 
Bockstael 2008, and many others). To proxy for 

construction costs as well as alternative land uses 
and amenities, we’ve included a measure of the 
proportions of agricultural and forest land in each 
grid. Forest includes all non-agricultural, non-
open land, from brush cover to mature trees. 
These data were derived from laying grids over 
the 2001 land cover data. Following the insight of 
the basic urban bid-rent monocentric city models, 
travel times to Baltimore, Washington, and Anna-
polis are included in minutes. These travel times 
were derived from the Maryland Statewide Travel 
Demand Model, and reflect average travel times 
between the Statewide Modeling Zone (SMZ) and 
the SMZ that contains the centroid of the respec-
tive cities. 
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Estimation Results 
 
All the statistical analyses and simulations are 
performed in R (R Development Core Team 
2010). We also use contributed R packages VGAM 
(Yee 2010), spdep (Bivand 2010), and spam 
(Furrer 2010) for the Gumbel distribution, spatial 
weighting matrices, and sparse matrices, respec-
tively. 
 The model’s coefficient estimates are presented 
in Table 4. We are pleased that the signs confirm 
much of previous research from simpler models, 
but also suggest interactions between uses that 
have not been previously estimated. With respect 
to current land uses and the single-family resi-
dential conversion decision, the model suggests 
that grids with a greater existing intensity of sin-
gle-family homes prefer additional single-family 
land uses. Not surprisingly, the intensity of neigh-
boring multi-family and commercial construction 
tends to repel new single-family construction. A 
similar result was found by Carrion-Flores and 
Irwin (2004) and Irwin and Bockstael (2002). 
 Existing land use patterns also impact multi-
family and commercial activity in ways that are 
consistent with previous research. Multi-family 
construction is more likely in areas where similar 
use existed prior to 2001, and is repelled by sin-
gle-family use in neighboring grids. Interestingly, 
the neighborhood impact of existing multi-family 
uses is positive for new commercial activity, 
while existing commercial uses repel new multi-
family construction. This may be explained by the 
desire of commercial establishments to locate near 
densely developed areas. 
 Easements should impact single-family conver-
sion, as they are potential amenities for nearby 
landowners (Towe 2008). This is borne out in the 
estimation results; the greater percentage of land 
under easement, the more likely a single-family 
development occurs. Finally, agricultural land 
cover, serving as a proxy for steepness and soil 
quality, is negative and significant for single-
family construction, with no effect on commercial 
or multi-family construction. However, forest 
cover has a positive effect on single-family con-
struction. Interpreting the sign of agriculture or 
forest cover is fraught with difficulty. In our area, 
forest cover constitutes a large percentage of the 
remaining open land, so the positive sign might 
simply reflect a recognition that development 

must occur in previously underdeveloped areas. 
Agricultural land has also become increasingly 
scarce in suburban areas, and is often the target of 
developers as well as preservationists. 
 The satiation parameters α for all the land use 
types (including no-growth) are less than 1 (be-
tween 0.56 and 0.97), which implies the existence 
of a dampened attraction effect of new develop-
ment of similar types within each grid, as more of 
that type already exists in the grid. The diminish-
ing marginal utility portion, i.e., 
 

  1 [( 1) 1]j
j

j

lu α+ −
α

 

 
as in equation (3), is plotted in Figure 2. As 
shown, the utility of single-family land use in-
creases much faster than that of both multi-family 
and non-residential land use. This relationship in-
dicates that there is a stronger tendency to convert 
the land use into single-family use than into multi-
family or non-residential use purposes. While this 
confirms the results of a majority of the spatial 
interaction models, the coefficients of the neigh-
borhood variables provide an interesting picture 
of the attraction and repulsion effects of various 
land uses. For example, while the coefficient esti-
mates imply that single-family development is at-
tracted to existing single-family development, the 
satiation parameter suggests that grids with more 
single-family development attract less new devel-
opment due to both capacity and crowding. This 
suggests that less developed areas will tend to fill 
with new conversion before the last bits of capac-
ity fill in existing developed grids. Both the signs 
and significance of the intercept terms also sug-
gest that, in general, the grids have a strong status 
quo bias, and tend to allocate all their budgets to 
the no-growth alternative. This is to be expected, 
as we would not expect rampant development in 
only a three-year conversion period. 
 
Simulation Procedure 
 
While estimation is useful to tease out the relative 
effects of variables and policies, we are primarily 
interested in simulating land use change. In this 
paper, we test if the model described here rea-
sonably predicts the observed land use change 
between 2002 and 2004. It is important to keep in 
mind the two allocations that are necessary in the 
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Figure 2. Diminishing Marginal Utility When the Baseline Utility is Fixed at 1 
 
 
 
simulation. The first is the total capacity across 
the entire region, which represents job and popu-
lation growth and is exogenously given. The sec-
ond is the grid-level capacity estimation, which 
we discussed in the previous section. 
 The simulation procedure is a two-step process; 
the first is a logit regression that assigns the prob-
ability that a cell would get any development, and 
the second uses the constrained optimization of the 
MDCEV model (see Figure 3 for a conceptual 
view of the process). The prediction of the logit 
model orders the queue of the grids to be sampled 
for land use conversion. This probability is used 
as a weight in the sampling procedure to select a 
set of grids for the second stage, essentially struc-
turing the queue of grids to absorb development 
activity for the Monte Carlo simulation. Others 
have simply selected the observational units, such 
as parcels or grids, in the descending order of 
probability (Irwin and Bockstael 2002). For com-
putational convenience, we use a sample and allo-
cate the budgeted square footage for fifteen grids 

at a time. We do not, for the sake of brevity, pre-
sent the results of the logit model. More often 
than not, the queue of grids is exhausted before 
the required total square feet in the three land 
uses of the entire region is allocated; therefore, 
the queue has to be repopulated with an addi-
tional fifteen grids. These grids are selected using 
the same sampling procedure, but only after up-
dating any capacity changes from the previous al-
location round. 
 The MDCEV simulation model allocates each 
cell’s available capacity of growth among the three 
conversion land uses and the no-growth alter-
native. The simulation procedure takes the form 
of a constrained optimization of the utility in each 
grid of the following equation: 
 

 ˆ

, 1... 1

1 ˆmax [( 1) 1].exp( ' ),
ˆ

j

j

K

j j j jlu j K j j

lu xα

= =

+ − β + ε
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No

Eliminate grids with zero 
capacity or otherwise excluded

Select a set of developable grid cells using a 
weighted random draw from previously 
unselected grids based on a logit model of 
the probability of conversion.

Use the MDCEV model output to 
allocate individual grid capacity 
among possible land use 
choices.

Is the exogenously 
assigned total sq. 
ft. as necessary to 
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growth fully 
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available 
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Update all grid level 
current capacity 
numbers to reflect 
updated allocations

Yes

Yes

No

EndEnd

StartStart

 
 

Figure 3. Flowchart of a Single Simulation Procedure 
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where ε j is drawn at random from a Gumbel 
distribution and z_luj is the upper limit imposed 
by the capacity constraint for each development 
category. This upper limit is updated in each 
iteration to reflect allocation into the development 
category until the next iteration. 
 We use the total of the observed change in the 
region as the stopping rule for the simulation. If 
the queue of grids is exhausted and development 
in the region is not fully allocated, the sequence is 
repopulated with all grids and with an updated 
grid-level budget constraint. The individual land 
uses are also updated to reflect the allocation into 
the various development categories. This multi-
step process continues until all of the square foot-
age in the tri-county area is allocated to the grids. 
The complete process constitutes one random re-
alization of development in the region. 
 Figure 4 provides an example comparison of 
one random realization and the observed values in 
the same period. As can be gleaned from the map, 
the pattern of single-family development is rea-
sonably well captured in the simulation outcome. 
The model has the advantage of illustrating both 
the spread among grids and the concentration 
within each grid cell. Of particular interest here is 
that each simulation produces its own path depen-
dency; that is, each simulation produces a pre-
dicted output, which then becomes the baseline 
for the next prediction and allocation window. 
This continues until the desired prediction period 
of change is complete. While we used here only a 
three-year period, the model can be easily adapted 
to longer periods. Given the attraction and repel-
ling effects of development activity within a grid, 
and the effect of neighboring grids, land conver-
sion is path-dependent, which is one of the 
model’s advantages. The difference in impact be-
tween early conversion and delayed conversion 
on long-term outcomes is readily apparent. For 
policy analysis, this is of utmost relevance be-
cause many land use policies seek to alter the 
timeframe of development, particularly policies 
like adequate facilities moratoria and develop-
ment quotas. 
 However, a single realization is not necessarily 
a representative one. Therefore, the Monte Carlo 
simulations are repeated two hundred times; the 
outcomes are presented in Figures 5, 6, and 7. 
Figure 5 illustrates the type of output the model 
produces for single-family development. On the 

left is the amount of square footage of single-
family development by grid cell in one three-year 
time period. On the right is the proportion of non-
zero realizations from the Monte Carlo runs, which 
gives planners a probabilistic notion of where de-
velopment is most likely to occur under a given 
policy regime. 
 These simulations are run on a Linux cluster of 
forty heterogeneous nodes, with each node run-
ning five simulations in a sequential fashion. 
Each simulation for the tri-county region took ap-
proximately one hour of computational time; there-
fore, the 200 simulations took five hours. The 
performance of the simulation is quite good com-
pared to actual conversion activity. Of the 20,596 
grids, the simulations suggest that between 3,297 
and 3,437 (median 3,356) grids experience non-
trivial development in the simulations, compared 
to 3,336 grids that actually developed. 
 The model consistently predicts the intensity of 
single-family conversions, while performing some-
what less precisely in the multi-family and non-
residential sectors when comparing grid-level pre-
dictions to actual outcomes (Table 5). However, 
at a slightly higher level of aggregation—census 
tracts, for example—the model does a much bet-
ter job of placing approximately 60, 30, and 50 
percent of observed square footage of single-
family, multi-family, and non residential in the 
correct tract and timeframe. While the grid-level 
correlations of simulated and observed develop-
ment-type results are low, the census-tract level 
correlations are satisfactory and promising. 
 As seen in Figure 4, the model concentrates 
single-family land use within a single grid instead 
of distributing it more evenly throughout neigh-
boring grids. It is also interesting to note that 
while the proportion of a grid being picked for 
single-family development can reach as high as 
60 percent, only a few grids are picked more than 
20 percent of the time for multi-family or non-
residential development (Figures 5, 6, and 7). 
While the average development is reasonably well 
predicted by the model for both types of residen-
tial development, the model, expectedly, fails to 
capture outliers on the right (Table 4). Unlike 
other land conversion models, the simulation ade-
quately projects both dispersed development of 
single-family residences in rural areas as well as 
infill development in mature suburbs. 
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Figure 4. Outcome of One Random Simulation Compared to the Observed Values for Single 
Family Type in 2001–2004 
 
 

 
 
Figure 5. Average Value of Single Family (SF) Square Feet Conditional on Non-Zero Realization 
(left) and Proportion of Non-Zero Realizations (right) 
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Figure 6. Average Value of Multi-Family (MF) Square Feet Conditional on Non-Zero Realization 
(left) and Proportion of Non-Zero Realizations (right) 

 

Figure 7. Average Value of Non-Residential (NR) Square Feet Conditional on Non-Zero 
Realization (left) and Proportion of Non-Zero Realizations (right)
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Conclusion 
 
Researchers from a wide range of disciplines 
agree that modeling land use change is a neces-
sary task, one that can act as an end result for 
local planning, as a prediction tool for proposed 
and existing land use policies, or as an intermedi-
ate result to evaluate environmental impacts of 
growth. This paper is an attempt to combine grid-
based models with economic analyses leading to 
a hybrid approach. Additionally, the design of the 
simulation, which allows both short- and long-
term predictions of land use change into multiple 
end states, is, to our knowledge, the first of its 
kind. In particular, this model uses a dataset that 
is widely available for the entire state of Mary-
land to make land use predictions at a large spa-
tial extent and also a fairly fine spatial scale. We 
argue that the outcomes of these models are more 
amenable as inputs to environmental impact mod-
els because we model both the intensity and type 
of land use change, both of which are often over-
looked in the literature. 
 This work focuses on a three-county region of 
Maryland sandwiched between Washington, D.C., 
and Baltimore; it simulates a short interval of 
growth across single-family, multi-family, and 
non-residential development, and then compares 
the results against the actual observed outcome. 
Each of these tasks requires a significant amount 
of effort, in terms of both data collection and 
computation, but the reward is a performance of 
the model that is surprisingly accurate at rela-
tively small spatial scales. While these results are 
promising for the future of hybrid modeling 
efforts, more importantly they provide an initial 
foray for economists into the larger-scale policy 
discussion, while providing natural scientists with 
an approachable model with more realistic as-
sumptions about future land use change. 
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