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Abstract

Meeting growing global demand for food, fiber, and biofuel requires robust investment

in agricultural research and development (R&D) from both public and private sectors.

This study examines global R&D spending by private industry in seven agricultural input
sectors, food manufacturing, and biofuel and describes the changing structure of these
industries. In 2007 (the latest year for which comprehensive estimates are available), the
private sector spent $19.7 billion on food and agricultural research (56 percent in food
manufacturing and 44 percent in agricultural input sectors) and accounted for about half

of total public and private spending on food and agricultural R&D in high-income coun-
tries. In R&D related to biofuel, annual private-sector investments are estimated to have
reached $1.47 billion worldwide by 2009. Incentives to invest in R&D are influenced by
market structure and other factors. Agricultural input industries have undergone significant
structural change over the past two decades, with industry concentration on the rise. A rela-
tively small number of large, multinational firms with global R&D and marketing networks
account for most R&D in each input industry. Rising market concentration has not generally
been associated with increased R&D investment as a percentage of industry sales.

Keywords: agricultural biotechnology, agricultural chemicals, agricultural inputs, animal
breeding, animal health, animal nutrition, aquaculture, biofuel, concentration ratio, crop
breeding, crop protection, farm machinery, fertilizers, Herfindahl index, globalization,
market share, market structure, research intensity, seed improvement.
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Summary

What Is the Issue?

Growth in the productivity of the global food and agricultural system will

be largely determined by today’s investments in research and development
(R&D). In recent decades, the private sector has become a major player in
developing innovations for food and agriculture. Factors spurring private
companies to invest in food and agricultural research include the emergence
of biotechnology and other new scientific developments, the strengthening of
intellectual property rights (IPR) over agricultural innovations, new regula-
tory requirements, the expansion of markets for improved agricultural inputs
and food products, and rising consumer demand for more diverse foods. More
recently, rapid growth in the market for biofuel has pushed companies to
expand their R&D investments in this area as well.

This report quantifies investment trends by for-profit companies in food
manufacturing, biofuel, and agricultural input R&D and explores how these
trends are affected by changes in market demand and industry structure. In
particular, the report examines changes in the organization and structure

of agricultural input industries (crop seed and biotechnology, crop protec-
tion chemicals, synthetic fertilizers, farm machinery, animal breeding and
genetics, animal health, and animal nutrition) and whether increases in
market concentration in these industries are associated with increases or
decreases in the level and intensity of R&D investments.

For comparative purposes, we present some aggregate statistics on public-
sector research spending for food and agriculture and ways in which these
investments differ or complement R&D in the private sector. However,

we do not delve much into the interactions between public and private
R&D. For a detailed examination of the evolving role of the public and
private sectors in agricultural R&D in the United States, see Fuglie and
Schimmelfpennig (2000).

What Did the Study Find?

During 1994-2007 (the latest year for which estimates are available),
annual private-sector food and agricultural R&D grew from $11.3 billion
to $19.7 billion, or 4.3 percent per year (or, in constant 2006 dollars, from
$14.6 billion to $19.2 billion, or 2.1 percent per year). In high-income
countries, private-sector R&D spending appeared to be roughly equiva-
lent to public-sector spending on food and agricultural R&D, although
public R&D spending continues to be larger if only agricultural-related
R&D is considered.

Growth in R&D investment was uneven across industries. The most rapid
increase in R&D was in crop breeding/biotechnology. Significant growth in
R&D spending also occurred in farm machinery and food manufacturing.
However, real (inflation-adjusted) R&D spending declined for crop protection
chemicals and animal nutrition.
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Other key findings include the following (figures below are in current or
nominal dollars, unadjusted for inflation):

* In 2010, global private-sector investments in R&D related to agricultural
inputs reached $11.03 billion, an increase from $5.58 billion in 1994.

* In 2007, global private-sector investments in R&D related to food manu-
facturing reached $11.48 billion, an increase from $6.02 billion in 1994.

* In 2009, global private-sector investments in R&D related to biofuel
reached $1.47 billion, with most growth in this area occurring since 2000.

* Generally, the largest four to eight firms in each sector accounted for
about three-fourths of the R&D in that sector, with larger firms spending
more than smaller firms on R&D as a percentage of product sales (with
the exception of small biotechnology firms). Typically, the large firms are
multinational operations with global R&D and marketing networks.

* In most of the agricultural input industries, market concentration
increased during 1994-2009, with the highest levels observed in the
animal breeding and crop seed sectors and the largest increase observed
in the crop seed sector.

* Rising levels of market concentration were not associated with larger
R&D investment in agricultural input sectors.

* The globalization of food and agricultural R&D may accelerate the rate
of international technology transfer, reducing productivity differences
across nations and regions.

How Was the Study Conducted?

We used a number of approaches to construct estimates of private R&D
spending by sector. For research-intensive agricultural input industries, we
built a database of agriculturally related research spending firm by firm

over time, for all firms in the sector (including “legacy” firms, or firms that
exited the industry during the period of study) that have or have had signifi-
cant R&D expenditures. For large conglomerates, for which agriculture may
be only one business segment, we separated agriculturally related R&D
spending from R&D spending on nonagricultural business segments. We
gathered this information by canvassing a broad set of material, including
company annual reports and websites, reports by industry associations and
consulting services, and personal interviews with company representatives.
Altogether, we reviewed R&D information on more than 800 agricultural
input companies worldwide. These firm-level data also enabled us to examine
hypotheses regarding the relationship between industry structure and R&D
spending: Do larger firms spend more (as a percentage of product sales) on
R&D than smaller firms? Has the rising concentration of several agricultural
input industries affected overall levels of R&D spending by that industry?

For agricultural input industries in which firms do not often report their
research spending, we estimated agricultural R&D for the industry by
taking a percentage of total agricultural input sales, with the percentages
(or research intensities) derived from observations on R&D spending from
a subset of firms and from previous surveys of the industry. For the food
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manufacturing industry, we relied on country-level estimates produced by
the Organisation for Co-operation and Development, which covers primarily
high-income countries.

With these sources, we developed a global time series of R&D expenditures
by agricultural input industries from 1994 to 2010, the food industry from
1990 to 2007, and for biofuel in 2009. We examined how trends in R&D
spending were associated with changes in market demand and industry struc-
ture and reviewed the evidence on the factors causing structural changes in
agricultural input industries.
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CHAPTER 1

Research Investments and Market Structure
in the Food Processing, Agricultural Input,
and Biofuel Industries Worldwide: Synthesis
of Results

Objectives and Methods of Study

Over the past several decades, the private sector has become a major player
in developing new innovations for food and agriculture. The emergence of
biotechnology and other new scientific developments, the strengthening of
intellectual property rights (IPR) over agricultural innovations, the global
expansion of markets for improved agricultural inputs and food products,
and consumer demands for more diverse kinds of food products are some of
the key factors driving private companies to invest in food and agricultural
research. More recently, rapid growth in the market for biofuel has spurred
a diverse set of firms to expand their R&D investments in this area as well.
This report seeks to quantify investment trends by for-profit companies

in agricultural, food, and biofuel R&D and explore how changing market
demand, industrial structure, and public policy may be affecting these trends.
In addition, the report examines the role of government subsidies in stimu-
lating private R&D in the biofuel sector.

Existing information on private spending on food and agricultural research
is fragmentary. James (1997) and Alston et al. (2010) are among the few
studies that have attempted to provide estimates of such expenditures on a
global scale. Based on findings from both studies, private R&D expenditures
from the mid-1990s to 2000 are estimated at $13 billion per year, or about
two-thirds of total public sector spending for agricultural R&D (about $20
billion per year globally) over the period. These estimates account for R&D
by the food manufacturing sector and the agricultural input industries, but the
studies did not break down these amounts by sector. Moreover, they provide
limited detail (and quite different estimates) about the country-specific loca-
tions of private-sector R&D, with James estimating that about 85 percent
was conducted in high-income countries and Alston et al. putting the share
at 95 percent (in contrast, about 60 percent of public agricultural R&D is
conducted in high-income countries, according to Alston et al.).

Other studies have provided more detailed information on private-sector
expenditures on food and agricultural R&D at the country level. Klotz et al.
(1995) develop comprehensive estimates of private R&D by the food sector
and for major agricultural input industries in the United States between 1960
and 1992. Pray and Fuglie (2001) survey private companies in seven Asian
countries about their agricultural R&D investments in the mid-1990s, and
Echeverria et al. (1996) summarize available information for eight Latin
American countries from around the same period.

Some estimates of R&D in specific industries, such as the agricultural
chemical, crop seed, and veterinary pharmaceutical industries, are provided
by industry groups through surveys of their member companies or consulting
services. This information, however, may cover only a portion of an industry
and may not be in the public domain.

1
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Finally, a number of studies have examined publicly available data on a range
of indicators of private R&D effort, such as number of agricultural patents,
plant variety protection certifications, and biotechnology field trials issued or
undertaken. For example, Huffman and Evenson (2006) make extensive use
of historical patent data to investigate technology flows from manufacturing
sectors to agriculture in the United States. The main conceptual difference
between these indicators and R&D expenditures is that the indicators reflect
outputs from the R&D process whereas expenditures measure R&D inputs. It
is expected that the two would be significantly correlated but with a time lag.
Some of the main findings from studies assessing agricultural R&D indica-
tors are summarized in Pray et al. (2007). In this study, we extend some of
the work on R&D output indicators in the chapters on crop seed and agricul-
tural chemicals.

This study provides new, detailed information on R&D spending by private
industry for the food processing and biofuel sectors and for seven agricul-
tural input sectors (crop seed and biotechnology, crop protection chemicals,
synthetic fertilizers, farm machinery, animal health, animal breeding and
genetics, and animal nutrition). For the food processing and agricultural input
sectors, we report trends in private R&D spending over time. For the newly
emerging biofuel sector, our estimates cover only one year, 2009. We also
examine the location of private-sector R&D, but the multinational nature of
many of the leading companies conducting food and agricultural R&D makes
it difficult to do so. For agricultural input sectors, we can estimate total R&D
for companies based in a particular country, but this estimate includes R&D
by those same companies conducted in other countries and excludes R&D by
foreign companies in that country. We discuss the globalization of private-
sector R&D in terms of the growing international trade in agricultural inputs
and how companies locate their R&D facilities to serve global markets.

The study also examines the changing structure of agricultural input indus-
tries. Several of these industries have undergone significant consolidation
over the past couple of decades, with many firms exiting, merging, or being
acquired by other firms. We discuss factors causing these changes and, for the
agricultural input industries that do the most research, we quantify the change
in concentration at the global level. Higher levels of concentration may impart
greater market power to the largest firms in the industry. If this market power
is exercised to raise premiums on firms’ proprietary technology, it could
encourage these firms to invest more in R&D. We examine whether market
concentration is correlated with the share of industry revenues that is invested
in R&D. We do not, however, conduct any formal tests of competitive perfor-
mance in these markets.

To construct estimates of private R&D spending by sector, we use a number
of approaches. For research-intensive agricultural input industries, we build

a database of agriculturally related research spending firm by firm (both
publicly traded and privately held) over time, for all firms in the sector that
have (or have had) significant R&D expenditures. For large conglomerates, in
which agriculture may be only one line of business among many, we separate
agriculturally related R&D spending from other R&D spending. We gather
this information primarily from firms’ annual financial reports and supple-
ment it with information from industry associations, consulting services, and
personal interviews with company representatives. These firm-level data also

2
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enable us to address questions on the relationship between industry structure
and R&D spending:

* Do larger firms spend more (as a percentage of product sales) on R&D
than smaller firms?

* Has the rising concentration of several agricultural input industries
affected overall levels of R&D spending by these industries?

For agricultural input industries in which member firms do not conduct much
research, firm-level data on R&D spending is often reported for only a subset
of the major companies in the industry. Our estimates of agricultural R&D
for such industries reflect a share of total agricultural input sales (or research
intensities) derived from observations on R&D spending from a sample of
firms in the respective industries.

For the food industry, we rely primarily on country-level estimates
provided by the Analytical Business Enterprise Research and Development
(ANBERD) database produced by the Organisation for Economic
Co-operation and Development (OECD). This database covers most high-
income countries and a few developing countries.

For biofuel, we examine R&D spending across a number of sectors that are
developing technologies for both biofuel feedstocks and biofuel manufac-
turing. Because this is a relatively young industry, we derive an estimate of
private R&D for only one year, 2009.

From these sources, we are able to develop a global time series of R&D
expenditures by agricultural input industries from 1994 to 2010, food
processing industries from 1990 to 2007, and the biofuel industry for 2009.
Significant overlap or duplication occurs between R&D reported in the food
and agricultural sector and the different segments of the biofuel market chain
(i.e., some seed industry R&D is directed toward biofuel feedstocks and is
counted as R&D in both sectors); therefore, to avoid double counting, we
report biofuel R&D estimates separately from the estimate for total private-
sector food and agricultural R&D.

Having assembled data on trends and levels of private food manufacturing
and agricultural input R&D spending, we examine several factors that

may be influencing these trends. First, we look at market demand. Large

and growing markets for agricultural inputs or new food products can be
expected to attract more R&D from private firms seeking to meet these
needs. Second, we examine industry structure. Mergers and acquisitions have
affected many agricultural input industries examined, with the result that
fewer firms account for a growing share of the market over time. This devel-
opment could influence incentives for private R&D positively, negatively, or
not at all. The classic Schumpeterian view is that larger firms invest a greater
portion of their revenues in R&D than smaller firms. However, in a detailed
study of U.S. manufacturing industries, Cohen et al. (1987) do not find
empirical support for this hypothesis. Regarding concentration, Levin et al.
(1985) report a general tendency for R&D intensity to first increase and then
decrease as industry concentration rises, but the authors note that the differ-
ences across industries can be much larger than changes within an industry.

3
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Finally, we discuss the effects of changes in policies and technology opportu-
nity, namely, the influence of developments in biotechnology on structure and
R&D in the research-intensive agricultural input industries. Policies toward
intellectual property rights (what is considered patentable) and the regulation
of new technology introductions may have significant effects on how much
and what kind of R&D is undertaken by the private sector, and what kinds of
firms can successfully navigate these policies.

Private-Sector R&D Investment in Agriculture,
Food, and Biofuel

R&D spending over time

Table 1.1 shows trends in private-sector R&D spending in various agricul-
tural input sectors and the food manufacturing industry in both nominal

and constant (inflation-adjusted) dollars. In constant 2006 U.S. dollars, total
food and agricultural R&D expenditures in the private sector increased from
$14.59 billion in 1994 to $19.18 billion in 2007, or at an average annual rate
of 2.1 percent. R&D expenditures in food manufacturing rose faster than
those in agricultural input industries, and by 2007, food manufacturing
accounted for about 58 percent of the overall annual total. Food manufac-
turing has relatively low research intensity (R&D as a percentage of sales),
but the overall size of the market is very large. R&D in the industry appears
to be directed mostly toward new product development. Food sector R&D
that is directly relevant to agriculture, such as R&D on animal feed manufac
turing, is also included in our estimate of R&D in agricultural input indus-
tries (but not double-counted in the total for food and agriculture). Among
agricultural input industries, most of the increase in R&D spending between
1994 and 2010 occurred in the crop input industries, with R&D spending

in the animal-related sectors as a whole remaining essentially flat in real
(inflation-adjusted) dollars. Across sectors, the most rapid growth in agri-
cultural R&D over 1994-2010 was for crop seed and biotechnology, where
annual R&D spending increased from about $1.5 billion in the mid-1990s to
nearly $3.5 billion in 2010 (constant 2006 U.S. dollars). Real R&D spending
declined for crop protection chemicals and animal nutrition.

Comparative statistics for government spending on agricultural research are
only available for 2000 (Beintema and Stads, 2008; Alston et al., 2010, table
6-1). Beintema and Stads (2008) estimate that total global public-sector agri-
cultural research in 2000 was $16.3 billion in U.S. dollars and $20.8 billion
in purchasing-power-parity (PPP) dollars.' The private sector appears to
account for between 39 and 45 percent of the total global investment in food
and agricultural R&D worldwide, depending on whether comparisons are
made using market or PPP exchange rates, and about half of the total in high-
income countries (table 1.2). For high-income countries, Beintema and Stads
estimate total public agricultural R&D in 2000 was $12.3 billion in U.S.
dollars and $11.8 billion in PPP dollars, respectively. Of our estimated total
of U.S. $13.1 billion (PPP $13.2 billion) in private food and agricultural R&D
in 2000, U.S. $12.2 billion (PPP $11.8 billion) was attributed to companies
based in high-income countries.

4

IBeintema and Stads (2008) actu-
ally report figures in constant 2005
dollars, which we convert to current
2000 dollars using the U.S. implicit
Gross Domestic Product (GDP) price
index. Global totals in U.S. dollars
are calculated using market exchange
rates, while totals in purchasing-power-
parity (PPP) dollars are derived using
the PPP exchange rates. PPP exchange
rates are estimated by the World Bank
by comparing the cost of a common
basket of consumer goods across coun-
tries. The main effect of using PPP
exchange rates is to augment estimates
of research and development (R&D)
spending in developing countries; ag-
gregate spending by high-income coun-
tries remains about the same whether
market or PPP exchange rates are used.
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Table 1.1
Private research and development (R&D) expenditures for food and agriculture worldwide

Crop Crop Food Animal . Total Total Total Food Total food &
protection seed & Far_m Fertilizer animal breeding & A”'T‘?a' crop animal  agricultural manu- agricultural
chemicals biotech. machinery health! genetics? nutrition inputs inputs inputs facturing inputs®

Millions of nominal U.S. dollars
1994 2,296 1,130 920 61 664 196 314 4,407 1,173 5,579 6,016 11,282
1995 2,390 1,213 987 80 778 203 332 4,670 1,313 5,983 6,876 12,528
1996 2,523 1,322 1,110 84 767 210 373 5,039 1,350 6,389 6,468 12,483
1997 2,635 1,522 1,127 64 749 217 345 5,349 1,311 6,660 6,399 12,714
1998 2,636 1,721 1,164 56 720 225 324 5,577 1,269 6,846 6,417 12,939
1999 2,581 1,788 1,079 49 670 232 320 5,496 1,223 6,719 6,490 12,889
2000 2,352 2,055 1,197 56 655 240 329 5,659 1,224 6,883 6,516 13,071
2001 2,263 2,015 1,149 53 592 249 334 5,480 1,175 6,655 6,755 13,075
2002 2,076 1,976 1,136 56 590 258 345 5,245 1,193 6,438 7,203 13,295
2003 2,458 2,064 1,190 74 663 267 360 5,787 1,290 7,076 8,756 15,472
2004 2,628 2,180 1,275 97 712 276 377 6,181 1,365 7,545 9,620 16,789
2005 2,678 2,254 1,369 119 757 285 375 6,420 1,417 7,837 10,531 17,993
2006 2,633 2,374 1,470 99 794 295 375 6,575 1,465 8,040 10,899 18,564
2007 2,754 2,615 1,665 104 816 306 389 7,138 1,511 8,649 11,480 19,741
2008 3,012 3,093 2,003 96 960 316 400 8,205 1,677 9,882 n.a. n.a.
2009 2,987 3,342 2,310 100 930 327 405 8,739 1,663 10,402 n.a. n.a.
2010 3,116 3,726 2,394 100 941 339 410 9,335 1,690 11,026 n.a. n.a.
Millions of constant 2006 U.S. dollars
1994 2,968 1,462 1,189 79 858 253 405 5,697 1,516 7,214 7,778 14,587
1995 3,028 1,536 1,250 101 986 257 421 5,915 1,663 7,578 8,709 15,866
1996 3,136 1,643 1,380 104 953 261 464 6,263 1,678 7,941 8,039 15,516
1997 3,218 1,859 1,377 79 915 265 421 6,533 1,601 8,134 7,815 15,528
1998 3,183 2,078 1,406 67 870 271 391 6,735 1,533 8,268 7,749 15,626
1999 3,071 2,127 1,284 58 798 277 381 6,541 1,455 7,996 7,724 15,339
2000 2,739 2,394 1,395 65 763 280 383 6,592 1,425 8,018 7,590 15,225
2001 2,577 2,295 1,309 61 674 283 381 6,242 1,338 7,580 7,694 14,894
2002 2,328 2,215 1,274 63 662 289 387 5,880 1,337 7,217 8,075 14,905
2003 2,697 2,265 1,306 81 727 292 396 6,350 1,415 7,765 9,609 16,978
2004 2,805 2,326 1,361 104 760 294 402 6,595 1,456 8,052 10,265 17,915
2005 2,765 2,328 1,414 123 781 295 387 6,629 1,463 8,093 10,875 18,581
2006 2,633 2,374 1,470 99 794 295 375 6,575 1,465 8,040 10,899 18,564
2007 2,676 2,540 1,618 101 793 297 378 6,934 1,468 8,402 11,152 19,176
2008 2,864 2,941 1,905 91 913 301 381 7,802 1,595 9,396 n.a. n.a.
2009 2,814 3,149 2,176 94 876 308 382 8,232 1,566 9,799 n.a. n.a.
2010 2,908 3,477 2,234 93 878 316 383 8,711 1,577 10,288 n.a. n.a.

n.a. = not available. Current expenditures adjusted for inflation by the U.S. implicit Gross Domestic Product price deflator

"Animal health R&D is for food animals only, excluding R&D for companion and equine animal health.

2Estimates of private animal genetics research spending are only available for 1996 and 2006. We extrapolate for other years assuming 5.24
percent annual growth.

SIncludes Organisation for Economic Development and Co-operation food industry R&D and total agricultural input R&D (animal nutrition is a
subsector of the food industry and is not double counted in the total).

Source: USDA, Economic Research Service. See chapters for sources and estimation methods for specific industries.
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Table 1.2
Public and private spending on food and agricultural research and
development (R&D) worldwide in 2000

Food Agriculture  Food & ag  Food & ag
R&D R&D R&D R&D'

—— Billion U.S. dollars ———  Billion PPP$
Global total
Public n.a. n.a. 16.3 20.8
Private 6.2 6.9 13.1 13.2
Total 29.3 33.9
Private share of total (%) 45.0 39.0
High-income countries
Public 1.9(est) 7.4(est) 12.3 11.8
Private 5.8 6.3 12.2 11.8
Total 7.7(est) 13.7(est) 245 23.6
Private share of total (%) 76.0 46.0 50.0 50.0

n.a. = not available.

est. = estimate only. The allocation of public R&D into food-related and agriculture-related R&D

in high-income countries is based on U.S. public R&D allocation shares and assumes these are
roughly similar among all high-income countries. U.S. public R&D allocation is from the USDA's
Inventory of Agricultural Research (USDA, 2000), which reports that in 2000, about 60 percent of
total public agricultural R&D went to production agriculture, 15 percent went to food and nutrition,
and the rest went to environmental and other topics. The total for public “food & ag R&D” includes
all categories of research at public agricultural research institutions while the food and agricuil-
ture sectors only include research directly related to that sector.

The last column estimates international public R&D using purchasing-power-parity (PPP) ex-
change rates rather than the market exchange rates from which the U.S.$ estimates are derived.
PPP exchange rates are based the relative price of a common basket of consumer goods. Using
PPP exchange rates raises dollar estimates of R&D spending in developing countries significant-
ly but affects spending estimates for high-income country only marginally. PPP exchange rates
are from the World Bank.

Source: USDA, Economic Research Service. Estimates of public food and agricultural research
are from Beintema and Stads (2008). Estimates of private food and agricultural R&D are from
this study. Private R&D on animal nutrition is included in agriculture excluded from the food sec-
tor. See chapters for sources and estimation methods for specific industries.

Although none of the global estimates of public research spending break
down this investment into food and agricultural sectors, the U.S. data may
be illustrative, at least for high-income countries. According to USDA’s
Inventory of Agricultural Research, in 2000, about 60 percent of total public
agricultural R&D was allocated to research related to plant and animal
systems, 15 percent went to food and human nutrition, 18 percent went to
environmental issues, and the remaining 7 percent was spread across other
topics not directly related to food or farm production.? Alston et al. (2010)
also estimate that about 60 percent of U.S. public agricultural research was
allocated to research relevant to farm productivity but do not provide a break-
down for the other 40 percent. If these figures are representative of public
agricultural R&D in high-income countries, it would imply that the private
sector accounts for roughly 76 percent of total food-related research and 46
percent of research on production agriculture in these countries (table 1.2).

For the biofuel industry, we estimate total private R&D at $1.47 billion

in 2009 (table 1.3). This total includes $340 million spent by agricultural
seed and biotechnology companies to improve biofuel feedstocks.? Another
$1.03 billion was spent by companies in the energy sector to improve the
efficiency of biofuel process manufacturing as well as to develop new types
of biofuel feedstocks, such as algae. Enzyme and equipment manufacturers

6

2This breakdown of U.S. public
agricultural research expenditures
is according to Research Problem
Areas as defined by USDA’s Inventory
of Agricultural Research (USDA,
2000). Alston et al. (2010) use a more
detailed, project-by-project assign-
ment to estimate (R&D) expenditures
related to production agriculture. Their
estimates show that the share of U.S.
public agricultural (R&D) allocated to
production agriculture has gradually
declined over time.

3Biofuel feedstocks are the crops
and biomass materials used to produce
ethanol and biodiesel. First-generation
feedstocks include corn, sugarcane,
soybeans, and palm oil. Second-
generation feedstocks (under develop-
ment) include sources of cellulosic bio-
mass, such as switchgrass, miscanthus,
corn stover, sugar bagasse, and forest-
based materials. Third-generation
biofuel feedstocks include algae and
synthetic life forms (see chapter 10).
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Table 1.3
Global expenditures for biofuel research and development (R&D)
in 2009

Sector and type of firm R&D

Million U.S.
dollars
Private sector market segments

Agricultural input sectors (agricultural seed-biotechnology compa-
nies, plantations, forest product companies, and cellulosic biomass 340
firms

Energy sector (biofuel producers, biofuel equipment manufacturers,

and oil companies) 1,030
Enzyme and equipment input suppliers for biofuel processors 71
Total private biofuel R&D 1,470
Total public bioenergy R&D in industrialized countries 627

Source: USDA, Economic Research Service. For private R&D, see table 10.2. Public-sector
bioenergy R&D is from the International Energy Agency. The 2009 total includes a one-time
increase of $224 million in the United States due to the American Recovery and Reconstruction
Act (economic stimulus funding).

supplying inputs to energy companies for biofuel processing accounted for
the remaining $71 million. Not included in these estimates is R&D spending
by the transportation industry to modify vehicle and equipment engines

for biofuel use. Although our estimates cover only one year, it is clear from
industry sources that most of these R&D investments have arisen since 2000.

The largest driver of private biofuel R&D is the expectation of rising demand
for alternative energy sources. This demand is sparked by the rising cost

of fossil fuels relative to that for biomass-derived fuels and public concerns
about national energy security and greenhouse gas emissions from fossil
fuels. While government subsidies and regulations have helped stimulate
demand for biofuel, public-sector investments in biofuel R&D now appear
to be considerably less than private-sector investments. Moreover, business
spending on biofuel R&D appears to be almost entirely from private capital:
Government subsidies for private-sector biofuel R&D in the United States,
historically the country with the largest government biofuel R&D program,
amounted to only $24.4 million in 2009 (see chapter 10).

R&D spending by region and for selected countries

Our estimates of private agricultural input R&D expenditures in specific
countries or regions are based on the R&D expenditures by companies incor-
porated in that country or region.* The estimates of food industry R&D are
based on national surveys of manufacturing enterprises as reported to the

OECD, so they should reflect in-country R&D by domestic and foreign firms.

While information on R&D spending by the food manufacturing industry
is not available for most developing countries, our estimates include data for
several, including China, Turkey, South Africa, Chile, and Mexico.

Among all countries in 2006, the United States was the leader in private
food and agricultural R&D, accounting for about one-third of the global
total (table 1.4). U.S. companies were particularly dominant in the crop

7

“This is only an approximate
measure of actual (R&D) expendi-
tures within a region or country, as it
includes (R&D) conducted by those
same companies in other regions or
countries and excludes (R&D) in those
areas by companies based outside the
region or country. For example, to
the extent that U.S.-based companies
conduct some of their R&D in foreign
countries, the estimates will overstate
research in the United States. But they
also understate research in the United
States because they exclude research
conducted by foreign companies in
the United States. Our assessment
is that these measures are roughly
correct for OECD countries, although
they may understate R&D taking
place in developing countries. While
private-sector agricultural R&D in
most developing countries is relatively
small, the contribution of foreign firms
to that R&D may be significant. In a
survey of private business enterprises
in seven developing countries in Asia,
Pray and Fuglie (2002) find that about
45 percent of total private agricultural
R&D in those countries was conducted
by foreign firms.
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Table 1.4
Private-sector expenditures for food and agriculture research and development (R&D) by region in 2006

North Americell Europe- Asia-Pacific Latin Global
Sector All g;ﬁzg Middle East All Japan America Total
Million U.S. dollars
Crop protection chemicals 599 599 1,596 404 368 34 2,633
Crop seed 1,287 1,261 983 96 66 6 2,374
Fertilizers 28 19 33 35 1 3 99
Farm machinery 573 513 579 309 189 9 1,470
Animal health’ 279 236 477 36 8 3 794
Animal nutrition 66 63 232 71 19 7 375
Animal breeding 147 132 144 5 0 0 295
Crops 2,486 2,392 3,191 844 623 52 6,575
Animals 491 432 852 111 28 10 1,465
All agriculture 2,978 2,824 4,043 955 651 62 8,040
Foodindustry? 3,400 3,267 3,692 3,735 2,808 73 10,899
Food & agriculture3 6,312 6,028 7,503 4,619 3,440 128 18,564

TAnimal health R&D includes R&D for food animals only. Globally, we estimate that food animal health R&D made up about 60 percent of total
animal health R&D in 2006, based on the percentage of animal health product sales for food animals (see chapter 6).

2Food industry R&D is mainly for Organisation for Economic Co-operation and Development countries only.

3Sum of food industry R&D and all agriculture R&D. Animal nutrition is a subsector of the food industry and is counted in both food industry R&D
and agricultural R&D but not in the total.

Source: USDA, Economic Research Service. See chapters for specific sources and methods.

seed/biotechnology and animal breeding sectors, accounting for about half
of global private R&D in each sector. This high level of investments partly
reflects the large U.S. domestic market for agricultural inputs, a strong and
complementary public agricultural R&D system, and a relatively favorable
regulatory environment for the commercialization of genetically modified
(GM) crops (Fuglie et al., 1996). European firms accounted for about half
of total R&D by agricultural input industries and just over a third of total
R&D by the food industry (with Germany, Switzerland, and the Netherlands
being the leading countries in this region). Japan led R&D in the Asia-Pacific
region. Japan had the second highest amount of R&D spending in the food
industry (after the United States). In the agricultural input industries, Japan
was among the leading countries in investing in R&D in the agricultural
chemical and farm machinery sectors.

Table 1.5 presents historical data on R&D spending by U.S. food processing
and agricultural input industries. These time series data are reasonably
complete for the food manufacturing, agricultural chemical, farm machinery,
and animal health sectors. Estimates of R&D spending by the crop seed-
biotechnology sector are available for 1993 onwards and for occasional earlier
years but enough to establish a trend. R&D data are limited for fertilizer,
animal nutrition, and animal genetics, but relatively little R&D is conducted
by private companies in these sectors. The available data are sufficient to
clearly show substantial growth in private food and agricultural R&D in the
United States over the past three decades. Between 1979 and 2006—2 years
with R&D estimates for all sectors—R&D spending by the private sector in
the food and agricultural sectors increased more than fourfold (and more than
doubled, from $2.86 billion to $6.03 billion, when viewed in constant 2006
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Table 1.5
Private food and agricultural research and development (R&D) spending in the United States

Crop Crop Animal Animal . .
. - Farm health Animal Animal Food
protection seed & Fertilizers . health . - . .
; . machinery - (food animals  nutrition genetics industry
Year chemicals biotech (all animals) only)
Million nominal U.S. dollars

1960 27 4 75 6 104
1961 38 65 11
1962 42 70 13 121
1963 45 76 15 130
1964 48 79 20 144
1965 64 6 96 23
1966 77 100 28 164
1967 92 102 35 181
1968 99 96 36 184
1969 104 99 34
1970 126 11 89 45 222
1971 130 90 48 238
1972 108 93 53 258
1973 114 120 62 268
1974 137 131 74 297
1975 176 24 3 138 79 28 335
1976 205 168 87 355
1977 236 221 84 415
1978 3 86 30 44 472
1979 292 43 3 295 96 33 55 528
1980 111 620
1981 487 278 125 636
1982 115 129 777
1983 587 290 147 824
1984 22 154 42 1,081
1985 432 368 159 1,136
1986 179 1,280
1987 398 483 191 1,206
1988 221 1,229
1989 561 272 281 243 1,275
1990 245 1,414
1991 614 413 276 1,277
1992 331 1,386
1993 686 409 276 315 176 1,345
1994 707 425 302 244 134 1,476
1995 751 507 361 337 182 1,566
1996 834 636 471 342 181 49 118 1,564
1997 897 791 507 353 183 1,908
1998 847 963 520 369 188 1,949
1999 756 991 371 374 187 1,563
2000 703 1,045 420 358 175 1,562
2001 531 985 395 349 168 1,971
2002 534 1,010 372 342 161 2,204
2003 558 1,012 403 417 192 2,160
2004 606 1,078 453 478 215 2,809
2005 612 1,095 504 524 230 3,255
2006 599 1,261 19 513 549 236 63 132 3,267
2007 614 1,393 628 641 269 74 2,939
2008 683 1,707 813 830 340 92 n.a.
2009 740 1,897 1,057 783 313 71 n.a.
2010 793 2,176 1,120 772 309 n.a.

Sources: USDA, Economic Research Service. For 1993-2007 continuous time series, see individual chapters for detailed sources and estima-
tion procedures. For pre-1993 data: crop seed research: 1960-1979 (Perrin et al., 1983); 1982 (Kalton and Richardson, 1983); 1989 (Kalton et
al., 1989). Animal genetics research: 1978-79 (Malmstead, as reported in Ruttan, 1982); 1996 (Narrod and Fuglie, 2001). Agricultural chemi-
cals, farm machinery, and food industry (NSF, various issues). Animal health (Pharmaceutical Research and Manufacturers of America, annual
reports). Fertilizer and/or animal nutrition: 1975 (Wilcke and Williamson, 1977); 1978-79 (Malmstead, as reported in Ruttan, 1982); 1984 (Crosby,
1987), 1996 (Fuglie et al., 2000).
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U.S. dollars), although this growth is less than that for U.S. industry gener-
ally. By comparison, total R&D funded and performed by all U.S. private
industries increased nearly ninefold, from $25.6 billion to $223.4 billion
(nominal dollars), over the same period (NSF, 2010).

Private spending on food and agricultural R&D in the United States has
exceeded public-sector agricultural research expenditures most years since
the late 1970s (fig. 1.1). Federal and State governments invested on average
$4.40 billion annually (constant 2006 dollars) in agricultural research
between 1980 and 2007, while the private sector spent an average of $4.95
billion per year (constant 2006 dollars) over the same period. But as previ-
ously discussed, each sector focuses its research resources differently. The
private sector accounts for about 80 percent of total food-related research and
about 47 percent of total research related to production agriculture. Within
these areas, public research is more oriented toward basic or fundamental
science and scientific training, as well as topics like food safety, genetic
resource conservation, and farming practices to conserve natural resources,
research that has high social value but for which private incentives are rela-
tively weak.

Market Size and Private Food and Agricultural R&D

One key determinant of private investment in R&D is the size of the market
for products or processes developed from the R&D. Sales of new products or
cost savings from manufacturing (process improvements) are necessary for
firms to earn a return from their R&D. Moreover, firms must be able to price
new products above their cost of manufacture, at least for some period of
time, to help recoup the sunk costs of R&D, regulatory approval, and market
development. Appropriability is the ability of firms to exercise some market
power in the marketing and pricing of new products derived from their R&D
investments. Securing patents and other forms of intellectual property rights

Figure 1.1

Trends in public and private food and agricultural research spending
in the United States
Billions constant 2006 U.S.$

Private R&D

Public R&D

O T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
1975 80 85 90 95 2000 05 10

Source: U.S. public agricultural research and development (R&D) spending is from

USDA, Economic Research Service. U.S. private R&D spending is derived from the data

in table 1.5, with interpolations for missing data. Nominal research expenditures are adjusted
for inflation by the agricultural R&D price index developed by ERS. This price index takes into
account changes in the cost of research inputs (scientist salaries, scientific equipment, etc.).
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enables firms to exercise appropriability over the economic benefits provided
by the application of new technology.

Global demand for agricultural inputs

Information on the size of global markets for agricultural inputs is not readily
available. Thus, we have assembled data from a variety of sources or made
estimates of the wholesale value of market sales for agricultural inputs by
product type. In 2006, total company sales of these inputs were $355 billion
(table 1.6). Fertilizers and animal feed (not including medicated feeds, which
we include in the animal health sector) are the largest markets in terms of
sales and consist of mostly bulk inputs that do not involve much R&D. These
products accounted for about 60 percent of total agricultural input sales.
Another 21 percent was for farm machinery and equipment. Crop protection
chemicals and crop seed together accounted for about 15 percent of inputs
purchased by farmers, while animal health and breeding materials accounted
for the remaining 4 percent. Measures of the size of the various input markets
vary somewhat depending on the source. Estimates of private-sector sales of
crop seed and animal breeding materials vary the most. Historically, farmers
have met a portion of their demand for crop seed and animal breeding stock
through self-supply or by obtaining these inputs through informal markets or
from neighboring farms. Over time, specialized breeding firms have increas-
ingly helped meet this demand. By 2006, private seed companies appeared
to be supplying about two-thirds of the crop seed used globally. The private-
sector share of animal breeding stock is not known with much precision

but appears to be very high for poultry; high and rising for swine and dairy
cattle; and relatively low for beef cattle, small ruminants, and aquaculture
(with the exception of some species, such as salmon).

A comparison of private-sector sales of farm machinery, crop protection
chemicals, crop seed, and food animal health products worldwide since 1994
shows that only the markets for farm machinery and crop seed have grown
significantly in inflation-adjusted dollars (fig. 1.2). Global sales of crop
protection chemicals recovered somewhat from their low in 2002 but only to
mid-1990s levels (to some extent, the increasing use of GM crops with pesti-
cidal properties may be substituting for chemicals in crop protection). Most
of the growth in sales of animal health products was attributed to markets
for nonfood animal species, such as companion and equine animals. The
figure does not show market trends for the animal feed and fertilizer markets.
Although these are the largest agricultural input markets (in terms of sales),
they are mostly characterized by bulk, homogeneous products and little
private R&D. Data are unavailable for trends in commercial sales of animal
genetics products.

Price trends for some agricultural inputs

Markets for agricultural inputs can expand through either larger volumes of
sales or through higher unit prices. Upward trends in unit prices may reflect
rising quality of inputs, such as new technologies embodied in the inputs
due to past investments in R&D. Higher input prices may also stem from
increases in manufacturing costs due to rising labor, capital, or material
costs. Based on a comparison of five categories of agricultural input prices
received by farmers in the United States,’ the largest change during 1994-
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5Global average prices of agricultural
inputs are not available, although they
can be derived from trade statistics.
Using trade data, we constructed global
price series for farm machinery, fertil-
izer, and animal feed and compared
these with global indexes of agricultural
commodity prices. We found similar
trends to the price trends for the United
States shown in figure 1.3.
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Table 1.6
Global market for agricultural inputs supplied by the private sector
in 2006
Private-
Industry Segment sector sales
Million US$
Crop protection Total for agricultural uses 31,962
chemicals Herbicides 15,246
Insecticides 7,895
Fungicides 7,671
Other 1,151
Crop fertilizers Total (168 million tons) 74,692
N fertilizer (99 million tons) 48,076
P,Oy fertilizer (39 million tons) 17,875
K,O fertilizer (30 million tons) 8,741
Crop seed Total proprietary seed sales 19,600
Conventional seed (proprietary) 11,800
Genetically modified seed (proprietary) 7,800
Public seed sales and farmer-saved seed
(not included in total) 9,400
Farm machinery Total 73,579
Farm tractors 21,321
Harvesting machinery 16,455
Planting and fertilizing machinery 35,802
Animal health Total for food animals 9,455
Total (food, companion and equine animals) 16,065
Pharmaceuticals 10,410
Biologicals (vaccines) 3,660
Medicated feed additives 1,995
Animal nutrition Total 141,833
Compound feed (656 million tons) 137,429
Nutritional feed additives 4,404
Medicated feed additives (see animal health)
Animal breeding Total 4,062
Poultry 1,742
Pigs 1,303
Cattle 931
Aquaculture 87
All private-sector sales of farm inputs 355,182
Sources: USDA, Economic Research Service. Agricultural chemicals from AGROW Reports
(2007); crop seed sales from Context Network (2007); fertilizer sales derived from quantities
of nutrients reported in Food and Agricultural Organization multiplied trade prices (dollars per
metric ton of nutrient) from Haver Analytics; animal health products from Vetnosis as reported
in International Federation for Animal Health (2007); animal feed sales derived the quantities
reported in Best (2008) multiplied by International Monetary Fund corn and soy meal prices
adjusted for processing costs; animal breeding are authors' estimates (see chapter 7); farm
machinery from Freedonia (2006).
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Figure 1.2
Global market sales of selected agricultural inputs
Billions constant 2006 U.S.$

— Farm machinery Crop seed (proprietary)

1007 ~ ~ ~ Crop projection chemicals Animal health products (all animals)

—- Crop seed (all sources) —®-— Animal health products (food animals only)

1994 96 98 2000 02 04 06 08

Source: USDA, Economic Research Service. See sources listed in notes to table 1.6.

2010 was in crop seed prices, which more than doubled relative to the price
received for agricultural commodities sold by farmers (fig. 1.3). This increase
was due, at least in part, to the increase in value-added characteristics devel-
oped by private seed and biotechnology companies through R&D programs.
Le Buanec (2008) estimates that between 32 and 74 percent of the price of
seed for corn, soybeans, cotton, and sugar beets in the United States and the
European Union (EU) reflects technology fees or the cost of seed treatments.
The sharp rise in the price of fertilizer in 2008-09 was driven by a significant
increase in the cost of energy and materials used to manufacture fertilizer
(especially natural gas, sulfur, and phosphate rock), as well as an increase in
transportation costs and the falling value of the U.S. dollar (Huang, 2009).
For agricultural chemicals, prices rose relative to commodity prices during
1994-99 but have since fallen. The recent decline partly reflects the rise in
crop commodity prices after 2005 as well as an increasing market share for
off-patent (generic) crop protection chemicals.

Figure 1.3

U.S. agricultural input prices relative to prices received by farmers
Index, 1990=1.00

3.001 ——Fertilizer
- - -Crop seed

Farm machinery
2.0{ —®Animalfeed

2.57
-------- Agicultural chemicals
1.57
1.07

0.57

0

92 94 96 98

1990 2000 02 04 06 08 10
Source: USDA, Economic Research Service. Indexes of prices paid and received by farmers
from USDA (various issues).
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Market Structure and R&D in Agricultural
Input Industries

The growth rates in the global market size for agricultural inputs is generally
consistent with the trends in private spending on agricultural input R&D (see
table 1.1), with the important exception of crop seed-biotechnology, where
R&D grew more rapidly than sales value. We generally expect research
investments to be correlated with industry sales (i.e., that research intensity,
or the R&D-to-sales ratio, remains stable over time) unless other factors are
changing incentives for private R&D. Other factors include (1) expectations
that future demand growth will accelerate, (2) advances in scientific knowl-
edge that have created new technological opportunities for commercializa-
tion, and (3) stronger IPR or changes in market structure that have made it
easier for private R&D investors to appropriate economic benefits of new
technology. Greater industry concentration, like stronger IPR, can increase
appropriability if it strengthens the market power of large firms. Market
power enables firms to charge more for new or existing products and recoup
their sunk investments in R&D and market development. These factors may
not be acting separately but may be working concurrently to change incen-
tives for private R&D. For example, scientific advances in molecular biology
have created new technological opportunities in agricultural biotechnology
and changes in IPR have increased appropriability over biological innova-
tions (Fuglie et al., 1996). In such an environment, firms may consolidate to
acquire complementary technology and marketing assets, capture economies
of scale in R&D, and strengthen their market power. Indeed, across a number
of agricultural input industries, mergers, acquisitions, and consolidation
among firms are affecting industry concentration and structure.

Changes in industry concentration and R&D intensity over time

In each of the five agricultural input industries with significant R&D, the
degree of concentration in the global market rose significantly over 1994-
2009, although a lack of data prevented us from quantifying this change for
the animal breeding sector (table 1.7). We measure concentration using the
Herfindahl index and by four-firm and eight-firm concentration ratios.® By
the end of the present decade, the largest four firms accounted for at least 50
percent of global market sales in each of these five agricultural input sectors.
By 2006/07, market concentration was particularly high in the animal
breeding sector, where the four-firm concentration ratio reached 56 percent.
Growth in market concentration over time was most rapid in the global seed
industry, where the market share of the four largest firms more than doubled
from 21 to 54 percent between 1994 and 2009.

Table 1.7 also shows the trend in R&D intensity (i.e., R&D spending as a
percentage of sales) for each agricultural input industry. With the exception

of the crop seed-biotechnology sector, R&D intensity for each sector remained
fairly constant over 1994-20009, although it varied significantly across sectors.
R&D intensities averaged 8.6 percent for the animal health industry, 6.7 percent
for the agricultural chemical industry, and 2.3 percent for the farm machinery
industry. For the crop seed industry, R&D intensity increased from 11.0 percent
in 1994 to 15.0 percent in 2000 and then fell back to 10.5 percent by 2009. For
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%The Herfindahl index (or
Herfindahl-Hirschman index, or
HHI) is a commonly used measure of
market concentration. Higher levels
of HHI indicate that sales are con-
centrated among a smaller group of
firms and the potential for an increase
in market power by the largest firms.
The Herfindahl index is calculated as
HHI — Z,NSzz , where S; is the market

share of firm i in a market with N
firms. The (four- and eight-firm) con-
centration ratio measures the market
share of the (four and eight) largest
firms. Unlike the concentration ratios,
the Herfindahl index reflects the dis-
tribution of the market shares among
the top firms and the composition of
the market outside the top firms. It also
gives proportionally greater weight to
the market shares of the larger firms
(Scherer and Ross, 1990). Note that
the concentration measures in table 1.7
refer to an entire global agricultural
input sector. Market concentration in

a particular country or for a particular
product (corn seed, or a class of herbi-
cide, for example) could be consider-
ably higher.

Research Investments and Market Structure in the Food Processing, Agricultural Input, and Biofuel Industries Worldwide / ERR-130

Economic Research Service/USDA



Table 1.7
Market concentration and research and development (R&D) intensity in
global agricultural input industries

. 4-firm 8-firm Industr
Herfindahl concentration  concentration oo intenysit
Year index ratio ratio y
Share of market (%) R&D/sales (%)

Crop protection chemicals

1994 398 28.5 50.1 7.0

2000 645 41.0 62.6 6.8

2009 937 53.0 74.8 6.4
Crop seed and traits

1994 171 21.1 29.0 11.0

2000 349 325 43.1 15.0

2009 991 53.9 63.4 10.5
Animal health

1994 510 32.4 57.4 8.6

2000 657 41.8 67.4 8.5

2009 827 50.6 72.0 8.6
Farm machinery

1994 264 28.1 40.9 1.9

2000 353 32.8 44.7 2.3

2009 791 50.1 61.4 2.7
Animal genetics

1994 n.a. n.a. n.a. n.a.

2000 n.a. n.a. n.a. n.a.

2006/07 1,025 55.9 72.8 7.3

n.a. = not available.
Source: USDA, Economic Research Service estimates based on firm-level sales and R&D
expenditure data collected for this study. See specific chapters for details.

the animal breeding sector, we have an estimate of R&D intensity for 2006/07
only: an average of 7.3 percent across species.

Greater concentration was not associated with a permanent rise in R&D
intensity in these input industries. In the crop seed industry, there was a
temporary increase in research intensity in the late 1990s and early 2000s as
the industry sought to commercialize a number of genentically modified crop
varieties. But by the late 2000s, research intensity in the crop seed industry
was back to its mid-1990s level. In fact, the underlying causes of growing
concentration in these sectors appear to be quite specific to each sector and
may not have affected private incentives to invest in R&D (table 1.8). In

the crop seed and animal breeding sectors, the emergence of biotechnology
was a major driver of consolidation. Firms sought to acquire relevant tech-
nological capacities and serve larger markets to spread the large fixed costs
associated with meeting regulatory approval costs for new biotechnology
innovations. In the poultry and livestock sectors, vertical integration enabled
some large firms to acquire capacity in animal breeding as part of their inte-
grated system. In the farm machinery industry, many of the major mergers
and acquisitions can be traced to large financial losses sustained by some
leading firms during periods in which the farm sector was in prolonged reces-
sion, which substantially reduced demand for farm machinery as farmers
delayed major capital purchase. Firms experiencing large financial losses are
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Table 1.8

Factors driving changes in market structure in global agricultural input industries

Change in real R&D
spending between

Sector Factors driving consolidation and concentration 1994 and 20101
Percent
Crop seed & biotechnology Acquisition of complementary technology and marketing assets,
economics of scale in crop biotechnology R&D 138
Farm machinery Financial losses of major manufacturers during farm sector
business cycles (which strongly influence demand for large capital 88
purchases)
Animal breeding & genetics Vertical integration of poultry and livestock industries; economics of
scale in animal biotechnology R&D 25
Animal health Forces driving consolidation in the pharmaceutical industry: loss of
(food animals only) profit streams and idled capacity when major drugs go off-patent 2
Crop protection chemicals Stricter environmental and safety regulations; maturing markets;
rise of generic products -2

"We have data on research and development (R&D) spending by the animal breeding and genetics industry for 1996 and 2006/07 only. The esti-
mate of 25 percent growth between 1994 and 2010 is derived by applying the 1996-2006 average annual growth rate to these years. Changes in

real R&D spending calculated from the data in table 1.1.
Source: USDA, Economic Research Service. See chapters for discussion of specific industries.

often vulnerable to acquisition. The crop protection sector has been heavily
affected by changes in regulations governing the health, safety, and environ-
mental impacts of new and existing pesticide formulations. The consolidation
in the animal health sector appears to be largely a byproduct of mergers and
acquisitions in the pharmaceutical industry (as most of the leading animal
health companies are subsidiaries of large pharmaceutical companies).

R&D spending by firm size

Large firms usually account for most of the R&D spending in an industry.
They may have, on average, higher R&D-to-sales ratios than smaller firms.
If R&D-oriented large firms acquire small firms that do not make consider-
able investments in R&D, such consolidation could lead to greater R&D by
the industry as a whole. On the other hand, mergers between R&D-oriented
firms could reduce overall R&D spending as duplication and redundancies
in their merged R&D programs are eliminated. Merger activity may also be
led by firms that specialize in off-patent generic products. A growing market
share by these firms may lead to lower R&D in the industry as a whole. But
the results reported earlier suggest that with the exception of the crop seed-
biotechnology industry, market consolidation has generally not been corre-
lated with changes in overall R&D by the sector.

An examination of average R&D intensities, global R&D shares, and global
market shares for different classes of firms in four agricultural input sectors
reveals trends between R&D and firm size (table 1.9). The general pattern is
for four to eight of the largest firms to have the highest R&D-to-sales ratio
and account for most R&D by the sector. For crop protection chemicals, five
large, research-oriented (“discovery”) firms accounted for 74 percent of total
R&D and 57 percent of total market sales for this sector. Another group of 17
midsized firms also invested in the discovery of new proprietary products and
accounted for most of the rest of the R&D related to agricultural chemicals.
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Table 1.9

Company size and research and development (R&D) spending in agricultural input industries in 2006

. Average R&D Global R&D Global
Sector Companies intensity share market share
Number Percent
Crop protection chemicals
Large discovery companies (>$2 billion sales) 5 9.0 74.1 57.4
Second-tier discovery companies (<$2 billion sales) 17 7.3 19.6 18.7
Other manufacturers 23 23 7.7 23.9 est.
Crop seed and biotechnology
Large seed companies (> $600 million sales) + BASF 8 15.8 75.6 48.8
Midsize seed companies ($50-600 million sales) 29 7.3 13.7 19.2
Other seed companies n.a. 2.0 3.1 16.0 est.
Agricultural biotechnology companies 58 421 7.6 1.8
Animal health
Large animal health discovery companies (>$800 million in sales) 8 10.0 66.7 79.6
Midsize animal health companies ($250 million-$800 million sales) 5 7.6 11.8 10.6
Other manufacturers n.a. 3.8 21.5 9.8 est.
Farm machinery
Leading multiline farm machinery companies (>$5 billion sales) 4 3.0 57.4 38.7
Second-tier farm machinery manufacturers 30 2.4 27.6 22.9
Other manufacturers n.a. 24 0.6 0.5 est.

est. = authors' estimate. n.a. = not available.
Source: USDA, Economic Research Service. See chapters for specific sources and methods.

The average R&D intensity for the smaller sized firms was slightly below
that of the largest. Generic producers (firms not investing in new product
discovery) conducted a small amount of R&D related to product manufacture
and registration. In the crop seed-biotechnology sector, the largest eight seed
sellers plus BASF (a firm investing significantly in agricultural biotechnology
R&D but with few direct seed sales) accounted for 76 percent of private-
sector seed research and had an average R&D intensity more than double that
of midsized seed firms. However, small agricultural biotechnology firms had
by far the largest research intensity in this sector, at about 42 percent. These
operations tend to be startup organizations seeking to commercialize new
research discoveries. If they are successful, they are likely to partner with
large seed-biotechnology firms or be acquired by one of them. They play an
important role in bringing high-potential but high-risk technologies into the
marketplace. In the animal health and farm machinery sectors, the leading
firms also had the highest average R&D intensities. (A number of biotech-
nology firms are conducting research on animal health, but few specialize in
the agricultural sector and none are included in table 1.9.)

Globalization of Private Agricultural R&D

All of the leading firms and many of the second-tier firms in food manufac-
turing and agricultural input industries are multinational, offering product
sales spread across several continents. In fact, global trade in agricultural
inputs has grown rapidly over the past two decades (table 1.10). Between
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Table 1.10
Global trade in agricultural inputs

Value of global exports

Input type 1990 2000 2007
Billion constant 2006 U.S.$
Farm machinery 241 33.3 69.6
Crop protection chemicals 10.6 13.0 18.2
Crop seed 41 4.3 6.0
Animal breeding material 0.3 0.5 1.2

Sources: USDA, Economic Research Service. Farm machinery and pesticide export values
from Food and Agriculture Organization; Crop seed export value from the Le Buanec (2007)
and International Seed Federation; trade in animal breeding material includes value of exports
of day-old poultry chicks, swine and bovine live breeding animals, and bovine semen (UN
ComTrade). Export values adjusted for inflation by the U.S. Gross Domestic Product implicit
price deflator (Economic Report of the President, 2009).

1990 and 2007, international trade in animal breeding material grew by 260
percent and trade in farm machinery grew by 190 percent (in constant 2006
U.S. dollars). Trade in crop protection chemicals and crop seed also grew

over the period (trade statistics for animal health products are not available).

Since the performance of agricultural technologies tends to be site specific (due
to variations in weather, soil type, and other environmental conditions), many

of the leading agricultural input firms have located R&D facilities around the
world. This global R&D presence not only allows firms to develop and adapt new
technologies to regional conditions and meet local regulatory requirements, but it
also may enable them to achieve cost economies in some R&D activities (e.g., by
conducting certain kinds of research in countries where highly trained personnel
or specialized R&D services can be hired more cheaply).

While we do not have direct information on R&D investment in foreign coun-
tries by these firms, we have assembled information on the global R&D pres-
ence for several of the leading agricultural input firms (see table 1.11). Based
on information from company websites, we indicate the sectors in which these
firms made R&D investments in 2007 and the countries or regions of their
principal agricultural R&D facilities. In addition to these principal research
locations, the companies may have had field-testing stations and manufac-
turing facilities in several other countries. For comparative purposes, the last
three rows of table 1.11 shows R&D spending by some of the largest public-
sector agricultural research institutions. It is noteworthy that at least five firms
made larger investments in crop improvement than the world’s largest public-
sector agricultural research agency, USDA’s Agricultural Research Service
(ARS), and several times the investment in crop genetic conservation and
breeding than the network of centers that make up the Consultative Group for
International Agricultural Research (CGIAR).” The three companies that made
the largest investments in agricultural research in 2007 were the European
firms Bayer and Syngenta and the U.S. firm Monsanto, each with over $700
million in R&D spending for crop and/or animal agriculture. By 2007, the agri-
cultural R&D investment by these three firms together was $2.47 billion (and it
rose further to over $3 billion by 20099%).

Another indicator of the degree of globalization of agricultural input markets

is the global distribution of agricultural input sales (see fig. 1.4). In 2006,
member countries of the North American Free Trade Agreement (NAFTA—

18

"These figures are presented to
characterize the scale of private R&D,
but it should not be inferred that the
public and private sectors engage in
similar kinds of research. Rather, each
sector is likely to play complemen-
tary roles. A detailed 1994 survey of
public and private crop breeding in
the United States, for example, found
that about 80 percent of private-sector
crop breeding research was on varietal
development, while breeders at USDA’s
Agricultural Research Service focused
exclusively on more “upstream” (basic)
research like developing new breeding
methods and introducing new genetic
diversity into breeding pools (Frey,
1996). See Fuglie et al. (1996) for more
information on the roles of the public
and private sectors in agricultural
research and development.

8Bayer reports $907 million in
agricultural R&D by its CropScience
division in 2009, while its Consumer
Health division likely spent an ad-
ditional $110 million on animal
health R&D (Bayer, 2010). Monsanto
reports total R&D spending of $1.1
billion in 2009 (Monsanto, 2010),
while Syngenta reports $960 million
in agricultural R&D in the same year
(Syngenta, 2010).
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Table 1.11
Agricultural research and development (R&D) spending by major multinational corporations and public
institutions in 2007

Country of Agrlcult.ural R&D
spending (esti-

Sector of R&D activity Principal agricultural R&D locations

Company incorporation mate only)
Million U.S.$
Ag. chemical, crop seed, Germany, France, Belgium, Nether-
1

Bayer Germany animal health 978 lands, U.S., Japan

Syngenta? Switzerland Ag. chemical, crop seed 830 Switzerland, UK, U.S., China, Australia
Monsanto3 u.sS. Ag. chemical, crop seed 770 Us., France, Brazil, Argentina, India,

' Australia
BASF*4 Germany Ag. chgmlcal, crp_p seed, 655 Germany, U.S., India
animal nutrition
Dupont5 u.S. Ag- chemllcal, crop seed, 633 U.S.,, France, Japan, India
food ingredients
Dow® u.S. Ag. chemical, crop seed 294-380 U.S., Japan, Argentina, Puerto Rico
Limagrain? France Crop seed 171 EU, U.S., Brazil, Chile, China, Japan,
Israel, Morocco
KWS8 Germany Crop seed 104 EU, Q.S., Argentina, China, Turkey,
Russia

John Deere® u.sS. Farm machinery 461 U.S,, India, Israel

CNH?® Netherlands Farm machinery 272 U.S., EU, Brazil, Turkey, India, China
CLAAS10 Germany Farm machinery 150 Germany

Pfizer!1 u.s. Animal health 317 U.S,, UK, Japan

Meriall1 U.S. & UK Animal health 250 U.S., France, 9 global locations
Schering-Plough'" u.s. Animal health 113 U.S., 14 global locations

Fort Dodge (Wyeth)'! us. Animal health 115 us. EU

DSM12 Netherlands Animal nutrition 114 Netherlands

Genus'3 UK Animal genetics 33 U.S., UK

Public — USDA/ARS4 us. Crop science 456 u.s.

Public — USDA/ARS™ u.s. Animal science 171 u.sS.

Public — CGIAR Global Agricultural biodiversity and 178 9 centers with crop breeding programs,

genetic improvement all in developing countries

Bayer reports spending 506 million euros on crop protection R&D and 131 million euros on environment science/bioscience in 2007 (bioscience is mostly seed and
crop biotechnology research while environmental science includes nonagricultural applications of crop protection chemicals and related products). Since 2006, Bayer
no longer reports animal health R&D separately from its Consumer Health business segment, but it did report animal health product sales of 956 million euros in 2007.
We estimate Bayer spent 8 percent of animal health sales on R&D, or 76 million euros. These figures are from Bayer (2008). 2Syngenta reports spending $496 million
on crop protection R&D, $283 million on crop seed R&D, and $51 million on new business development (mostly crop biotechnology) R&D in 2007 (Syngenta, 2008).

3 Monsanto reports spending $770 million on agricultural R&D in 2007, mostly for its seeds and genomics division, with the remainder to support its crop protection
products (Monsanto, 2009). *BASF (2007) reports that the company spent 328 million euros on crop protection R&D in 2007 and 400 million euros on plant sciences
R&D over 2006-08 (the latter is included as part of its corporate"Verbund" research for future business development). We assume it spent about one-third of this 3-year
total, or 135 million euros, for plant sciences R&D in 2007. In addition, BASF develops animal nutrition specialty products (vitamins, enzymes, and minerals). It does
not report animal nutrition sales or R&D separately but includes this in its fine chemicals business segment, although for 2009 it reported that animal nutrition sales
made up 16 percent of product sales from this segment (BASF, 2010). We assume animal nutrition products accounted for 16 percent of sales of fine chemicals in
2007 (485 million euros) and that BASF invested 3 percent of this, or 15 million euros, in animal nutrition R&D in 2007. SDupont (2008) reports that its agriculture and
nutrition division spent $633 million on R&D in 2007. Net sales from this business segment included crop seeds (49 percent), crop protection chemicals (34 percent),
and food ingredients (17 percent). ®Dow does not report R&D spending by business segment but is known to invest significantly in both crop protection and crop seed
and biotechnology R&D. In 2007, Dow's total R&D spending was $1,305 million (Dow Chemical Co., 2009). We derive a lower bound estimate of Dow’s agricultural
R&D spending by multiplying total R&D by the share of agricultural science patents in Dow's total U.S. patent holdings, which were 508 out of 2,266 patents as of
December 31, 2008, according to Dow Chemical Co. (2009). Our upper bound estimate is derived assuming Dow invested 10 percent of its crop protection sales and
33 percent of its seed sales in R&D. While this research intensity for seed is high, it reflects Dow's stated intention to expand its market presence in the global seed
industry. 7Limagrain spent 102 million euros in crop seed research in 2006/07 (Limagrain, 2007). 8KWS spent 75 million euros in crop seed research in 2006/07
(KWS, 2008). °John Deere and CNH report total spending for research, development and engineering for agricultural, construction, and other equipment sales. We
estimate their R&D spending for agricultural equipment by taking the proportion of agricultural sales in total equipment sales. For Deere, this implies 56 percent of

its total R&D spending of $817 million was for agriculture in 2007 (Deere & Company, 2007) and for CNH, 66 percent of total R&D spending of $409 million was for
agriculture in 2007 (CNH, 2008). '9CLAAS reports spending 110 million euros on research, development, and engineering for agricultural equipment in 2007 (CLAAS,
2009). ""These pharmaceutical companies do not report animal health R&D separately, although they do report animal health product sales. To estimate animal health
R&D for these countries, we use estimates of R&D as percentage of animal health sales as reported in Animal Pharm Reports (2007). These are: 12 percent for Pfizer,
10 percent for Merial and Fort Dodge, and 9 percent for Schering-Plough. See chapter 6 for recent merger activity in animal health. 12DSM develops and markets both
animal and human nutrition and health products. Its total R&D spending in 2007 was 136 million euros. We assume that 57 percent of this was for animal nutrition R&D,
the same proportion of animal product sales out of total nutrition sales. (DSM, 2007). 3Genus reports 17.7 million euros in R&D spending for livestock (cattle and pigs)
research in 2007 (Genus, 2007). '“For comparative purposes, we show agricultural R&D spending for two prominent public-sector institutions: USDA’s Agricultural
Research Service (USDA/ARS) and the research centers that are supported by the Consultative Group for International Agricultural Research (CGIAR). USDA/ARS
expenditures for crop and animal sciences are from USDA (2007); CGIAR spending on biodiversity conservation and genetic improvement (which is mostly for food
crops) is from CGIAR (2007).

We convert foreign currencies into U.S. dollars using the exchange rates reported in the Economic Report of the President (2009).
Sources: USDA, Economic Research Service and others, as noted above.
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Figure 1.4
Global distribution of agricultural inputs sales in 2006

Crop seed
Agricultural chemicals-
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Percent of global sales
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Note: Global distribution of sales of animal genetics is not available.

Source: USDA, Economic Research Service. See chapters for sources on specific
input industries.

United States, Canada, and Mexico) accounted for about 23 percent of

the global seed market and 30-36 percent of global sales of agricultural
chemicals, farm machinery, animal feed, and animal health pharmaceuti-
cals (including those for nonfood animals). The Europe-Middle East-Africa
market (which is mostly Europe) had the largest aggregate seed sales in 2006,
whereas Asia-Pacific countries used the most fertilizers and bought the most
farm machinery. Together, the Asia-Pacific and Latin America examples are
indicative of a rough estimate of the developing-country share of global agri-
cultural input markets.® They account for 37-51 percent of global sales of crop
seed and chemicals, farm machinery, fertilizers, and animal feed.

These indicators—trade in agricultural inputs, location of R&D facilities, and
the wide distribution of agricultural input sales—demonstrate the multina-
tional nature of private-sector investments in agricultural R&D and the role
of these companies in developing and transferring agricultural technology
around the world. One implication of the globalization of private-sector food
and agricultural research is that the rate of international technology transfer
may accelerate, eventually serving to reduce productivity differences across
nations and regions. Moreover, the location of principal R&D centers may be
less important than the location of markets and flow of trade in the agricul-
tural inputs that embody the technology developed through this R&D.
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CHAPTER 2

Private Research and Development for Crop
Genetic Improvement

Paul W. Heisey and Keith O. Fuglie

Seed! has been an essential input in crop production since the origins of agri-
culture, when farmers first began to save grains for replanting and to select
seeds for desirable characteristics. The pace of crop genetic improvement accel-
erated early in the 20th century with the development of applied genetics and
associated changes in plant breeding, seed production, and seed marketing. The
development of the modern seed industry began about this time.

From the mid-1990s to the present, the private-sector seed industry has prob-
ably undergone more structural change than any of the other agricultural input
industries covered in this study. Technological innovation in the form of modern,
DNA-level biotechnology and changes in intellectual property rules have enabled
private-sector companies to capture more value from the new seeds they develop.
In the late 1990s, research intensity (R&D spending as a percentage of sales) in
the seed industry accelerated past intensity in all other agricultural input sectors,
and seed remains the most research-intensive sector to date.

Global Market for Crop Seed

Seed by sector of origin

Seed used for crops has three main sources: farmer-saved or farmer-sourced
seed, commercial seed from the public sector, and commercial seed from the
private sector. Private-sector proprietary seed dominates markets globally
today, particularly in high-income countries.

The dominance of private companies as the primary source of crop seed

is a relatively recent phenomenon. Historically, farmers saved seed from

their own crops or obtained seed from their neighbors for replanting in the
next season. In some cases, poor crops or other negative factors may lead to
consumption of saved seed, and after such periods, farmers may purchase
seed from food markets to replenish their supplies. This is particularly
common in some developing countries and for certain crops. Farmer-saved or
“bin-run” seed continues to be a seed source, even for a major crop such as
wheat, in high-income agricultural economies such as the United States. Plant
variety protection laws, however, tend to restrict or forbid practices such as
sales to other farmers.

As scientific plant breeding developed, public-sector breeders were often
the major sources of new crop varieties. Public-sector varieties have some-
times been multiplied and sold to farmers by private seed distributors, but
these distributors may not conduct seed-related research. In some devel-
oping countries, government-owned companies also distribute public seed
varieties. As the seed industry develops further, however, private compa-
nies that perform their own plant breeding and seed research can become
increasingly important (Morris et al., 1998). In high-income countries,
where private-sector research on crop improvement is significant, public
and private research efforts focus on complementary, but different, stages
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By “seed,” we refer to all planting
material used in crop production, in-
cluding seed grains, cuttings, seedlings,
and other plant propagation materials.
Our definition of the seed “market” also
includes transactions for seed traits,
including licensing of genetic material
used in seed production.
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of the research process. For example, in plant breeding in the United States
today, most public R&D is oriented toward basic breeding methods or basic
germplasm enhancement, while most private R&D is devoted to commercial
cultivar development (Frey, 1996). This balance between public and private-
sector roles has continued to evolve over time, particularly with the more
widespread commercial use of biotechnology techniques (Traxler, 1999). For
some commodities (like wheat and potatoes in the United States), the public
sector continues to provide most of the finished varieties because of a lack of
private-sector interest (Heisey et al., 2001). Both public- and private-sector
seed from scientific crop improvement programs are considered commercial
seed, but in this study, we distinguish private-sector proprietary varieties
from seed originating in the public sector.

Estimates of the size of the global commercial seed market in 2006 vary
between $20 billion and $34 billion. Estimates of commercial seed value
based on sales by companies that develop the seed may be somewhat lower
than estimates based on farmer purchases. For purposes of historical compar-
ison and disaggregation, we take an intermediate sales-based figure for
commercial seed reported by the Context Network (2007), $22.9 billion. In
addition, the value of farmer-saved seed in 2006 is estimated at $6.1 billion.
Based on these two amounts, the total value of crop seed used in 2006 is esti-
mated at $29 billion.> The $22.9 billion of commercial seed can be further
subdivided into $19.6 billion of proprietary seed ($11.8 billion of conven-
tional proprietary seed, $7.8 billion of GM proprietary seed, and $3.3 billion
of public-sector seed) (table 2.1).

Table 2.1 shows estimates of the real value (in constant 2006 U.S. dollars)
of the world seed market. Between 1995 and 2006, real market sales of
commercial public sector seed declined, while sales of proprietary seed
increased markedly. In all likelihood, this trend began well before 1995. In
recent years, market sales of proprietary seed have been at least six times
those of seed from the public sector.

The first significant commercial sales of proprietary seed with GM traits
occurred in 1995. Market sales of GM seed have increased rapidly; since 2006,
they have exceeded 40 percent of the total sales value of proprietary seed. The

2We used Context Network estimates
of the value of farmer-saved seed be-
tween 2001 and 2006 and extrapolated
for earlier and later years. We followed
this procedure to maintain consistency
in sources for the different categories
of seed. However, given substantial
areas planted to farmer-saved seed in
developing countries, and even seed for
some open-pollinated crops in high-
income countries, underestimates are
likely. More accurate estimates could
be found by performing a country-by-
country analysis of seed markets for
major crops, an exercise beyond the
scope of this study.

Table 2.1
Size of the global seed market
Proprie.t ary Proprig tary To.tal PUb"C. Farmer-saved Total value ISF value of
conventional genetically proprietary commercial
Year seed modified seed seed seed seed of all seed total seed
Million constant 2006 U.S. dollars

1995 13,447 95 13,542 5,550 6,333 25,425
2001 11,847 3,645 15,492 3,539 5,923 24,954 34,173
2002 11,210 4,148 15,358 3,483 6,390 25,231 33,631
2003 11,084 4,938 16,022 3,409 6,694 26,125 32,922
2004 11,525 5,869 17,394 3,315 6,616 27,325 32,013
2005 12,082 6,815 18,897 3,408 6,402 28,707 30,979
2006 11,800 7,800 19,600 3,300 6,100 29,000 34,000

Sources: USDA, Economic Research Service using Context Network (2007) for all columns except ISF value of total seed, which is from
International Seed Federation (ISF). Values adjusted for inflation by the U.S. Gross Domestic Product implicit price deflator (Economic Report of

the President, 2009).
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real value of all seed has increased over the last 5 years, and this increase has
been driven primarily by the expansion of the market for GM seed.

Seed markets by region and commodity

Over the past decade, commercial seed markets in three broad world regions—
Asia-Pacific, Europe/Middle East/Africa, and North American Free Trade
Association (NAFTA)—have been roughly equal in market sales, although
amounts vary from year to year. Seed markets in each region have gener-

ally fluctuated around 30 percent of the global total, as calculated from data
reported by the International Seed Federation (ISF). The seed market in Latin
America/Caribbean makes up the remaining 10 percent. In more recent years,
the Middle East/Africa portion—under 5 percent of the global total—can be
separated from that for Europe. Industry analysts tend to estimate a higher
percentage for NAFTA and a lower percentage for Asia-Pacific, as indicated by
recent (2010) data from the ISF.3

For 2006, the Context Network estimated that field crops accounted for

77 percent of the global market for proprietary seeds. This may be further
broken down into grains (46 percent), oilseeds (20 percent), and other field
crops (11 percent). Vegetable and flower seeds made up 14 percent of the
proprietary seed market, and forage and turf grass 9 percent. We assume that
these percentages apply to all commercial seed, including public-sector seed,
in the absence of data disaggregating public-sector seed.

The Context Network also estimated the value of seed markets for major
field crops. Including “technology values” for GM traits and royalties, corn
constituted about 25 percent of the total global market for commercial seed
between 2001 and 2005. The next largest commodity in terms of seed market
sales was soybeans, with over 12 percent of the total. Both wheat—the largest
crop worldwide in terms of acreage—and cotton constituted about 4 percent
each of the global commercial seed market. The value of the seed market for
these two crops is roughly equivalent, even though world wheat area is over
six times larger than world cotton area (a much higher proportion of annual
cotton seed requirements is sourced through commercial markets, and cotton
seed unit prices are considerably higher in part because GM traits have been
incorporated into cotton but not wheat). Rice, the second most widely grown
crop worldwide, accounted for just over 1 percent of the commercial seed
market (most annual rice seed requirements are sourced from farmer-saved
seed). Apparent discrepancies between sales-based and farmer-purchase-
based estimates may be larger for major crops such as wheat and rice, for
which seed saving is widespread, than for such crops as corn, soybeans, or
cotton, for which a larger percentage of seed used is purchased from seed
companies. Furthermore, if the full market value of hybrid rice seed were
accounted for, particularly for China where it is subsidized, the estimated rice
share of global commercial seed might be higher.

The market for crop genetic traits

An alternative approach to partitioning the market, by GM traits, may be

of economic interest but is more difficult to undertake with available data.
Both large multinational companies that conduct research in agricultural
biotechnology and small biotechnology firms develop products in two broad
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3Both the estimate of regional seed
market shares for Asia-Pacific and
other estimates, like the share of the
global seed market held by rice seed,
are particularly influenced by how
information from China’s government-
owned seed enterprises is defined and
measured.
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classes—GM traits that may be inserted into crop seed or research tools that
facilitate biotechnology procedures, such as gene discovery or genetic modi-
fication. Determining licensing revenue that these firms obtain from traits

or tools is generally not possible directly.* Large multinational companies
include licensing revenue within their broadly defined “seed” category and
will not separate it from actual sales of seed. Neither overall sales nor specific
revenue from licensing are available for most small agricultural biotech-
nology firms, and in general, it is not possible to estimate licensing revenues
for research tools.

The market value of technology fees and royalties, however, may provide a
rough estimate of the value of GM traits, although it is not identical to this
value. For some of the major crops, technology fees and royalties represent a
significant proportion of the cost of seed. Globally, by 2005, these fees and
royalties constituted about half the total market value of seed in the case

of cotton and about a quarter in the case of soybeans. These are crops for
which significant portions of world area (over 40 percent for cotton, and over
60 percent for soybeans) are planted to GM seeds (see James, 2007, for an
estimate of the distribution of GM crops worldwide). By 2005, only about 10
percent of the value of corn seed came from technology fees and royalties.
Historically, private-sector firms have been able to capture a greater return for
breeding effort devoted to corn through the use of hybridization, which guar-
antees the purchase of seed every year (Morris et al., 1998). The use of GM
corn, however, has increased rapidly in recent years (James, 2007), and so the
percentage of corn seed value obtained from technology fees and royalties is
still rising.

Public-sector wheat seed breeding has remained relatively more important
worldwide than public-sector breeding in some other major crops because
successful wheat hybrids have not been widely deployed and because other
technical factors have not allowed private breeders to capture a greater

share of the returns from wheat breeding. Nonetheless, royalties have made
up about an eighth of total wheat seed values in recent years. Particularly

in Europe, and more recently in other high-income countries, institutional
arrangements have evolved in which seed distributors pay royalties from the
sale of wheat seed to the breeders, private or public, of the varieties involved.
Because GM wheat has not yet been planted commercially, royalties from the
sale of wheat seed do not reflect the value of GM traits for this crop.

For the largest national seed market, the United States, it is possible to esti-
mate the value of GM traits in corn, soybeans, and cotton using price data
on “biotech” and “nonbiotech” seed from the USDA’s National Agricultural
Statistics Service (USDA/NASS),> USDA/NASS data on total crop area
planted® and the share of total area planted to crops with GM traits,’and
seeding rates from USDA’s Agricultural Resource Management Survey
(ARMS).8 Using these data, we first calculated the value of germplasm for
all seed used in a given crop, biotech and nonbiotech, by using the nonbio-
tech seed price. We then estimated the value of GM traits by applying the
difference between the biotech and the nonbiotech price to the area planted
to GM crops.? The estimates followed the same pattern as the global esti-
mates, with trait value accounting for the greatest percentage of total seed
value for cotton and the lowest percentage for corn. These differences among
crops may reflect the degree of adoption of GM traits, the market value of
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4Although the terms of licensing and
royalty agreements are, in general, not
public information, most such agree-
ments include statements that define
property rights pertaining to each
party to the agreement, the cost of the
license, the mechanisms for royalty
payments, potential philanthropic or
humanitarian use, technology steward-
ship, and enforcement and litigation
provisions (Cahoon, 2007). One fea-
ture of such agreements that has gained
considerable recent attention concerns
the rights of the licensee to combine
the licensed technology with other
technologies, either self-developed or
licensed from alternative sources.

SAvailable at www.nass.usda.gov/
Publications/Ag_Statistics/index.asp.

6Available at www.nass.usda.gov/
QuickStats/Create_Federal _Alljsp.

7Available at www.ers.usda.gov/data/
biotechcrops/.

8 Available at www.ers.usda.gov/
data/arms/app/default.aspx?survey_
abb=CROP. We interpolated to calcu-
late seeding rates for years in which
they were not estimated.

9This method may slightly overstate
the germplasm value for self-polli-
nating crops like soybeans, for which
farmers may use part of their own
harvest as seed for the next season.
However, in recent years, nearly all
soybean seed in the United States has
been purchased. Cotton is also self-
pollinating, but almost universal use of
purchased seed in cotton began much
earlier than it did in soybeans.
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GM traits in comparison to the market value of the underlying germplasm, or
other market or technical factors that are less well understood. Biotech traits
accounted for about half the total value of cotton seed in the United States in
2001. After continuing to rise for several more years, the share has remained
at about 80 percent since 2007. Biotech traits represented only 7 percent of
the U.S. corn seed market value in 2001 but rose to 28 percent in 2007 and to
37 percent in 2009. Biotech traits have fluctuated between 30 and 40 percent
of the U.S. soybean seed market for much of the past decade, reaching a high
of 42 percent in 2007 but falling to 30 percent in 2009. Based on these data,
the value of biotech traits for corn, soybeans, and cotton taken together have
represented 20 percent or more of the value of the entire U.S. seed market in
recent years.

Several studies in recent years used national micro-level market data to
analyze component pricing strategy for different biotechnology traits and
market power for U.S. field crops for which GM varieties are important. For
the case of corn (Shi et al., 2010a) and soybeans (Shi et al., 2009), these data
can also be used as a check on the estimates based on the NASS data.!? For
cotton, Shi et al. (2010b) do not present data on national-level seed prices, but
their data still allow for comparisons with the NASS-based estimates used in
this study.'! Nonetheless, calculations based on data from Shi et al. suggest
the same relationships (e.g., the proportion of the value of the U.S. corn seed
market attributable to GM traits is lowest among the three major crops with
significant areas planted to GM varieties, and the proportion of the value of
the U.S. cotton seed market made up of GM traits is the highest). Similar to
our NASS-based calculations, calculations based on Shi et al.’s (2010a) data
imply the trait percentage of value for corn has risen from 7 to 21 percent
between 2001 and 2007, while the trait percentage of value for soybeans has
been higher but more variable, estimated at around 35 percent in 2007.

Structure of the Global Seed Industry

Seed company market structure in 2009

In this report, we divide the global crop seed and biotechnology industry into
four tiers. The first tier is what we refer to as the “Big 6”"—Iarge multina-
tional corporations with positions in both the markets for crop seed-biotech-
nology and agricultural chemicals. The second tier consists of other seed
companies that do some research. This group includes companies that may
have a significant global presence as well as smaller regional or local seed
companies. A third tier consists of mostly small seed companies that do not
conduct research themselves but only produce and sell seed under licensing
or other commercial arrangements with the other companies or public-sector
breeders who develop new varieties. Finally, a fourth tier comprises small
and medium-size agricultural biotechnology companies. These companies do
not generally sell seed but rather seek to commercialize a new genetic trait
or biotechnology service or tool to other firms in the industry. Our survey
identified more than 100 such “agricultural biotechnology startups” that have
proliferated since the 1980s. Some of these companies have been bought

out by larger companies and others have exited the market, but at least 30
startups were in operation as of 2008.
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10K alaitzandonakes et al. (2010) also
analyze the pricing of different types
of GM traits, either individually or in
combination. Much of the data ana-
lyzed by Shi et al. (2009, 2010a, 2010b)
and by Kalaitzandonakes et al. suggest
that component pricing is generally not
additive—that is, the price premium
for seed containing two or more GM
traits is not the sum of the individual
premium for the traits taken separately.

For the most part, the data present-
ed by Shi et al. (2009; 2010a; 2010b)
indicate slightly higher estimates of the
proportion of crop land planted to bio-
tech crops, somewhat higher estimates
of the proportion of crop land planted
to stacked varieties, and somewhat
lower prices for biotech crops than the
NASS data.
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Table 2.2 summarizes information on 21 companies that each had global

seed sales of over $100 million in 2009, including BASF, which made signifi-
cant investments in crop biotechnology but did not have substantial seed or
trait sales. Six of these companies also had a significant market share for
crop protection chemicals. The Big 6 firms (Monsanto, Dupont, Syngenta,
Bayer, Dow, and BASF) hold a unique position in integrating biological and
chemical technologies in agricultural input markets. In 20009, three of these
firms—Monsanto, DuPont/Pioneer, and Syngenta—were the top three global
seed companies, and they also ranked fifth, sixth, and first, respectively, in
global sales of crop protection chemicals. Bayer, another Big 6 firm, only
entered the seed market in 2002 with the acquisition of Aventis Crop Science;
by 2009, it ranked sixth in global seed sales. Dow (fourth in crop protection
sales in 2009) ranked seventh in global seed sales, and BASF (third in global
crop protection sales), which began research in seed/biotechnology around I2BASF took a partial interest in
1998, reported no seed or trait sales as of 2009.!> However, both BASF and Svalsf Weibull, a Swedish seed com-

Dow have made significant investments in agricultural biotechnology. pany, in 1998 but divested in 2008.
Svalof Weibull changed its name to
Lantméannen SW Seed in February

2010.
Table 2.2
Companies with over $100 million in crop seed and biotechnology sales in 2009, plus BASF
c Crop seed  Agricultural Nonagricultural Pharmaceutical Agricultural
ountry of . . - .
. ) and biotech chemical  chemical sales sales and biotechnology
Company Incorporation sales sales and R&D R&D research
Million U.S. dollars
Monsanto U.S. 7,297 3,627 Divested 1997 Divested 2000 >80% of crop R&D
DuPont/Pioneer u.sS. 4,806 2,320 Primary product Divested 2001  >50% of crop R&D
Syngenta Switzerland 2,564 8,491 Divested 1996 Divested 2000 >15% of crop R&D
Limagrain France 1,370 0 - - >25% of crop R&D
KWS AG Germany 996 0 -- -- Yes
Bayer Germany 699 7,535 No Hyman and >85% of crop R&D
animal health
Dow u.S. 633 3,708 Primary product Divested 1996 >85% of crop R&D
Sakata Japan 485 0 -- -- Yes
Forage Genetics Int'l
(Lang OlLakes) u.s. 412 0 - - No
DLF-Trifolium Denmark 391 0 - -- Yes
Takii Japan 347 0 -- - Yes
Rijk Zwaan Netherlands 265 0 -- = Yes
In Vivo France 217 0 -- - Yes
BarenBrug Holland BV Netherlands 208 0 -- - Yes
Saaten-Union Germany 187 0 -- - Yes
RAGT Semences SA France 181 0 -- - Yes
Florimond Desprez France 162 0 -- -- Yes
Euralis Group France 154 0 - - Yes
Maisadour Semences France 119 0 - - Yes
Stine Seeds U.S. unknown 0 - - Yes
BASF Germany small 5,065 Primary product Divested 2000 100% of crop R&D

* Seed sales figures for Land O’Lakes refer to alfalfa/forage seed developed by Forage Genetics International. Land O’Lakes also distributes seed
for other companies, such as Monsanto and Syngenta, but these sales are not included in the Land O’Lakes estimate.

Seed sales figures in italics are ERS estimates not derived directly from company data.

Sources: USDA, Economic Research Service using compiled company reports and press releases, Le Buanec (2007), Allison (2007), and
PhillipsMcDougall.
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Two European-based companies, Limagrain and KWS, also had seed sales of
over $600 million in 2009. Limagrain, originally a producer-owned cooperative
based in France, is active in both the markets for seeds of field crops and vegeta-
bles. KWS, based in Germany, concentrates on seeds of field crops. Limagrain
and KWS have a joint venture, AgReliant, in the North American market.

In 20009, at least 13 companies had global seed sales between $100 million
and $600 million. Three companies (Land O’Lakes/Forage Genetics
International, DLF-Trifolium, and BarenBrug Holland BV) specialized

in seed of forage and/or turf grass. Another Dutch seed company, Rijk
Zwaan, and two Japanese-based companies, Sakata and Takii, specialized in
vegetable and/or flower seed. Several European-based companies, In Vivo,
Saaten-Union, RAGT, Florimond Desprez, Euralis Group, and Maisador
Semences, focused mainly on field crops but also had forage/turf grass prod-
ucts as well as sugar beets. Finally, the U.S. soybean breeding company, Stine
Seeds, likely fits into this category as well, although Stine Seeds does not
disclose sales information. In 2009, these companies (except BASF) invested
in crop improvement and sold proprietary seed for a range of crops (fig. 2.1).

Changes in the structure of the global seed industry

Over the past 15 years, the seed industry has consolidated through mergers
and acquisitions (see fig. 2.2 for global activity; Fernandez-Cornejo (2004)
for U.S. activity; and Howard (2009) for graphics on current and historical
seed industry ownership, including that of many small companies.'3

Some of the features of changes to the seed industry can be summarized as
follows:

1. Among the largest firms in terms of total product sales, the close rela-
tionships between seed and agricultural chemicals industries have
continued. This applies to the Big 6 firms in particular (see fig. 2.2).
These relationships may result partially from complementarity of product
lines such as herbicide-tolerant seeds and chemical herbicides (Just and
Hueth, 1993), or possibly from economies of scope in marketing as well.
Chemical companies also realized GM crops with pest resistance traits
would compete with the crop protection chemicals, which helped drive
these companies’ interest first in biotechnology and eventually in seed,
thus changing their business models to meet farmer demand for crop pest
management as technological opportunities changed.

2. On the other hand, the “life science industry” model suggested a decade
ago (Enriquez, 1998) has not become the dominant paradigm. This
model stemmed from the likelihood that technologies underlying phar-
maceutical discovery were the same as those underlying gene discovery
for seeds. Differences in business models and types of customer,
however, prevented firms from combining both pharmaceuticals and
agricultural biotechnology. Of the current Big 6 companies, only one—
Bayer—has pharmaceuticals as its primary product line. Even when
Bayer expanded into the seed/biotechnology industry in 2002 with its
acquisition of Aventis Crop Science, Aventis pharmaceuticals eventu-
ally became a component of Sanofi-Aventis pharmaceuticals, not Bayer.
Monsanto, which entered pharmaceuticals in the mid-1980s with its
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3For example, between 2005 and
2010, Dow acquired or reached com-
mercial agreements with nearly 10
regional seed companies, both in the
United States and elsewhere, whose
primary focus is corn (maize).
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Figure 2.1
Crop R&D portfolios of leading seed companies

_ Wheat & _ Canola/ Sugar- Sugar- Vegetables

Country Maize smgll Rice Soybean rape/sun- Cotton beet cane Forage &
Company grains flower flowers
Monsanto uU.S. Y Y Y Y Y * Y * Y
DuPont/Pioneer u.s. Y Y Y Y Y Y
Syngenta Switzerland Y Y * Y Y * Y Y
Limagrain France Y Y Y Y Y Y
KWS AG Germany Y Y Y
Bayer Germany Y Y Y Y
Dow u.s. Y * * Y Y Y
In Vivo France Y Y Y
Saaten-Union Germany Y Y Y Y
Florimond Desprez France Y Y Y Y
Stine Seeds u.s. Y Y
RAGT Semences SA  France Y Y Y Y
Euralis Group France Y
Maisadour Semences  France Y
Forage Genetics Int'l U.S. Y
DLF-Trifolium Denmark
BarenBrug Holland BV  Netherlands
Takii Japan Y
Sakata Japan Y
Rijk Zwaan Netherlands

Y = company has crop breeding and seed sales; * = company develops biotechnology traits and platforms only.

Source: USDA, Economic Research Service using data compiled from company websites.

acquisition of Searle, was briefly held by Pharmacia before the agricul-
tural enterprise was spun off as the “new Monsanto”’; Pharmacia retained
the pharmaceutical business segments. When Novartis’s chemical and
seed businesses were merged with Zeneca’s agricultural chemical busi-
ness in 2000 to form Syngenta, the pharmaceutical portion of Novartis
remained intact as a separate large pharmaceutical company. BASF and
DuPont ended their relatively smaller pharmaceutical investments after
2000 and 2001, respectively, and Dow had already sold its pharmaceu-
tical subsidiary Marion Merrell Dow to Hoechst in 1996.

3. Agricultural chemicals have been an important part of product sales
for all the Big 6 companies. However, positions in markets for nonag-
ricultural chemicals have not remained constant, with some compa-
nies shedding these nonagricultural products. Monsanto divested
this portion of its business to Solutia in 1997. When Ciba-Geigy and
Sandoz merged to form Novartis in 1996, nonagricultural chemicals
were spun off to Ciba Specialty Chemicals, which eventually was
acquired by BASF. In response to antitrust considerations, Bayer sold
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selected insecticides and fungicides to BASF in 2003. DuPont sold its
polymers business in the early 2000s.

Despite the common features in structural changes in the current Big 6, these
and other former large multinational seed companies have followed somewhat
individualized trajectories. Three of the current Big 6 were already identi-
fied as industry leaders 7 to 10 years ago: Monsanto, DuPont/Pioneer, and
Syngenta (or Novartis) (Shoemaker et al., 2001; Fernandez-Cornejo, 2004).
But several other potentially large players a decade ago no longer exist.
Aventis Crop Science was acquired by Bayer in 2002, giving Bayer a position
in the seed/biotechnology industry. Astra-Zeneca’s seed business became part
of the Advanta Seed Group, but Advanta’s seed enterprise was broken up with
parts acquired by Syngenta, Limagrain, and others in 2004 and 2005.

Monsanto has transformed itself most completely, from a chemical company
to a seed/biotechnology company, and made by far the greatest number of
large acquisitions of seed and related companies. Although Monsanto still
has significant sales of the herbicide glyphosate, its research investments in
chemicals are markedly reduced. Syngenta maintains a strong position in
crop protection as well as in seed, but in contrast to its legacy companies,

it is a wholly agricultural company. DuPont made by far the largest acqui-
sition of all when it absorbed Pioneer, at the time the world’s largest seed
company, in 1999. DuPont/Pioneer, however, has acquired only a few
other seed or biotechnology firms since the merger. Dow was also recog-
nized for its biotechnology investments a decade or more ago, particularly
since it purchased Eli Lilly’s share in Dow Elanco in 1997 and formed Dow
Agrosciences. Though Dow Agrosciences has since acquired regional seed
companies, a large portion of its investment in seed/biotechnology research
has been in biotechnology. BASF has also focused almost completely on
biotechnology, although for 10 years it had an alliance with the Swedish seed
company Svalof Weibull. Starting in 2007, BASF has concluded a number
of research collaboration and licensing agreements with Monsanto and other
seed companies for commercialization of future biotechnologies that BASF
may develop. As noted, Bayer’s entry into the seed business came with its
acquisition of Aventis Crop Science. In general, as large chemical compa-
nies decided to commercialize their own biotechnology research or to buy
seed company research, they needed to get access to seed companies either
through direct acquisition, joint-venture, or licensing agreements. Through
its purchase of Pioneer, DuPont gained immediate access to seed for multiple
crops in multiple regions. Other companies had to acquire companies
focusing on different crops in different regions; Monsanto has followed this
strategy most comprehensively.

Many other large multinational seed companies have also followed a pattern
of acquisitions or joint ventures. For example, Limagrain, which acquired
other European seed companies starting with Vilmorin in 1975, acquired
several more seed companies in the late 1990s and early 2000s, including
Advanta Europe in 2005. Limagrain also formed a joint venture with KWS,
AgReliant, in the North American corn and soybean markets, and also
participated in projects with small biotechnology companies. DLF-Trifolium
acquired the Dutch company Cebeco in 2002. Syngenta has held a signifi-
cant minority interest in Maisadour for years. Recently, Svalof Weibull (now
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4Dupont took an initial financial
interest in Pioneer in 1997 and took
full ownership in 1999.
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Lantménnen SW Seed) and Florimond Desprez have initiated a research alli-
ance, as have RAGT Semences and In Vivo.

Changes in concentration in the global seed market

In 2009, the top four companies accounted for 54 percent of the global
commercial seed market (including public sector commercial seed), and

the top eight companies accounted for 63 percent of total commercial seed
sales (see table 1.7 in chapter 1). In 1994, these shares were 21 percent and
29 percent, respectively. Four-firm concentration ratios as measured by seed
sales are now roughly equivalent across large agricultural input sectors. The
eight-firm concentration ratio is still lower than eight-firm concentration in
the agricultural chemicals industry (although four of the top six companies in
each segment are the same), the animal health sector, and the animal genetics
sector. Furthermore, the rate of growth of concentration in the seed market
has been greater than the rate of growth for agricultural chemicals, animal
health, or farm machinery.

The Herfindahl index (HI) is sometimes preferred to concentration ratios
because it is sensitive to the distribution of market shares among firms,

while the concentration ratios are not. In 1994, the HI for the global crop
seed market was lower than similar indices for agricultural input sectors like
animal health and agricultural chemicals. Between 1994 and 2009, HIs for
seed, agricultural chemicals, animal health, and farm machinery all rose, but
the rate of growth was most rapid for the seed sector. In 2009, the ranking for
crop seed was higher than for any other sector reported in table 1.7, with the
exception of animal genetics.

Different sectors of the seed market can be more concentrated than the
aggregate global seed market. For example, we estimate that the top four
companies in the commercial market for vegetable seeds covered 70 percent
of the global market in 2007, and the top eight companies 94 percent. Three
of the Big 6 seed-chemical companies are major players in the global market
for vegetable seeds—Monsanto since its acquisition of Seminis in 2005,
Syngenta since its absorption of parts of the Advanta Seed Group in 2004,
and Bayer since its acquisition of Aventis/Nunhems in 2002. Limagrain also
sells a substantial amount of vegetable seeds and seeds for home gardens.
Together with Sakata, Takii, and Rijk Zwaan, these companies represent the
largest current participants in the vegetable seeds market.

Similarly, concentration in seed for particular crops in important individual
markets can be higher than global concentration overall. For example, the
four largest companies accounted for an estimated 72 percent of the U.S.
market for corn (maize) seed in 2007 and 55 percent of the U.S. market

for soybean seed (NRC, 2010). These shares have most likely continued to
rise.!> Data from USDA/Agricultural Marketing Service suggest that in 2009,
the top two cotton seed companies, Bayer (Fibermax and Stoneville) and
Monsanto (Deltapine), had 85 percent of the U.S. market for cotton seed, and
the top four companies had 95 percent. These recent estimates compare with
four-firm concentration ratios in 1998 of 67 percent for corn, 50 percent for
soybeans, and 95 percent for cotton (Fernandez-Cornejo, 2004).
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I5Estimates of seed market shares
for the United States are generally not
publically available, although a private
source is GfK Kynetec (formerly
dmrkynetec). Using GfK Kynetec
data, an online Monsanto report traces
the corn, soybean, and cotton seed
market shares of the largest integrated
seed-chemical companies between
1997 and 2009 (see www.monsanto.
com/newsviews/Pages/monsanto-sub-
mission-doj.aspx). Another consult-
ing company, Context Network, also
produces seed market share estimates,
and one of its online reports estimates
corn seed market shares for lead-
ing companies for 2008 (see www.
contextnet.com/Focus%20Papers/
Seed/Consolidation%20Direction %20
Where%20and%20Why %20
the%20Seed %20Industry%20is %20
Headed%?20Sieker%204%2008.pdf).
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Agricultural Biotechnology and the Seed Industry

The structure of the seed industry has been transformed in large part because
of the advent of modern agricultural biotechnology. Under the broadest defi-
nition, domestication of plant species and selection of desired characteristics
within agricultural species would qualify as biotechnology. More narrowly,
what biotechnology represents today is new knowledge about the natural
processes of DNA replication, breakage, ligation, and repair that has made
possible a deeper understanding of the mechanics of cell biology and the
hereditary process itself (McCouch, 2001). Over the last 20-30 years, the
term “biotechnology” in agriculture has been most closely associated with
genetic engineering, but it may refer to a variety of techniques and products,
including the use of molecular markers in genetic improvement or more
general use of genomic information.

Although these modern techniques may appear to be simply additions to the
genetic improvement toolkit, from an economic perspective, genetic engi-
neering in particular has meant the development of three complementary
markets: the traditional market for improved germplasm (or seed), the market
for genes conferring traits that can be used to capture value, and the market

for platform technologies or research tools. Intellectual property has become
more prominent as a means of protecting traits, tools, and, to a certain extent,
germplasm. Much of the merger and acquisition activity within the crop seed
industry, as well as some research alliances and licensing agreements, is moti-
vated by the desire to obtain access to products from all three of these markets,
which are necessary for the final product of GM seed (Graff et al., 2003; King
and Schimmelpfennig, 2005; and Marco and Rausser, 2008). Kalaitzandonakes
and Bjornson (1997) argue that more well-defined and stronger intellectual
property rights would have encouraged greater use of contracting and licensing
arrangements and thus reduced the level of mergers and acquisitions.

In addition to intellectual property and R&D costs, costs of regulatory
approval for agricultural biotechnology products constitute another type of
fixed cost that can create barriers to market entry and thus influence industry
concentration (Fulton and Giannakis, 2002). Kalaitzandonakes et al. (2006)
estimate compliance costs for guiding a single genetic engineering event, for
either insect-resistant corn or herbicide-tolerant corn, through the regulatory
process at between $6 million and $15 million. Heisey and Schimmelpfennig
(2006) argue that through the mid-2000s, the combination of desired char-
acteristics and development of marketing and distribution networks were
stronger determinants of industry concentration than regulation. However,

it is likely that longer regulatory delays (Kalaitzandonakes et al., 2006) and
regulatory costs for generic firms!'® as GM traits come off patent (Just, 2006)
will have increasing effects on industry structure. Furthermore, the relative
impact of regulatory costs might vary across crops as well as across countries
(Pray et al., 2006) and be significantly higher in many developing countries
(Falck-Zepeda and Cohen, 2006).

Even given the increasing concentration of the seed industry with the advent
of agricultural biotechnology, many different types of institutions may
perform crop biotechnology research: public research institutions which may
focus on more basic research (for example on research tools, in noncommer-
cial model plants (e.g., arabidopsis) to understand gene function, or for crops
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16Generic firms are firms that do not
conduct research on new trait discov-
ery but rather focus on commercial-
izing varieties and traits that have gone
off-patent. So far, generic firms are
virtually nonexistent in the crop seed-
biotechnology industry, but they play
an important role in the agricultural
chemical industry (see chapter 3).
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which are not served by the private sector); small or medium-sized biotech-
nology companies that may or may not specialize in crop biotechnology;
large seed companies; and integrated seed-chemical companies currently
exemplified by the Big 6.

Small and medium-size biotechnology companies

Biotechnology companies specialize in research tools, identification and
development of traits, or both. Many of these companies have been high-risk
startups, depending on venture capital or “angel” investors, and turnover
among these companies has been rapid. Significant entry into the market-
place began in the late 1970s and early 1980s, but in recent years, exits have
outnumbered entrants. We identified 77 small and medium-sized companies
that have entered the agricultural biotechnology market since 1979 (fig. 2.3).
All of these companies had agriculture as their primary business segment,
and all but eight focused on crop biotechnology (these eight focused on
animal biotechnology). Just over 30 companies are active as of 2008. Of the
exits from the industry, about three-quarters were the result of acquisition and
the remainder was due to bankruptcy or divestment.

17

In nearly all cases, we can only make estimates of the research investment
by these firms, so the total estimated research expenditure by small biotech-
nology companies essentially provides the same information as a count of the
number of active companies. In recent years, the total research investment of
these companies is estimated to be about 5 percent or less of the total private-
sector investment in seed/biotechnology research. Nonetheless, these compa-
nies developed some key agricultural biotechnology products, even though
other companies eventually took the products to final market. For example,
acquisitions of Agracetus and Calgene by Monsanto; Mogen by the Advanta
group (now Syngenta); Mycogen by Dow; Plant Genetic Systems by AgrEvo
(now Bayer, through Aventis); and DNA Plant Technologies by Seminis (now
Monsanto) have all contributed significantly to the eventual holders’ portfo-
lios of traits and research tools (Graff et al., 2003).

Figure 2.3

Small and medium agricultural biotechnology startups and exits since 1979

No. of SMEs in operation

1007
Number of SME startups (right axis)
80 . . .
Number of SME exits (right aX/s\
60
Cumulative SME startups (left axis)
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207

1979 81 83 85 87 89 91 93 95 97 99

17We refer to these companies as
“dedicated” agricultural biotechnology
companies in that agricultural applica-
tions appear to be the main market
for their product development efforts.
Not included in this category are many
other companies that may provide
some technology services to agricul-
ture but whose main product focus is
in other economic sectors. Names of
these companies are available from the
authors upon request.

No. of SME startups and exits
r10

2001 03 05 07 09

Source: USDA, Economic Research Service using data compiled from company websites and print media. Includes data on 77 small

and medium enterprises (SMEs) for which agricultural biotechnology was or is the major focus.
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Large seed companies and the Big 6

All of the seed companies listed in table 2.2 have instituted biotechnology
research, acquired interest in biotechnology companies, collaborated in
biotechnology research, or signed licensing agreements for biotechnology
products. In many cases, they have combined more than one of these activi-
ties. In several instances, seed companies that have not initiated GM research
have still made use of marker-assisted breeding.'® While the fixed cost of
establishing inhouse capacity in biotechnology may be prohibitive for small
or midsized seed companies, strategic partnerships between firms can enable
such firms to access biotechnology. For example, a number of midsized
vegetable breeding companies established a joint venture, Keygene, to
conduct biotechnology research on their commodities of interest. Significant
cross-licensing agreements still exist between companies, including those
comprising the Big 6 (Howard, 2009). For example, Monsanto has cross-
licensing agreements with all the other Big 6 companies; Dow with four of
the other five, and DuPont and Syngenta with three of the other companies.
Despite the increase in strategic partnerships and research collaboration,

in terms of both current biotechnology research expenditures and current
control of GM traits, only a few large companies dominate the market.

Trends in Private R&D Investment and Innovation in
Crop Genetic Improvement

Research spending by private seed and
crop biotechnology companies

Globally, real private sector research expenditures on crop seed development
and crop biotechnology have risen substantially since the mid-1990s (table
2.3). This increase can be decomposed in a number of ways. First, research
intensity for seed increased over much the 1990s. Since 2000, research inten-
sity has fallen in the seed industry, although it is still higher than that for
animal health, animal genetics, or agricultural chemicals, the other agricul-
tural input industries with high research intensities. But over most years since
2000, the real value of the global seed market has increased (see table 2.1),
and real research expenditures have continued to grow. The slight decline in
research intensity in recent years has been the result of sales increasing even
more rapidly than research investments (see tables 1.7 and 1.9 for data on
research intensities across agricultural input industries).

Structurally, these increases in research expenditures have been marked by
the remarkable rise in the share accounted for by integrated seed-chemical
companies, characterized by the Big 6.!° The share of total private-sector
crop seed and biotechnology R&D spending by seed-chemical companies
began to grow with the first round of mergers and acquisitions in the mid-
1990s, and it surpassed the share of other large seed companies in 1999,
the year that DuPont acquired Pioneer. In 2007, seed-chemical companies
accounted for over 70 percent of total global R&D spending by the seed-
biotechnology industry. Other seed companies made up an additional 24
percent, while small and midsized biotechnology firms accounted for 4
percent of R&D spending by this industry. The average research intensity
of the largest seed companies is also higher than that of midsized and small
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18Marker-assisted breeding is an in-
direct process in which selection for a
trait of interest is based on a genetic or
other marker associated with the trait,
but not the trait itself.

911 table 2.3, we include research
expenditures by legacy companies
that also conducted both agricultural
chemical and seed-biotechnology
research as part of the Big 6. These in-
clude AgrEvo, Astra-Zeneca, Aventis,
Ciba-Geigy, Novartis, and Sandoz.
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Table 2.3
Private-sector expenditures on crop seed and biotechnology research
and development (R&D)

Agricultural Small and Total private
. Other seed medium seed and
seed-chemical . . .
1 companies biotechnology biotechnology
Year gompanies firms R&D
Million constant 2006 U.S. dollars
1994 320 976 166 1,462
1995 355 1,013 168 1,536
1996 292 1,149 202 1,643
1997 576 1,139 144 1,859
1998 786 1,164 128 2,078
1999 1,091 908 128 2,127
2000 1,411 857 126 2,394
2001 1,312 842 141 2,295
2002 1,239 826 150 2,215
2003 1,266 857 142 2,265
2004 1,394 802 131 2,326
2005 1,453 746 129 2,328
2006 1,574 691 108 2,374
2007 1,764 676 100 2,540
2008 2,157 691 94 2,941
2009 2,353 702 93 3,149
2010 2,653 732 92 3,477

These are companies with sales and R&D in both crop protection chemicals and seed/biotech-
nology. Since 2002 this group has been composed of the "Big 6" (BASF, Bayer, Dow, Dupont,
Monsanto and Syngenta). Previously, AgrEvo, Astra-Zeneca, Aventis, Ciba-Geigy, Novartis and
Sandoz were also part of this group.

Sources: USDA, Economic Research Service using data compiled from company reports,
ASGROW (2007), Duncan (2007), author interviews with selected companies, and author
extrapolations as described in text. R&D expenditures adjusted for inflation by the U.S. Gross
Domestic Product implicit price deflator (Economic Report of the President, 2009).

seed companies, but small biotechnology startups as a group account for the
highest research intensity of all, at over 40 percent in 2006 (see table 1.9).

Regionally, firms based in NAFTA countries, particularly the United States,
and in Europe/Middle East/Africa (primarily Europe) dominate private
research spending in crop seed and biotechnology. In 2006, over 53 percent
of total investment was made by U.S.-based firms and another 42 percent
was made by European-based firms. About 4 percent was attributed to
Asia-Pacific firms and less than 1 percent to firms based in Latin America.
With the globalization of the seed industry, however, many large firms are
spending research dollars in other than their home regions.

It is not easy to estimate how much research is devoted to any particular crop.
Companies breeding multiple crops may share resources, such as biotech-
nology-enabling technologies, across crops or may have other expenses,

such as the costs of regulatory compliance, that are difficult to allocate.
Nonetheless, it is clear that the largest proportion of seed/biotech research is
directed toward corn (maize). Expert opinion also suggests that corn accounts
for about 45 percent of all private-sector seed-related research (Cavalieri,
2009). This share is considerably higher than corn seed’s 25-percent share

of the overall seed market, but it is in accordance with industry estimates

that corn seed is the most profitable seed for private companies to produce.
Besides sales, profitability would be expected to contribute to relative seed
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research investment. We do not have enough information to estimate how
much research is conducted on other individual crops, but we hypothesize
that soybeans, cotton, and wheat research all command higher proportions of
the private-sector total than their respective shares of the global seed market.

It is also difficult to estimate how much private R&D is devoted to conven-
tional breeding research versus biotechnology. Le Buanec (2007) provides
estimates of the relative proportions of seed-related research using biotech-
nology (including both genetic modification and marker-assisted selection)
for several major companies in 2003. Using these estimates, and based on the
assumptions that (1) 5 percent of other large seed companies’ (see table 2.2)
research is allocated to biotechnology, (2) 1 percent of other seed companies’
research is allocated to biotechnology, and (3) all of the research for dedi-
cated crop biotechnology companies is, indeed, allocated to biotechnology,
we estimate that about half of the total research expenditures by the private
seed industry in 2003 were allocated to biotechnology-related endeavors.?"

Ownership concentration in crop biotechnology innovations

While data on research expenditures provide some indication of investments
in innovation, they do not provide much information on the amount of new
innovation actually taking place or its ownership. To gauge the sources of
technological innovation emanating from private R&D, we assembled a
number of indicators of intermediate research outputs and assigned them

to the company or institution producing them. Our choice of indicators was
necessarily limited by data availability. For example, we did not obtain
counts of new crop varieties released (a reliable indicator of crop research
output) due to the difficulty in compiling a relatively complete dataset with
wide global coverage from publicly available sources.?! The most complete
data in this case might be that for European varietal registration, but linking
named varieties with holders of plant variety protection rights would be
extremely difficult. In the world’s largest seed market, the United States, data
are available for varieties with plant varietal protection certificates, varieties
with utility patents, and varieties submitted for cultivar registration, but these
data are both overlapping and nonuniversal in coverage.

The indicators reported here include the number of (1) agricultural biotech-
nology patents®? issued in the United States, (2) petitions and notifications

to USDA’s Animal and Plant Health Inspection Service (USDA/APHIS)

to import, transport across State lines, or release into the environment GM
crops in the United States, (3) global approvals for planting or environmental
release of GM crops, and (4) acres (multiplied by the number of traits per
acre to get “trait-acres”) planted to GM crops worldwide. These indicators
are undoubtedly influenced by research investments, but the relationships are
likely to be nonlinear and may change over time.

We summarize these data by showing the shares of select output held by a
particular company or institution (see table 2.4). Those shares assigned to the
eight listed seed companies include assignments to their historical counter-
parts, acquisitions (e.g., “legacy companies”), and subsidiaries. The counts
for each indicator are cumulative (summed over several years) and therefore
indicative of the overall dominance of the firm or institution in the market for
seed and biotechnology innovations. But the indicators do not reflect changes
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20Le Buanec’s estimates of biotech-
nology research as a percentage of total
seed-biotech research in 2003 are as
follows: Monsanto 80 percent; Dupont/
Pioneer 50 percent; Syngenta 60 percent;
BASF 100 percent; Dow 85 percent;
Bayer Crop Science 85 percent; and
Limagrain 10 percent. Applied to our
estimates of research expenditures in
2003, this implies an estimate that about
70 percent of all Big 6 seed research was
devoted to biotechnology in 2003, with
the rest of our estimates based on the as-
sumptions listed in the text. The overall
estimate of 50 percent may be roughly
the same today, or even higher, as large
seed companies outside of the Big 6 may
be increasing biotechnology investments.
However, Syngenta has apparently
decreased its spending on crop biotech-
nology while increasing its overall seed
research in recent years, if the reported
research expenditure devoted to “busi-
ness development” in its annual reports
can be assumed to be biotechnology
research. This has been our working as-
sumption for Syngenta. Other companies
do not make this distinction in reporting
their R&D expenditures.

21 As mentioned in footnote 17, some
privately collected data are available for
purchase from such companies as GFK
Kynetec. These data focus particularly on
large markets such as the United States,
on commercial seed sales as reported by
farmers, and on major crops such as corn,
soybeans, and cotton for which many
varieties include GM traits. Magnier et al
(2010), for example, use data purchased
from GfK Kynetec to develop and analyze
a fairly complete list of corn hybrids sold
in the United States between 1997 and
2009. These data are also the basis for Shi
et al’s (2009; 2010a; and 2010b) analysis
of biotech trait pricing for U.S. corn,
soybeans, and cotton.

22Patent counts have often been used
as an indicator of innovative activ-
ity. Huffman and Evenson (2006) use
U.S. data on patents issued to private
inventors in four agricultural areas as
a proxy for private agricultural R&D
capital. Brennan et al. (2005) present
annual concentration ratios for both
agricultural biotechnology patents
and agricultural biotechnology field
trials in the United States as pos-
sible indicators of competitiveness in
markets for agricultural biotechnology.
Nonetheless, patent data used in this
way suffer from some limitations: the

continue on page 41
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in the relative market position of the firms or institutions over time. For
example, patent counts are the total issued to a firm between 1982 and 2007
in the case of patents for crop cultivars, and between 1976 and 2000 for other
classes of agricultural biotechnology patents (described below). The counts of
USDA/APHIS petitions and notifications are the number issued since 1985,
when USDA/APHIS first began issuing permits regulating the use and move-
ment of GM seed, through mid-2008.23

Agricultural patents are counted three ways. The first column of table 2.4 is based
on U.S. patents granted for crop cultivars through 2007. Three firms accounted
for nearly three-fourths of these patents; these operations are the three largest
seed companies in both the United States and the world. Ninety percent of these
patents were issued for two crops: corn (either inbred parent lines or hybrids)

and soybeans, with cotton a distant third with just over 2 percent of total patents.
One midsized U.S. seed firm, Stine Seeds (not listed separately in the table), held
nearly 13 percent of the total soybean cultivar patents. As might be expected,
public or nonprofit institutions held few cultivar patents.

The second and third columns in the table summarize data from ERS’s
Agricultural Biotechnology Intellectual Property (ABIP) database. The ABIP
database includes all agriculturally related biotechnology patents granted between
1976 and 2000. The data in the second column use a narrow definition for agri-
cultural biotechnology, namely, patents that pertained specifically to crops and

to the use of “modern” biotechnological techniques such as genetic engineering,
selection with the aid of molecular markers, or genomics. The data in the third
column are based on a broader definition of agricultural biotechnology, where
biotechnology refers to any “use of organisms or parts of an organism to make

or improve products or processes’ in agriculture or food production. Both the
narrow and broad patent definitions include patents issued for crop cultivars (the
patents counted in the first column) through 2000. The Big 6 companies account
for nearly two-thirds of the modern crop biotechnology patents (narrow defini-
tion) and one-quarter of the more broadly defined agricultural biotechnology
patents. As with cultivar patents, the majority of these patents were issued in the
names of legacy companies or subsidiaries. Unlike with cultivar patents, nonprofit
institutions hold a notable minority of these biotechnology patents. Unfortunately,
categorizing biotechnology patents is difficult and subject to error, and data
coverage extends only through the end of the year 2000. Thus, patenting by more
recent entrants may be underreported.

The fourth column presents data on petitions and notifications to USDA/
APHIS on the importation, interstate transport, and environmental releases
of GM seed. The Big 6 firms accounted for 62 percent of these petitions and
notifications, with Monsanto claiming nearly 40 percent of the total. In this
instance, more petitions were recorded in the name of the parent firm than in
the names of legacy companies. Public and nonprofit institutions accounted
for about one-quarter of these petitions.

The final two columns are based on data on global use of GM seed reported
by James (2007). The second-to-last column summarizes approvals for
planting and/or environmental release of a specific GM “event” through
2007.24 These data are a simple count of the number of approvals granted in
any country—if the same GM event has been approved in two countries, it is
counted twice. The Big 6 firms accounted for 87 percent of these approvals,
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Footnote 22 continue from page 40

propensity to use patents or other
forms of intellectual property protec-
tion might vary over time, by crop, and
over jurisdiction (e.g., the application
of utility patents to crop cultivars has
been primarily a U.S. phenomenon).
The propensity to patent also varies
depending on the technology. Research
tools, traits for genetic engineering, or
GM cultivars, for example, might be
more likely to be patented than non-
biotechnology research outputs. Also,
intellectual property strategies may
vary among companies.

2330me of the indicators when traced
across time show definite patterns. For
example, concentration in field trial
permits has been consistently high (CR
4s of 60 to 100 percent) (Fernandez-
Cornejo, 2004). Concentration ratios
(CR 10) for broadly defined agricul-
tural biotechnology patents fell over
the 1990s if mergers and acquisitions
are not considered. If mergers and
acquisitions are accounted for, the CR
10 began to rise after 1995 (King and
Heisey, 2003).

24A GM “event” is an instance where
a specific gene has been introduced
into a particular crop. Subsequent
introduction of the same gene into
another variety of the same crop is not
considered to be a separate event.
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Table 2.4
Shares of selected research outputs held by major seed companies and other institutions

U.S. patents U.S. patents

issued for issued for Petitions and Approvals
U.S. patents . . notifications to  for planting or GM trait-acres of
. ; agricultural agricultural S for fi .
Company issued for crop biotechnology,  biotechnology, APHIS for field  environmental soybeans, corn,
. . e cultivars ’ ’ trials with GM  release of GM  cotton, canola?
(including subsidiaries narrowly broadly lants in the U.S
and acquisitions defined? defined? plants inthe .. crops
% of total % of total % of total % of total field % of global % of global
issued 1982 issued 1976 issued 1976 trials 1985 to approvals trait-acres
to 2007 to 2000 to 2001 mid-2008 1985 to 2007 in 2007
Monsanto 28.7 16.8 6.1 39.7 49.2 about 85
Dupont 36.5 20.7 5.1 7.3 5.0 3-5
Syngenta 8.4 9.8 3.8 5.2 8.0 3-5
Bayer 0.2 5.8 4.7 4.9 20.9 3-5
Dow 2.3 9.9 2.1 3.5 4.0 3-5
BASF 0.0 0.9 2.1 1.0 0.0 0
Limagrain 1.2 0.5 n.a. 1.2 0 0
KWS 0.4 0.1 n.a. 1 <0.1 0
Other private firms or 21.7 15.1 43.8 9.8
individuals
Public and nonprofit 129 2
Fublic profi 0.6 20.4 32.3 26.4
institutions
Total % 100.0 100.0 100.0 100.0 100.0 100.0
Total number 38,978 306 352 (282)3

(mil. acres)

n.a. = not available. GM = genetically modified crops.

'The ERS Agricultural Biotechnology Intellectual Property (ABIP) database defines agricultural biotechnology two ways. Under a narrow definition,
it includes patents pertaining specifically to crops and to the suite of modern biotechnology techniques, such as genetic engineering, selection
with the aid of molecular markers, or genomics. Under the broader definition, biotechnology refers to any "use of organisms or parts of an organ-
ism to make or improve products or processes" in food or agriculture. See King and Schimmelpfennig (2005) for further information regarding
ABIP.

2A "trait-acre" is the area sown to GM crops, where stacked GM traits are counted as multiple acres, depending on the number of traits stacked in
a single seed. Total trait-acres include data from 13 countries with at least 100,000 ha in total GM crop area in 2007.

S3The first figure is for total GM trait-acres. The second figure is the total area planted to GM crops in 2007 (James, 2007).

Sources: USDA, Economic Research Service using the following: U.S. patents issued from crop cultivars from the U.S. Patent and Trademarks
Office; U.S. patents issued for agricultural biotechnology (narrow and broad definitions) from the ERS Agricultural Intellectual Property database;
petitions and notifications to APHIS are from Virginia Polytechnic Institute and State University; approvals for plantings or environmental release of
GM crops and GM trait-acres based on data provided in James (2007).

with Monsanto claiming nearly half of the total.?> Outside of the Big 6, the 25Tf GM event approvals are counted
most notable holder of approvals for GM events was Florigene, an Australian only once (eliminating double count-
company with traits for altering flower color. ing of the same GM seed approved

for release in more than one country),
Monsanto’s share of total global ap-
provals falls from 49 to 38 percent,
since that Monsanto has been par-

In the last column, we use data on the area planted to GM cultivars and event
approvals from James (2007), together with other information, to estimate

the total “trait-acres” under GM crops and assign them to a given source. ticularly active in obtaining multiple
A trait-acre consists of a single trait planted on an acre, which means that approvals for the same GM events. The
acreage with stacked genes (e.g., Bt and herbicide tolerance combined in a two most widely approved GM events,

single cultivar) is counted more than once, depending on the total number of GTS 40-3-2 (glyphosate-tolerant or
& ) - dep g “Roundup Ready” soybeans) and MON

biotechnology traits that are “stacked’ in a variety. This effect complicates 810 (Bt corn expressing the CrylAb
the estimation, particularly when multiple stacked traits (which may originate protein) both belong to Monsanto.

from different sources) are widely deployed. We made these assessments
for the top four GM crops (soybeans, corn, cotton, and canola) for the 13
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countries worldwide in which more than 100,000 hectares of GM crops were
planted in 2007.

Some individual trait-crop combinations are easier to assess than others.

For example, Roundup Ready soybeans, which account for over 40 percent
of all trait-acres, are easy to identify from the data in James (2007). On the
other hand, insect-resistance traits are very hard to separate, particularly in
corn.2® To quote an Iowa State University extension publication on integrated
pest management, the earliest Bt corn featured “one gene (Cryl Ab), three
genetic events (176, Bt-11, MON 810) with event 176 under two trademarks
(KnockOut and NatureGard) and events Bt-11 and MON 810 under one trade-
mark (YieldGard).”?” Furthermore, these Bt events were associated with a
number of different companies: Monsanto; Northrup King/Sandoz/Novartis/
Syngenta; Ciba-Geigy/Novartis/Syngenta; and Mycogen/Dow.28

Based on the level of actual planting of GM crops in 2007, Monsanto traits
clearly dominated, with approximately 85 percent of total global trait acres.
Four of the other five Big 6 companies had some planted trait acreages,
although it is difficult to estimate exact areas. Bayer was notable in that it held
the most widely used events for resistance to glufosinate, a herbicide alter-
native to glyphosate. Glufosinate-tolerant (“Liberty Link™) canola varieties
were deployed early in Canada and have achieved a minor but notable posi-
tion in both Canadian and U.S. canola production. Early glufosinate-tolerant
events can be traced to Plant Genetic Systems, a biotechnology firm that was
acquired first by AgrEvo, then became part of Aventis and eventually Bayer
CropScience. Glufosinate tolerance is also being deployed in corn, cotton,
and soybeans, but market share up to 2007 appeared to be relatively small for
these crops. The only entity outside of the Big 6 companies with notable trait
acreage in 2007 was the Chinese Academy of Agricultural Sciences, a public
institution, with measureable contributions to Bt cotton planted in both China
and India.

Patent data are probably more useful for testing hypotheses on the structure
of the seed-biotechnology industry than they are as indictors for the amount
of research investment. The amount of patenting in an industry depends on
other factors in addition to research spending, such as changes in intellectual
property policy (the advent of biotechnology changed and expanded what is
considered patentable material in crops). Agricultural biotechnology patent
data have been used to test a number of hypotheses about market structure,
especially the relationship between intellectual property and mergers, acquisi-
tions, and divestitures. This research has shown that these changes to market
structure have been motivated by a need to combine complementary tech-
nology assets such as core germplasm, GM traits, and research tools (Graff et
al., 2003); the desire to acquire greater depth within a particular technolog-
ical area (King and Schimmelpfennig, 2005); and the relative enforceability
of patents (Kalaitzandonakes and Bjornson, 1997; Marco and Rausser, 2008).

Patent and field trial data can also provide evidence on whether or not new
entrants are a significant source of new innovations (Brennan et al., 2005).
The USDA/APHIS field trial data in table 2.4 show more concentration than
the biotechnology patent data, but Brennan et al. find that concentration in
both patents and field trials has increased over time. They claim that new
firm entry has increased, but concentration at the top of the industry has also
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26]n addition, event approvals are
sometimes issued jointly to more than
one company.

27See www.ipm.iastate.edu/ipm/icm/
node/946/print.

28 A number of different Bt genes
are available, and they are now aimed
at the control of different pests (e.g.,
the European corn borer and root-
worm), contributing to the complexity
of the situation with respect to insect
resistance.
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increased. By some measures, U.S. cultivar patents are even more concen-
trated than other indicators, and at the global level, actually planted GM traits
are dominated by a single firm. These concentration indicators may change
as other major seed-biotechnology companies seek to commercialize new
varieties and traits. Furthermore, tracking traits will become increasingly
complex as multiple GM traits from a variety of firms are inserted into
individual varieties.

Factors Influencing Future Trends in Private-Sector
Seed-Biotechnology R&D

Structural change in the seed-biotechnology industry may have been greater
than in any of the other industries covered in this study. Several factors will
continue to influence this structure and the level and composition of private-
sector investments in seed-biotechnology R&D:

1. Potential for future market expansion. Future market expansion will
be determined by, among other things, the potential for greater use of
improved seed in general and GM crops in particular in developing
countries; by changes in consumer attitudes toward genetic engi-
neering, particularly in high-income countries; by the potential for
expansion in biotechnology applications to additional crops; and by
the development of newer biotechnology applications, for example,
tolerance to drought stress.

2. Industry structure, seed pricing, and seed-biotechnology R&D.
Considerable attention has been focused on the effects of industry
structure on seed pricing and potential distributional effects. For
example, Stiegert et al. (2010) summarize a number of studies
and find that in the United States, own-market concentration can
increase seed prices. At the same time, the study finds that if a more
integrated system of production of GM seeds by a few large firms
reduces development costs, the resulting price effects may reduce or
reverse price increases due to market power. Focusing specifically
on the impacts of industry structure on R&D, Schimmelpfennig et
al. (2004), using field-trial data from the United States, argue that
increases in industry concentration had a negative effect on research
intensity in agricultural biotechnology. The evidence reported here
on actual R&D expenditures for the global seed industry as a whole
shows that the net trend in research intensity was strongly posi-
tive during the 1990s, and real private-sector research expenditures
have continued to grow since then (see table 2.3). Alternatively,
Kalaitzandonakes et al. (2010) show that the value of price premiums
and markups for GM seed in the U.S. corn and soybean seed indus-
tries did not exceed R&D expenditures until 2007, and the authors
cite this as evidence of dynamic efficiency in these industries.

3. Interaction between other policies and seed-biotechnology R&D.
Concerns about potential anti-competitive behavior in the seed-
biotechnology sector have expanded beyond distributional effects of
seed pricing to questions of whether antitrust policy needs to consider
R&D concentration and behavior in trait markets as well as in ulti-
mate seed markets (Moss, 2009; Monsanto, 2009). Regulatory policy
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as some of the first GM traits (e.g., first generation herbicide toler-
ance) come off-patent may also determine the potential for entry by
firms marketing generic GM crops. Small generic firms that might
otherwise be willing and able to develop and market GM seed with
an off-patent trait might be less able to meet regulatory compliance
requirements than the larger firms that initially marketed the tech-
nology when it was still under patent.
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CHAPTER 3

Private Research and Development
for Crop Protection Chemicals

John L. King and Keith O. Fuglie

Crop protection in agriculture improves yields by reducing crop losses from
diseases and pests, especially insects, weeds, and fungi.! Application of
synthetic chemical pesticides is a major crop protection activity, with agricul-
ture accounting for 62 percent of pesticide sales in the United States (EPA,
2011) and 86 percent of pesticide sales worldwide (AGROW, 2007b). Crop
protection also includes the application of pesticides derived from natural
sources (“biopesticides”) and the use of integrated pest management (IPM)
techniques, such as the introduction of pest predators, the use of traps baited
with insect pheromones, and the use of physical pest barriers. Chambers and
Lichtenberg (1994) estimate that U.S. crop losses from pests decreased from
15 percent of crop value in the 1950s to about 3 percent by the 1980s due to
increasing use of chemical pesticides. More recently, GM crops with herbi-
cide tolerance and insect resistance confer a degree of inherent crop protec-
tion capability in varieties with those traits.

R&D spending by the crop protection industry worldwide has increased only
slightly in nominal terms (unadjusted for inflation) over the past few decades and
fell in real terms (inflation adjusted) over 1994-2010. New agricultural chemical
products resulting from R&D have reached the market during this period but at
a slower rate of introduction than in previous years. At the same time, the crop
protection industry has undergone a transformation with the widespread planting
of GM crops. Some firms have taken steps to restructure their R&D programs to
integrate biotechnology-based crop protection with chemical pest control.

Market Size and R&D Spending in the Global
Pesticide Industry

Sales of crop protection chemicals ranged between $30 billion and $40
billion for most of the 1990s and 2000s. In nominal terms, global agricul-
tural chemical sales increased from $32.7 billion in 1994 to $47.1 billion in
2010; the annual growth rate of 2.3 percent was slightly higher than the rate
of inflation.? In addition to showing little real growth in overall market sales,
global pesticide use during the same period declined relative to the growth
of crop output, both in terms of physical volume of active ingredients applied
and the value of product sales (fig. 3.1).

Research spending and sales revenue by the 45 largest global agricultural
chemical companies in 2006 are shown in table 3.1. The table also breaks
down sales and R&D spending by region according to where these compa-
nies are incorporated. A number of other firms that appear to conduct little if
any R&D, most of them quite small and located in China and India, are not
included in the table.?

In 2006, companies based in just four countries—Germany, the United States,
Switzerland, and Japan—accounted for 83 percent of global sales of agricultural
chemicals. These countries are home to some of the largest multinational agricul-
tural chemical producers, with a significant share of their products manufactured
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ITn the text, we use the terms “crop
protection chemicals” and “agricultural
chemicals” interchangeably to refer
to synthetic chemical pesticides used
in agriculture. “Biopesticides” are
also produced by the crop protection
industry using naturally occurring bio-
logical rather than synthetic chemical
substances.

2James (2010, appendix 2) estimates
that crop protection derived from bio-
technology contributed an additional
$10.6 billion sales in 2009, but this
amount includes the value of the crop
protection chemicals bundled with the
value of the seed itself. In this report,
we discuss the seed market and private
R&D in crop breeding in chapter 2.

3Some of these firms are owned by
public research institutes and were
established to commercialize new
chemical discoveries by government or
university research laboratories. This
model is especially prevalent in China
(Bryant, 2007).
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Figure 3.1
Pesticide use intensity in global agriculture
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Sources: USDA, Economic Research Service. Pesticide sales for crop uses are from Cropnosis.
Estimates of total active ingredients are from U.S. Environmental Protection Agency (1997,
1999, 2002, 2004, and 2011). The value of global crop production is from Food and Agriculture
Organization of the United Nations, which reports the gross aggregate crop output measured in
constant 2000 U.S. dollars. Value of crop output and pesticide use is converted to constant
2006 U.S. dollars using the U.S. Gross Domestic Product implicit price deflator (Economic
Report of the President, 2009).

Table 3.1
Crop protection chemical research and development (R&D) spending
and sales by country in 2006

Region where Average Industry  Global
company is R&D R&D market
incorporated Companies  R&D Sales intensity share share
Number — Mil. U.S. dollars — ———— Percent
North America 8 599 9,294 6.4 23 25
Europe-ME 9 1,596 19,016 8.4 61 51
Asia-Pacific 27 404 7,925 5.1 16 21
Latin America 1 13 877 3.9 1 2
Global total 45 2,611 37,112 7.1 100 100

Note: R&D and sales are totaled over 45 companies included in our survey.

Sources: USDA, Economic Research Service using firms’ financial reports, AGROW Reports,
and confidential information provided by selected firms.

and sold in other regions. For example, Germany, the location of the corporate
headquarters of two of the largest companies (BASF and Bayer), accounted
for 40 percent of total global R&D in agricultural chemicals. Eight U.S.-based
companies accounted for 23 percent of the global total in 2006; together, they
spent nearly $600 million. In addition to engaging in global sourcing and sales
of agricultural chemicals, multinational agricultural chemical firms conduct
R&D to develop and test new chemicals at a global network of research facilities.
For example, the Swiss-based company Syngenta has chemical discovery and
development laboratories in Switzerland, the UK, the United States, and India;
biotechnology research centers in the United States and China; and a global
network of crop breeding and field research stations (Syngenta, 2010).

Structure of R&D in the Global Crop
Protection Industry

The crop protection industry engages in several different types of R&D
activity, including new product discovery research, product development, and
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marketing of new products from existing chemical active ingredients. More
recently, firms have also pursued research aimed at providing crop protection
through a combination of using agricultural chemicals with seeds with GM
traits. Not all firms engage in each type of research. Some firms engage in
new product discovery, some focus on the manufacture of off-patent products
or patented products under license, and some “integrated” firms invest in
both biological and chemical technologies (including discovery research) for
crop protection.

Integrated firms that conduct both chemical and genetic research for crop
protection engage in the highest level of R&D in terms of both absolute
expenditures and expenditures relative to sales (table 3.2). (Monsanto is
included in this group in recognition of its large market share in crop protec-
tion genetic traits and development of the herbicide glyphosate, although
Monsanto no longer conducts significant chemical R&D.) Table 3.2 combines
sales and expenditures for seed, trait, and chemical R&D for these integrated
firms because many of them no longer report these activities separately.
Syngenta, an integrated firm, recorded the highest revenue from agricul-
tural chemical and total agricultural input sales of any company worldwide
in 2010. Sumitomo was a leader among agricultural chemicals firms that
conduct discovery research. Nufarm and Makhteshim-Agan topped the list
of high-revenue agricultural chemical firms that did not conduct significant
product discovery research.

Table 3.2
Leading firms in the global crop protection industry in 2009/10

Total agricultural

Country of Total ag R&D Ag chemical seed, trait &

Company incorporation spending’ sales chemical sales Ag R&D/ag sales
Mil. U.S. dollars Percent

Integrated chemical-biological crop protection firms
Syngenta Switzerland 1,032 8,878 11,641 8.9
Bayer CropScience Germany 955 7,284 9,057 10.5
BASF Germany 720 5,348 5,348 13.5
Dow AgroSciences uU.sS. n.a. 3,708 4,341 n.a.
Dupont uU.S. 874 2,453 9,084 9.6
Monsanto U.S. 1,205 2,029 9,640 12.5
Leading chemical discovery firms
Sumitomo Japan 220 2,458 8.9
FMC U.S. 81 1,242 6.5
Arysta Japan n.a. 1,276 n.a.
Leading agricultural chemical generics firms
Nufarm Australia 35 2,357 1.5
Makhteshim-Agan?2 Israel 23 2,180 1.1
Cheminova Denmark n.a. 996 n.a.
United Phosphorus Ltd. India n.a. 390 n.a.
Sipcam Oxon Italy n.a. 409 n.a.
Albaugh U.S. n.a. n.a. n.a.

n.a. = not available.

Total agricultural research and development (R&D) expenditures include research on agricultural chemicals and for integrated crop protection
firms, research on crop biotechnology, and seed.

2Makhteshim-Agan was acquired by the China National Chemical Corp. (ChemChina) in 2011.

Source: USDA, Economic Research Service using company annual financial reports. Data are for 2010 except for Dow AgroSciences and Sipcam
Oxon, both 2009.
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Proprietary versus generic products

Manufacturers of crop protection chemicals distinguish themselves by
whether or not they develop new, proprietary crop protection compounds.
New product development can significantly affect the amount of R&D
conducted by a firm. This chapter classifies companies as “discovery” compa-
nies if they undertook research in new chemical discovery and “generic” if
they did not engage in such work. Discovery research includes the search

for new active ingredients and technologies. In discovery research, firms
experiment to identify chemicals with beneficial properties or lower costs of
production. Beneficial properties of new products include greater effective-
ness in a specific crop species, against a difficult plant disease or class of
pests, or with a different mode of action that can be combined with other crop
protection efforts. When discovery research is successful, a firm can apply for
patents to obtain the exclusive rights to use, manufacture, or sell its new prod-
ucts and processes. Firms then embark on development, including demon-
stration of the efficacy, safety, and environmental behavior of pesticides that
is necessary to secure and maintain regulatory approval. Development also
includes providing different formulations of active ingredients to buyers (e.g.,
offering active ingredients in different concentrations or in combination with
other chemicals).

Because of regulatory and marketing requirements, all manufacturers of
crop protection chemicals make development expenditures, even for chemi-
cals without patent protection that are sold as branded or unbranded generic
products. Research by generic firms focuses on the development and testing
components of chemical R&D.

Many companies, including discovery, generic, and integrated firms, produce
both proprietary and nonproprietary products. Discovery firms may continue
to manufacture older products that have gone off-patent, and generic firms
may manufacture patented products under license from the patent holders.
Thus, the market distinction is not exact, and total sales figures of discovery
and integrated firms may include generic chemicals. Discovery firms,
however, differ from generic firms both qualitatively and quantitatively in that
they conduct different types of research and perform them at a higher degree
of intensity. This chapter finds that discovery firms typically spend 7-10
percent of their product sales on R&D while generic firms spend 1-3 percent.

The emergence of “integrated” crop protection companies

As described in chapter 2 of this report, the emergence of “life science”
companies that integrate chemical and biological sciences for agricultural
applications was a major development in the global agricultural input indus-
tries. This helped lead to consolidation among agricultural seed and chemical
companies. As firms conducted research to adapt biotechnology for agricul-
ture, they embarked on a new wave of mergers and acquisitions. Firms in the
chemical sector, many of which had existing pharmaceuticals businesses,
combined through mergers and acquisitions in an attempt to create life
science firms able to leverage advances in biotechnology across agriculture
and human health. These combinations reinforced other long-term trends
toward consolidation already underway in the chemical industry (discussed
later in this section).
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These life science arrangements, however, ultimately proved unwieldy (Pray et
al., 2005), and pharmaceutical firms largely divested their agricultural chemi-
cals operations. Some of the remaining firms maintained a focus on agriculture
and found themselves with operations in agricultural chemicals, trait develop-
ment, and seed distribution. The emergence of the Big 6 companies (discussed
in chapter 2) created “crop protection” firms able to integrate new GM seed
varieties with complementary chemical products. With large market shares in
chemicals, seed varieties, and technology, and possible economies of scale in
R&D, production, and marketing, these firms are particularly well positioned to
provide chemical and seed inputs during a time of high production and prices
for grain, cotton, and other agricultural commodities.

Figure 3.2 traces the evolution of two integrated crop protection companies,
Syngenta and Dupont.* Dupont’s agricultural R&D program consisted mostly
of chemical technology prior to 1997, but it expanded to include biological
technology with its acquisition of Pioneer Hi-Bred in 1999. At the time, Pioneer
Hi-Bred was the world’s largest seed company. Subsequently, Dupont gained
further technology and market assets through acquisitions of Verdia, a biotech-
nology firm, and Griffen, a midsized agricultural chemical manufacturer.

Syngenta was formed in 2000 through the merger of two companies, Astra-
Zeneca and Novartis, both of which had already built up substantial capaci-
ties in agricultural life sciences from previous mergers and acquisitions.
Between 2004 and 2010, Syngenta bought several additional seed companies
to expand its product portfolio in field crops, horticulture, and sugar beets.

Monsanto’s history reflects the changing nature of crop protection and the
agricultural chemicals business. Monsanto invented and patented the broad-
spectrum herbicide glyphosate, which is widely used in agriculture, espe-
cially to control weeds prior to the emergence of crops in the field. With

the commercial release of GM crops used in conjunction with glyphosate,
Monsanto’s sales of agricultural chemicals increased significantly. However,
the company then shifted its R&D focus toward traits and germplasm and
largely discontinued further research in agricultural chemicals. After patent
protection for glyphosate expired, Monsanto continued production of this
chemical but has otherwise largely exited crop protection chemicals.?

Other companies, including Bayer CropScience, Dow AgroSciences, and
BASEF, have followed the pattern of using mergers and acquisitions to expand
their agricultural R&D to include both chemicals and biotechnology. BASF
has charted a course different from that of its competitors in that it has not
acquired seed companies. Rather, it has focused its R&D on chemical and
biological trait discovery. In 2007, BASF and Monsanto agreed to a plan to
jointly develop new crop technologies, with Monsanto marketing products
from the collaboration and both companies sharing net profits.

Table 3.3 decomposes industry R&D on agricultural chemicals and compares
the research intensity of integrated, discovery, and generic firms. Between
1994 and 2010, annual spending on agricultural chemical R&D by the
industry increased from $2.3 billion to $3.1 billion (1.9 percent per year),
which was less than the rate of inflation. The life science companies account
for about 75 percent of the sector’s total agricultural chemical R&D, and both
the life science companies and the discovery companies have much higher
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the detailed evolution of additional
companies.

SMonsanto also represents the
interaction between the chemicals and
pharmaceuticals industries, which is
discussed in chapter 2 in more detail.
See also figure 2.2 for a schematic
history of Bayer, Dow, BASF, and
Monsanto.
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Figure 3.2
Formation of agricultural life sciences companies: Syngenta and Dupont
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Table 3.3
Research and development (R&D), sales, and concentration in the global crop protection industry

Ag chemical R&D by type of firm! Ag chemical R&D intensity

Global by type of firm'
agricultural Total industry Integrated Integrated
chemical agricultural chemical- Other chemical- Other
Year market sales  chemical R&D biotech discovery  Generics* biotech discovery  Generics*
Million nominal U.S. dollars —— R&D/sales (%) ————
1994 32,735 2,268 1,612 612 44 8.7 8.0 1.8
1995 35,605 2,362 1,678 640 44 8.2 7.5 1.9
1996 36,765 2,494 1,782 664 48 8.2 7.9 1.8
1997 35,529 2,606 1,916 636 53 8.5 7.9 1.8
1998 36,476 2,606 1,975 574 57 8.7 7.4 1.9
1999 34,824 2,550 1,923 567 61 9.0 7.5 1.8
2000 34,353 2,321 1,671 588 62 8.2 8.3 1.9
2001 31,887 2,231 1,774 395 62 8.4 7.2 1.8
2002 31,248 2,044 1,613 370 62 8.9 6.9 1.7
2003 32,466 2,425 1,894 462 69 8.9 7.7 1.8
2004 36,758 2,594 2,030 490 74 8.6 7.4 1.6
2005 37,788 2,643 2,051 514 78 8.6 7.4 1.5
2006 37,112 2,596 1,997 508 91 8.5 7.3 1.9
2007 41,267 2,717 2,123 506 88 8.0 71 1.6
2008 50,023 2,975 2,294 570 111 7.0 6.9 1.6
2009 46,791 2,949 2,274 564 111 7.4 6.9 1.6
2010 47,144 3,077 2,348 617 113 7.8 71 1.6

TIntegrated chemical-biotech firms conduct R&D in both agricultural chemicals and crop biotechnology. All of these (with the exception of
Monsanto) engage in new chemical discovery. Other discovery firms also develop new kinds of chemical active ingredients but do not conduct
significant seed-biotechnology research. Generic firms do not engage in new product discovery and manufacture off-patent products or products
under license from patent holders. The R&D figures reported in the table only refer to the agricultural chemical R&D investments by these firms
and exclude seed and biotechnology research.

Sources: USDA, Economic Research Service. Global agricultural chemical sales are from AGROW (2007) and include noncrop uses. Firm-level
sales and R&D expenditures were compiled by ERS for 50 leading firms that manufactured agricultural chemicals between 1994 and 2007.
Sources of firm-level data include firm's financial reports, AGROW Reports, and confidential information provided by selected firms.

research intensities than the generic companies. Over time, however, R&D
intensity for the life sciences and discovery firms declined slightly, each
falling by about 1 percentage point over the period. Research intensity by
generic firms has remained constant at about 1.6 percent of sales. This figure
essentially reflects the costs of developing and registering product formula-
tions and ongoing product maintenance.

Rising concentration in the agricultural chemical industry

The supply of agricultural chemicals is fairly concentrated among several
large producers and has become more so over time. Concentration ratios—the
market share of the largest firms—have steadily increased over the past few
decades. Between 1994 and 2009, the four-firm concentration rate (i.e., the
market share of the largest four firms) rose from 28 percent to 53 percent of
global pesticide sales (see table 1.7). Although AGROW (2007a) finds that at
least 100 companies supply agricultural chemicals, by 2009, the 12 largest
firms accounted for about 86 percent of the global market.
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The rising concentration of the global crop production industry is the result
of consolidation through mergers, acquisitions, and firm exits. This long-
term trend toward consolidation is related to the lack of real sales growth. In
nominal dollars, global sales of agricultural chemicals increased from $32.7
billion in 1994 to $47.4 billion in 2010, or an average of 2.3 percent per year,
just slightly above the rate of inflation over the same period (table 3.3). Flat
overall sales suggest that individual firm growth resulting from production
efficiency, quality improvements, or new product introductions came at the
expense of competitors.

High fixed costs associated with manufacturing also helped contribute to
consolidation in the agricultural chemicals industry. Because chemical pesti-
cide manufacturing is a capital-intensive industry, it favors fewer, larger firms
that can spread fixed capital costs over a larger sales volume. Ollinger and
Fernandez-Cornejo (1998) find evidence that high sunk fixed costs in the
1970s and 1980s led some firms to exit the industry. Of the 38 firms the study
identified as having agricultural chemical R&D capacity during the period, 30
are now owned by the 6 largest discovery pesticide companies. Ollinger and
Fernandez-Cornejo also find that larger firms and, especially, firms with higher
international sales were more likely to expand and acquire other firms, which
is consistent with the explanation that remaining firms derive a competitive

advantage from spreading greater fixed costs over higher sales in more markets.

In addition to being more likely to acquire other firms, large firms with higher
international sales were less likely than other firms to be acquired.

Further support for the importance of fixed costs for consolidation in the crop

protection chemicals industry comes from establishment-level data of manu-
facturing firms. Because capital and equipment used to manufacture pesti-
cides are durable, capacity at existing manufacturing establishments has been
able to meet declining volumes of production® without significant net capital
formation, a deterrent to entry of new firms. The number of agricultural
chemical manufacturing establishments in the United States has remained at
approximately 250 for the past two decades (U.S. Department of Commerce,
2008), and the number across the EU was higher but stable at approximately
600 establishments (EUROSTAT). Manufacturing establishments in the EU
and the United States, which account for most agricultural chemical produc-
tion worldwide, have also employed fewer employees and earned lower reve-
nues per establishment over time.

R&D for discovery of new active ingredients is another fixed cost that must
be recovered over the life of a product. Firms often rely on intellectual prop-

erty protection, such as patents, to recover these costs, which otherwise would

be a disincentive for performing R&D. In the absence of patent protection for
new products, generic producers can offer identically formulated products at
lower prices because they are unburdened by sunk R&D costs. Patents pose
a legal threat to imitators and enable firms that create successful new prod-
ucts to sell at higher prices and profit margins than they would earn without
patent protection. Patented products can confer other first-mover advantages,
such as recognition of trademarked brands that persist even after the expi-
ration of patent protection. Producers of branded and unbranded generic
crop protection chemicals still must comply with the regulatory and product
safety requirements that are part of the fixed costs of pesticide registration.
However, the United States, the EU, and other countries also grant intellec-
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tual property rights to data submitted for regulatory review of new pesticide
products. Registrants of new pesticide products retain multiyear exclusive
rights to product registration and safety data and, subsequently, can require
compensation by other users of the data.

Innovation Trends in Crop Protection

R&D expenditures on agricultural chemicals have been shifting toward
development expenses and away from discovery research. With less research
on new chemical discovery, one might expect fewer new product innovations
over time, and data from the U.S. Environmental Production Agency (EPA)
and U.S. Patent Office appear to confirm this.

Regulations and the composition
of agricultural chemical R&D

In addition to facing greater technical requirements for successful discovery,
firms registering new active ingredients face higher regulatory costs. Ollinger
and Fernandez-Cornejo (1995) describe the increasing strictness of U.S. pesti-
cide regulation in the 1970s and 1980s. They find that inflation-adjusted testing
costs increased by an average of about 15 percent per year during this period,
resulting in a decrease in new pesticide registrations of 6.75 percent per year
(holding other factors constant). Regulations have also decreased the avail-
ability of older pesticide products. For example, re-registration requirements in
the United States in 1988 and in the EU in 1991 removed especially hazardous
chemicals from the market when less toxic substitutes were available.’

Due in part to these higher regulatory burdens on the use of agricultural
chemicals, firms have targeted crop protection R&D toward such product
qualities as increased effectiveness per application, reduced toxicity to
humans and other nontarget species, and less persistence of harmful chemi-
cals in the environment. Fernandez-Cornejo and Jans (1995) find that after
adjusting for these improvements to quality, pesticide prices fell for U.S.
corn, soy, sorghum, and cotton production between 1967 and 1992. Lower
sales also reflect lower application rates for a given amount of pest protection.
Ollinger and Fernandez-Cornejo (1995) estimate that increases in total regu-
latory testing costs (which rose 15 percent per year on average) were associ-
ated with 4.2 percent more registrations per year in a “less toxic” category
even while new registrations were falling overall. And Paul et al. (2002)
estimate that increasing use of higher quality pesticides in the United States
is associated with reductions in human health risks from pesticide leaching
and runoff. Although these studies suggest that the greater developmental
and regulatory requirements have been somewhat successful at encouraging
crop protection practices with fewer health and environmental risks, it is not
clear that incentives and regulations encourage the optimum R&D invest-
ments for improving agricultural chemicals (Zilberman and Millock, 1997).
For example, higher fixed costs of regulation might lead the industry to focus
R&D on more complex or difficult compounds with greater commercial
potential, or to abandon R&D for smaller markets, such as those involving
specific fruit and vegetable crops (Ollinger and Fernandez-Cornejo, 1995).
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Confirming the importance of growing developmental costs in the crop
protection chemicals industry, survey data collected by the consulting firm
PhillipsMcDougall (2010) reveal that regulatory compliance and testing now
account for a majority of the full cost associated with introducing new active
ingredients by the largest discovery-oriented firms. Development costs for new
active ingredients registered at these firms were 57 percent of total R&D costs
in 2005-08, up from 43 percent in 2000 (fig. 3.3). The timing of this change
followed a period of intense industry consolidation (discussed in section 3.2)
but was not associated with a simultaneous change in pesticide regulations.
This sequence of events suggests that the shift of R&D costs toward develop-
ment might reflect company strategies to research more complex and difficult
targets. The cost of developing new active ingredients grew by more than 50
percent between 1995 and 2005-08 in real terms. This rate of change was only
slightly slower than the rate of increase in new active ingredient development
costs during the period of tightening regulatory requirements of the 1970s and
1980s (Ollinger and Fernandez-Cornejo, 1995).

New product registrations

The shift away from discovery expenses may stem in part from the growing
difficulty of finding novel active ingredients that address unmet crop protec-
tion needs at a competitive price. Although crop pests constantly adapt to
their environment and can eventually develop resistance to crop protection
strategies, the cumulative effort of decades of crop protection R&D has
produced effective, inexpensive solutions. Hartnell (1996) describes a “golden
age” of agricultural chemical discovery in the mid-20th century character-
ized by rapid introduction of new active ingredients that overlapped with the
reduction in crop losses from pests in the United States to as low as 3 percent
per year (Chambers and Lichtenberg, 1994). The number of new active ingre-
dients introduced in EPA pesticide registrations in the United States peaked at
about 40 per year in the 1960s and has subsequently fallen to less than 10 per
year every year since 1988 (fig. 3.4). The rate of introduction declined after
cumulative research successes exhausted prominent commercial and techno-

Figure 3.3
Costs of bringing a new agricultural chemical to the market
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Figure 3.4
New pesticide active ingredient registrations in the United States
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use in the United States.

Source: USDA, Economic Research Service analysis of data from the EPA Pesticide Product
Information System.

logical opportunities, both in terms of new active ingredients and remaining
uncontrolled pests. Firms began to screen increasingly larger numbers of
candidate compounds to find a new chemical with marketable advantages for
yield improvement or reduced toxicity. More recently, firms have employed
new approaches to chemical discovery, including combinatorial chemistry,
high-throughput screening, and computer simulation of molecular interaction
(Hartnell, 1996; Joly and Lemarié, 2002). With these improved technologies,
firms typically screen an average of 140,000 chemical compounds per new
registered active ingredient, up from 52,500 in 1995 (PhillipsMcDougall,
2010). However, the observed slowdown in active ingredient introductions
shown in figure 3.4 suggests that gains in efficiency have not kept pace with
the increasing difficulty of identifying novel active ingredients that meet the
rising bar for commercial introduction.

Pesticide patents

The number of patent awards for pesticides provides another view of research
and technology growth in crop protection chemicals. Figure 3.5 shows an
estimate of the number of pesticide patents issued with an international patent
classification of AOIN.8 This number has generally increased over the past
three decades, although the approach of counting AOIN patents might not
reflect changes in the complexity of inventions or the value of their patent
rights. Growth of patent awards has been more rapid in other patent classifi-
cation areas, and the share of pesticide patents relative to all patent awards in
the United States has been declining.

Adoption of genetically modified crops

Over the first 15 years of commercial cultivation of GM varieties begin-

ning in 1996, the principal applications of biotechnology in agriculture have
been herbicide tolerance and insect resistance. Herbicide tolerance enables
growers to spray fields with herbicides (especially glyphosate and glufosinate)
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“preservation of bodies of humans
or animals or plants or parts thereof;
biocides (e.g., as disinfectants, as pesti-
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It is the primary international patent
classification for pesticides, although
it contains nonpesticide patents and
probably excludes some patents that are
classified elsewhere but are nonetheless
important for crop protection.
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Figure 3.5

Trends in pesticide patents and total patents issued annually
in the United States
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to reduce weed pressure even after crops have emerged. Insect resistance is
made possible through the introduction of genes that cause plants to secrete
proteins that are harmful to certain kinds of crop pests. These “plant-incor-
porated pesticides” have been adapted to secrete a wider variety of proteins in
different locations on plants (e.g., leaves and roots).

Both of these applications of biotechnology affect the level and makeup of
demand for chemical crop protection products. Herbicide tolerance increases
the demand for glyphosate and glufosinate but potentially reduces the need
for other herbicides. Genetic insect resistance allows growers to control insect
pests with fewer applications of synthetic chemicals. Between 1995 (just prior
to the introduction of GM crops) and 2006, herbicides increased their share
of the global crop protection market from 43 to 48 percent; over the same
period, the insecticide share of the global crop protection market fell from 33
to 25 percent.’

Recent empirical studies examine the net effects of the adoption of GM
crops on the quantities and patterns of agricultural chemicals. Benbrook
(2004) finds that GM corn, cotton, and soybeans in the United States use
more herbicides relative to conventional varieties of these crops, and that this
increase in use outweighs the decrease in insecticide use in corn and cotton.
Benbrook also notes that the development of herbicide resistance in weeds is
likely to increase with more widespread use of herbicide tolerant varieties, a
concern examined in more detail in a recent report by the National Research
Council (2010). Fernandez-Cornejo and Caswell (2006) find evidence of

net reductions in pesticide use and emphasize reported lower pesticide costs
and easier pest management with GM varieties. Also, Fernandez-Cornejo
and McBride (2002) emphasize that the pesticides used in conjunction with
GM crops are less toxic and less environmentally persistent than alterna-
tive applications. Huang et al. (2002) find much lower use of pesticides in
China in fields planted with insect-resistant GM cotton. Globally, Brookes
and Barfoot (2008) find countries adopting GM varieties have lower pesticide
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use by weight of active ingredient than nonadopting countries, reducing their
environmental impact. Another potential benefit of herbicide tolerance is a
decrease in the need for weed control through mechanical tillage, which can
cause soil erosion and runoff. However, Fuglie (1999) finds no significant
difference in herbicide usage between fields with conservation tillage and
those with conventional tillage in the U.S. Corn Belt.

Innovation in biopesticides

A largely separate market development in the crop protection chemical
industry is the growing use of biopesticides. Biopesticides are naturally
occurring pest control agents. Their role in organic production gives them
strong potential for growth in the marketplace. The Biopesticide Industry
Alliance (2011) estimates that global biopesticide sales ranged as high as $1
billion in 2010, with a majority of sales attributed to orchard crops. Organic
production standards do not permit the application of many synthetic chem-
ical pesticides or GM crops, so organic growers often rely on biopesticides
for crop protection. Biopesticide sales can be expected to increase because
of growth in organic agriculture. U.S. organic cropland acreage reached 0.72
percent of total crop acreage in 2008 following average annual growth rates
over 11 percent between 1992 and 2008 (USDA/ERS, 2007).

U.S. registrations of new biopesticide products vary by year of introduction (fig.
3.6).19 Approximately 20 percent of registered biopesticide products are related 10This analysis is based on data from
to the bacterium Bacillus thurengiensis (Bt), many of which are for living Bt the EPA Pesticide Product Information
strains commonly formulated for pest control as a liquid or spray. For the past System (EPA).

two decades, however, all new biopesticide registrations that use Bt have been
GM crops that have the Bt gene that cannot be used in organic production.

Conclusions

Research and development in crop protection chemicals reflects several
trends in the industry that have persisted for decades. Industry consolida-
tion has continued over time as leading firms have engaged in mergers and
acquisitions to achieve efficiencies in production, even as the number of firms

Figure 3.6

New registrations of biopesticide products in the United States
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Source: USDA, Economic Research Service analysis of data from EPA Pesticide Product Information System.
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producing agricultural chemicals remained roughly constant. In real terms,
sales of agricultural chemicals remained somewhat constant over most of the
1990s and 2000s, with lower physical volume and intensity of use relative to
the growing value of world agricultural production. New active ingredients in
pesticide registrations have been slower to reach the market, in part because
of increasing technical barriers, regulatory requirements, and lower incen-
tives to develop and adopt chemicals that have off-farm health, safety, and
environmental benefits. Some new products introduced during this period
have been successful, but the production of branded and unbranded generic
products with lower prices and profit margins also grew. Biopesticide sales
have increased with the growth of organic agriculture but still account for
less than 3 percent of the overall market.

Despite presenting a picture of a mature, consolidating industry that slow
sales growth and consolidation would seem to imply, the crop protection
chemicals industry has also undergone significant transformation due to the
commercial introduction of GM varieties. Crops with engineered traits that
confer insect resistance and herbicide tolerance affect the demand for agricul-
tural chemicals, reducing demand for some insecticides and shifting demand
toward the herbicides to which those crops are resistant. A few large multi-
national firms—which engaged in a large number of mergers, acquisitions,
and company restructuring—have both capabilities in agricultural chemical
manufacturing and the technology necessary to develop elite germplasm with
crop protection traits. These firms are able to integrate both chemical and
biological approaches to offer complementary types of crop protection. They
compete with a number of large firms that maintain a traditional approach

to chemical discovery and development and with firms that specialize in off-
patent, generic products.
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CHAPTER 4
Private Research and Development
for Synthetic Fertilizers

David Schimmelpfennig, Keith Fuglie, and Paul Heisey

Inorganic, synthetic fertilizer is a critical ingredient in the global food
economy. In 2008, global consumption of the three main agricultural fertil-
izer nutrients—nitrogen (N), phosphate (P205), and potash (KClI, or potas-
sium)—totaled 162 million metric tons (FAO).! Nitrogen accounts for about
63 percent of the total tonnage of fertilizers applied, phosphate another 21
percent, and potassium 15 percent. At world trading prices for major fertil-
izers, the size of the global fertilizer market was about $68 billion in 2005
but soared to over $200 billion by 2008 due to a rapid rise in fertilizer
prices.? Demand for fertilizers has risen in recent years, mostly in developing
countries. In high-income countries, where application rates are generally
higher, fertilizer use has been stable or declining. In agricultural areas with
high fertilization rates, environmental concerns stem from fertilizer runoff
and leaching, which can affect surface and groundwater quality (USDA/ERS,
2006). Nitrogen fertilizer can also vaporize into the atmosphere in the form
of nitrous oxide (N,0O), which has been identified as a greenhouse gas and a
contributor to global climate change (IPCC, 2007).

The Global Agricultural Fertilizer Market
and Industry Structure

The fertilizer industry has undergone significant changes over the past half
century. Park (2001) provides a comprehensive overview of the evolution of
the global fertilizer industry during the 20th century and the structure of
the industry as it stood in the late 1990s. Following World War II, produc-
tion of chemical fertilizers increased rapidly, partly due to the conversion of
munitions factories to fertilizer production. Many countries viewed fertilizer
as a strategic industry, which led to significant government intervention in
fertilizer markets, both in terms of direct ownership of factories and control
of trade and prices. Since the 1980s, many fertilizer markets have been
liberalized or privatized, although some governments continue to maintain

a controlling interest in the industry. In the 1990s, fertilizer manufacturing
and use in the countries of the former Soviet Union declined sharply, as did
industry consolidation and company mergers in Europe and North America.
By 2008, government-owned and government-controlled production
accounted for 57 percent of global nitrogen fertilizer, 47 percent of phosphate
fertilizer, and 19 percent of potassium fertilizer (PotashCorp, 2008).

The market structure that emerged from this period of liberalization

and consolidation is markedly different for the three primary nutrients.

The market structure for N fertilizers is the least concentrated globally.
Manufacture and pricing of N is closely associated with availability and

cost of natural gas, which is a main ingredient used to synthesize ammonia
(the main feedstock for N fertilizer). Due to the high cost of transporting
ammonia, most N fertilizer is consumed in or close to its country of manu-
facture, and more than 60 countries have manufacturing facilities for N fertil-
izers (PotashCorp, 2008). The United States is a net importer of ammonia,
primarily from Trinidad, which has low-cost sources of natural gas.
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INitrogen, phosphate, and potassium
are classified as primary macronutrients
for agriculture. Other “secondary” mac-
ronutrients are calcium, magnesium,
and sulfur, which are often supplied
through liming or manuring. Many mi-
cronutrients (trace elements) are also re-
quired for plant growth. These may also
be applied as chemical fertilizers but
are usually naturally available in soil in
sufficient quantities. In this chapter, we
only consider synthetic (manufactured)
fertilizer and not organic fertilizer, such
as animal manure.

ZValues of the global fertilizer
market are derived by multiplying
Food and Agriculture Orgacalculated
on a dollar per metric ton of nutri-
ent basis. The reference prices are
for Nitrogen Ukraine Urea (44-46%
N), for Phosphate U.S. Gulf Port
Superphosphate (45 percent P,0;), and
for potassium Canadian Potash (60
percent K,0).
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The production of phosphate and potassium fertilizers is more concentrated
due to the limited geographic availability of raw materials—phosphate rock
and potash. These fertilizers are mined primarily from underground deposits.
Phosphate rock is mined by both surface and underground methods, but
surface mining is the predominant method used to mine phosphate deposits.
Most potash mines are deep shaft mines, although a small share of the
world’s production also comes from salt lakes and seas. While about 40 coun-
tries produce phosphate fertilizers, just 5 account for 80 percent of global
phosphate rock production (PotashCorp, 2008). Phosphate fertilizer manu-
facturing requires significant amounts of sulfuric acid, and production costs
are sensitive not only to global prices of phosphate rock but also to prices

of sulfur. Farm demand for phosphate fertilizer also faces competition from
animal feed and industrial uses of phosphates.

Mineral resources of potash (used to produce potassium fertilizer) are even
more concentrated than phosphate, with only three countries (Canada,
Belarus, and Russia) accounting for 80 percent of the world’s reserves
(PotashCorp, 2008). Markets for phosphate and potassium fertilizers are
more integrated globally than the market for N fertilizer. About 80 percent
of global potash production is traded across international borders. World
prices for fertilizers were fairly stable over 1995-2007 but rose significantly in
2007-08 (fig. 4.1). Factors contributing to the spike in fertilizer prices include
a significant increase in world nutrient demand (as farmers responded to
rising crop prices in this period), a sharp rise in the cost of energy and mate-
rials used in fertilizer manufacture (especially natural gas, sulfur, and phos-
phate rock), increased transportation costs, and the falling value of the U.S.
dollar (Huang et al., 2009).

The Canadian company PotashCorp is the world’s largest fertilizer manufac- 3 ) )
Mosaic was formed in 2004 when

turer and produces significant amounts of all three primary macronutrients IMC Global and Careill agreed to com-
(table 4.1). In 2007, PotashCorp alone had about 22 percent of the total world bine their fertilizer businesses. Mosaic
production capacity in potash fertilizers. Moreover, PotashCorp, together with is the largest fertilizer company in the

another Canadian firm Agrium and the U.S. firm Mosaic (which sources United States and also produces potash

most of its potash from mines in Canada), conducts its offshore marketing of in Michigan and New Mexico.

Figure 4.1
World fertilizer prices
Constant 2006 U.S. dollars per metric ton
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Source: USDA, Economic Research Service using monthly fertilizer prices from Haver Analytics and adjusted for inflation by the monthly U.S.
Producer Price Index for Finished Goods, seasonally adjusted (Federal Reserve Bank of St. Louis).
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Table 4.1
Fertilizer production capacities of largest companies in 2007

Capacity in million tons of primary product

Ammonia (NH,) Phosphate (P,05)

Potash (KClI)

Company Capacity Company Capacity Company Capacity
Yara (Norway) 6.0 OCP (Morocco) 7.0 PotashCorp (Canada)
Terra Industries (U.S.) 4.5 Mosaic (U.S.) 4.6 Belaruskali (Belarus) 8.9
PotashCorp (Canada) 3.9 Agrium (Canada) 3.0 Mosaic (U.S.) 10.5
Agrium (Canada) 3.0 PotashCorp (Canada) 2.4 ICL (Israel) 13.5
CFI (U.S) 3.0 CFI (U.S.) 2.0 Silvinit (Russia) n.a.
IFFCO (India) 2.7 IFFCO (India) 1.7 Uralkali (Russia) 9.6
Mosaic (U.S.) 0.5 ICL (Israel) 1.0 Kali & Salz (Germany) 12.5
GCT-CPG (Tunisia) 1.0 Sinofert (China) 3.0
APC (Jordan) 2.0
Agrium (Canada) 1.7
Capacity of listed companies 23.6 22.7 56.4
Total global capacity 154.3 43.0 67.0
Listed companies share of total 15% 53% 84%
Government-owned or subsidy-
controlled production 47% 57% 19%

Source: USDA, Economic Research Service using PotashCorp (2007) and Heffer and Prud'homme (2008).

potash through a common trading company Canpotex. This trading consor-
tium controls more than one-third of global potash production. Another trading
consortium, the Belarus Potash Company, handles the exports of Uralkali and
Belaruskali, two major potash manufacturers in Eastern Europe. This small
number of producers has historically been an important feature of the global
fertilizer export market (Park, 2001) and enables it to exercise considerable
market power, particularly in the potash fertilizer market. Even though the
market structure for N fertilizers is the least concentrated globally, the market
for urea fertilizer, an important type of N fertilizer, is more concentrated and
this is reflected in regional price (Hernandez and Torero, 2011).

Eight firms account for just over half of global production capacity in
phosphate fertilizers. The government-owned Moroccan company Office
Cherifien des Phosphates (OCP) is by far the largest global producer of
phosphates and is the source of about half of global exports of phosphate
rock (PotashCorp, 2008). Production of ammonia, the feedstock for nitrogen
fertilizers, is the least concentrated globally. The top seven producers account
for only about 15 percent of global production. Looking forward, the global
nitrogen industry is expected to remain relatively unconcentrated because
recent technological advances in extracting natural gas from shale rock have
caused estimates of economically recoverable gas reserves to increase and
become more geographically diverse (Nature, 2009).

R&D and Technical Change in the
Fertilizer Industry

Over the course of the 20th century, a series of technical innovations led to
a steady lowering of real fertilizer prices (Tomich et al., 1995). During 1909-
13, German chemists Fritz Haber and Carl Bosch developed the Haber-Bosch
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process to synthesize ammonia from air and a carbon feedstock and then
convert ammonia to N fertilizer. In 1963, a centrifugal compressor replaced
the complex reciprocating compressor, reducing the capital costs of ammonia
synthesis by half (Tomich et al., 1995). New fertilizer formulations have also
been developed that have increased nutrient density, such as urea (44-46
percent N) and triple superphosphate (45 percent P,O;), which effectively
lowered the farm cost of fertilizer applications.

The sources of these innovations include university and government research
laboratories and the research departments of private firms within and

outside the fertilizer industry. A review of research spending by the fertilizer
industry, however, reveals that these firms spend relatively little on R&D rela-
tive to company sales. Data compiled in a 1975 survey of private-sector agri-
cultural R&D in the United States show that fertilizer manufacturers spent an
average of only 0.21 percent of net sales on R&D (Wilcke and Williamson,
1977). Of the 42 fertilizer manufacturers in the dataset, only one, Yara
International,* reported any R&D expenditures in its annual financial state-
ment (Yara International, 2007). The R&D-to-sales ratio for Yara in 2006
was 0.25 percent, similar to the finding of the 1975 U.S. survey. It appears
that most of the innovations in fertilizer manufacture are spillins from either
the public sector or private firms in other chemical and energy industries or a
result of “learning-by-doing” within the fertilizer industry.

Several factors may account for the low R&D spending by the fertilizer
industry. First, fertilizer is a large-volume and low-value commodity with
few opportunities to develop differentiated products. The industry is capital
intensive with major costs tied up in Greenfield development or raw material
procurement. For example, the development of 2 million tons in new potash
capacity is estimated to take 5-7 years and cost $2.8 billion (PotashCorp,
2008). For ammonia manufacture, up to 90 percent of the production cost

is for natural gas. Under this cost structure, opportunities to reduce costs by
developing more efficient manufacturing processes are limited. Second, the
industry may lack incentives to develop more efficient fertilizers or fertilizer
application methods (i.e., with less environmental escape). It may be diffi-
cult to claim intellectual property over this type of technology and therefore
recoup returns to research investment. Further, the oligopoly structure of the
fertilizer industry may reduce the competitive pressure on firms to innovate.
More efficient fertilizers that capture a greater share of applied nutrients for
plant growth could result in increased crop yields and agricultural produc-
tion without a corresponding increase in nutrient use or even reduced farm
demand (and industry revenue) for fertilizers. Such improvements in fertil-
izer formulations and application methods could have significant economic
benefits to farmers as well as provide environmental benefits.

The fertilizer industry supports research on improving fertilizer use by
jointly funding the International Plant Nutrition Institute (IPNI). The IPNI
is a nonprofit, science-based organization that supports research and agro-
nomic education about fertilizer utilization. It encourages adoption of best
management practices to raise farm productivity as well as address envi-
ronmental concerns associated with fertilizer use (IPNI, 2009). However,
new innovations to improve agricultural nutrient management, such as soil
testing and precision agriculture, have thus far come mainly from public and
private sources outside of the fertilizer industry. The International Fertilizer
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firm, was formed in 2003 when Norsk
Hydro decided to spin off its fertilizer
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2007, it acquired the Finnish fertilizer
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nitrogen fertilizer in the world.
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Development Center (IFDC) is a public nonprofit R&D center that focuses

on developing and transferring fertilizer technology to developing countries.
The IFDC was established in 1974 as an outgrowth of the Tennessee Valley
Authority’s National Fertilizer Development Center (NFDC). The IFDC and
its predecessor, NFDC, developed the majority of fertilizer products currently
in use (International Fertilizer Development Center, 2010). In 2010, the

IFDC launched a “Virtual Fertilizer Research Center,” a global initiative to
link researchers across universities and research laboratories to create a new
generation of more efficient fertilizers and soil fertilizer management technol-
ogies. The IFDC is financially supported primarily by the (U.S. and foreign)
public sector.

Given the lack of data on R&D spending by fertilizer companies, we esti-
mate R&D spending by the industry as simply a fraction of sales. For
fertilizers manufactured by firms in high-income countries, we assume an
R&D-to-sales ratio of 0.25 percent. This is close to the average ratio for the
U.S. fertilizer industry reported by Wilcke and Williamson (1977) and that
reported by Yara International in 2006. For developing countries, we assume
the fertilizer industry’s R&D-to-sales ratio is half this rate, or 0.125 percent.
Evenson and Westphal (1995, table 37.1, p 2242-3) find that average R&D
intensities of industries in developing countries are half or less the average
level in high-income countries. Production quantities of synthetic fertilizer
nutrients (nitrogen, phosphate, and potassium) by country are from FAO.
Value of production is estimated by multiplying production quantities by
representative global fertilizer prices for urea, superphosphate, and potash,
adjusted for nutrient content, as reported in the commodity price database
of Haver Analytics. To estimate R&D in 2006-08, we use average fertilizer
prices from 2002-05 instead of the inflated actual market prices.> Firms,
particularly in an industry that does not conduct much research, are unlikely
to change their R&D investment behavior in response to short-term price
fluctuations. With these assumptions, we derive estimates of fertilizer R&D
for each manufacturing country.

Among all countries, China has by far the largest fertilizer industry in the
world and accounted for about one-fifth ($22.5 billion) of total global R&D
in 2006 (table 4.2). North America (the United States and Canada) accounted
for about 28 percent of global fertilizer R&D. In several countries, govern-
ments still play a controlling role in domestic fertilizer markets, either by
maintaining direct ownership stakes in fertilizer companies or controlling
pricing, distribution, and trade in fertilizers. Among the five largest fertilizer-
producing countries, government intervention predominates in two, China
and India. In China, however, privately held share ownership in fertilizer
companies is growing.

Our estimate of R&D spending by the U.S. fertilizer industry, $19.1 million
in 2006, is within the range of estimates provided by previous studies (table
4.3). Three studies conducted in the late 1970s estimated that fertilizer
industry R&D in the United States was $6 million to $10 million annually,
while a 1984 survey estimated the amount for that year at $35.3 million
(constant U.S. 2006 dollars). While the considerable range of these estimates
suggests uncertainty in the actual amount, all these studies find that R&D by
the U.S. fertilizer industry is relatively small and represents a small share of
industry revenue.
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5In nutrient-equivalent units, average
fertilizer prices over 2000-2005 (in
constant 2006 dollars) were $328 per
metric ton of N, $383 per ton of P,0;,
and $231 per ton of K,0. These prices
are based on the market prices reported
by IMF (2009) for Urea (Ukraine),
Superphosphate (U.S. Gulf Ports) and
Potash (Canadian) by Haver Analytics.
Prices are adjusted for inflation using
the U.S. Producer Price Index for
Finished Goods (Federal Reserve Bank
of St. Louis).
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Table 4.2
Research and development (R&D) by the global fertilizer industry

in 2006
Dominant Production
Country or region sector R&D value Production
. Mil. tons
—— Mil. U.S. dollars —— N.PK nutrients
Leading countries
China State 22.0 21,525 45.9
uU.s. Private 19.1 9,152 20.0
Canada Private 8.9 4,626 13.6
Russian Federation Private 6.5 6,492 16.2
India State 6.4 6,285 13.1
By region
North America 28.1 13,778 33.5
Europe-ME 32.9 26,166 62.1
Asia-Pacific 35.2 33,188 70.3
Latin America 3.0 2,929 6.5
Global total 99.1 76,060 172.5

Source: USDA, Economic Research Service. Production of nitrogen (N), phosphorus (P,05),
and potassium (KCI) fertilizers are from Food and Agriculture Organization of the United Nations
(FAO). Value of production is estimated by multiplying FAO production quantities by global
fertilizer trade prices (nutrient basis) from Haver Analytics. R&D is estimated as 0.25 percent of
production value in Organisation for Economic Co-operation and Development and former Soviet
Union countries and 0.125 percent of production value in developing countries using average
global prices over 2002-05.

Table 4.3
Research and development (R&D) by the fertilizer industry
in the United States

Year Source Industry R&D expenditures
Million nominal  Million constant
U.S. dollars U.S. dollars
1975 Wilcke & Williamson (1977) 3.4 10.5
1978 Malstead, reported in Ruttan (1982) 3.0 7.7
1979 Malstead, reported in Ruttan (1982) 3.0 71
1984 Crosby (1987) 22.2 38.3
2006 Present study 19.1 19.1

Current expenditures adjusted for inflation by the U.S. Gross Domestic Product implicit price
deflator (Economic Report of the President, 2009).

Source: USDA, Economic Research Service using studies listed in table.
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CHAPTER 5

Farm Machinery Research and Development
by Private Industry

David Schimmelpfennig and Keith O. Fuglie

Since the 19th century, private-sector firms and entrepreneurs have led

the development of new farm machinery, with public institutions investing
relatively little in this area. Private-sector makers of machinery capture

the gains from their innovations through sales of their products, and the
patent system protects and enforces their rights as innovators. As in other
agricultural input sectors, large multinational corporations are engaged in
developing and marketing farm machinery in global markets. While small-
and medium-sized firms (as well as individual inventors and farmers) have
historically been a source of innovation in farm machinery, their share

of the global market appears to have significantly declined over the past
decade. Consolidations and mergers have led to fewer and larger companies
producing for global markets. The U.S.-based company John Deere is the
world’s largest manufacturer of farm machinery, with sales of over $16.5
billion in 2008. About 40 percent of these sales were to markets outside the
United States and Canada. In the U.S. market, European and Asian firms are
also major suppliers of farm machinery. Between 1994 and 2009, the market
share of the four largest farm machinery manufacturers rose from 28 to 50
percent of total global sales (see table 1.7).

Global Farm Machinery Markets and Factors
Affecting Farm Mechanization

Industry sources estimate that the global market for farm machinery exceeded
$70 billion per year by 2005 (Freedonia, 2006). In real terms, sales of farm
machinery are estimated to have grown by about 3 percent per year since 2000,
with growth strongest in the Asia-Pacific region (table 5.1). Farm tractors make
up the largest share, accounting for nearly 30 percent of global sales of new
farm equipment. Harvesting and haying machinery make up another 22 percent
of the global market. Equipment for such uses as planting, fertilizing, plowing,
cultivating, irrigating, and spare parts accounted for the remainder.

The pattern and speed of farm mechanization is heavily influenced by rela-
tive scarcities of farm land and labor, the demand for labor from the nonfarm

Table 5.1
The global market for agricultural machinery
By type By region
Total global Harvesting Europe,
farm machinery Farm & haying North Africa & Latin
Year sales tractors equipment Other America Middle East Asia-Pacific America
Million constant 2006 U.S. dollars
1995 62,091 18,344 13,901 29,846 18,426 21,307 19,642 2,716
2000 61,397 18,713 12,778 29,907 16,855 22,824 18,719 2,999
2005 72,486 20,941 16,325 35,221 22,025 22,722 24,668 3,072
2010 82,858 24,307 18,018 40,533 22,450 23,994 32,658 3,756

Source: USDA, Economic Research Service using Freedonia (2006). Annual expenditures adjusted for inflation using the U.S. Gross Domestic
Product implicit price deflator (Economic Report of the President, 2009).
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sector, and the aggregate demand for agricultural products (Hayami and
Ruttan, 1985). Although mechanization may not directly lead to crop yield
increases, it can contribute significantly to raising total factor productivity in
agriculture by saving labor costs as well as reducing the resources required
for maintaining draft animals. In developing countries, power-intensive
operations like plowing, water pumping, grain milling, and transporting crops
to markets tend to be mechanized first, with control-intensive operations like
harvesting and crop husbandry shifting to mechanized techniques only when
wages are high or rapidly rising (Binswanger, 1986). Mechanization also
facilitates growth in farm size, and larger farms tend to adopt new forms of
machinery much faster than small farms.

Farm Machinery Market Structure, Innovation,
and R&D Spending

The global farm machinery industry underwent significant structural
changes during the latter half of the 20th century, with the largest firms
growing their market share, primarily through mergers and acquisitions.
The four largest firms increased their share of the global farm machinery
market from about 28 percent in 1994 to 50 percent by 2009 (see table
1.7). By 20009, at least 10 companies worldwide had annual sales of farm
machinery valued at over $1 billion; together, these companies accounted
for about one-third of the global market.

While large firms account for most of the formal R&D by the farm
machinery industry, small- and medium-sized firms play an outsized role

in innovation. Evenson (1982), basing his analysis on the patterns of patent
ownership for farm machinery innovations in the United States, characterized
the farm machinery industry as one in which large firms have concentrated
on making refinements and achieving economies of scale in the manufacture
of innovations originating from small-sized entrepreneurs. Case studies from
other countries have also demonstrated the important role of small, local
entrepreneurs in developing adaptive innovations of farm machinery, such as
in the emergence of the power tiller industry in Thailand (Wattanutchariya,
1983) and water pump set manufacturing in China (Huang et al., 2007).
Inventive work on a particular operation may precede its widespread use by
decades, and invention often reaches a peak during the initial adoption cycle
when many small firms enter with alternative designs (Evenson, 1982). The
most successful of these firms either grow or are bought up by larger firms
that can offer scale economies in manufacturing and distribution. Recently,
this pattern has been seen in the rapidly expanding demand for drip- and
micro-irrigation technologies in response to growing water scarcity in some
regions of the world. During 2006-08, both John Deere and an Indian firm,
Jain Irrigation Systems, acquired a number of U.S. and foreign firms special-
izing in irrigation technology. By utilizing their global manufacturing and
distribution networks, the two firms established themselves as global leaders
in agricultural irrigation technology.

Fifteen companies worldwide had over $500 million in farm machinery sales
in 2006 (table 5.2). The four leading farm machinery companies develop and
produce multiline products, including tractors, harvesting equipment, and
implements, whereas second-tier companies are more likely to specialize
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Table 5.2
Companies with over $500 million in farm machinery sales in 2006

Farm Total
Country of machinery equipment Ag machinery
Company incorporation sales sales R&D / sales product lines
—— Mil. U.S. dollars — Percent

Leading multiline farm machinery manufacturers

Deere u.S. 10,232 19,884 3.65 Multiline

CNH Netherlands 7,809 12,115 3.03 Multiline

AGCO u.S. 5,435 5,435 2.35 Multiline

Kubota Japan 5,103 5,796 2.13 Multiline
Second-tier farm machinery manufacturers

CLAAS Germany 2,954 2,954 4.27 Harvesters, balers

Yanmar Co. Japan 1,440 1,440 n.a. Tractors

Iseki Japan 1,391 1,391 2.60 Multiline

SAME Deutz-Fahr Italy 1,303 1,303 2.50 Tractors, combines

Kuhn Group Switzerland 976 2,622 3.13 Implements

ARGO Group Spa Italy n.a. n.a. n.a. Multiline

Minsk Tractor Works Belarus 937 937 n.a. Tractors

First Tractor Co., Ltd. China 630 769 1.01 Multiline

Kverneland ASA! Norway 569 569 3.77 Multiline

Mahindra & Mahindra India 575 2,086 1.22 Tractors, implements

TAFE India 568 n.a. n.a. Tractors

Total for listed companies 39,921 57,300 70.3

Global market total 73,579 6.5

n.a. = not available.
"Kverneland ASA was acquired by Kuhn Group in 2009.

Source: USDA, Economic Research Service using corporate websites and annual financial reports.

in certain types of machinery. Three of the four leading manufacturers also
produce nonfarm machinery, such as earth-moving and construction equip-
ment or machines for home-gardening and lawn care. These companies
report research intensities ranging between 2.1 and 3.7 percent of total farm
and nonfarm machinery sales. For the purpose of estimating farm machinery

R&D, we apply this ratio to the companies’ reported sales of farm machinery.

Second-tier companies are characterized by a wider range of research intensi-
ties as well as less complete data available on R&D spending. But none of the
firms on which we have data exceeded 4 percent as an R&D-to-sales ratio,
and some had less than 1 percent. For 11 firms from high-income countries
for which we have data on farm machinery sales and R&D expenditures, the

average research intensity was 2.40 percent. For six developing-country firms,

the average research intensity was 0.82 percent. To derive an estimate of
R&D spending by second-tier firms on which we lacked data, we multiplied
their sales by the average R&D intensity ratio for this group of firms (2.40
percent of sales for firms from high-income countries and 0.82 percent of
sales for firms from developing countries) to derive industry-level estimates
of R&D spending.

Farm machinery sales and R&D expenditure estimates in 2006 are reported
for different market segments in table 5.3. The top part of the table shows
sales and R&D by size of firm: the totals for the four leading manufacturers
and second-tier companies with at least $100 million in farm machinery
sales. “Other manufacturers” include all nonlisted companies, and their
total sales is simply the difference between the estimate of total global sales
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Table 5.3
Farm machinery research and development (R&D) by the private sector
in 2006

Farm Farm
machinery machinery Average
Market segment Companies R&D sales R&D/ sales
Number — Mil. U.S. dollars — Percent
By company classification
Leading multiline farm machinery
companies 4 847 28,479 3.0
Second-tier farm machinery
manufacturers 30 407 16,841 2.4
Other manufacturers (not listed) n.a. 9 375 24
By region
North America n.a. 575 23,054 2.5
Europe-ME n.a. 581 22,357 2.6
Asia-Pacific n.a. 311 25,040 1.2
Latin America n.a. 9 3,129 0.0
Global total, all manufacturers n.a. 1,470 73,579 2.0

n.a. = not available.

Sources: USDA, Economic Research Service estimates using data from Freedonia (2006), com-
pany annual reports, interviews with company representatives.

and the reported sales for first and second-tier companies in table 5.2. This
category includes virtually hundreds of small and medium-sized companies,
many with no formal R&D departments but which nevertheless are sources
of innovation for the farm machinery industry. To get an estimate of R&D
spending for this group, we assume an R&D-to-sales ratio of 0.82 percent
(the average for second-tier firms from developing countries). Taken together,
our estimate of total R&D by the global farm machinery industry in 2006

is $1.48 billion, with 57 percent of this attributed to the four leading farm
machinery manufacturers.

Geographically, firms based in the United States, the EU, and Japan are the
global leaders in farm machinery sales and R&D spending. As in the case of
other agricultural input industries, many of these firms produce machinery
for the global market and locate manufacturing and R&D facilities in several
countries. Among developing countries, India is an important manufac-
turer, especially of small four-wheel tractors, with several large (second-tier)
companies that produce machinery for both the Indian and global market.
China is also a leading manufacturer of farm machinery, although the
Chinese farm machinery industry appears to be dominated more by small-
and medium-sized firms.

Farm Machinery R&D in the United States

Estimates of expenditures by U.S. manufacturing companies on farm
machinery R&D were reported periodically by the National Science
Foundation from the 1960s through 1997.! In addition, data from at least two
independent surveys of private agricultural research in the 1970s included
estimates of farm machinery R&D. Based on these sources and findings
from this ERS study, private farm machinery R&D rose between the 1960s
and 1970s, peaking at about $627 million (in 2006 U.S. dollars) in the mid-
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NSF discontinued the “product field”
question after 1997.
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1970s, then fell below $400 million in the 1990s before recovering to over
$500 million again by 2006 (table 5.4). Part of the renewed growth in farm
machinery R&D by U.S. firms may be due to several factors: growing global
demand for labor-saving equipment; the development of precision agriculture
with global positioning systems (GPS), yield monitors, and auto-steer guid-
ance systems; and the need to meet stricter regulatory standards, such the
U.S. Environmental Protection Agency’s air pollution Tier 4 standards for
off-road diesel equipment.

Table 5.4
Farm machinery research and development (R&D) by U.S. companies

Year Source'! Industry R&D expenditures
, Mil. constant
Mil. U.S. 5006 U.s,
dollars
dollars
1960-64 National Science Foundation 73.0 395.4
1965-69 National Science Foundation 98.6 478.7
1970-74 National Science Foundation 104.6 396.9
1975-79 National Science Foundation 205.5 553.5
1975 Wilcke & Williamson (1977) 203.8 627.1
1978 Malstead, reported in Ruttan (1982) 225.0 575.1
1979 Malstead, reported in Ruttan (1982) 225.0 530.9
1981, 1983 National Science Foundation 284.0 534.7
1985, 1987,1989 National Science Foundation 377.2 601.3
1991, 1993 National Science Foundation 291.7 397.6
1995, 1997 National Science Foundation 280.0 347.6
2006 Present study 513.2 513.2
"The National Science Foundation stopped reported R&D for the U.S. farm machinery industry
after 1997.

Current expenditures adjusted for inflation by the U.S. Gross Domestic Product implicit price
deflator (Economic Report of the President, 2009).

Source: USDA, Economic Research Service using studies listed in the table.
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CHAPTER 6

Private Research and Development
for Animal Health

Paul Heisey and Keith O. Fuglie

Significant productivity gains in agriculture have been achieved through
improvements in animal husbandry and health. The animal health industry
has contributed in this area by developing and supplying new vaccines, medi-
cated feeds, anti-infectives, paracitides, and other pharmaceuticals that have
reduced animal mortality and morbidity and raised growth and reproductive
rates. The animal health industry is research intensive—globally, it invests
more than 8 percent of its net sales in R&D, with leading firms investing at
even higher levels. The industry is a component of one of the world’s largest
and most research-intensive industries, the pharmaceutical industry, and
several leading companies invest in both human and animal health. In recent
years, animal health product sales have ranged from 2.5 to 3.0 percent of
global pharmaceutical sales.

Researchers estimating private R&D for agricultural animal health face
two major challenges: many of the leading pharmaceutical companies do
not report animal R&D expenditures separately from total R&D spending
(which, in most cases, is dominated by human health R&D); and second,
even when reasonable estimates can be derived of company R&D spending
for animal health, it may be impossible to distinguish between R&D

for food animals versus nonfarm (companion and equine) animals. The
approach in this study is to rely on company and industry information to
estimate total animal health R&D expenditures and then apportion this
R&D among food and nonfood animals according to species market shares
of product sales.

In recent years, structural changes in the global pharmaceutical industry,
including mergers, have affected the animal health industry. In 2009, the
animal health industry underwent major structural realignment, with the
number of first-tier companies (those with at least $1 billion in annual
sales of animal health products) falling from eight to six. To assess the
effects of recent mergers on concentration and R&D spending in the
animal health industry, we have extended our data period to the end of
2009. We also report on some other mergers and acquisitions that took
place in 2010 and 2011, but these involved second- and third-tier compa-
nies and are unlikely to significantly alter the level of concentration in the
global animal health industry.

We find that globally, private-sector growth in animal health R&D over
the past decade was mostly for nonfood animals. Spending on food-
animal health R&D (in constant 2006 U.S. dollars) declined from over
$900 million per year in the mid-1990s to under $800 million annually
during 1999 to 2007 before recovering somewhat to $890 million/year
over 2008-10. This trend reflects the stagnant market for food-animal
health products. Mergers and acquisitions among major pharmaceutical
companies have led to a relatively high degree of concentration in the
global animal health market, with the four largest firms accounting for
more than 50 percent of global sales in 2009.
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Global Market for Animal Health Products

Global sales of animal health products

Various sources place the global market for animal health products between
$16 billion and $18.5 billion in 2006.! While the overall market for animal
health products rose from just $10.8 billion in 1991 to nearly $17.5 billion by
2009 (constant 2006 U.S. dollars), most of this growth was in the nonfood-
animal market (fig. 6.1). The food-animal share of the global market for
animal health products declined from 80 percent in the early 1990s to about
58 percent by 2009. Sales of animal health products for food-animal species
have fluctuated somewhat over time but in constant dollars have ranged
between $8 billion and $10 billion since the early 1990s.

Breakdown by product types and species

The three principal product types that we include in the market for animal
health products are pharmaceuticals (including anti-infectives and paracit-
ides), biologicals (primarily vaccines but also including diagnostic products),
and medicated animal feeds (primarily antibiotics).? Pharmaceuticals are by
far the largest component of this market, with sales of about $11.7 billion in
2009, although sales of biologicals rose more rapidly between 2001 and 2009
(table 6.1). Medicated animal feed is the smallest segment of this market
(sales of $2.2 billion in 2009) and has shown the slowest rate of growth

over the past decade. The use of antibiotics in animal feed has come under
increased scrutiny due to concerns about microbial resistance, and in the EU,
its use in feed for growth promotion has been phased out.

As previously mentioned, food animals account for just under 60 percent
(about 44 percent in the United States) of the total market for animal health
products. In 2009, animal health product sales for cattle (dairy and beef)
made up about 25 percent of the total market, pigs nearly 18 percent, and
poultry about 11 percent (table 6.1).

Figure 6.1
Global sales of animal health products
Million constant 2006 U.S.$
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Source: USDA, Economic Research Service. Animal health product sales from Vetnosis, as
reported in International Federation for Animal Health (various annual reports) and adjusted for
inflation by the U.S. Gross Domestic Product implicit price deflator (Economic Report of the
President, 2009).
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IIn this report, we use estimates
of global market sales of animal
health products from Vetnosis (an
industry consulting firm; formerly,
Wood Mackenzie) as reported in the
International Federation for Animal
Health annual reports. Vetnosis
reported global market sales of $16.1
billion in 2006. PhillipsMcDougall,
another industry source, estimated this
global market to be $17.5 billion, while
Animal Pharm placed this estimate at
$18.6 billion in 2006. While industry
sources vary somewhat in their esti-
mates of total global sales for animal
health products, the estimates all show
similar trends in sales over time and
similar market shares for different
product types and animal species.

2We include medicinal feed additives
but do not include nutritional feed ad-
ditives, such as vitamins, in our animal
health total. Nutritional feed additives
are covered in the chapter on animal
nutrition. We estimate the value of the
global market for nutritional feed addi-
tives to be $4.4 billion in 2006.

Research Investments and Market Structure in the Food Processing, Agricultural Input, and Biofuel Industries Worldwide / ERR-130

Economic Research Service/USDA



Table 6.1
Global market for animal health products

Value of sales Growth in
sales over
By product type 2001 2006 2009 2001-09
— Mil US. dollars ——— Percent
per year
Pharmaceuticals 7,018 10,410 11,700 6.4
Biologicals 2,389 3,660 4,700 8.5
Medicated feeds 1,635 1,995 2,200 3.7
Total 11,050 16,065 18,600 6.5
By species Market share
Percent
Food Animals 64.0 58.9 58.1
Cattle 28.2 27.2 25.3
Sheep 5.1 4.8 4.3
Pigs 17.9 16.1 17.7
Poultry 12.8 10.8 11.3
Nonfood animals & other 36.0 411 41.9

Source: USDA, Economic Research Service using Vetnosis, as reported in International
Federation for Animal Health (various annual reports).

Animal Health Industry Structure

The structure of the animal health industry can be described various ways,
including by size of firm. In this chapter, first-tier animal health companies
are those with at least $1 billion in animal health product sales in 2009,
second-tier firms are those with between $300 million and $999 million

in sales in 2009, and third-tier firms as those with less than $300 million

in animal health product sales in 2009. A fourth category, “biotechnology
companies with animal health applications,” comprises companies that
mainly provide technology services to other firms in the industry. Industry
structure may also distinguish between “discovery” firms and “generics”
firms (the latter includes firms that do not develop their own products but
produce off-patent products or products under license from developers).
Discovery firms tend to be much more research intensive than generics firms.
All first-tier firms and most second-tier firms fall into the discovery firm cate-
gory. A few firms specialize in products for food- or nonfood-animal species,
although most of the larger firms produce products for both groups of species.
Finally, industry structure may include a ranking of firms by their overall
presence in the pharmaceutical industry.

First-tier animal health companies

Table 6.2 captures significant restructuring that occurred in the global animal
health industry in 2009, when two first-tier companies acquired two other
first-tier companies, further increasing concentration in the industry. Animal
health is not the primary business of any of the first-tier companies listed in
the table and, at most, contributes 10 percent of each firm’s total pharmaceu-
tical sales.

Over the past two decades, the largest firms set the pace in merger and acqui-
sition activity in the animal health industry (fig. 6.2). In the 1990s, a number
of other large pharmaceutical companies, among them Rhone-Poulenc,
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Table 6.2
Major animal health companies

Animal health

Rank of parent

share of total firm in global
Animal health Animal health  pharmaceutical pharmaceutical
Company’ sales in 2006 sales in 2009 sales sales in 2010
—— Million U.S. dollars — Percent Rank
1st tier companies (> $1 billion in animal health sales)
Pfizer 2,311 2,764 55 1
Intervet/Schering-Plough (parent: Merck)3 1,413 2,741 10.0 --2
Merial (parent: Sanofi-Aventis)* 2,195 2,554 6.3 6
Bayer 1,137 1,357 9.3 14
Elanco (parent: Eli Lilly) 876 1,207 5.5 11
Novartis 940 1,101 2.5 4
Fort Dodge (acquired by Pfizer from Wyeth in 2010) 936 -2 -2 --2
Schering-Plough (acquired by Merck in 2009) 910 -2 -2 -2
2nd tier companies ($300 -$999 million in animal health sales)
Virbac 505 649 100.0
Boehringer Ingelheim Vetmedica (BIV) 470 847 4.8 12
Ceva Sante Animale 301 413 100.0
Alpharma Animal Health (acquired by Pfizer in 2010) 347 359 20.2
Vetoquinol 266 350 100.0
Lohmann Animal Health (parent: PH Wesjohann Group) n.a. n.a. 100.0
Animal health  Animal health
Industry aggregate data for 2009 Companies R&D sales R&D/Sales
Number —— Million U.S. dollars — Percent
Total for 1st tier companies 6 1,149 11,724 9.8
Total for 2nd tier companies 5 206 2,490 8.3
Total for all others n.a. 132 4,386 3.0
Global total - all animal health 1,487 18,600 8.0
Global total - food animal health 863 10,800 8.0

n.a. = not available.

"The first- and second- tier companies listed above are all classified as “discovery” companies except for Alpharma Animal Health, which is classi-

fied as a “generics” company.

2These companies had merged or been acquired by other firms by 2010.
SIntervet only in 2006 when it was a subsidiary of AkzoNobel. Schering-Plough acquired Intervet in 2007 to form Intervet/Schering-Plough. Merck

acquired Intervet/Schering-Plough in 2009.

“Merial was a 50-50 joint venture between Merck and Sanofi-Aventis until 2009, when Merck sold its interest in Merial to Sanofi-Aventis.

Source: USDA, Economic Research Service. Animal health sales and R&D figures compiled from company financial reports and Animal Pharm
Reports (2007); global ranking of pharmaceutical firms compiled from Fortune (2010).

AkzoNobel, and Mallinckrodt, had substantial animal health sales. Rhone-
Poulenc, a French chemical-pharmaceutical company, was a predecessor

of Sanofi-Aventis. In 1997, this company and Merck formed a joint venture
for their animal health segments, Merial. In 2009, Merck sold its interest in
Merial to Sanofi-Aventis, which then became the sole owner of Merial, and
in 2009, Schering-Plough, another leading firm in the animal health industry,
merged with Merck. In 2007, Schering-Plough acquired another leading
animal health company, Intervet. With the 2009 merger of Schering-Plough
and Merck, Merck became the new parent company of the Intervet/Schering-
Plough Animal Health subsidiary. In 2010, Sanofi-Aventis and Merck consid-
ered merging their animal health companies but later abandoned the idea.
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Figure 6.2
Evolution of major animal health companies

Major companies in 2011 Key legacy companies
(year of merger or acquisition in parentheses)

Fort Dodge (2009)
(parent company: Wyeth)

Pfizer (USA) < Pharmacia & Upjohn (2000)
Alpharma (2010)
(parent company: King Pharmaceuticals)
Mallinckrodt (1997)
Intervet/Schering-Plough (Neth.) P Scherina-Plough (2009 T H ht (1999
(parent company: Merck, USA)* - chering-Plough ( ) oescht ( )

L Intervet (2007)

(parent company: Azko Nobel)

Rhone-Poulenc (1997)

Merial (France)
(parent company: Sanofii-Aventis,

France)* Merck (1997): formed Merial, a 50-50 joint venture with Sanofi-Aventis
until fully acquired by Sanofi-Aventis in 2009

Elanco (USA) Janssen Animal Health (2011)
(parent company: Eli Lilly, USA) (parent company: Johnson & Johnson)

Bayer (Germany)

Ciba-Geigy (1996)

Novartis (Switzerland) ]

Sandoz (1996)

Source: USDA, Economic Research Service using company websites.

Another major merger occurred in 2009 when Pfizer acquired Wyeth

and merged its animal health business with Wyeth’s Fort Dodge Animal
Health subsidiary. In 2010, Pfizer acquired another second-tier animal
health company, Alpharma. By 2010, Pfizer’s annual sales of animal health
products exceeded $3.5 billion, making it by far the world’s largest animal
health company.

Second-tier companies

Unlike all of the first-tier animal health companies that are subsidiaries of
large pharmaceutical companies, many second-tier companies specialize

in animal health. Virbac, Ceva Sante Animale, and Vetoquinol are three
independent animal health discovery companies with annual sales between
$300 million and $1 billion. Lohmann Animal Health, which develops and
sells poultry vaccines, may also be a second-tier company: in 2010, its parent
company, the PH Wesjohann Group, reported $775 million (585 million
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euros) in animal health and nutrition sales, which includes nutritional feed
products along with vaccines and other animal health products. We estimate
that second-tier companies spent at least $218 million on animal health R&D
in 2009 (about 14 percent of the private-sector total) and had a research inten-
sity of 8.3 percent of sales, compared with 9.8 percent for first-tier companies
(table 6.2).

Third-tier companies

Data are considerably more difficult to obtain for third-tier animal health
companies, defined here as firms with annual global sales of less than $300
million. Using information from industry sources, we identified over 100 third-
tier manufacturers of animal health care products and estimate their combined
market sales to be $4.3 billion in 2006.3 Of these companies, at least 30 are
believed to invest in animal health R&D, although on average they spend less
on R&D (as a percentage of sales) than either first- or second-tier firms. Based
on observations from a limited number of firms in this category, we assume
that third-tier firms spend an average of 3 percent of sales on R&D. Applying
this research intensity to the total sales of these firms we derive an estimate of
animal health research expenditures for this group of firms.

Biotechnology companies with animal health applications

In this study, we identified over 20 biotechnology companies that had animal
health applications in 2006. Only four reported animal health as their main
business. Most of these companies were relatively small, privately held,

and appeared to be mainly technology service providers to other firms.
Insufficient data made it difficult to estimate animal health R&D expendi-
tures for these companies, so we omit these in our total R&D estimate for the
animal health industry.

Concentration in the global animal health industry

The global pharmaceutical industry has been characterized by considerable
merger and acquisition activity for at least the past two decades (CBO, 2006).
Of the top 10 global pharmaceutical companies in 2008, only 2 have not been
involved in significant horizontal merger activity.* Pharmaceutical company
mergers or acquisitions have also affected the structure of the animal health
industry, as all first-tier and several second- and third-tier companies are
subsidiaries of large pharmaceutical companies. Thus, the principal reasons
for the growing consolidation in the animal health industry are the factors
driving consolidation in the larger pharmaceutical industry.?

The data collected for this study show that concentration in the animal
health industry has increased since 1994, with the global Herfindahl index
rising from 510 to 827 between 1994 and 2009 (see table 1.7). With the
recent mergers and acquisitions that occurred among the first-tier firms
between 2006 and 2010, this ratio rose from 44 percent to just over 51
percent. This growth would place the animal health industry second to only
the animal genetics industry in terms of four-firm concentration among

the agricultural input industries considered in this report (see chapter 1 for
more discussion).
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3We have been able to put together
time series estimates for sales figures
for both first- and second-tier animal
health companies and their legacy
companies. Combining these data with
estimates of total global sales, we can
derive an estimate of total sales figures
for third-tier companies by subtracting
first- and second-tier company sales
from the global total.

“4Horizontal mergers take place
between firms producing similar goods
or services. They may be contrasted
with vertical mergers, which take place
between firms at different points in a
production process, for example when
a large firm buys out firms that were
formerly its suppliers.

SDanzon et al. (2007) examine
a number of hypotheses regarding
merger and acquisition activity in the
pharmaceutical industry. They find that
among larger firms, mergers are a re-
sponse to excess capacity arising from
patent expirations and gaps in a firm’s
product pipeline. For small firms,
mergers are primarily an exit strategy
in response to financial trouble. The
study does not find economies of scale
in R&D to be a significant factor in
explaining mergers.
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Industry Investment in Animal Health R&D

To distinguish between the food and nonfood animal segments, we estimate
R&D spending on food-animal health by apportioning total R&D according
to the share of food animals in total product sales. This approach could over-
or understate actual spending on agriculturally related R&D by the industry.
Given the time lag between R&D spending and new product introductions,
we would expect firms to allocate their R&D resources according to antici-
pated future market demand for new products. Since the market share of
nonfood animal products has been rising over the last two decades, firms may
be allocating a larger share of their current R&D to nonfarm-animal markets
in response to this rising demand. On the other hand, many of the new prod-
ucts being introduced into nonfood-animal health markets are direct applica-
tions of human health care drugs that may not be relevant for food animals,
such as treating the health conditions of aging companion animals. With a
higher degree of “spillover” from human health R&D to the nonfood market
segment, more of the animal-specific discovery R&D may in fact be directed
to the unique problems faced by food animals. At present, we have insuffi-
cient information to determine which of these biases, if either, are significant,
and so rely on this simple apportioning.

Globally, private spending on animal health R&D increased from $806
million in 1994 to $1,449 million in 2010 (table 6.3). Spending on food animal
health R&D grew at a substantially slower rate, rising from $645 million

(or 80 percent of the total) in 1994 to $855 million (59 percent of the total)

Table 6.3
Research and development (R&D) spending and research intensity by the global animal health industry
Total private R&D Private R&D Private R&D Animal health Animal health
spending for animal spending for food spending for food research research intensity
Year health animal health animal health intensity by discovery firms
Million constant 2006
—— Million nominal U.S. dollars —— U.S. dollars —— R&D/Sales (%)
1994 806 645 834 8.6 11.8
1995 945 756 958 9.2 111
1996 946 737 916 9.1 9.6
1997 944 715 873 8.9 9.7
1998 927 684 826 8.7 9.8
1999 893 641 763 8.3 9.4
2000 898 628 731 8.5 9.7
2001 889 569 648 8.4 9.7
2002 902 570 640 8.2 10.2
2003 1,048 644 707 8.6 115
2004 1,160 694 741 8.7 11.0
2005 1,238 739 763 8.5 10.7
2006 1,320 777 777 8.4 104
2007 1,368 797 774 7.8 9.9
2008 1,591 933 887 8.5 11.6
2009 1,446 840 791 8.6 9.4
2010 1,449 855 798 8.6 9.8

Source: USDA, Economic Research Service. R&D spending estimated from company financial reports and as reported in Animal Pharm Reports
(2003, 2005, 20064a, 2007). R&D spending for food animal health estimated by multiplying total R&D spending by the market share of food animals
in total sales of animal health products. Market sales of animal health products from Vetnosis, as reported in International Federation for Animal
Health (various annual reports). Annual expenditures converted into constant 2006 U.S. dollars using the U.S. Gross Domestic Product implicit
price deflator (Economic Report of the President, 2009).
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in 2010. In inflation-adjusted dollars, however, private R&D on food animal
health appears to have declined since the mid-1990s, from over $900 million
annually in 1995-96 to only $640 million per year by 2002, before recovering
to around $800 million per year since 2006 (constant 2006 U.S. dollars).
This lack of long-term growth in private-sector animal health R&D spending
directly reflects the stagnant market for food-animal health products.

The United States is the world’s largest market for animal health products

for both food and nonfood animals (with nonfood-animal health products
accounting for about 56 percent of U.S. market sales). Companies based in
the United States conduct about 42 percent of the R&D by the global animal
health industry (table 6.4). EU countries (the UK, Germany, the Netherlands,
France, and Switzerland especially) account for 55 percent of global animal
health R&D. Outside of these regions, companies based in China, Japan,
India, Brazil, and Israel are also making significant investments in animal
health R&D, but their combined share of global private animal health R&D is
probably under 5 percent. U.S. and EU-based companies are also performing
R&D for animal health markets in other regions of the world. Several of these
companies have located research laboratories and have substantial product
sales in these countries.

Our estimate of animal health R&D spending by U.S. companies, $546
million in 2006, compares favorably with industry estimates. From its annual
survey of member companies, PARMA reports that R&D expenditures for
veterinary pharmaceuticals were $496.3 million in 2006 (Pharmaceutical
Research and Manufacturers of America, 2008). Of this total, $356.4 million
was spent in the United States and $139.9 million was spent by these firms
abroad. Another U.S. industry group, the Animal Health Institute, reports
that its member companies spent $663 million in animal health R&D in 2006
(Animal Health Institute, 2007). The samples of companies included in these
surveys are not identical and may vary from year to year, so these estimates
are not directly comparable with ours. Nonetheless, all three estimates show
a similar trend in animal health R&D since 1994, with our estimate tracking
somewhat closer to PARMA’s (fig. 6.3). We conjecture that most of the
growth in animal health R&D spending in the United States since 2000 has
been directed at nonfood-animal species.

Table 6.4
Private animal health research and development (R&D) by region in 2006
Companies R&D Sales of animal
Sales and R&D by with sales spending for ani- health products by Industry Industry
companies with HQ in: > $50 million mal health these companies  R&D/sales R&D share  market share
Number ——— Million U.S. dollars Percent
North America 8 562 6,145 9.1 42 38
Europe-Middle East 18 746 5,417 13.8 55 34
Asia-Pacific 19 39 2,676 3.0 3 17
Latin America 2 3 1,827 3.0 0 11
Global total 47 1,349 16,065 8.4 100 100

Notes: Sales and R&D figures include animal health for food and nonfood animals.

Source: USDA, Economic Research Service using company financial reports and Animal Pharm Reports (2007). Market sales of animal health
products from Animal Pharm Reports (2006c) and Vetnosis as reported in International Federation for Animal Health (various annual reports).
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Figure 6.3

Estimates of research and development spending by the U.S.
animal health industry

Million nominal U.S.$

1,0001 R
Phrma members,” *,
’ )
8007
6007
400- ‘}_“___—'-f\.,.\
v Our estimate )
2007
O T T T T T T T T
1994 96 98 2000 02 04 06 08

Source: USDA, Economic Research Service. AHI members estimate is from the Animal Health
Institute annual survey of members. Phrma members estimate is from the Phrma annual
survey of members. ERS estimate is derived from company financial reports for U.S.-based
companies identified in our survey with investments in animal health R&D (see text).
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CHAPTER 7

Animal Genetic Improvement by the
Private Sector

Keith O. Fuglie and Paul Heisey

Selecting superior animals for breeding stock emerged as a specialized
industry in the 1920s and 1930s for poultry, in the 1930s and 1940s for cattle,
and in the 1950s and 1960s for hogs (Bogus, 1992; Willham, 1982; and
Schneider, 2004). More recently, the private sector has also begun investing
in aquaculture breeding, especially for salmonoids (salmon and trout species),
shrimp (Pannaeus spp), and tilapia (tilapia spp). The genetic improvements
and reproductive technologies developed by these firms have made significant
contributions to raising the productivity of animal farming around the globe.

As is the case with crops, animal breeders (with the exception of dairy
cattle) have been able to capitalize on the benefits from hybridization, or
cross-breeding. The typical model that emerged in the poultry and swine
genetics industries was one in which a company would invest in improving
purebred lines (inbreds) and then sell hybrids (crosses between different
purebred lines) to producers who would use these animals as production
stock on their farms. The hybrids are often complex crosses involving four

to six purebred lines. Companies would supply genetic material to farmers
through “pyramid programs” (nucleus herds to multiplier herds to producer
stock). The animal genetics firms could maintain control over their intel-
lectual property by guarding access to their purebred “nucleus” herds. Since
the offspring from the hybrids produced on the farm would themselves breed
inferior stock, farmers would return to the animal genetics companies to
replace their production stock. This model served species with high fecundity
rates, such as poultry and pigs, but was less suitable for cattle because of the
greater expense and difficulty in maintaining viable inbred lines (Narrod and
Fuglie, 2000). The reproductive technology of artificial insemination (A.L),
combined with expanded performance testing of progeny, was the basis of
investment in dairy cattle breeding by both producer cooperatives and private
companies. Beef cattle breeding has exploited cross-breeding for heterosis
since the 1970s, but the dominance of uncontrolled mating under pasture and
rangeland conditions across widely diverse production environments in many
beef cow-calf operations, combined with relatively long generation intervals,
has meant that, to date, large-scale private investment in beef breeding has
been relatively limited.

More recently, new reproductive technologies, such as embryo transfer, and
the tools of molecular biology have opened up new possibilities in the animal
genetics industry. In dairy cattle, genomic evaluations using single nucleo-
tide polymorphism (SNP) markers have been developed that increase the
accuracy of genetic selection programs, lower the cost, and reduce the time
necessary to evaluate A.IL sires (Strauss, 2010). Similar genomic evaluations
are evolving for both the beef and swine industries, and specific SNP tests for
various traits of economic importance, including genetic diseases and meat
quality, have been widely available for several years. A.L. has been widely
used in the cattle industry for many decades, but its use in swine breeding has
been more limited because boar semen, unlike that of bulls, does not remain
viable if frozen. Over the last decade, however, technologies that extend the
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life of fresh boar semen have succeeded in significantly increasing the use of
A L in swine breeding.

It is difficult to obtain reliable information on the animal genetics industry.
Nearly all firms in the industry are privately held and do not publish informa-
tion on company revenues or R&D expenditures. To examine R&D spending
and market structure in this sector, we contacted all of the major animal
genetics companies in the poultry, swine, and cattle breeding sectors and a
sample of aquaculture breeders and requested the relevant information. Most
companies we contacted complied with our request, at least in part. This
chapter is based on the information provided by these companies, informa-
tion from company and industry websites, and interviews with knowledge-
able persons from public- and private-sector animal breeding programs. To
maintain confidentiality, we report R&D and market sales figures only for the
animal breeding sectors as a whole and not for individual companies.

Structure of the Animal Genetics Industry

Poultry

The poultry industry is composed of at least three distinct subsectors: the
broiler and turkey industries for poultry meat and the layer industry for
eggs.! Over the past two decades, the poultry breeding industry has under-
gone considerable consolidation, with a few companies dominating genetic
supply in each subsector. Currently, broiler breeding is dominated by three
firms and layer breeding and turkey breeding are each dominated by only
two firms (fig. 7.1). The EW Group, Hendrix Genetics, and Groupe Grimaud,
all European-based, have established themselves as global “multi-species”
animal genetics companies. Their divisions may include broilers, layers,
turkeys, other avian species, pigs, and aquaculture species. One U.S.-based
firm, Cobb-Vantress (a subsidiary of Tyson Foods), specializes in broiler
breeding. Cobb-Vantress, Aviagen Broilers (EW Group), and Hubbard
(Groupe Grimaud) together supply at least 95 percent of the global commer-
cial breeding stock for broilers. Two companies, the EW Group? and
Hendrix Genetics, supply nearly all the global breeding stock for turkeys and
layers. In 2008, Groupe Grimaud established a new layer breeding subsidiary,
Novogen, but its market share is not significant. In total, our survey identi-
fied 18 companies worldwide that appeared to be engaged in some poultry
breeding. In addition to the four shown in figure 7.1 and Heritage Farms,

six other companies were engaged in breeding specialty chickens for niche
markets (e.g., free-range chickens, colored birds, ducks, geese, and other
avian species), and seven served regional markets for broiler or layer breeding
stock. These regional breeding firms, like India’s VH Group and Thailand’s
CP Group, usually worked through joint ventures or licensing agreements
with one or more of the major multinational companies to adapt breeding
material for local markets.

A driving force behind consolidation in the poultry genetics industry has
been economies of scale and scope in conducting research and marketing
genetic products. The advent of molecular biology (marker-selected breeding,
primarily) in poultry breeding has driven up the fixed costs of a breeding
program while expanding the possibilities for genetic improvement. With
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A small component of the poul-
try genetics industry breeds ducks
and specialty birds, such as colored
chickens, which we do not discuss here
although figures from this sector are
included in our estimates.

20ne other broiler breeding compa-
ny, Heritage Farms (owned by Perdue),
has a significant presence in the United
States but does not sell breeding stock
in other countries.

3The EW Group operates its layer
breeding program as two distinct com-
panies, Lohmann Tierzucht, based in
Germany, and Hy-Line International,
based in the United States.
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Figure 7.1
Evolution of the global poultry and multi-species genetics industry

Arbor Acres (1998, USA)
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g4 Aviagen Turkeys (2005, Netherlands) [—
Nicholas Turkeys (1999, USA)
Aquaculture AquaGen (2008, Norway)
Dekalb (2000, USA)
Layers Hendrix Poultry Breeders (2005, Neth.) Bovans (1991, Neth.)
ISA (2005 from Merial, USA-France) Hisex (1998, Neth.)
Hendrix Genetics (Netherlands) Turkeys .
Hybrid (2007 from Nutreco, Neth.) Shaver (1988, USA)
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Broilers [ upbard (2005 from Merial, USA-France)
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Avian . R : :
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Pigs . . !
Newshams Choice Genetics (2010, USA)-see figure 7.2.
?ggg -\l/JaSrK;ess (Tyson Foods, Broilers Acquired Hybro from Hendrix Genetics (Netherlands) in 2007

Name of company is followed by parent company, year of acquisition, and country of incorporation.

larger fixed costs, higher returns can be achieved through larger scale. Firms
have also achieved economies of scope by investing in multispecies breeding.
These come about by sharing biotechnology research capacity as well as
market distribution networks across species.

Swine

Until the emergence of dedicated swine breeding companies in the 1950s and
1960s, genetic improvement in pigs was conducted primarily through national
breed registries. Organization of the breed registries was something of a
cooperative venture and would often receive technical support from public
research institutions. Individual breeders would register their prize purebred
breeding stock through a registry and provide data to track performance of
progenies. Breeding material might be exchanged or sold among members
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to improve the genetic performance of pedigree lines. Purebred offspring
from superior sires and dams would be sold to farmers who would crossbreed
these within their own breeding herd. In the 1950s, the first dedicated swine
breeding companies began offering superior crossbreds to farm producers
(Schneider, 2004). As with poultry breeding, these companies maintained
their own purebred nucleus herds and developed hybrid crosses with supe-
rior performance. Initially, these efforts focused on hybrid boars but later
expanded their scope to include hybrid sows and gilts and, more recently, to
boar semen administered through A.L

Over the last 15 years, the swine genetics industry has undergone signifi-
cant consolidation although it remains considerably less concentrated than
the poultry genetics industry (fig. 7.2). The leading global swine genetics
company is PIC, which is owned by Genus, a publicly traded UK firm (Genus
also invests in cattle breeding through its U.S.-based subsidiary, ABS Global).
Another major swine breeding company is Smithfield Premium Genetics, a
subsidiary of the vertically integrated pork producer and processor Smithfield
Foods. This firm only supplies swine breeding stock internally to producers
in the Smithfield system. Hypor (a subsidiary of Hendrix Genetics) and
Newshams (a subsidiary of Groupe Grimaud) also have significant swine
breeding R&D and international sales. Other important swine genetics
suppliers include two farmer-owned cooperatives, Danbred (Danish-based)
and TOPIGS (Netherlands-based). Farmer cooperatives in several countries
supply swine breeding stock to their members, but Danbred and TOPIGS

are unique in that they also export swine genetic material to other countries.
A number of smaller firms, nearly all based in North America or Western
Europe, invest in swine breeding.

The driving force behind consolidation in the swine genetics industry, much
like in the poultry genetics industry, has been economies of scale in breeding
and genetics. Unlike in poultry, however, independent pureline breeders
working through national breed registers continue to play a role in animal
genetic improvement and maintaining genetic diversity in commercial herds
(Mabry, 2004).* Producer-owned farmer cooperative breeding programs are
also active in some countries and in international markets.

Cattle

Genetic improvement in cattle continues to involve complex interactions
between individual breeders, organized through breed associations; artificial
insemination and embryo transfer companies; and public-sector research.
Figure 7.3 depicts some of these relationships with a particular focus on
artificial insemination companies and producer cooperatives. In the United
States, for example, nearly all live breeding cattle in both dairy and beef
production originate with breeders or seedstock producers whose revenues
from sale of breeding stock are relatively small.> Out of nearly 800,000 beef
cow-calf operations in the United States (USDA/NASS, 2009), between
70,000 and 75,000 operators, or around 10 percent, are associated with breed
registries. Only about a quarter of these operators earn significant revenues
from such sales, however, and a much smaller share earn annual revenues of
up to $10 million per year from sales of live breeding animals, semen, and
embryos (Marshall, 2010; Brester 2002). Similarly, out of some 70,000 dairy
farmers in the United States, about 10,000 sometimes breed animals for sale
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formed in 1994 as a consolidation of
breed registries for four major breeds.

SThe terms “breeder” and “seedstock
producer” are more or less interchange-
able, although the former tends to be
used more in the dairy industry and the
latter in the beef industry.
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Figure 7.2
Evolution of the global swine genetics industry
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Name of company is followed by parent company, year of acquisition, and country of incorporation. PIC, Hypor, Newshams,
Génétiporc, TOPIGS and Danbred appear to be the major multinational swine genetics companies. The other listed companies

appear to serve primarily domestic markets.

as breeding stock, but only about 1,000 operators consider this activity as a
significant source of revenue (Lawlor, 2010).

Opportunities for cross-breeding and hybridization as a form of intellec-
tual property protection have been more limited for cattle producers than
for poultry and swine producers. In beef cattle, the relatively long gestation
period (Narrod and Fuglie, 2000) combined with uncontrolled mating under
rangeland conditions have limited the use of more complex cross-breeding
schemes, although cross-breeding has made a significant impact in the beef
industry. Today, 75-80 percent of U.S. beef cows are crossbred (Cundiff,
2007), and the supply of crossbred bulls or semen from crossbred bulls is
the fastest growing sector of beef seedstock production (Marshall, 2010).
The greater use of crossbred bulls and the development of new protocols for
synchronizing heat in beef cattle may provide greater opportunities for more
complex hybrid breeding schemes in beef cattle in the future.

94

Research Investments and Market Structure in the Food Processing, Agricultural Input, and Biofuel Industries Worldwide / ERR-130

Economic Research Service/USDA



Figure 7.3

Private companies, producer cooperatives, and individual breeders in the global cattle genetics industry

Livestock (beef and dairy) producers

| Individual breeders/seedstock |
producers and breeder associations

A A
Y
Producers of
bull semen for Al Commercial Producers of
A (companies & some embryos for transfer
cooperatives)
Commercial

Non-commercial
(cooperatives, state
breeding schemes, etc.)

Al = artificial insemination

Sales & transfers of
—>Live breeding cattle

—>»Bull semen

——>»Embryos

crosses, and market genetic material of superior stock to producers.

Individual breeders/seedstock producers are a subset of livestock producers who sell superior stock to the breeding industry as well as
directly to other livestock producers. Commercial and non-commercial breeding companies and cooperatives work with individual breeders
to improve their stock. They evaluate the genetic performance of large numbers of animals bred by individual breeders, recommend

Dairy production, on the other hand, has been marked by the selection of
superior animals from within the same breed, particularly in North America,
where historically, the separation of dairy from beef production took place
earlier than it did elsewhere in the world. Holsteins, deriving from a breed
that originated in the Netherlands, now account for over 90 percent of U.S.
dairy cows.® Artificial insemination, combined with large-scale performance
recording schemes, has been the basis for investment in cattle genetics by
producer cooperatives and companies since the 1940s. In the 1960s and
1970s, North American holstein semen was exported to Europe on a rela-
tively small scale, but by the 1980s and early 1990s, bovine A.L. exports had
developed into a large commercial market. In 1983, the International Bull
Evaluation Service (Interbull) was founded with headquarters in Sweden,
which helped to foster international genetic comparisons and the development
of A.I. companies outside of North America. By the late 1990s, some of these
companies were significant competitors in the global market (Funk, 2006).

As with the poultry and swine industries, technological factors have strongly
influenced cattle industry concentration; but unlike with poultry and swine,
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6In recent years, there has been re-
newed interest in dairy cross-breeding,
both for the potential of hybrid vigor
and for the incorporation of traits that
may contribute to total lifetime profit-
ability, complementing the productivity
traits of dairy animals in current inten-
sive dairy systems. Cross-breeding has
also been a relatively more important
part of dairy improvement in develop-
ing countries, particularly in tropical or
subtropical environments where pure
European breeds might not be suited to
the production environment.
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breeding programs for cattle have been generally unable to distinguish
product lines. Each new technology is usually adopted by most major A.IL.
companies within a few years of being introduced, making price competi-
tion a major factor driving industry consolidation and globalization. A single
bull can, theoretically, produce 50,000 offspring in 1 year through A.L,

and techniques for freezing and storing semen, first developed in the early
1950s, facilitate the distribution of these progeny over a wide area.” Embryo
transfer can allow more rapid dispersion of genes from elite females, although
at nowhere near the rate A.I. allows for bulls. Embryo transfer technology,
which was first established commercially in the 1970s, was adopted by A.L
companies in the 1980s.8 Other technologies that have been adopted in the
industry include genetic marker technology (1990s) and sexed semen (2000s)
(Funk, 2006; Hassler, 2003; De Vries et al., 2008). More recently, single
nucleotide polymorphism chips were introduced after having been developed
through a collaboration involving a genetics-sequencing company whose
primary focus is human health (Illumina), USDA, U.S. and Canadian univer-
sities, and the major North American A.I. companies. These chips potentially
permit genetic evaluation of young sires much more quickly and cheaply than
traditional progeny testing (Van Raden et al., 2009; Strauss, 2010).°

As a result of these patterns of technology diffusion, consolidation to achieve
economies of scale and globalization have also occurred in cattle breeding,
although not to the degree observed in poultry or swine breeding. The
number of A.L. cooperatives and companies in the United States fell from
about 200 in 1950 to approximately 20 in the 1980s (Narrod and Fuglie,
2000). In fact, by 1981, 11 companies provided 90 percent of the bovine
semen processed in the United States; by the early 2000s, only 5 companies
accounted for the same share. This group included three large cooperatives or
cooperative alliances (Select Sires, Accelerated Genetics, and Genex/CRI),
one privately held company (Alta Genetics, with headquarters in Canada and
owned by a Netherlands-based holding company),'? and one publicly traded
company (ABS Global, which since 1999 has been part of Genus plc, based
in the UK). Together with the Canadian cooperative alliance Semex (which
has perhaps two-thirds to three-quarters market share in Canada), these
companies constitute the six major A.l. organizations in North America. In
Europe, cattle breeding organizations, whether cooperatives, companies, or
government schemes, often hold market shares of 75-100 percent in their
home countries, but no company has a European market share of over 25
percent (van Arendonk and Liinamo, 2003; Joint Research Council, 2007).
Another notable European-based company marketing bovine semen glob-
ally, in addition to Genus, is CRV (Netherlands based, owned by Dutch and
Flemish cooperatives), formerly known as Holland Genetics. Scandinavian-
based Viking Genetics was founded in 2008 to consolidate the activities of
cooperative-owned breeding programs in Denmark, Sweden, and Finland.

In addition to these companies, members of the French association of A.L
cooperatives (UNCEIA) and alliances of German cooperatives and breeding
associations (notably the Holstein breeding association DHV and coopera-
tive unions TopQ and NOG) export significant amounts of bovine semen.'! In
2009, UNCEIA, CRV, DHV along with VIT (German computing center for
cattle data), and Viking Genetics announced they were forming a research
consortium named EuroGenomics to aggregate the reference populations of
Holstein bulls (with breeding values from progeny tests and known DNA
profiles) used in their breeding programs. Finally, New Zealand-based LIC
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"The potential number of progeny
each year from a single bull through
A.L is much greater than the potential
number of progeny from a boar using
the same technique (Estienne, 1993).

8Embryo transfer technology can
allow the production of a larger num-
ber of potential A.L sires from elite
females or “bull dams,” which make it
particularly useful to the A.l. compa-
nies. It can also allow greater selection
intensity in females within dairy herds,
although it is only profitable if the very
top cows are used. With the exception
of Alta Genetics, few North American
A.IL. companies purchased and main-
tained females for multiple ovulation
embryo transfer (MOET) programs,
working instead with cooperator breed-
ers. More European companies (e.g.,
CRY, formerly Holland Genetics) did
maintain their own females. Embryo
transfers are available from many A.IL.
companies, from specialized embryo
transfer businesses, and from veteri-
nary practitioners; as with breeders
of live breeding stock, these embryo
transfer businesses are usually quite
small scale in terms of revenues and
numbers of employees (Funk, 2006;
Joint Research Council, 2007).

Other biotechnology companies
and research institutions have been
working on similar technology using
genomic information, but at present,
the Illumina chip provides more infor-
mation at lower cost (Strauss, 2010).

10A]ta Genetics was publicly traded
from 1993 through 1999, when it was
purchased by Koepon Holdings.

UIn addition, they illustrate within-
country consolidation. Although
France has around 40 A.I. coopera-
tives and around 20 cattle-breeding
institutions, recent consolidation has
left the top 5 cooperative unions with
over 60 percent market share (based
on UNCEIA data on semen doses).
Similarly, cooperatives in Germany
have consolidated, especially after
the reunification of East and West
Germany.
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(cooperatively owned but with some shares publicly traded) has branches or
agencies on several continents, in addition to its major position in the New
Zealand market. In China, the recent expansion of the dairy industry has
spurred the rapid growth of China Milk Products Limited (publicly traded on
the Singapore Exchange). Although it operates only in the Chinese domestic
market, by 2007, it had revenues from sales of semen and embryos, as well as
physical quantities marketed, at a level comparable with those of some of the
other companies mentioned in this chapter.

Agquaculture

The cultured fish industry has grown from only 11.3 million tons produced
in 1985 to over 68 million tons by 2008 (FAO). A number of companies have
emerged to supply superior genetic broodstock to aquaculture producers.
Technological advances have enabled researchers to breed and multiply
superior broodstock for a number of fish species, especially salmonoids like
Atlantic salmon and rainbow trout and Penaeus species like whiteleg shrimp
(P. vannamei). Although the fish-breeding industry is still in its infancy

and most of the breeders are small, there may be significant opportunities
for companies to enhance productivity through breeding and genetics and
respond to the growing demands from aquaculture producers for superior,
disease-free broodstock.

The emergence of a private aquaculture breeding industry is due in large part
to earlier government-sponsored research that acquired, characterized, and
improved fish genetic resources and established basic fish-breeding technolo-
gies. This has been especially apparent in Norway, which leads the world

in breeding improved salmonoid (salmon and trout) species, and the United
States, which has had notable successes in breeding shrimp. The modern
Norwegian aquaculture industry dates to 1971, when the government estab-
lished Akvaforsk (Institute for Aquaculture Research), with a mission to
develop and transfer fish-breeding technology to the private sector. Breeding
programs for Atlantic salmon and rainbow trout were established around this
time. A number of salmonoid breeding companies emerged from this under-
taking. One of the most successful is AquaGen, which was first established
in 1992 as Norwegian Salmon Breeding AS (Norsk Lakseavl AS). In 2008,
AquaGen was acquired by the German-based EW Group (see fig. 7.1).12
Similarly, the shrimp (Penaeus spp.) breeding industry got its start from
government-sponsored research in the United States. With financial support
from USDA, the Oceanic Institute at Hawaii Pacific University successfully
domesticated whiteleg shrimp (P. vannamei), which led to the development
of genetically superior, specific-pathogen-free (SPF) broodstock. This tech-
nology was commercialized by such companies as Hi Health Aquaculture,
Sygen, and Shrimp Improvement Systems (the latter, established in 1998, was
acquired in 2007 by the CP Group, a Thai conglomerate).

Animal genetics biotechnology

A final component of the animal genetics industry is a group of biotech-
nology firms that either provide technology services to breeding companies
or develop GM animals and fish. Most of these operations are small- or
medium-sized firms that offer genomic services to companies in agriculture,
health, and other life sciences sectors. A primary source of revenue for these
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12Genus, the global leader in cattle
and swine breeding, also acquired an
aquaculture breeding interest when it
purchased SyGen in 2005, but it quick-
ly sold off this enterprise to focus on its
core bovine and porcine businesses.
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companies is contract research with the larger animal-breeding companies.
One company, AquaBounty, has developed a GM salmon that reportedly
grows to harvest size in half the time it takes for conventional fish, and the
company is currently seeking regulatory approval for this product. A number
of other biotechnology companies are working on animal health technologies
(see chapter 6 of this report).

Regarding the use of biotechnology in the animal-breeding industry, our
survey found wide-scale use of marker-selected breeding but little investment
in transgenic animals or animal cloning. Concern about consumer acceptance
of transgenic and cloned animals for food uses was cited by several compa-
nies as a reason for their lack of interest in pursuing applications of these
technologies. For marker-selected breeding, however, companies perceive that
this tool will speed up the rate of genetic progress in productivity and quality
traits in animals and fish, and several companies have incorporated marker-
selected breeding into their R&D programs.!3

Table 7.1 lists the major breeding companies in each animal and fish sector of
the industry. In addition to the companies listed here, our survey identified 72
companies worldwide that appear to have some R&D investment in animal
and fish breeding. However, the companies listed in table 7.1 account for most
of the private R&D investments in this sector, especially for poultry, swine,
and cattle. The aquaculture and animal biotechnology sectors, on the other
hand, are composed mainly of small companies, including several others

not identified in this study. But the aggregate R&D spending by these small
companies is thought to be small.

The Market for Animal Genetics

As in the case of crop seed, farmers obtain their animal-breeding stock from
diverse sources, including self-supply and other farmers, so determining

the size of the commercial market for animal genetic material can be diffi-
cult. Moreover, the market may change over time. In developing countries,
commercial companies may supply only a small share of total farm demand
for breeding animals, but this share may increase over time as a country’s
livestock sector becomes more sophisticated and commercially oriented.

In high-income countries, the increased use of A.I. in bovine and swine

has reduced the number of live bulls and boars required to meet market
demand for sire services as A.I. allows each animal to fertilize many more
females. In hog production, the wider use of the “closed herd” system—in
which a farm establishes its own nucleus herd of purebred parent lines to
supply hybrid replacement gilts—has reduced the demand for replacement
gilts from commercial seed stock companies. But use of this system may
increase farm reliance on A.L. as a means of introducing improved genetics
into their nucleus herd. In cattle production, even though the markets for
live breeding animals—bulls and some replacement females—have a much
higher monetary value than the markets for semen and embryos, practically
all of the demand is met through individual breeders or small-scale breeding
schemes.!* In the tables below, we have compiled information from several
sources—estimates from companies and industry analysts as well as public
statistics on animal production—to construct our own estimates of the size
of commercial markets for animal genetics in the United States and for the
world. These estimates only cover the portion of the animal genetics market
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13T0 date, the use of genetic markers
in dairy cattle breeding has been more
effective in reducing or eliminating
deleterious qualitative traits than in in-
creasing quantitative production traits
(Funk, 2006).

Data are available for the mon-
etary value of international trade for
bovine semen and live bovine breeding
animals from the UN’s COMTRADE
database. In recent years, the value
of live breeding animals traded has
been two to three times the value of
semen traded. However, most of the
trade in breeding animals is among
geographically proximate countries.
For example, a number of European
countries report relatively high exports
of live bovine breeding animals, but
most of this trade takes place within
Europe (Gollin et al., 2009; D. Gollin,
personal communication).
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Table 7.1

Major research and development (R&D) firms in the animal genetics industry

Sector

Major R&D firms and producer organizations’

Main R&D locations

Poultry — boilers

Poultry — layers

Poultry — turkeys

Swine

Cattle
(beef and dairy)

Aquaculture

Animal genetics biotechnology

Cobb-Vantress (Tyson's Food, U.S.)
Aviagen (EW Group, Germany)
Hubbard (Groupe Grimaud, France)

Lohmann Tierzucht (EW Group, Germany)
Hy-Line International (EW Group, Germany)
ISA (Hendrix Genetics, Netherlands)

Aviagen (EW Group, Germany)
Hybrid (Hendrix Genetics, Netherlands)

PIC (Genus, UK)

Smithfield Premium Genetics (Smithfield Foods, U.S.)
Newshams Choice Genetics (Groupe Grimaud, France)
Hypor (Hendrix Genetics, Netherlands)

TOPIGS (producer cooperative, Netherlands)

Danbred (producer cooperative, Denmark)

ABS Global (Genus, UK)

Select Sires (producer cooperative, U.S.)
Accelerated Genetics (producer cooperative, U.S.)
CRI/Genex (producer cooperative, U.S.)

Alta Genetics (Koepon Holding, Netherlands)
Semex Alliance (producer cooperative, Canada)
CRYV (producer cooperative, Netherlands)

Viking Genetics (producer cooperative, Scandinavian countries)

LIC (producer cooperative, New Zealand)

AquaGen (EW Group, Germany)
Salmobreed (Norway)

Landcatch Natural Selection (Hendrix Genetics, Netherlands)

Troutlodge (U.S.)

Genomar (Norway)

Hi Health Aquaculture (U.S.)

Shrimp Improvement Systems (CP Group, Thailand)

Metamorphix (U.S.)
AguaBounty (U.S.)
lllumina (U.S.)

uU.s.
UK, U.S.
USA, France, Brazil

Germany
U.S.
Netherlands

U.Ss.
Canada

U.S., Canada

U.s.

U.S.

Netherlands, Canada
Netherlands
Denmark, U.S.

u.s
U.s.
u.s.
u.s.
Canada
Canada

Netherlands
Denmark, Sweden,
Finland

New Zealand

Norway — salmonoids
Norway — salmonoids
Scotland — salmonoids
U.S. — salmonoids

SE Asia — tilapia

U.S. — Penaeus spp.?
U.S. — Penaeus spp.?

uU.sS.
u.s.
U.S.

'Company names are followed by corporate owner and country of incorporation in parentheses.
2The main Penaeus breeding species are P. vannamei (whiteleg shrimp) and P monodon (tiger prawn).
Source: USDA, Economic Research Service survey.

supplied by commercial breeding companies and thus only cover a portion of
total farm demand for animal breeding material. Moreover, given the lack of
public data on these markets, these estimates are not definitive and subject to

some margin of error.

We estimate that sales of animal genetic material from commercial compa-
nies in 2006-07 were $4.06 billion globally and $1.35 billion in the United
States (table 7-2). The largest component of this was parent breeding stock
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Table 7.2
U.S. and global markets for animal genetics in 2006/07

Commercial sales

of breeding
materials’
United
Sector Types of breeding materials States  World
Million U.S. dollars
Poultry Female parent lines
(broilers, layers, 362 1,742

turkeys, and other fowl) Male parent lines

Swine Replacement sows & gilts
Live boars 675 1,303
Semen doses for A.l.

Cattle Semen doses for A.l. 297 931
Embryos
Aquaculture Fish eggs and fry 12 87

Prawn/shrimp larvae (broodstock)

Global total 1,346 4,062

n.a. = data not available.
A.l. = artificial insemination.

"Commercial sales include the sale of animal genetic material supplied by genetics companies
and producer organizations. In many countries, a share of breeding stock may be supplied by
farmers themselves or through breeding associations. Thus, the sales estimates are generally
below the total farm demand for animal genetic material.

Source: USDA, Economic Research Service.

for poultry hatcheries (broilers, layers, turkeys, and other fowl combined),
at $1.74 billion for the world market and $362 million for the United
States. Commercial penetration into the animal genetics market is highest
for poultry, at nearly 100 percent in high-income countries and lower but
increasing in developing countries.

For swine genetic material, we estimate commercial sales in 2006-07 to

be $1.3 billion globally and $675 million in the United States. The largest
component of this market is replacement gilts, and the fastest growing is A.L
According to the National Animal Health Monitoring Survey (NAHMS)
conducted by USDA’s APHIS, !> the share of sows on farms with 100 or more
head of hogs that were fertilized with A.L rose from 1.1 percent in 1990 to
82.6 percent in 2006 (USDA/APHIS, 2005, 2008).

Market penetration by commercial breeding companies is relatively low for
cattle, and farmers tend to rely on self-supply or purchases of breeding stock
from independent breeders or breeder associations. As a result, we do not
include sales of live breeding animals for cattle and instead focus on sales

of A.L doses and embryos. We estimate global market sales of semen and
embryos by commercial breeding companies to be $931 million per year in
2006-07. The total global market for these products was about $1.5 billion (the
difference is made up by semen or embryos provided by producer coopera-
tives that do not market outside of their membership, government A.I. schemes,
etc.). In figure 7.3., total global demand for bovine semen and embryos corre-
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ISNAHMS is conducted periodically
on nationally representative samples
of U.S. farms producing hogs, cattle,
poultry, fish, and other species.
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sponds to the area of the two overlapping circles, while the portion supplied by
commercial companies corresponds to the areas labeled “commercial.”

For the United States, commercial sales for bovine semen and embryos
amounted to about $300 million in 2006-07. The use of A.I. was widespread
in dairy cattle but was much less prevalent in beef cattle.!® However, the
number of embryo transfers for beef cows was roughly double the number for
dairy cows.!”

During the last decade, embryo transfer grew rapidly in Latin America
and Asia, grew more slowly in North America, and was relatively stable in
Europe. As noted, however, one major impact of embryo transfer in dairy
breeding has been the use of elite females in MOET herds to produce more
bulls for progeny testing by the A.I. industry.

For aquaculture, we do not have sufficient information to estimate the size of
the market for commercial breeding material, much of which has not been
genetically improved. Some aquaculture producers continue to rely on wild
seedstock and broodstock!® rather than supplies from hatcheries, but the use
of wild broodstock to restock fisheries is declining.

Research Spending in the Animal
Genetics Industry

In total, the global animal genetics industry spent $295 million on R&D in
2006-07, or about 7.3 percent of sales (table 7.3). Nearly half of this amount
is attributed to poultry breeding companies, where both sales and research
intensity were relatively high (at least 8 percent of sales). Research intensity
was lowest for the cattle sector, at less than 5 percent of sales.

While our survey identified 72 companies with at least some investments

in animal genetic improvement, research spending tends to be concen-
trated among a few firms. In the poultry sector, four firms accounted for 97
percent of poultry R&D worldwide. For swine and cattle, the top four firms
accounted for two-thirds of total industry R&D in both sectors. As previ-
ously mentioned, most of the companies in the animal genetics industry are

Table 7.3
Research and development (R&D) spending and research intensity by
the global animal health industry

R&D Breeding

Sector Companies! expenditures  sales  R&D/sales
Number Million U.S. dollars Percent
Poultry 18 141 1,742 8.1
Swine 16 96 1,303 7.4
Cattle (beef and dairy) 20 43 931 4.6
Aquaculture 17 6 87 6.5
Animal genetics biotechnology 5 10 n.a. n.a.
Global total 72 295 4,062 7.3

n.a. = data not available.
TCompanies that work on multiple species are counted only once in the total.
Source: USDA, Economic Research Service survey.
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16According to USDA’s Agricultural
Resource Management Survey
(ARMS), which selects different com-
modities each year for intensive study,
Al was used on 85.9 percent of dairy
cows in 2005 and 14.5 of beef cows
in 2008 (based on calculations by the
authors from raw ARMS data). ARMS
focuses on farms in major producing
States. USDA’s NAHMS survey for
cattle suggests somewhat lower rates
for A.I. According to NAHMS, 72.5
percent of all dairy cow pregnancies
in 2007 resulted from A.I. Also, only
1.4 percent of beef cow females were
inseminated artificially and 5.0 percent
were both inseminated artificially and
exposed to bulls. Over 90 percent of all
beef cow females were exposed only to
bulls, according to this study. A.L. was
somewhat more prevalent for beef heif-
ers than for beef cows (USDA, 2009a;
2009b). Differences in estimates may
stem not only from differences in
sampling frameworks but also from
differences in definitions, especially
for dairy.

17Embryo transfer quantity data are
available from such sources as the
International Embryo Transfer Society
(www.iets.org) and the American
Embryo Transfer Association (Www.
aeta.org).

18The term “seedstock” refers
to young juvenile animals that are
grown out in aquaculture facilities.
“Broodstock” refers to sexually mature
fish that are kept separate for breeding
and seedstock multiplication purposes.
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privately owned firms. Our compilation also includes a number of producer-
owned cooperatives that sell animal genetic material on a commercial basis
to nonmembers. Table 7.4 shows total R&D spending, sales, and research
intensity (R&D/sales) for publicly traded, privately owned, government-
owned, and cooperatively owned companies. The research intensity of coop-
eratives was only about half the level of other firms, but this finding largely
reflects the concentration of these firms in the cattle sector, where research
intensity is lower than in other animal sectors. There may be a dichotomy of
research intensities for privately owned companies. Research intensities of
the larger privately held companies may be similar to those of publicly traded
companies, but relatively small privately held companies may have lower
research intensities.

In 2006, companies based in the United States and Canada had about 40
percent of the global market for animal genetic material and accounted for
50 percent of global R&D spending by this industry (table 7.5). European
companies (Germany and the Netherlands are the leading countries)
accounted for most of the rest of the R&D spending and about 57 percent of
the global market. A number of foreign companies operate research stations
in the United States. For example, UK-based Genus plc, the world’s leading
private cattle and swine breeding firm, locates its principal breeding stations

Table 7.4
Animal genetics firms and research and development (R&D) by type
of company ownership in 2006/07

R&D Breeding

Type of ownership Companies! expenditures  sales  R&D/sales
Number Million U.S. dollars Percent
Publicly traded 6 62 642 9.7
Privately owned 54 195 2,518 7.7
Cooperatives 12 38 902 4.2
Global total 72 295 4,062 7.3

TCompanies that work on multiple species are counted only once in the total.
Source: USDA, Economic Research Service survey.

Table 7.5
The globel animal genetics industry by region in 2006/07
R&D Global R&D  Global market
Country Companies! expenditures Breeding sales R&D/sales share share
Number —— Million U.S. dollars Percent

North America 36 147 1,615 9.1 50 40
Europe-ME 31 144 2,330 6.2 49 57
Asia-Pacific 5 5 117 41 2 3
Latin America? 0
Global total 72 295 4,062 7.3 100 100

Note: Sales and research and development (R&D) expenditures are the totals for the companies incorporated in a particular country, including

their sales and R&D in other countries.
'Companies that work on multiple species are counted only once in the total.

2Several multinational animal breeding companies operate research stations in Latin America, but we could find no major local breeding compa-

nies in this region.
Source: USDA, Economic Research Service survey.

102

Research Investments and Market Structure in the Food Processing, Agricultural Input, and Biofuel Industries Worldwide / ERR-130

Economic Research Service/USDA



for both commodities in the United States. In our survey, we asked compa-
nies to break down their R&D spending by the share spent in the United
States and in other countries. When based on the location of R&D facilities,
the U.S. share of total industry spending on animal breeding and genetics
research increased from 45 to 51 percent of the global total.

Although our data do not show trends in animal genetics R&D spending over
time, we can compare our findings with those of a study that used a similar
methodology to estimate private-sector animal breeding research in 1996.
Narrod and Fuglie (2000) find that animal breeding companies (including
foreign firms doing research in the United States) spent $144.5 million on
R&D (in 2006 dollars) in the United States in 1996; our survey data showed
expenditures of $155.8 million in 2006. From 1996 to 2006, spending
declined in U.S.-based poultry R&D but increased in swine and cattle R&D.
Globally, total global breeding research on chickens (broilers and layers)
increased by about 7 percent in real terms between 1996 and 2006 (from
$122.9 million to $131.4 million), while swine breeding research more than
doubled (from $37.9 million to $95.8 million). For all animal genetics R&D,
we estimate that global private R&D increased by 43 percent in real terms
between 1996 and 2006.

Implications of Market Structure on
Animal Breeding Research

The growing concentration in the market for animal genetics has raised
concerns that these firms may hold excessive market power and reduce biodi-
versity (Gura, 2007). In a study of genetic diversity in commercial poultry
flocks, Muir et al. (2008) found that commercial chicken breeds contained
only about half the genetic diversity native to the species. The authors
concluded that “these findings indicate that the poultry industry, across both
the egg and meat pure-line stocks, has a narrowed genetic resource and
possibly a reduced capacity to respond to future industry needs” (p. 17316).
While the authors note that this reduction of diversity does not preclude
future genetic progress, it does raise a concern that some traits, such as those
conferring resistance to certain infectious diseases, may be lost through selec-
tive breeding in commercial poultry. It is not clear, however, that increased
concentration in the industry has contributed to reduced biodiversity. Bugos
(1992) reported that U.S. poultry breeding companies relied on a fairly
narrow genetic pool as far back as the 1950s, when there was a larger number
of companies engaged in commercial breeding. Similar concerns regarding
loss of genetic diversity have been raised for the dairy industry (Young and
Seykora, 1996; Hansen, 2000).

Among all sectors, levels of concentration in the animal genetics market
are highest for poultry, lower for swine, lowest for cattle, and unknown

for aquaculture. Given the absence of reliable information on the size of
genetics markets and the prices of genetic materials, it is difficult to assess
whether market concentration confers much market power to breeding
companies. Moreover, compared with other agricultural input sectors, the
size of the largest animal genetics companies are relatively small, certainly
smaller in terms of total revenue than the largest crop seed companies.
Genus (the one animal breeding company for which financial information
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is publicly available and the global leader in swine and cattle genetics) had
total net sales of $468 million in 2006, significantly below those of the
largest six crop seed companies.

The share of sales devoted to R&D (research intensity) shows a similar
pattern to the level of market concentration, with poultry at 8.1 percent of
genetic sales, swine at 7.4 percent, and cattle at 4.6 percent. But market
concentration is only one factor determining research intensity; others include
projected market growth, technological opportunities (i.e., the ease at making
genetic progress), the cost of research inputs, and the ability to appropriate
gains from research (Pray and Fuglie, 2000). Several of these factors favor
commercial poultry breeding, especially in broilers, and likely contribute to
the higher research intensity of this sector (Narrod and Fuglie, 2000).
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CHAPTER 8

Private Research and Development
for Animal Nutrition

Sun Ling Wang and Keith O. Fuglie

Processed or manufactured animal feed constitutes a major component of
purchased farm inputs. In 2005, purchased feed accounted for 20 percent of
total purchased inputs by U.S. farms and was equivalent to 22 percent of total
livestock sales (USDA/ERS). Globally, the feed industry supplied 700 million
tons of animal feed in 2008 (Best, 2009a). Like fertilizers, animal feeds

are for the most part bulk products with few R&D inputs by manufacturing
firms. However, specialty feeds and feed additives are high-value components
of the feed market and are more technology intensive. Firms that supply these
feeds have significantly higher R&D-to-sales ratios than manufacturers of
bulk feeds.

Types of Manufactured Animal Feed

For optimal growth, farm animals require regular amounts of macro-
ingredients (energy, primarily supplied by grains and grasses, and protein,
mostly supplied by legumes) and micro-ingredients (vitamins and minerals)
in their feed rations. In some cases, pharmaceuticals such as vaccines or anti-
biotics may be added to feed mixtures as well. Complete feed is industrial-
compounded (blended) feed that fully matches the nutritional requirements
of an animal and consists of both macro- and micro-ingredients. Premixes
are ingredients used in the making of complete feeds and consist of protein-
rich concentrates like soybean meal and/or micro-ingredients. Premixes may
be sold to manufacturers of complete feeds or directly to farmers, who do
their own blending with farm-grown or purchased grains to form complete
feeds. In terms of total volume, complete feeds constitute 85-95 percent of
total global feed sales while concentrates account for another 5-15 percent
(Nutreco, 2008). Complete feeds and concentrates are high-volume bulk
feeds. Specialty feeds and premixes of micro-ingredients, on the other hand,
are low-volume (0.1 to 0.5 percent of total feed volume) but high-value
products that may require significant investments in R&D to develop. We
can distinguish between three main market segments for animal feed: (1)
compound feed consisting primarily of complete feed and concentrates; (2)
nutritional feed additives consisting of micro-ingredient premixes, such as
vitamins and minerals, including enzymes, carotenoids, and amino acids;
and (3) medicated feeds, which contain animal health pharmaceuticals. This
chapter focuses on the first and second markets—compound feed and nutri-
tional feed additives. Medicated feeds, which are manufactured primarily by
pharmaceutical companies, were discussed in chapter 6.

Global Market for Manufactured Feed

According to industry sources (Best, 2009a), worldwide industrial produc-
tion of manufactured animal feeds increased from just under 600 million
tons in 1995 to 700 million tons in 2008 (fig. 8.1). Nearly all of this growth
took place in developing countries. While the crop commodities used as raw
ingredients by the feed industry are traded internationally, feed is manu-
factured primarily within the country in which it is consumed, due to the
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Figure 8.1
Global market for manufactured animal feed
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Source: USDA, Economic Research Service. Quantity of manufactured feed from Best (2009a).
The average price of manufactured feed was derived by ERS based on a composite of
international trade prices for corn and soymeal (IMF) plus a markup for processing and
marketing costs. Nominal prices are adjusted for inflation using the U.S. Gross Domestic
Product implicit price deflator (Economic Report of the President, 2009).

specific requirements of local markets and transportation costs. The largest
manufacturer of animal feed is the United States, with about 25 percent of
the global total, followed by the EU, China, and Brazil. The composition of
manufactured feeds varies regionally. In the United States, a high proportion
of manufactured feeds are concentrates due to the prevalence of onfarm feed
mills in which premixes are blended with farm-grown grains; in the EU and
developing countries, a higher proportion of the market is for complete feeds
(Nutreco, 2008).

The size of the global animal feed market is difficult to determine because
product quantity and price data are not readily available. However, due to

the competitive nature of the market, compound feeds generally track move-
ments in feed commodity prices, especially corn and soybean meal, the
principal raw materials used in their manufacture. To assess the size of the
global market for manufactured animal feed, we consider the compound feed
and nutritional additive market segments separately. For compound feed, we
estimate a global average price based on international trade prices for corn
and soybean meal plus a markup for milling and distribution costs.! For nutri-
tional feed additives, we rely on industry sources for the size of this market.
In constant 2006 dollars, we estimate that global sales of compound feeds
averaged around $100-120 billion between the mid-1990s and 2005 but then
increased to over $220 billion by 2008 due to the sharp rises in commodity
prices (see fig. 8.1).

Nutritional feed additives are a relatively small but critical component of the
animal feed market. This market consists of several unique segments, such as
specific vitamins, amino acids, feed enzymes, and carotenoids, which provide
animals with micro-nutrients as well as enhance digestion. Certain market
segments may be dominated by a few companies, and with limited competi-
tion, there may be more scope for monopolistic behavior on the part of these
firms. For example, in 1996, the U.S. company Archer Daniels Midland
(ADM) and four Asian companies were found guilty of price-fixing behavior
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10ur estimate of the average global
wholesale price of compound feed is a
weighted average of the price for corn
(U.S. No 2 Yellow, FOB Gulf Ports)
and soybean meal (Chicago soybean
meal futures, first contract forward,
minimum 48 percent protein). The
weights are 90 percent for corn and 10
percent for soymeal. We then assume a
30-percent markup over the cost of raw
ingredients to cover manufacturing and
distribution costs. Corn and soybean
meal commodity price data are from
the International Monetary Fund.
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in lysine, an essential amino acid used in animal feed, in violation of U.S.
anti-trust laws (Connor, 1997).

Generally, the level of market concentration in the manufacturing of bulk
animal feeds is low, with the top 10 companies accounting for only 17 percent
and the top 40 companies only 30 percent of global production in 2008 (Best,
2009b). However, in national or regional markets, and for specialty feed prod-
ucts, concentration ratios may be significantly higher.

R&D Spending by Animal Feed Companies

The U.S. agribusiness firm Cargill is the largest manufacturer of animal feed,
followed by the Thai conglomerate Charoen Pokphrand (table 8.1). Four
large European firms specialize in the production of nutritional feed addi-
tives, although some of the major producers of compound feeds, like Nutreco
and ADM, manufacture both kinds of feed. R&D investments are made to
develop new products, to reduce manufacturing costs through process innova-
tions, and to determine optimal feed use in animal husbandry. The four firms
listed in the table that specialize in nutritional feed additives have relatively
high research intensities, at about 5 percent of sales. Of the largest producers

Table 8.1
Major manufacturers of animal feed in 2006

Figures for animal feed business segment in 2006

Company Country Production R&D Sales R&D/sales
Million tons ~ —— Million U.S. dollars —— Percent

Major producers of bulk feeds (compound and premix concentrates)'

Cargill/Agribrands U.s. 17.5

Charoen Pokphrand Thailand 15.2

Land o' Lakes Purina U.S. 115 11.9 2,711 0.44

Tyson Foods U.s. 10.0

Zen-Noh Cooperative Japan 7.8

Nutreco Netherlands 6.1 19.1 3,808 0.50

Ucaab Cooperative France 4.0

AG Abri UK 3.8

Smithfield u.S. 3.6

Sadia? Brazil 35

Provimi Netherlands 3.3

Hope Group?® China 3.2

Archer Daniels Midland (ADM) U.s. 3.2

Ridley Australia 3.2

Perdigao? Brazil 3.0

Major firms specializing in nutritional feed additives

DSM Netherlands 77.9 1,371 5.68

BASF Germany 29.2 858 3.40

Degussa* Germany 314 651 4.83

Adisseo® France 25.1 632 3.98

'Some of these firms may also produce specialty feeds and nutritional feed additives.
2Sadia and Perdigao merged to form Brasil Foods in 2009.

SHope Group includes New Hope Group and East Hope Group.

4Degussa was acquired by Evonik Industries, also a German firm, in 2007.

5Adisseo was acquired by CNCC, a Chinese firm, in 2006.

Sources: USDA, Economic Research Service using feed production estimates from Best (2006) and estimates of feed sales and research and
development (R&D) from company annual reports.
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of bulk feeds (some of which also produce specialty feeds and nutritional
feed additives), we were only able to find sales and R&D figures for two.
The average R&D-to-sales ratio for these firms was only 0.47 percent, which
is similar to the findings of a 1975 survey of 31 animal feed companies in
the United States that reported an R&D-to-sales ratio by these firms of 0.70
percent (Wilcke and Williamson, 1977).

With such limited information, we can only make a rough estimate of R&D
spending by this sector. However, like synthetic fertilizer, manufactured
animal feed is largely a bulk agricultural input with relatively little R&D,

SO even an approximate estimate is not likely to distort the overall estimate
of agriculturally related private-sector research. To estimate R&D spending
by the animal nutrition industry, we use company R&D data when available
and for other firms we apply representative R&D-to-sales ratios to firms in
different segments of the industry. Moreover, we assume that only the 60
largest feed manufacturers worldwide conduct R&D. These firms accounted
for about 30 percent of global production in 2006. For firms in high-income
countries, we assume an R&D-to-sales ratio of 4.7 percent for manufacturers
of nutritional feed additives and 0.50 percent for producers of bulk feeds.
These are average R&D intensity ratios observed from eight feed manufac-
turers for which we have data, and the ratios are close to those reported by
Wilcke and Williamson (1977) in their 1975 survey of U.S. agricultural input
producers. For firms in developing countries, all of which produce primarily
bulk feed products, we assume half this level, or 0.25 percent of sales.
Evenson and Westphal (1995, table 37.1, p 2242-3) show that average R&D
intensities of manufacturing industries in developing countries are typically
half or less the average level for high-income countries. To estimate sales for
the top 60 producers in the industry, we apply our estimate of the average
global wholesale price of manufactured feed over 2000-2005 (in constant
2006 U.S. dollars) to the production volumes for 2006 reported by Best
(2009b). We use the 2000-2005 average price ($199/ton) rather than the 2006
price of feed to avoid distortions caused by the inflated feed prices during
2006-08. Firms are unlikely to change their R&D expenditures quickly in
response to price fluctuations.

Total R&D spending on animal feed by the largest 60 feed manufacturers
was $375 million in 2006 according to our estimates (table 8.2). Companies
located in the Europe-Middle East region made up 62 percent of the total,
with Dutch and German firms both ahead of U.S. firms. Relatively high
expenditures on animal feed R&D by European firms may be attributed

to stricter EU regulations on the use of antibiotics, hormones, and animal
parts in animal feed products. Such regulations increase farm demand for
alternative feed ingredients and husbandry methods to provide for animal
health and growth.

It is likely that at least half of the total R&D by the animal feed industry is
conducted for the nutritional feed additive segment of the market. The four
companies listed in table 8.1 that specialize in these feeds alone spent $163
million on R&D, or 43 percent of our estimate of total R&D by the feed
industry. Applying our method for estimating R&D for other firms in this
market segment raised the total for R&D spending on nutritional feed addi-
tives to $215 million, or 57 percent of the feed industry total.
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A comparison of our estimate for 2006 with estimates from five other studies
from 1975-96 reveals a declining trend in R&D spending by the U.S. animal
feed industry (table 8.3). The 1975 survey by Wilcke and Williamson (1977)
found $85 million (in 2006 dollars) in animal feed R&D in the United States
that year. Our estimate for 2006 was $64.5 million. Based on these study
findings, real R&D spending on feed in the United States declined by an esti-
mated 25 percent over the past three decades.

Table 8.2
Research and development (R&D) spending by the animal nutrition
industry in 2006

Sales and R&D by

companies with their Animal Animal
headquarters in: Companies nutrition R&D  nutrition sales R&D/sales
Number Million U.S. dollars Percent
North America 21 66 11,803 0.56
Europe-ME 32 232 17,036 1.36
Asia-Pacific 25 71 11,931 0.59
Latin America 6 7 3,101 0.22
Global total 84 375 141,770 0.26

Source: USDA, Economic Research Service estimates: Animal nutrition R&D from company
financial reports where available or estimated by applying representative R&D/Sales ratios to
firms in developed and developing countries; animal nutrition sales estimated from company
financial reports where available or estimated by multiplying a representative feed price to feed
production statistics for major firms given in Best (2009b).

Table 8.3
Private animal nutrition research and development (R&D)
in the United States

Year Source Industry R&D expenditures

Million U.S.  Million constant
dollars 2006 U.S. dollars

1975 Wilcke and Williamson (1977) 27.6 85.0
1978 Malstead, reported in Ruttan (1982) 30.0 76.7
1979 Malstead, reported in Ruttan (1982) 33.0 77.9
1984 Crosby (1987) 42.5 73.4
1996 Fuglie et al. (2000) 48.5 60.3
2006 Present study 64.5 64.5

Current expenditures adjusted for inflation by the U.S. Gross Domestic Product implicit price
deflator (Economic Report of the President, 2009).

Source: USDA, Economic Research Service using data from studies in table.
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CHAPTER 9

Research and Development in the
Food Manufacturing Industry

Kelly Day-Rubenstein and Keith O. Fuglie

Food manufacturing and processing companies produce intermediate food-
stuffs or edible products for human and animal consumption.! The process

of turning raw agricultural outputs into food, beverage, and tobacco products
adds significant value to agricultural raw commodities (Gopinath and Roe,
1996); in 20009, it accounted for 13.5 percent of total U.S. manufacturing in
terms of shipments (Bureau of the Census, 2010). Among all components of
U.S. food and beverage manufacturing, meat processing is the largest (about a
quarter of total shipments in 2009), followed by beverages, dairy, other food
products, grains and oilseeds, and fruits and vegetables.

The food manufacturing industry differs significantly from the input
industries reviewed in this report. Its work generally lies in post-harvest
processing. While some firms in this sector do invest in raising farm produc-
tivity—plantation companies and animal feed manufacturers, for example—
we have tried to include those investments within the respective farm input
industries described elsewhere in this report. While most of the investments
in R&D and innovation described in this chapter do not directly affect farm
productivity, we assess them to make our estimates comparable with those
of other studies. Klotz et al. (1995) report separate estimates of private-
sector R&D spending in the United States by agricultural input industries
and food manufacturing, and Alston et al. (2010) report combined estimates
for private-sector food and agricultural R&D. Previous global estimates of
private R&D spending have also lumped the food and agricultural input
industries together (James, 1997; Pardey et al., 2006). By including food
manufacturing R&D in our survey, we can compare our estimates with those
of other studies (including USDA/ERS, 2010b) and at the same time provide
richer detail about the share of the total directed at raising agricultural
productivity or post-harvest processing.

R&D Spending by the Food Manufacturing Industry

The food manufacturing industry encompasses operations ranging from
small processing firms to large multinational corporations. Large compa-
nies (defined here as those with annual revenue or turnover? in excess of $1
billion) account for a significant portion of this industry. Unfortunately, many
of these companies do not make their R&D investments public (see table
9.1). Cargill, the largest company in this sector, is privately held and does not
release R&D data. Others, such as Coca-Cola, consider R&D investment to
be confidential business information.

The leading companies in this sector—Cargill, Nestlé, ADM, and Unilever—
all have annual turnover or revenues in excess of $50 billion. R&D expendi-
tures as a percentage of sales vary significantly among the largest companies
that make this information available. Nestlé¢ and Unilever invested more than
$1 billion in companywide R&D in 2008, and Unilever’s ratio of R&D to
sales was over 2 percent. Sysco conducted no R&D at all.

113

IThe food and beverage manufactur-
ing sector transforms raw agricultural
materials into intermediate foodstuffs,
animal feed, or edible products. It does
not include the food wholesale, retail-
ing, or service sectors. The term “man-
ufacture” is used in the International
Standard Industrial Classification
(ISIC) and North American Industry
Classification System (NAICS) codes.
Several ERS publications refer to “pro-
cessing” industries, as do Gopinath
and Vasavada (1999). See also ERS
briefing room “Food Marketing
System in the U.S.: Food and Beverage
Manufacturing,” www.ers.usda.gov/
briefing/foodmarketingsystem/process-
ing.htm.

2The term “turnover” is used by
some companies, particularly those
in the EU. It refers to net external rev-
enue, which may be from product sales
but which also may include additional
sources of income (e.g., interest or
royalties).
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Table 9.1

Sales and research and development (R&D) for leading food manufacturing companies in 2008

Significant
Company Country Net sales R&D R&D/sales  agricultural R&D
—— Million U.S. dollars — Percent
Cargill U.S. 120,400 n.a.
Nestlé Switzerland 91,896 1,653 1.80 Cocoa, coffee
Archer Daniel Midlands U.S. 69,816 49 0.07
Unilever Netherlands 56,941 1,277 2.24 tea
Pepsi u.S. 43,251 282 0.65
Kraft Foods uU.s. 42,201 499 1.18
Sysco u.s. 37,552 0 0.00
Coca-Cola U.S. 31,944 n.a.
Wilimar International Singapore 29,145 n.a. Palm oil
Tyson Foods u.S. 28,130 n.a. Poultry
Smithfield uU.s. 14,264 91 0.64 Swine
Conagra U.S. 13,809 69 0.50
General Mills u.s. 13,652 205 1.50
Sara Lee U.s. 13,450 n.a.
Kellogg u.s. 12,822 181 1.41
Dean Foods U.S. 12,455 8 0.06
Land O Lakes U.S. 12,039 40 0.33 Forage, dairy
Sime Darby Malaysia 10,894 n.a. Palm oil, rubber
Heinz U.S. 10,071 n.a. Tomato
Bunge U.s. 10,028 34 0.34
Cadbury UK 9,960 128 1.28
Campbell U.Ss. 8,391 115 1.37 Tomato, pepper
Dole U.S. 7,732 n.a. Fruit

n.a. = not available.

Source: USDA, Economic Research Service using company annual reports and Fortune, May 8, 2008.

Many food manufacturing companies often operate in other sectors, which
further limits the usefulness of company data. For example, a considerable
portion of Unilever’s sales come from home and personal care products, and
the firm’s R&D spending includes investments in these areas as well as in
food manufacturing. Nestlé produces pharmaceutical products. Few of these
companies parse out their research spending by division or sector. Some
companies conduct research that is directly related to agriculture, such as
poultry breeding by Tyson Food (through its subsidiary, Cobb-Vantress) and
tomato and pepper breeding by Campbell, as well as research related to new
product development and process innovation.

OECD data on R&D in the food manufacturing sector

The Organisation for Economic Co-Operation and Development produces
the Business Expenditure on R&D (BERD) database (part of the Structural
Analysis Statistics, or STAN database). The database provides the most
comprehensive assessment available of R&D by the food manufacturing
industry in high-income countries as well as in a few other countries.3 All
data are at an industry level. The BERD data generally use an enterprise-
based approach: the R&D of a given enterprise will be classified by its
primary industry only. This, combined with missing information, may lead

to understating (or overstating) the R&D investment by a particular industry.

Changes in classification schemes can also affect R&D data, though this has
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been less of an issue with food manufacturing industries.* The OECD data
combine the food, beverage, and tobacco industries (International Standard
Industrial Classification codes 15 and 16).

Data are not available for every year for every country, so we report them
here as an annual average within 5-year intervals that cover 1990-94, 1995-
99, 2000-04, and 2005-07 (see table 9.2). According to the OECD, R&D
spending by the U.S. food, beverage, and tobacco manufacturing industry
averaged $2.37 billion per year during 2005-07 (constant 2006 U.S. dollars),
which was the highest amount globally, closely followed by Japan at $1.99
billion per year. Globally, R&D expenditures in food manufacturing have
increased over time. From 1990-94 to 2005-07, global food industry R&D
increased from $7.4 billion to $8.2 billion annually (in constant 2006 U.S.
dollars). R&D expenditures also grew as a percentage of food industry value
added (GDP), from 0.9 percent of GDP in 1990-94 to 1.6 percent of GDP in
2005-07 (table 9.2).

Research intensity varies considerably across countries (fig. 9.1). For the
United States, research intensity was 1.53 percent during 2000-2007, about
the average for all OECD countries. Among OECD countries, Switzerland,
Denmark, Norway, and the Netherlands have the highest research intensity
in food manufacturing. This partly reflects the presence of large, multina-
tional, and R&D-intensive food companies in these countries, such as Nestlé
(Switzerland) and Unilever (Netherlands) (see table 9.1). These companies
likely dominate national totals for these countries, even though some of the
R&D by these companies may be conducted outside their home country.
Generally, research intensity in the food industry is considerably less than
that in manufacturing industries as a whole. For the 2000-2007 period,
research intensity in all manufacturing industries among OECD countries
was 7.6 percent, compared with 1.6 percent in the food manufacturing
industry (OECD, 2010).

Figure 9.1

Research intensity in food manufacturing in OECD countries
R&D as a percent of food industry GDP

4See ISIC revision 3 and revision 4.

The figures show the average research and development (R&D)/Gross Domestic Product (GDP) percentage over 2000-2007.

Source: USDA, Economic Research Service using data from Organisation for Economic Co-operation and Development (OECD).
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Table 9.2
Food Industry research and development (R&D) expenditures by country and region

Average annual food R&D expenditure Food industry R&D/GDP

Company 1990-94 1995-99 2000-04 2005-07 1990-94 1995-99 2000-04 2005-07

—— Million constant 2006 U.S. dollars Percent
By region:
North America 1,956 2,191 2,481 2,471 0.82 1.18 1.23 1.74
Europe-ME 2,506 2,520 2,902 2,843 0.74 1.01 1.23 1.31
Asia-Pacific 2,945 3,272 3,205 2,826 1.25 1.82 1.93 2.57
Latin America 6 25 59 92 0.02 0.10 0.15 0.28
Global total 7,413 8,007 8,647 8,232 0.88 1.25 1.35 1.64
By country:
u.s. 1,868 2,094 2,381 2,371 0.87 1.24 1.30 1.91
Canada 88 96 100 100 0.35 0.58 0.56 0.55
UK 467 413 470 397 0.89 1.08 1.26 1.26
Germany 286 300 311 293 0.40 0.59 0.72 0.81
France 450 450 555 618 0.87 1.23 1.74 2.18
Switzerland 318 333 336 319 2.90 4.97 5.75 6.29
Netherlands 266 316 295 236 1.54 2.36 2.35 1.93
Belgium 85 110 120 120 0.87 1.45 1.81 1.98
Italy 102 99 112 113 0.23 0.34 0.42 0.49
Spain 88 95 150 206 0.28 0.50 0.87 1.15
Sweden 93 49 48 48 1.39 0.95 1.05 1.25
Denmark 81 90 188 144 1.11 1.68 3.94 3.49
Norway 49 70 88 93 1.21 2.23 2.31 2.45
Finland 109 74 59 44 219 2.39 2.31 1.95
Czech Rep. 1 3 3 6 0.09 0.12 0.12 0.23
Hungary 1 4 5 6 0.03 0.25 0.21 0.32
Israel 7 7 10 4 0.30 0.29 0.44 0.22
Turkey 9 9 17 25
South Africa 9 23
Japan 2,609 2,857 2,666 1,990 1.34 1.94 1.97 2.40
South Korea 171 135 174 228 1.51 1.40 1.80 2.58
China, Taiwan 31 59 37 0.51 1.17 112
Australia 122 192 185 223 0.85 1.53 1.57 2.04
China 77 283
Mexico 6 25 50 70 0.02 0.10 0.13 0.22
Chile 9 22
Other 138 155 172 215

Sources: USDA, Economic Research Service. R&D expenditures and GDP for the Food, Beverage and Tobacco manufacturing industry are from
OECD (2010). Local currency nominal expenditures were converted to U.S. dollars using official exchange rates (World Bank) and then adjusted
for inflation using the U.S. Gross Domestic Product implicit price deflator (Economic Report of the President, 2009).

Factors Affecting R&D Investment by
Food Manufacturing Firms

Private firms may invest in R&D to develop new products or to reduce manu-
facturing costs (i.e., raise productivity of labor, capital, and materials). Such
product and process innovations enable companies to maintain or expand
market share, develop new markets, lower costs, and earn higher profits.
While we have not found data that reveal how firms in the food manufac-
turing industry allocate R&D investments, we conjecture that most expendi-
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tures are likely allocated to new product innovation rather than cost-reducing
processing innovations. Several factors influence decisions to engage in the
various types of research in food manufacturing.

Consumer demand

Consumer demand plays a large role in the nature of R&D in the food
manufacturing industry. For example, innovations in poultry production
often have been motivated by consumer demand for certain traits, such as
greater amounts of white meat, pre-cooked products, and specialty shapes
(e.g., “chicken nuggets”). Consumer convenience is a key factor, driving
demand for time-saving products, such as bagged salad and prepared break-
fast sandwiches (Martinez and Stewart, 2003). Additionally, consumers
prefer variety in food products and product characteristics (Gopinath et al.,
2003). According to Datamonitor, more than 20,000 new food products are
introduced each year in the United States, although over 90 percent of these
are classified as “not innovative” (USDA/ERS, 2010a). Examples of new
product innovations include specialty Macaroni & Cheese from Kraft (e.g.,
the SpongeBob Squarepants variety) and private-label products (Martinez,
2007b; 2009). Delgado-Gutierrez and Bruhn (2008) note that high-valued
characteristics of new food products include superior taste, longer shelf life,
higher nutritional content, health benefits, and environmentally friendly
packaging. These factors would motivate technical change that is focused on
product development rather than process innovation.

New information or labeling requirements on the health attributes of food
products can spur private R&D. Unnevehr and Jagmanaite (2008) found that
new information on potentially adverse health effects of trans fats (and a new
U.S. Food and Drug Administration regulation requiring disclosure of trans
fat content on nutrition labels) led to fairly rapid development of new products
low in trans fats. Innovations included the development of improved oilseed
varieties, notably low linoleic soybeans, as well as dedicated supply chain
coordination to produce trans fat-free food product alternatives.

Intellectual property protection

The role of intellectual property protection, such as patents and trademark
protection, in motivating R&D spending by the food manufacturing industry
is unclear. The industry is complex, with many heterogeneous products.

Few new products succeed, and the industry is rife with product imitations
(Gopinath and Vasavada, 1999). Patents are expensive to obtain, and new
products with only minor modifications may not qualify for patent protection.
Moreover, the effective market life of many new product innovations is often
far less than the 20 years covered by patent protection. Thus, the transitory
nature of food products may reduce the incentive to invest in such an expen-
sive form of intellectual property protection (and the costs of enforcing it).
Moreover, process innovations (innovations that improve manufacturing effi-
ciency) are rarely patented (Gopinath et al., 2003). At the same time, intra-
industry knowledge “spillovers” have been shown to play a significant role
in the food processing industry (Gopinath and Vasavada, 1999). Spillovers
are gains from research and innovation that benefit the industry as a whole
but which cannot be fully captured by the firm(s) conducting the R&D.
Significant R&D spillovers are likely to contribute to underinvestment by
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firms in R&D because innovators have difficulty earning the full returns to
their innovations (Gopinath and Vasavada, 1999).

Industry structure

The food manufacturing industry has an oligopolistic structure in which
product markets tend to be dominated by a small number of large firms
(Gopinath and Vasavada, 1999; Bolotova et al., 2007). Factors favoring

this kind of market structure are economies of scale and scope found in
processing, joint distributing, storing, and marketing (Bolotova et al., 2002).
High sunk costs can act as a barrier to entry by new firms (Bolotova et al.,
2007; Paul, 2000).

Industry consolidation (i.e., decreases in the number of firms) has been
rising in a number of food manufacturing subsectors. Between 1972 and
1992, consolidation increased in eight U.S. food processing industries
(Ollinger et al., 2005). These include meat (packing and processing), dairy
(fluid milk and cheese processing), flour milling, corn milling, and feed and
soybean processing.

Concentration (the relative size of the largest firms in an industry) has also
increased as the structures of processing and manufacturing industries

have changed. Concentration in beef packing has been a concern since the
1880s (Paul, 2001). Paul (2001) reports that the top four U.S. meatpacking
companies accounted for 82 percent of the industry’s output in 1994. In hog
slaughter, the largest market share of the four firms reached 64 percent in
2004 (Martinez, 2007a). Concentration in the U.S. corn and flour-milling
industries exceeded 70 percent as of 1992 (Ollinger et al., 2005). The
industry has become increasingly vertically integrated (Henry and Rothwell,
1995; Martinez, 2002). Processed fruit and vegetable production is also often
vertically integrated.

Using firm-level data for the U.S. food processing sector, Gopinath and
Vasavada (1999) find positive correlations between patents and R&D and
patents and market structure. Firms with higher market shares earned more
patents, suggesting that they were also investing more in R&D. Additional
evidence shows that concentration in food manufacturing is positively
related to productivity of the sector, at least up to a point. Gopinath et al.
(2003) find that concentration in food industries improved total factor
productivity (TFP) growth in an invert-U fashion, with productivity growth
initially rising with higher concentration but eventually slowing in indus-
tries that became too highly concentrated. Chan-Kang et al. (1999) find that
productivity growth in the Canadian food processing sector fell behind that
of the United States when U.S. firms engaged in extensive mergers. Chan-
Kang et al. also find that R&D per unit of output for Canada was signifi-
cantly less than that for the United States. They attribute Canada’s general
underinvestment in technical change to its failure to cut costs and merge
manufacturers as the United States had done. Paul (2000) suggests that
concentration and enhanced productivity may have been the result of the
same stimuli, as indicated by cost economies, shortrun rigidities, innova-
tion, and product differentiation.
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Innovation and Productivity in Food Manufacturing

One reason to suspect a high share of R&D investment on product innova-
tions and a low share on processing innovations is that growth in TFP in the
food manufacturing industry is relatively low. The KLEMS-EU project has
developed internationally comparable estimates of value-added TFP growth
in primary and manufacturing industries, including the food manufac-
turing industry (O’Mahony and Timmer, 2009). Value-added TFP measures
output (net of payments for energy and raw materials) relative to the capital
and labor employed in the industry. At the industry level, growth in TFP
primarily reflects process innovations that reduce labor and capital required
to produce outputs.

From 1980 to 2006, TFP growth in food manufacturing was substantially
below that in total manufacturing and agriculture in the United States, the
UK, the “Eurozone,” and Japan (table 9.3). While TFP in total manufac-
turing in the United States increased by 92 percent during the period, TFP
in food manufacturing grew by only 7.8 percent. U.S. agricultural TFP
growth grew by 146 percent over the same period. Other countries show
similar patterns. Japanese food manufacturing actually registered a sharp
fall in food manufacturing TFP even as its total manufacturing TFP grew
by over 50 percent. The valued-added TFP indexes shown in the table indi-
cate the rate of capital- and labor-saving technical change in an industry,
and findings reveal that relatively little of this innovation occurred in food
manufacturing overall.

Gopinath and Roe (1996) suggest that many of the sources of productivity
growth in food processing lie outside the sector, especially through link-
ages with primary agriculture. Using U.S. data from 1960-91, they find that
the food manufacturing industry benefitted from productivity growth in the
primary agricultural sector, which led to more abundant, lower cost raw
materials for processing. Paul (2000) cites studies that found that produc-
tivity growth in the agricultural production sector (i.e., before the farm
gate) reduced costs in the food processing industry in the United States and
the UK.

Table 9.3
TFP growth in agriculture, food, and total manufacturing in OECD
countries, 1980-2006

Country or Agriculture, Food Total

region forestry, and fishing manufacturing manufacturing
TFP! index in 2006 with base year 1980=100

u.sS. 245.8 107.8 192.3

Eurozone? 288.1 104.2 149.2

UK 192.9 121.8 190.4

Japan 112.7 57.2 151.0

OECD = Organisation for Economic Co-operation and Development.

Total factor productivity (TFP) is based on value-added output relative to capital and labor
inputs employed in the industry.

2The Eurozone consists of Austria, Germany, France, Belgium, Netherlands, Luxembourg, Italy,
Greece, Spain, Portugal, and Finland.

Source: USDA, Economic Research Service using EU-KLEMS.
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Conclusions

Firm-level data on food manufacturing R&D are limited and incomplete.

Data from OECD’s Business Expenditure on R&D, which provides industry-
level data by country, suggest that expenditures on food manufacturing R&D
increased, both in real expenditures and as percentage of industry value added.
Research intensity in food manufacturing, however, is low compared with that
in manufacturing as a whole and in other agricultural input industries.

Among the drivers of R&D in this sector, consumer demand is particularly
important. Convenience is one of the most desired traits among consumers;
others are quality and value. Consumers expect many new products with
these characteristics; as a result, the food manufacturing system moves
swiftly in the area of technical change. Most of the R&D in the industry
appears to be directed to product, as opposed to process, innovations.

Formal intellectual property protection plays a smaller role in motivating
research. The industry abounds with imitators, and products change quickly.
While patent protection is used, it is generally too costly for most innova-
tions, particularly because the 20-year period of protection provided by
patents usually is not needed.

The food manufacturing industry is oligopolistic in structure. The level of
industry concentration in subsectors of the food industry may affect incen-
tives for research. Studies have found that concentration is correlated with
productivity growth in the industry. Thus, concentration is most likely posi-
tively related to research investments. Productivity growth in food manufac-
turing (as measured by value-added TFP), however, has been small relative to
that of total manufacturing and agriculture. The value of some kinds of inno-
vations, such as new products with novel characteristics, may not be reflected
in this TFP measure.
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CHAPTER 10

Private Research and Development
for Biofuel

Carl E. Pray, Rupa Karmarkar-Deshmukh, and Keith O. Fuglie

Agriculture in the 21st century faces two major challenges: meeting the
rising food and livestock feed demand from a growing and wealthier world
population and helping to meet the rising demand for biofuels for transporta-
tion. The second and “newer” challenge is driven by high oil prices, govern-
ment policies, and increased societal concerns about the role of fossil fuels in
global warming. Until a decade ago, agriculture had met such challenges by
increasing the amount of land area under cultivation globally and increasing
crop and livestock yields through the development and application of new
farming practices and technologies. Since 2006, the simultaneous expansion
of biofuel production and a rapid rise in food prices has raised concerns that
agricultural supply might not be keeping pace with these increased demands.

The term “biofuel” encompasses all types of renewable fuels that are derived
from biological feedstocks and are used as transportation fuel, as fuel for
domestic cooking and heating, or as an energy source for industry. Ethanol
(which is also used as an industrial solvent and in alcoholic beverages) is the
most popular biofuel and is made from crops with a high starch or sucrose
content, such as corn and sugarcane. Biodiesel, the second most widely

used biofuel, is extracted from oil-bearing seeds, such as soybean, rapeseed
(canola), and crude palm oil.

We find that private-sector investment in biofuel research was about $1.47
billion worldwide in 2009. In comparison, the major private oil companies
in high-income countries and Brazil spent at least $6 billion on R&D in the
same year—primarily on R&D on fossil fuels.! The biofuel research invest-
ment is a relatively small amount compared with the $10.4 billion spent by
the private sector on agricultural input research in 2009 and the $11.5 billion
spent on food industry research in 2007 (the last year of comparable data -
see chapter 1).

Global Production of Biofuels

A combination of such factors as climate change, energy security, and oil
prices has led to the biofuel revolution, which has increased the demand
for ethanol and biodiesel. Global biofuel production has more than doubled
between 2005 and 2009 (fig. 10.1).

Government policies in the United States; the EU; and some developing
countries, such as Brazil, India, and China, require that a certain percentage
(5-25 percent) of automotive fuel used consist of ethanol or biodiesel. These
policies, along with increasing public support for a reduction in greenhouse
gas emissions from fossil fuels, have contributed to the sharp increase in
demand for biofuels. Supply of biofuels has often been subsidized at either
the biofuel factory level or the feedstock level. The combined effect of these
policies has driven much of the expansion of biofuel production.
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Among all countries, the United States and Brazil have dominated ethanol
production, and Germany and the United States have led in biodiesel produc-
tion (table 10.1). These countries, which have the largest domestic market
demand, have been in the forefront of biofuel production. Brazil pioneered
commercial biofuel production due to a combination of optimal growing
conditions for sugarcane (the most efficient biofuel feedstock) and early
government intervention, such as mandates, production subsidies, and
research and development programs to increase biofuel productivity and
develop engines that could run on biofuel. These initiatives led to rapid
increases in ethanol production and the manufacture and rapid spread of vehi-
cles that run on 100 percent ethanol, starting in 1979 (Matsuoka et al., 2009).
Some developing countries, such as India and China, are also beginning to

Figure 10.1
Global biofuel production
Billion U.S. gallons
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Source: USDA, Economic Research Service using F.O. Licht (2009).

Table 10.1
Countries that produced the most biofuel in 2008
Share of global
Country biofuel production Main feedstock
Percent
Ethanol
United States 51 Corn
Brazil 38 Sugarcane
European Union 4 Sugar beets
China 3 Corn
India 0.6 Sugarcane
Global ethanol share for countries listed 96.6
Biodiesel
Germany 19 Rapeseed
United States 17.5 Soybean
France 14 Rapeseed
Brazil 10 Soybean, castor
Argentina 5 Soybean
Thailand 3.5 Palm Oil
Global biodiesel share for countries listed 69.0

Source: USDA, Economic Research Service using data from F.O. Licht (2008).
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meet some of their energy and fuel demand through policies and initiatives to
support production and use of energy crops.

As the governments of more countries require the use of biofuels, they may
increasingly rely on trade to meet domestic biofuel demand. Developing
countries in tropical regions often have a competitive advantage in biofuel
production. Brazil has become the largest exporter of biofuel, posting a
record 1.365 billion gallons of ethanol shipped in 2008, an increase of 45
percent over 2007 (Biofuels Digest, 2009a). Brazil’s rapid growth in biofuel
production can be attributed to land available for cropland expansion and the
high (and rising) productivity of its sugarcane-growing system. These factors
have also enabled Brazil to expand food production, as land planted to food
crops has kept pace with the area sown to sugarcane (F.O. Licht, 2008).

Figure 10.2
The U.S. biofuel industry supply chain
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The structure of the biofuel industry is illustrated in figure 10.2. Agricultural
input firms sell seeds, fertilizer, farm machinery, and other inputs to farmers.
Farmers produce feedstock, such as corn, sugarcane, or rapeseed, and sell it
to ethanol and biodiesel producers. Biofuel producers combine the feedstock
with enzymes, yeasts, thermal energy, labor, and capital to make the ethanol
and biodiesel. Producers usually sell the ethanol and biodiesel to blenders,
who add the product to gasoline or diesel produced from fossil fuel. The
blenders then sell the blended fuel to consumers for their autos, tractors,
trucks, and, in the future, possibly airplanes.

In 2011, virtually all commercial biofuel is from first-generation feedstocks
(i.e., sugarcane, corn, soybean, and rapeseed). Ethanol and biodiesel are
produced by major agribusinesses, chemical companies with agricultural

or manufacturing infrastructure in place, or specialized biofuel companies.
Among the big commodity companies, ADM is leading in biofuel produc-
tion, with Cargill and Bunge making much smaller investments. POET leads
the independent biofuel producers and is the leading producer of ethanol

for biofuel in the United States. The Spanish company Abengoa, which is
involved in telecommunications and transportation as well as alternative
energy, has invested substantially in biofuels in the United States as well. Oil
companies have also entered into the business—Valero Energy Corporation,
the largest U.S. oil refinery company, bought the biofuel company VeraSun
Energy in 2009 after VeraSun went bankrupt. Shell has entered into a joint
venture with Cosan, the largest sugarcane-based ethanol producer in Brazil,
and Petrobras has been buying sugar and ethanol companies in Brazil. But so
far, the oil companies are relatively small players in the production of first-
generation biofuels.

Biofuel R&D Conducted by Industry

It is relatively easy to find general information about the kind of research

and technology being conducted by development firms, but it is consider-
ably more difficult to determine the amount of money being spent on biofuel
R&D by companies in the biofuel supply chain. Most companies that produce
only biofuel are privately held and do not report their R&D. For most other
companies in the supply chain, biofuels or the inputs for biofuel produc-

tion account for a small part of their business and their R&D expenditures.
Although many of these companies are publicly held and report their total
R&D spending, almost none reveal R&D allocations toward improving
biofuel production or use. The estimates that we provide are based on the
scattered data available from interviews with company officials, company
websites and annual reports, or the press. Using this information, we estimate
expenditures on biofuel-related R&D for each segment of the supply chain
globally in 2009.

Companies and government research institutes use R&D to develop a variety
of pathways to bioenergy production (fig. 10.3). Companies are working on
improving a variety of feedstocks ranging from corn and sugarcane to algae.
Improvements in processing are also being explored to make biofuel econom-
ically viable and environmentally friendly. Finally, companies are continually
conducting research on the many different forms of bioenergy. Some of these
end products, such as ethanol, have to be blended with gasoline to fuel most
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Figure 10.3
Current and potential pathways to bioenergy production
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current vehicles; others are hydrocarbons that can be directly substituted for
gasoline or diesel—these are now called “drop-in” biofuels.

Some firms specialize in improving or reducing the cost of one component

of one pathway. For example, Mendel Biotech is specializing in improving
the productivity of cellulosic feedstuffs, such as miscanthus. Other firms

are working on an entire pathway or several pathways, usually in collabora-
tion with other firms. As these pathways get closer to commercialization, the
research focus will shift to increasing the efficiency of the entire supply chain
(Richard, 2010). Collaborations, joint ventures, mergers, and acquisitions
have been driven by the importance of increasing the efficiency of the entire
supply chain as new forms of biofuel become commercially viable.

The first component of the biofuel supply chain contributing to biofuel
research is agricultural input companies that work to improve the productivity
of biofuel feedstocks, such as crops, grasses, wild plants, and algae. This
group includes large companies, such as Monsanto, Syngenta, DuPont, and
BASEF, as well as some small biotechnology firms. These firms are developing
new crops, new varieties of existing crops, and new traits for these crops that
will maximize their usefulness as biofuel feedstocks.

Major seed-biotechnology-chemical input developers, such as Monsanto,
Syngenta, and DuPont, recognize the profitability of the biofuel crop market

for corn (their major seed crop) and have shifted R&D resources to screen elite
corn lines and develop hybrids that can produce more ethanol per acre. They
also seek to develop varieties of new energy crops (e.g., switchgrass, miscan-
thus, and jatropha) through inhouse research and investments in small biotech
companies. For example, Monsanto is an equity shareholder of both Mendel
Biotech and Ceres, Inc. In addition, both Syngenta and Monsanto have made
major investments in sugarcane R&D. In 2008, Monsanto spent $290 million to
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buy two Brazilian companies, CanaVialis and Alellyx, which were considered
leaders in sugarcane breeding and biotechnology (Monsanto, 2008). Together,
these firms spent $32 million on sugarcane R&D in 2008 (BNDES & CGEE,
2008, p. 65). Syngenta has been collaborating with the Queensland Institute

of Technology (Australia), the Agronomy Institute of Campinas in Sao Paulo,
Brazil, and several other organizations to develop technologies for cellulosic
ethanol from sugarcane (Syngenta, 2007). In 2009, BASF also made a commit-
ment to work on sugarcane in Brazil (BASF, 2009).

The major agricultural seed-chemical-biotechnology companies collectively
spent $2.08 billion per year on average for crop breeding and biotechnology
research in 2007-09 (see table 2.3). We estimate that about 10 percent of that
amount, or $208 million per year, was on biofuel-related R&D. We then add
the $32 million that was being spent by Monsanto’s new Brazilian acquisi-
tions on sugarcane/biofuel R&D? for a total of $240 million.

Several small biotechnology firms have been conducting research to develop
feedstocks with higher cellulosic content and lower lignin content for more
efficient net energy output (Sticklen, 2007). For example, Ceres, Inc. has
been investigating higher yielding switchgrass; Edenspace Corporation has
been developing commercial corn hybrids that have lower cost conversion
to ethanol (BRDI, 2007); Mendel Biotechnology, Inc. has been developing
miscanthus varieties that are high yielding, can be propagated commer-
cially by seed, and are not invasive. Industry sources estimate that the small
firms focusing on developing cellulosic biomass for bioenergy, led by Ceres,
Mendel Biotechnology, and the forestry breeding and biotechnology firm
Arborgen, spent at least $50 million on biofuel-related R&D in 2009.

The next component of the biofuel supply chain is the farmer who produces
the corn, sugarcane, soybeans, palm oil, and biomass and the forestry industry
that produces woody biomass. Few farms in the United States or the EU are
large enough to conduct their own R&D, but a number of farmers have estab-
lished cooperatives to invest in ethanol production from corn. A few of these
biofuel cooperatives may be supporting research and engineering activity

to improve the efficiency of their biofuel production. In Brazil, sugarcane
producers and sugar mill owners who also run sugarcane plantations tax them-
selves to support $23 million of sugarcane and ethanol research at Centro

de Tecnologia Canavieira (CTC) (BNDES & CGEE, 2008, p. 164). Some of
the largest plantation companies in Malaysia and Indonesia are big enough to
capture benefits from research and conduct substantial research on biofuel from
crude palm oil. Three major Malaysian plantation companies—Sime Darby,
Asiatic Development Berhad, and IOI-Golden Hope—spent over $40 million
on R&D in 2008 according to their annual reports. Most of this work focused
on improving palm oil production, but some of it is specifically for biofuel
technology from palm oil and for second-generation biofuels® using waste
from palm oil processing and palm oil trees. In addition, these companies are
collaborating with biotech companies, such as U.S.-based Synthetic Genomics,
to map the palm oil and jatropha genomes (ACGT, 2010).

Some forestry companies have announced investments in biofuels R&D. For
example, in 2008, Weyerhaeuser and Chevron announced a new joint venture
called Catchlight Energy, which was aimed at developing biofuels from
forest-based material. In 2009, Weyerhaeuser spent $51 million on research,
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including $22 million in its “corporate and other” business segment where
it records financial information from its Catchlight Energy joint venture
(Weyerhaeuser, 2009a; 2009b). It is reasonable to believe that most of this
$22 million “corporate” R&D is directed toward developing biofuels from
forestry biomass. Most of the research conducted at CTC is also biofuel
related. In contrast, most of the palm oil companies’ R&D is not spent on
biofuels. R&D expenditures allocated to biofuels by this group may account
for only about a quarter of total R&D investments, or about $10 million
per year. Until we can obtain more accurate numbers, we assume that the
Southeast Asian plantation companies, CTC, and the forestry companies
spent at least $50 million on biofuel research in 2009.

Companies that seek to use algae as a feedstock for biodiesel are also making
substantial investments in biofuels-related R&D. Some of the largest compa-
nies in the United States engaged in algal research for biofuel are Algenol,
Sapphire, Solayzmes, and Synthetic Genomics. Scientists associated with the
industry reported that algal fuel companies are spending about $200 million
annually on biofuels. Of that amount, Synthetic Genomics is reportedly
receiving $60 million a year from ExxonMobil (Chang, 2009).

Among the current U.S. biofuel producers, a number of firms are conducting
R&D activities, many with the support of the U.S. Government. ADM has

a joint venture with Conoco Phillips to develop second-generation biofuels.
ADM'’s total research budget was $45 million in 2008 (ADM, 2009). POET
is investing in research to improve the efficiency of its corn-based ethanol
production. In addition, POET is working with Novozymes and others to
develop a cellulosic ethanol facility. The U.S. Department of Energy (DOE)
is providing up to $80 million to help fund this effort. Under the terms of

the grant, POET is required to match the DOE funding (POET 60 percent,
DOE 40 percent) over 2 years. Industry representatives report that most of the
research by medium-sized and smaller biofuel companies is financed by DOE
or USDA. The smaller companies concentrate primarily on second-genera-
tion biofuels, while some of the larger companies (such as POET and ADM)
conduct substantial, inhouse research on first- and second-generation biofuels.

R&D expenditure data for biofuel firms (other than oil companies) outside
the U.S. are equally difficult to find. One European biofuel firm for which
data on R&D are available is Neste Oil. Neste is developing processes that
can produce biodiesel from all types of vegetable oils and fats and spent

$52 million on R&D in 2009 (Neste Oil, 2010). We estimate that biofuel
producers spent about $100 million for R&D in 2009: $40 million to $50
million by U.S. biofuel producers plus the $52 million reported by Neste Oil.

In recent years, a few large oil and gasoline companies have also started to
invest in biofuel R&D. So far, these companies are focusing investments

on first-generation biofuels—mostly in Brazilian sugarcane. For example,

in 2008, BP announced an agreement to invest $1 billion in a Brazilian
sugarcane-based ethanol factory (BP, 2008), and Shell recently agreed to a
joint venture with Cosan in Brazil. R&D investments of these companies are
also targeted at the development of second-generation biofuels from cellu-
losic sources—sugarcane bagasse, corn stover, miscanthus, switchgrass, and
wood waste—and third-generation biofuel feedstocks such as algae. The oil
and gas companies are also conducting or financing research and engineering
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development on the transportation and blending of ethanol and the effects of
different ethanol blends on engine performance.

Shell reports that it has been engaged in biomass R&D for 30 years and has
biofuels research and technology centers in Chester, UK; Houston, TX (U.S.);
Amsterdam, Netherlands; and Bangalore, India (Royal Dutch Shell, 2008). In
addition, Shell collaborates on biofuels R&D with six university and govern-
ment research programs in the United States, the UK, China, and Brazil

and has equity stakes in the small cellulosic biofuels research companies
Codexis and Iogen. BP is investing $50 million a year for 10 years in biofuel
R&D at the Energy Biosciences Institute (EBI), which has its headquarters

at the University of California, Berkeley. EBI is a partnership between BP,
UC-Berkeley, DOE’s Lawrence Livermore Laboratory, and the University of
Illinois. BP also has its own inhouse biofuels research program and research
collaborations with other companies and institutes around the world.

The only oil and gas companies that have stated the amount of their invest-
ment in biofuel R&D are ExxonMobil and Petrobras. ExxonMobil announced
in 2009 that it planned to invest $600 million over 5 years in research on
biofuels from algae (Howell, 2009). Half of this money would be spent on
research by the biotech company Synthetic Genomics and the other half
would be spent on inhouse research. Petrobras is spending about 8 percent of
its total R&D budget on biofuel, or $80 million annually (Petrobras, 2010).
ExxonMobil’s annual expenditure of $120 million ($600 million prorated
over 5 years) is about 14 percent of its total corporate research budget in
2008. If we assume that ExxonMobil and other major oil firms (BP, Shell,
Chevron, Total, ENI, and ConocoPhillips) are also investing that percentage
of their total research in biofuels R&D and that Petrobras is spending $80
million, then investment by this segment of the biofuels supply chain would
be $677 million in 2009. This is likely an underestimate of the global total
by oil companies because many national oil companies like Malaysian-based
Petronas, Chinese National Petroleum Corporation, China National Offshore
Oil Corporation, and Indian National Oil Company are also investing in
research on biofuel.

The newest startup biofuel companies are focusing their research on devel-
oping processes that will convert sucrose or biomass into “drop-in biofuel,”
also known as green gasoline or green diesel (in Brazil it is called Canadiesel
because it is made from sugarcane). These companies use engineered yeasts
and bacteria to produce biofuels that are identical in chemical makeup to
gasoline or diesel and therefore do not require blending with fossil fuels.
Several leaders in this field—Amyris, Codexis, and Gevo—went public and
reported a total of $82 million in R&D spending for 2009.

Enzymes and yeasts are important inputs to the bioethanol conversion
process because the complex carbohydrates in biomass need to be broken
down into simpler sugars that can then be fermented to produce ethanol
(Sheehan and Himmel, 1999). The critical difference between feedstock
conversion technologies is the enzyme or bacteria used to treat the biomass
(because using the right enzymes for a given feedstock is crucial to obtaining
energy-efficient ethanol at the end of the process). Novozymes is the biggest
supplier of enzymes for first-generation biofuels, followed by Genencor.
Diversa, an enzyme company that became part of Verenium in 2007, is
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another major player and is partnered in a joint venture with BP to produce
second-generation ethanol from sugarcane bagasse in Florida. Novozymes
and Verenium reported total R&D investments of $60 million to $70 million
in 2009. Based on interviews with industry members, we estimate that these
firms spent about a sixth of their total R&D on biofuels (with Genencor
spending a similar amount), for a total R&D investment of $31 million annu-
ally by the enzymes supply component of the biofuels supply chain.

The other suppliers of inputs to the biofuel industry are firms that build
equipment for the biofuel factories. Some of the leaders in this industry are
ICM and UOP (Honeywell) in the United States, Dedini in Brazil, and Praj
in India and elsewhere. Praj reported investments in R&D of $4 million in
2009-10 million annually (Praj, 2010-2011), and Dedini contributed about
$10 million to the Sao Paulo government’s biofuel research program. We
do not have data for the other companies that build factory equipment but
assume that they invest amounts about equal to that of Dedini. Total invest-
ments for the four companies are thus estimated at $40 million per year.

At the end of the supply chain are consumers who fill up their vehicles with
the blended gasoline or biodiesel or other form of biofuel. Car manufac-
turers such as Ford and General Motors, tractor manufacturers such as John
Deere and Mahindra & Mahindra, and the companies that supply parts to
these companies have shifted some of their research and engineering efforts
to develop modified engines that accommodate the properties of the new
biofuels or biofuel blends. The manufacturers of airplane engines and airline
companies themselves have been testing and modifying their engines to

use biodiesel. However, we do not have any information on the investment
amounts that these companies may be making in biofuel R&D and therefore
exclude this segment of the supply chain from our estimates.

For 2009, we estimate total private-sector investment in biofuels R&D at
$1.47 billion (table 10.2). Although we do not have detailed data on trends in
biofuel R&D, it is clear that investments have risen in recent years, particu-

Table 10.2

Biofuel research and development (R&D) by private firms in 2009
Type of firm R&D

Million U.S.
dollars

Large agricultural seed-biotechnology-chemical input companies 240
Small biotechnology companies developing cellulosic biomass 50
Plantations, farms, and forest product companies 50
Algal biofuel companies 200
Biofuel producers 100
Oil companies 677
Producers of green gas and green diesel 82
Enzyme companies 31
Biofuel equipment manufacturers 40
Car, tractor, airlines n.a.
Total 1,470

n.a. = not available or unknown.

Sources: USDA, Economic Research Service using corporate annual reports, press reports, and
author interviews with industry representatives.
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larly as oil companies have started investing in research on second- and
third-generation biofuels. Shell has the oldest continuous biofuel program,
but between 2007 and mid-2009, it reportedly quadrupled its biofuel research
spending (Krauss, 2009). Most of the other large oil companies appear to
have started their biofuel R&D programs after 2000. BP’s big investment in
the Energy Bioscience Institute started in 2007. ExxonMobil was conducting
some biofuel research before 2009, but the investment was a minor one
compared with the $120 million per year program it announced that year.
Research by the smaller biofuel companies also appears to have accelerated
since 2000. Before then, investments in research on grasses for biomass or
algal-based biofuels were scant. Research by small companies on conversion
of sugars directly into green fuels is also new since 2000.

Public Funding for Bioenergy R&D

Government support for bioenergy R&D began in the 1970s following the
energy crises of that period. Funding of bioenergy R&D in OECD coun-
tries* waned in the 1980s but began to recover in the 1990s and then tripled
between 2000 and 2007, rising from around $200 million per year to over
$600 million per year (fig. 10.4). R&D bioenergy expenditures fell after
2007 in many OECD countries with the onset of the global financial crisis
and economic recession but were boosted in 2009 in the United States

by economic stimulus funding provided by the American Recovery and
Reconstruction Act of 2009 (ARRA).

Historically, the U.S. Government has invested more on biofuel-related R&D
than any developed country, accounting for nearly 40 percent of total public
bioenergy R&D by OECD countries since 1974 (IEA, 2010). Other countries
with major bioenergy R&D programs include Canada, Japan, and Sweden.
Outside of the OECD countries, major investments in biofuel R&D have also
been made by Governments of Brazil, China, and India, but public-sector
R&D data from those countries are not available.

Figure 10.4

Government funding of bioenergy research and development (R&D)
in OECD countries

Million nominal U.S. dollars
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Note: USA-ARRA is a one-time increase in spending due to the American Recovery and
Reconstruction Act (economic stimulus funding). OECD is the Organisation for Economic
Co-operation and Development; membership comprises most high-income nations.

Source: USDA, Economic Research Service using International Energy Administration.
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Government funding for bioenergy R&D may be provided to and carried out
at government laboratories, universities, and private companies. One question
regarding private bioenergy R&D is the relative importance of the govern-
ment as a source of scientific discoveries and innovations as well as a source
of funds. The rapid growth in private bioenergy R&D since 2000 is in part
due to new commercial opportunities created by past public investments in
bioenergy science and technology. Growth may also simply be due to a rise in
government subsidies provided to private R&D.

We examined in more detail the role and significance of government
funding of private bioenergy R&D in the United States, which has world’s
largest bioenergy R&D program. For over two decades, DOE had been the
primary government funder of biofuel research since interest in this tech-
nology arose in the 1970s. DOE mainly supported R&D on processing and
conversion technologies rather than improving feedstock production. In
2000, DOE and USDA formed the Joint Biomass R&D Initiative (BRDI)
to provide financial incentives to public and private institutions to under-
take R&D for biofuels. BRDI, under which each agency takes individual
responsibility for projects, mainly focuses on “plant science research” and
“biorefinery demonstration and deployment” types of projects, as well as
feasibility studies on next-generation technologies, such as synfuels. The
total funds allocated by BRDI from 2002 to 2006 were about $160 million
(BRDI, 2007). DOE’s share was $130 million, of which 71 percent went to
biofuel producers. USDA contributed $30 million to BRDI, with 41 percent
going to ethanol producers. In many cases, private firms are required to
match a portion of the government grant. For example, in 2007, BRDI solic-
itations required firms to match 20 percent of the grant money for research
projects and up to 50 percent for demonstration projects. More recently,

in January 2009, BRDI announced awards up to $25 million for R&D on
technologies and processes to produce biofuels, bioenergy, and high-value
biobased products.

In 2009, DOE spent about $200 million on biofuel research and USDA

spent about $69 million (table 10.3). DOE started funding three Bioenergy
Research Centers in 2008 (with 2009 funding of about $75 million) (see
table). These centers, which are headquartered in California, Wisconsin, and
Tennessee, bring together researchers from 18 universities, 7 DOE national
laboratories, at least 1 nonprofit organization, and many private companies.
DOE also funds research on algal biofuel at its National Renewable Energy
Laboratory in Colorado, and new research programs are scheduled to start
under funding through the ARRA. USDA’s ARS invests about $31 million
annually in biofuel R&D. USDA also distributes $20 million per year to

land grant universities and other institutions for biofuel research through the
National Institute of Food and Agriculture (NIFA) and $18 million to BRDI.?
While BRDI grants have clearly been important to a number of firms, total
government funding of private biofuel R&D is only a small share of private
funding of its own inhouse R&D (see table 10.2). However, the Federal
Government appears to be the primary source of funding of biofuel R&D

at U.S. universities. While some private companies like BP (see previous
section) have made major resource commitments to universities, these appear
to be far smaller than the extramural biofuel R&D funding provided by DOE
and USDA (estimated at $225 million in 2009 in table 10.3).
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Table 10.3

Funding of bioenergy research by the U.S. Departments of Energy and Agriculture in 2009

Compan U.S. Department of Energy U.S. Department of Agriculture  Joint DOE-USDA biomass R&D
pany (DOE) (USDA)' initiative (BRDI)
Total biofuel re- $24.4 million
Approximately $200 million $69 million ($4.9 million DOE, $19.5 million
search
USDA)
$31 million by Agricultural
Inhouse n-a. Research Service (ARS) None
$75 million to three bioenergy
research centers (BRCs)
$5 million per year for 5 years from
ARRA! for BRCs $20 million by National Institute
for Food & Agriculture (NIFA)
$39.4 million by Advanced to Land Grant and other $24 million to companies and
Extramural Research Projects Agency-Energy ~ universities universities in competitive grants

for biofuel research

$85 million from ARRAZ over
2010-13 for two new biofuel consortia

n.a. = not available.

"This is a conservative estimate of USDA’s biofuel-related research. The figure of $31 million for ARS biofuels research relates specifically to the
Bioenergy National Program and does not include research on genetic development of key crops. In addition, the USDA total reported in the table

does not include biofuels research by USDA’s Forest Service.
2ARRA = American Recovery and Reconstruction Act of 2009.
Source: USDA, Economic Research Service author interviews and DOE (2009).

The Future of Biofuel Research and
Biofuels Technology

The major investments in biofuels research by both the public and private
sector appear to be directed toward reducing the cost of producing second-
generation biofuels from biomass such as corn stover, bagasse, miscanthus,
and wood waste. Knowledgeable observers do not expect that this research
will have a major impact on ethanol production for at least 12 to 16 years.
High levels of capital are required for new biofuel processing facilities ($350
million plus per plant), and it takes about 4 years to develop pilot factories
and another 8 years to move to large-scale commercialization (Sommerville,
2009). Another set of constraints involve sorting out logistics issues (e.g.,
harvesting, transportation, and storage of feedstocks) that will require major
investments in R&D (Richard, 2010).

Also a substantial amount of private-sector (but little public-sector) money is
being invested in R&D to reduce the costs of first-generation biofuels, partic-
ularly sugarcane but also corn, soybeans, rapeseed, palm oil, and others.

The investment amount is considerably less than that being spent on second-
generation biofuels. It is the first-generation biofuel R&D, however, that will
lead to reductions in production costs for biofuels currently in use. Low-cost
first-generation technology will be necessary to fulfill most U.S. biofuel
needs for the next two decades until second-generation technology becomes
commercially viable.

Finally, a number of small startup companies, as well as some major oil
companies, are investing in algal research. These investments have grown
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rapidly since 2000. At present, algal research appears to be receiving less
R&D funding than cellulosic research but more than first-generation research.

Three major factors are driving biofuel research: (1) the economics of
biofuel—the prices of biofuels, petroleum, corn, vegetable oil, and sugar—
and the cost of biomass, labor, and capital; (2) environmental concerns,
which have resulted in a large number of mandates, subsidies, and regulations
based on life cycle analyses (LCAs) of greenhouse gas (GHG) impacts; and
(3) political and strategic issues related to national energy security.

Throughout 2010, the average monthly price of crude oil fluctuated between
$75 and $85 per barrel, which is high by historical standards—but so was the
price of most food commodities that could be turned into biofuel. High (rela-
tive) food prices reduce the incentive to produce biofuel from these commodi-
ties. Also, results of some recent LCAs suggest that corn and some vegetables
oils may not prevent as much GHG emissions as previously thought (OECD,
2008). These factors have increased interest in second- and third-generation
biofuels that are based on nonfood commodities. The conversion of biomass
to biofuels, however, is still expensive and unproven commercially. Hence,
interest is high in R&D to raise the productivity and reduce the cost of
second-generation and algal biofuels. Because any of the biomass crops will
have to be grown in areas where the cost of production is low, they will likely
be grown outside of major oil-exporting countries, which makes biofuels
politically attractive as a means of enhancing national energy security.

One set of policies that could affect the demand for biofuel and, thus,
research investments by the private sector, are policies to slow climate
change. The expectation that some form of climate change policy will be
enacted that will raise the price of fossil fuels is already a major impetus for
private-sector investments in biofuels R&D. If such policies are enacted, and
if the current type of LCA (which finds relatively few GHG savings from
first-generation biofuels) becomes the accepted measure of GHG emissions,
demand for second-generation biofuels and private biofuel R&D may increase
even further.
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