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Abstract 

Political attention has increasingly focused on limiting warming to 2°C. However, to date the 

only mitigation commitments accompanying this target are the so-called Copenhagen pledges, 

and these pledges appear to be inconsistent with the 2°C objective. Diverging opinions on 

whether this inconsistency can or should be resolved have been expressed. This paper clarifies 

the alternative assumptions underlying these diverging view points and explicits their 

implications. It first gives simple visualizations of the challenge posed by the 2°C target. It 

then proposes a “decision tree”, linking different beliefs on climate change, the achievability 

of different policies, and current international policy dynamics to various options to move 

forward on climate change. 
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Introduction 

 

According to the United Nations Framework Convention on Climate Change (UNFCCC), the 

ultimate goal of international climate policy is to “avoid dangerous anthropogenic interference 

with the climate system” (article 2). Defining a dangerous level implies making subjective 

choices and value judgments and any such choice cannot be based on scientific and technical 

evidence only; it has to be a political choice. Following the European Union’s position, 

political attention has increasingly focused on limiting warming to 2°C. This target was 

recognized by the Major Economies Forum on Energy and Climate in L’Aquila, Italy, in July 

2009; was explicitly included in the Copenhagen Accord; and is present in the final text 

adopted in Cancun in December 2010.  

 

However, to date the only mitigation commitments accompanying this target are the so-called 

Copenhagen pledges, and these pledges appear to be inconsistent with the 2°C objective 

(Rogelj et al., 2010; UNEP, 2010; Meinshausen et al., 2009). Diverging opinions on whether 

this inconsistency can or should be resolved have been expressed. Some believe that the 2°C 

target is still reachable, and that the gap between this target and the sum of countries 

commitments can be bridged with more ambitious policies. Others think that the 2°C target 

has little chance to be reached but that it plays the important role of stating what is desirable, 

and should be kept as a symbolic target. Finally, others believe that the 2°C target is losing its 

credibility, and that the international community should set a new—higher—target.  

The aim of this paper is to clarify the alternative assumptions underlying these diverging view 

points and to explicit their implications.  

The first section gives simple visualizations of the challenge posed by the 2°C target. 

Reckoning that there is some subjectivity in how one defines what is achievable, it aims at 

providing simple elements for the reader to judge by himself or herself. To do so, it uses 
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stylized emissions trajectories and a simple carbon cycle and climate model to show the link 

between the peaking year of global emissions and the stringency of emissions reductions that 

are necessary after the peak to achieve a given target. It further gives several points of 

references to judge these required emissions reductions. These points of reference correspond 

to alternative estimates of what is achievable: (i) historical experience (what has already been 

done in terms of emissions reduction), (ii) committed emissions (what emissions are “locked-

in” if existing infrastructure is operated until the end of its lifetime), (iii) emissions pledges 

(what emissions reductions are already enacted by countries). The reader can chose which 

point of reference corresponds best, in his or her views, to a limit to what emissions 

reductions are achievable in the future; hence deduce how challenging the 2°C target is. 

 

The second section proposes a “decision tree”, linking different beliefs on climate change, the 

achievability of different policies, and current international policy dynamics to various 

options to move forward on climate change. This “decision tree” investigates what to do with 

a 2°C target that becomes increasingly difficult to achieve. It leads to two unsettled issues. 

First, we do not know if the inconsistency between the sum of countries’ emissions reductions 

pledges and the global 2°C target is damaging the UNFCCC process and ultimately the 

success of climate mitigation. Second, there is no consensus on the status of this target: Is it a 

binding commitment from the international community to the world population? Or is it a 

non-binding symbolic goal to help international negotiations move forward? There is no 

scientific evidence or consensus to settle these issues; however the policy options strongly 

depend on the answers. This article cannot conclude on a scientific basis and only aims at 

providing the reader with some new elements to make his or her own opinion.  



 
 

4 
 

 

1. Visualizing the challenge 

 

1.1. How much time do we have left?  

To visualize the mitigation challenge, we explore the issue of global peaking of CO2 

emissions in light of the 2°C mitigation goal. The aim is to give the reader a sense of the 

stringency of mitigation actions required to reach the 2°C target depending on the peaking 

year, and to compare with historical emission trajectories, “committed” emissions from 

existing infrastructure and mitigation pledges. We use a simple carbon cycle and climate 

model to evaluate the global average temperature increase above pre-industrial levels implied 

by a family of alternative, idealized CO2 emissions trajectories, combined with a fixed 

scenario for non-CO2 gases; see the Annex, and Figure 1. The trajectories are constructed so 

that global CO2 emissions peak n years from 2010. Until then, emissions are assumed either 

(a) to grow at the mean annual rate of emissions growth observed during 2005–101 (Scenario 

1); or (b) to be fixed at their 2010 level (Scenario 2), which already represents emissions 

reduction efforts. After emissions peak, the model assumes that ambitious mitigation action 

reduces global CO2 emissions at a mean annual rate of x percent per year until 2100, which is 

taken as the end of the study horizon.  

 

To assess how realistic the 2°C objective is, Figure 2A shows the rate of global CO2 emissions 

decrease (x) after the peak that is necessary to stay below a given temperature increase 

objective (here + 2°C and + 2.5°C) during the 21st century, assuming a climate sensitivity of 

3°C. The figure shows that the required rate of CO2 emission decrease is increasing 

                                                      
1 Note that emissions growth increased over the last decade except in 2009, when global emissions stabilized 
mainly because of the economic slowdown in countries of the Organisation for Economic Co-operation and 
Development. Considering a continued trend of emissions acceleration before they peak would lead to even 
more stringent requirement in terms of early peak date and emissions reductions after the peak. 
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nonlinearly with the peak year, underscoring the urgent need for action if the 2°C target is to 

be achieved.  

Figure 1. Examples of Emission Trajectories, 2005–2100 

2005 2010 Peak date (2010 +   ) 2050 2100

W
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ld
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m
is

si
on

s

Historical
emissions

n

x
n

Scenario 2: constant emissions
until year 2010 +  , then decrease
by  2% per yearx

n

Scenario 1: trend
extrapolation until year
2010 +   , then decrease
by  1% per year

  

 

For comparison purposes, the figure also reports as horizontal lines several points of 

reference. The 1.0 percent per year rate corresponds to the mean annual CO2 emissions 

decrease from 2008 to 2020 necessary to achieve the target of -20% emissions in 2020 

compared to 1990 level, announced by the European Union. This rate becomes 2.1 percent per 

year to reach the -30% target. The US pledge to reduce emissions by -17% in 2020 compared 

to 2005 corresponds to a 1.3 percent per year mean annual emissions decrease rate. With 

world emission peaking after 2020, reaching the 2°C target would thus require – at the global 

level – CO2 emission reduction efforts that are much larger than existing commitments by 

developed countries alone.  

 

Historical experience also provides useful references. For instance, the 4.6 percent per year 

rate of mean annual CO2 emissions reductions from 1980 to 1985 in France corresponds to the 

country’s most rapid phase of nuclear plant deployment. According to WRI-CAIT data, it is 

the highest rate of CO2 emissions reductions historically observed in any industrialized 
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country over a five-year period, excluding the countries of the Commonwealth of Independent 

States during the years of economic recession that followed the collapse of the former Soviet 

Union. The French example is informative because it represents an important effort to shift 

away from fossil fuel energy and to decarbonize electricity production through the 

introduction of carbon-free technologies (in this case, the nuclear energy) and of energy 

efficiency measures. Even though motivations were different – reducing energy costs vs. 

reducing GHG emissions – and if future climate policies will likely be based on newer 

technologies and different economic instruments, this period provides an illustration of an 

energy transition similar in nature to what is needed to reduce GHG emissions.  

 

From Davis et al. (2010), it can be calculated that committed emissions from existing energy 

infrastructure lead to a mean emission reduction pace of 5.7 percent per year during 2010–50 

(middle scenario) and 4.3 percent (pessimistic scenario) if early capital retirement is avoided. 

In a comparable analysis that also takes the inertia in transport demand into account, Guivarch 

and Hallegatte (2011) find a mean decrease in committed emissions of 3.8 percent per year 

during 2010–50 (middle scenario) and 3.2 percent (pessimistic scenario). To go beyond this 

emission reduction rate, policies affecting new capital would not be sufficient, and early 

capital retirement or retrofitting would be necessary. Doing so would increase the cost of 

climate policy. Moreover, the limits to what is achievable in terms of emission reduction do 

not only depend on technical or economic criteria; political and social acceptability – linked 

in particular to the redistributive effects of climate policies – will also play a major role (Parry 

et al., 2005; Fullerton, 2008). 

 
 
 
 
 
 



 
 

7 
 

 
Figure 2. Rate of Emissions Reduction Necessary to Achieve the 2°C Target or a 2.5°C 
Target as a Function of the Peaking Year for Emissions, with different climate 
sensitivities (A) 3°C, (B) 2°C and (C) 4.5°C. 
 

 
(A) 

(B)  (C)  

Note: Only CO2 emissions, including emissions from land-use, land-use change and forestry, 
are considered; the trajectory of radiative forcing from other gases is forced in this simple 
modelling experiment (see Annex). Historical emissions data are from CITEPA, WRI-CAIT 
and UNFCCC. 
 

These results are obviously affected by the uncertain climate sensitivity parameter. Figure 2A 

is based on the IPCC “best guess” (IPCC, 2007) for climate sensitivity, i.e. 3°C. Figures 2B 

and 2C shows the same result with climate sensitivities of 2°C and 4.5°C. These two 

alternative sensitivities are chosen to give contrasted visions within the range of published 
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estimates of the climate sensitivity probability distribution function2. The figure shows that 

2°C is probably achievable with an emission peak after 2030 if climate sensitivity is around 

2°C. But if climate change sensitivity is 4.5°C, the 2°C target already appears to be 

unreachable, at least if extremely large economic costs are to be avoided.  

 

It appears that there is no definite answer to the initial question of this section “how much 

time do we have left?”, or in other terms “when should global emissions peak?”, since there is 

uncertainty on the climate sensitivity and subjectivity in defining what is technically – but 

also economically, socially and politically - achievable. For example, if one believe the 

climate sensitivity is close to 3°C, and that it is possible (technically possible but also 

economically, socially and politically acceptable) to reproduce at the global scale and over 

several decades the historical experience of emissions decreasing at 4.6%/ year in France over 

1980-85, then we still have 10-15 years before global emissions have to peak to reach the 2°C 

target. If one believes that the emissions reductions given in Copenhagen pledges are close to 

the highest achievable rate of global emissions decrease, then the 2°C target may already be 

out of reach, at least with a constant relative decrease in emissions after the peak. 

 

To investigate more rapid emission decreases, or even negative emissions, the next subsection 

explores another family of emission scenarios, with a linear decrease in emissions (and thus 

possibly negative emissions).  

 

 

 

 
                                                      
2 Note that no higher bound has been proposed for climate sensitivity, and published estimates of the climate 
sensitivity probability distribution function have a long right tail. 4.5°C thus cannot be seen as a higher bound for 
climate sensitivity. 
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1.2. Negative emissions to save the day? 

 

To include net negative global emissions in our “idealized” emissions trajectories, we reiterate 

the same simple exercise with a second set of emissions trajectories (Figure 3). They are 

identical to the first set until the peaking year for emissions, n, i.e. two scenarios are 

considered before peak, either with emissions (a) growing at the mean annual rate of 

emissions growth observed during 2005–10; or (b) fixed at their 2010 level. After emissions 

peak, however, they decrease linearly until 2100, by the amount X per year (expressed as a 

share of 2010 emissions). 

Figure 3. Examples of the second set of Emission Trajectories, 2005–2100 

2005 2010 Peak date (2010 + n) 2050 2100

W
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m
is

si
on

s

Historical
emissions

Scenario 1: trend
extrapolation until
2010 + n, then decrease
by X1 GtC per year

Scenario 2: constant emissions
until 2010 + n, then decrease
by X2 GtC per year

 

 

Figure 4 shows the linear annual decrease of emissions necessary to reach a 2°C target or a 

2.5°C target as a function of the peaking year for emissions. The figure also reports as 

horizontal lines the same points of reference as in previous exercise, converted to mean linear 

annual decreases as a share of reference years’ emissions (1980 for the historical French data, 

2010 for committed emissions from Davis et al. and Guivarch and Hallegatte (2011) analyses, 

2008 for pledges). Additionally, the figure delimits the regions for which the combination of 
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the peaking year and the linear annual decrease implies negative global emissions before the 

end of the 21st century. In particular it shows that - with climate sensitivity equal to 3°C - 

negative global emissions are necessary to reach the 2°C target, even if emissions peak today. 

Also, it shows that a global annual decrease of the same order than EU high pledge may 

achieve the 2°C target, if the peak date is between 2017 and 2026, depending on trajectory up 

to peaking year. 

 

Of course, results are dependent on the climate sensitivity. For a 2°C sensitivity, the 2°C 

target appears easier to reach: negative global emissions are required only if emissions peak 

after 2040 and continue to increase from today to peaking year. But if climate sensitivity is 

higher (4.5°C), the room for maneuver is very limited and even a 2.5°C target would require 

negative global emissions before 2100.  
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Figure 4. Linear Annual Decrease of Emissions, as a Share of 2010 Emissions, Necessary 
to Achieve the 2°C Target or a 2.5°C Target as a Function of the Peaking Year for 
Emissions, with different climate sensitivities (A) 3°C, (B) 2°C and (C) 4.5°C. 
 

 

 
(A) 

(B) (C) 

 
 

 

At this point, it is interesting to assess the quantitative role played by negative global 

emissions in reaching the climate target. Figure 5 gives the year when global emissions 

become negative as a function of the peaking year (right panel) and the level of emissions in 
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2100 (left panel). It shows that negative emissions occur relatively late in the century (never 

before 2070), which may appear as good news since it gives some time for research, 

development and diffusion of technologies enabling such negative emissions.  

 

But it also highlights that dramatically high levels of negative emissions may be needed. For 

instance, emissions need to reach -100% of current emission levels, i.e. around -35GtCO2, if 

peaking year is after 2025 and if emissions before peak continue to increase. These levels may 

seem unrealistically high, but they are partly due to the oversimplified form (linear) of 

emissions trajectories considered.  

 

To account for possible limitations of the potential for net negative global emissions, a third 

set of idealized emissions trajectories is considered.  Using the set of scenarios reviewed by 

van Vuuren and Riahi (2011), we assume that the earliest date of net global emissions 

becoming negative is 2060, and that the maximum negative emissions attained in 2100 is -

5GtC. From these assumptions we delimit a linear maximum envelope for negative global 

emissions. Trajectories are then forced to remain within this maximum 2060-2100 envelope, 

and are assumed to follow a linear decrease from peak to 2060. 
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Figure 5. (A) Level of emissions in 2100 , 

and (B) Year when global emissions become 

negative as a function of the peaking year 

in linear emissions trajectories achieving 

the 2°C Target or a 2.5°C Target with a 

3°C climate sensitivity. 

 

 

The graphs (Figure 6) are identical to those from previous experiment for the closest dates of 

peaking year for emissions. But when the peak is delayed, the maximum envelope for 

negative emissions becomes bounding, hence emissions reductions between the peaking year 

and 2060 have to be more significant. The linear reduction required to reach the 2°C target 

therefore increases more steeply with the peaking year than in the case without constraints on 

negative emissions. 
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Figure 6. (A) Linear Annual Decrease of Emissions from peaking year to 2060, as a 
Share of 2010 Emissions, Necessary to Achieve the 2°C Target or a 2.5°C Target as a 
Function of the Peaking Year for Emissions, with a 3°C climate sensitivity, when a 
maximum envelope for global negative emissions is taken into account; and (B) Level of 
emissions in 2100 , and (C) Year when global emissions become negative as a function of 
the peaking year in linear emissions trajectories achieving the 2°C Target or a 2.5°C 
Target with a 3°C climate sensitivity. 

(A)

(B) (C) 
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Figure 7. (A) Linear Annual Decrease of Emissions from peaking year to 2060, as a 
Share of 2010 Emissions, Necessary to Achieve the 2°C Target or a 2.5°C Target as a 
Function of the Peaking Year for Emissions, with a 3.5°C climate sensitivity, when a 
maximum envelope for global negative emissions is taken into account; and (B) Level of 
emissions in 2100 , and (C) Year when global emissions become negative as a function of 
the peaking year in linear emissions trajectories achieving the 2°C Target or a 2.5°C 
Target with a 3.5°C climate sensitivity. 

(A) 

(B) (C) 
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If emissions peak occurs after a given date, it may even become impossible to find a trajectory 

of the form defined that respects the climate objective and the maximum envelope. E.g. for a 

3°C climate sensitivity, reaching the 2°C target requires global emissions to peak before 2032 

if emissions are assumed to keep growing before the peak. This result is very sensitive to the 

assumption on climate sensitivity. If only a little more pessimistic, e.g. considering a 3.5°C 

climate sensitivity, global emissions have to peak before 2016 (still with emissions growing 

before the peak), or 2023, (if emissions remain at the 2010 level before the peak); see Fig. 7. 

 

Here again, it is not possible to give an unequivocal answer whether the possibility to produce 

negative net global emissions makes the 2°C target reachable. It depends on the climate 

sensitivity, the stringency of emissions reductions achievable (technically feasible and 

economically, socially and politically acceptable) and the extent of negative emissions 

possible at the end of the century. However, this possibility to produce negative net global 

emissions in 50 years gives some flexibility in the peaking year and/or in the stringency of 

emissions reductions after the peak necessary to reach the 2°C target.  

 

1.3. Concluding on the feasibility of the 2°C target? 

 

The conclusion of these simple exercises is that the 2°C target can only be reached if climate 

sensitivity is not too high, and either under optimistic assumptions about available 

technologies allowing for negative emissions in 50 years or under the combination of two 

conditions, namely: (a) an immediate change in mitigation policies with universal 

participation, leading global emissions to peak extremely rapidly, i.e. in the coming few years, 

and (b) the possibility − in particular the economical, social and political acceptability − to 



 
 

17 
 

reproduce at the global scale and over several decades the highest rate of emissions reductions 

ever observed in a country over a short period.  

 

These results are consistent with published emissions scenarios using high-complexity 

models. Rogelj et al. (2011) show that in the set of scenarios with a ‘likely’ (greater than 

66%) chance of staying below 2°C, emissions peak between 2010 and 2020. Van Vuuren and 

Riahi (2011) show that these scenarios, while indicating the absence of a direct relationship 

between short-term emissions and long-term stabilization targets, suggest that reaching the 

2°C target with 2020 emissions above 2000 levels is possible only if negative global 

emissions are achieved in the second half of the century.  

 

Published modeling experiments exploring low stabilization all reach the first conclusion that 

stabilization of greenhouse gas concentrations at levels compatible with the 2°C target is 

feasible (e.g. Edenhofer et al., 2010; van Vuuren et al., 2010).3 However, their second 

conclusion, that it is feasible only under a set of optimistic assumptions, should not be 

ignored. For example, van Vuuren et al. (2010) indicate that the low stabilization levels 

compatible with the 2°C target are close to the maximum achievable emissions reduction 

potential in their model. They show that the target is achievable only if optimistic assumptions 

                                                      
3 It should however be noted that failed experiments tend to not be published, which 

introduces a bias in the low stabilization literature (Tavoni and Tol, 2010). Indeed, when a 

stringent target is revealed as infeasible with a given model, it simply does not appear in the 

literature. Often the policy demand for evaluations of the 2°C target has pushed modelers 

toward implementing more optimistic assumptions for their mitigation portfolios. The 

introduction of large-scale BECCS in integrated assessment models has followed this push. 
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are adopted on (a) the early participation of major sectors and regions in sufficiently stringent 

mitigation policies from 2013 onward; (b) the expansion of the area needed for food 

production to allow space for bio-energy; (c) a significant increase in the efficiency of 

second-generation biofuels; and (d) the carbon neutrality of bio-energy, that is, that large-

scale development of bio-energy can be done without an increase in land-related CO2 

emissions (from soil degradation, shifting cultivation, deforestation, or draining of peat lands) 

and without an increase of nitrous oxide emissions from the application of fertilizer.  

 

Negative emissions scenarios require large-scale combinations of bio-energy and carbon 

capture and storage (BECCS) (van Vuuren et al., 2010a; Edenhofer et al., 2010; van Vuuren 

et al., 2010b). For instance, Azar et al. (2010) show that two of the three models they consider 

cannot reach stabilization levels below 400 parts per million of CO2 equivalent if BECCS is 

not available. Similarly, Blanford et al. (2009) show that without BECCS or large-scale 

afforestation, the 2°C target is unreachable and the 2.5°C target is extremely difficult to reach. 

However, BECCS is not currently a commercially proven technology and its potential 

remains contentious. Being so dependent on BECCS is a dangerous gamble considering the 

uncertainty with respect to this technology and the feasibility of its large-scale deployment, 

and the risks associated with leakage, food security, water scarcity, and biodiversity 

protection. For instance the low stabilization scenario “Representative Concentration Pathway 

3 Peak&Decline” (RCP3-PD), which relies on large development of BECCS, has the second 

largest primary land area conversion to secondary land (harvested forest), cropland or pasture 

among the four Representative Concentration Pathways (Hurtt et al., 2011). In that scenario, 

low stabilization is achieved at the expense of biodiversity protection.  And without negative 

emissions, the only solutions would rely on even more uncertain technologies, such as geo-
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engineering and radiative-forcing management strategies, with their unknown feasibility, 

risks, and local effects (Schneider, 2008). 

 

Finally, it should be highlighted that most analyses evaluate the feasibility of the 2°C target 

on the basis of technical feasibility only. When accounting for possible political, economic, or 

social constraints, the feasibility appears considerably lower. For instance, the Energy 

Modeling Forum 22 results showed that delayed participation of non-Annex I countries in 

mitigation agreements, as an application of the “differentiated responsibilities” and 

“respective capabilities” principles of the UNFCCC, makes the 450 ppm CO2-eq target 

unreachable (Clarke et al., 2009).  Anderson and Bows (2011) even conclude that the 2°C 

target without an overshoot of the target is no longer compatible with economic prosperity. 

 

2. From beliefs to actions  

 

This analysis does not allow to conclude from a scientific point-of-view, as there is always 

some subjectivity in how one defines what is achievable. It depends for instance on the efforts 

one is ready to accept to limit climate change. In the same way, the role of the 2C objective 

can be discussed: Is it a binding commitment from the international community to the world 

population? Or is it a non-binding symbolic goal to help international negotiations move 

forward?  As a consequence, alternative views can be expressed as a function of one’s belief. 

To illustrate the role of these beliefs, Figure 8 draws an “opinions tree” to explicit the 

alternative view points and their implications. 

 

The first belief that plays a role is about the ability to reach the 2C objective. If one believes 

that ambitious climate policies will be able to lead global emissions to peak in the coming 
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years and to reproduce at the global scale and over several decades the highest rate of 

emissions reductions ever observed in a country over a short period of time, it “only” remains 

to design and implement these “ambitious climate policies” at the local and national scales 

and the international architecture to support them. In the same way, if one believes that 

technologies will allow net negative global emissions before the end of the 21st century to a 

scale that will put the 2°C target within reach, it “only” remains to set the conditions (support 

policies, institutions, public acceptability…) for the development and diffusion of these 

technologies, BECCS in particular. 

 

Figure 8. “Opinions tree” to explicit the alternative view points and their implications.
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If one doubts about both assumptions, the 2°C target becomes unreachable, at least without 

allowing for an overshoot of the target, and may be considered as unrealistic. In that case, the 

2°C target does not seem compatible with the sum of individual countries commitments, and 

an internal inconsistency appears in the Copenhagen and Cancun climate agreements. The 

first conclusion concerns adaptation: adaptation plans designed assuming a temperature rise of 

2°C are likely to be insufficient, and adaptation plans, infrastructure design, and land use and 

urban plans need to consider the possibility of greater warming.  

 

Then, there is a question on what to do with a 2°C target that becomes increasingly difficult to 

achieve. Some inconsistency between the target and the commitments is probably 

unavoidable given the nature of the evolution of international negotiations on climate change. 

Indeed, such negotiations have been built on two parallel tracks since the Bali Road Map in 

2007. The first is a Kyoto-like top-down track that starts from a common global objective, 

such as the 2°C objective, and tries to derive consistent commitments for all parties (country 

burden sharing). This approach stems from the public good nature of the climate change issue, 

for which only global emissions matter. It was adopted from the start of international 

negotiations on climate change, but gave rise to unsolvable disputes about the burden sharing 

rules and negotiations deadlocked. This deadlock entailed the creation of a second track of 

negotiations.  

 

This second track is a bottom-up track based on a pledge-and-control approach, and is the 

basis of the Copenhagen Accord. This approach corresponds to the political economy of the 

realities of climate change negotiations: mitigating climate change requires ambitious 

domestic policies with potentially large economic impacts, which cannot be decided in 

absence of internal negotiations within each country. Country commitments are thus difficult 
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to set up through a burden sharing negotiations in short UNFCCC sessions. A bottom-up track 

through which countries announce commitments is thus extremely useful. However, this track 

cannot be sufficient, since these unilateral commitments need at one point to be added up and 

assessed on the basis on their aggregated effect on the world climate, compared to an 

objective in terms of global climate change. 

 

Today, the world is reaching the point when the inconsistency between the global 2°C 

objective and individual countries’ commitments is becoming very obvious. But there is no 

consensus on whether this inconsistency is damaging the UNFCCC process and ultimately the 

success of climate mitigation.  

 

An unreachable target may be damaging by creating unrealistic expectations and an 

impression of failure, obscuring real successes in limiting emissions, creating a demobilizing 

climate of pessimism. Clemens et al. (2007) warn about this risk for Millennium Development 

Goals (MDGs). They argue that the growing concern that the MDGs will not be achieved by 

2015 is obscuring the bigger picture that development progress has been occurring at 

unprecedented levels over the past years. Indeed, among the many countries that are likely to 

miss the MDGs in 2015, many will yet still outperform the historical trajectories of now-

developed countries. They conclude that, by labelling many development successes as 

failures, the MDGs may create an inaccurate climate of pessimism toward aid, which may 

undermine future constituencies for aid (in donors) and reform (in recipients).  

 

Also, the inconsistency between global target and country commitments may give low 

emitting and highly vulnerable countries, such as Small Island Developing States or African 

countries, the impression that high emitting countries behave opportunistically and would lose 
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trust in the process. More generally, trusting interstate relationships can emerge only when 

states can ‘commit’ themselves to particular outcomes (e.g., Kydd, 2000; Wendt, 1999), 

through commitments that are sufficiently costly to violate (Kydd, 2000; Fearon, 1994; 

Schelling, 1966). And the ability to make binding commitments is essential to the process of 

international institutionalization (Keohane, 1984). Making unrealistic commitments suggests 

that violating them is not costly, and weaken all other commitments, and trust in general.  

 

The consequences of a loss of trust in international negotiation can be illustrated by the case 

of international development aid. Since 1970, developed countries have repeated their 

commitment to increase aid up to 0.7 percent of their gross national product. Yet in most 

countries, it has amounted to only 0.4 percent. This target likely played a positive role to 

obtain public support for foreign aid budget in developed countries. But because of the 

continued gap between the target and the reality, it also had a negative impact on international 

discussions, as developing countries now understandably receive all commitments related to 

development aid by the industrial countries with disappointment, and sometimes skepticism. 

 

Similarly, within countries, citizens and businesses are unlikely to support an international 

process that appears inconsistent and based on unrealistic commitments.  National climate 

policies thus risk to appear less credible (or acceptable), and citizens and private actors would 

be less inclined to invest in low-carbon options, which would reinforce the risk of lock-in a 

carbon-intensive economic model. 

 

But this opinion is not consensual. Alternative points of view consider the 2°C target as a 

“symbolic target”, i.e. a target that is more a mean than an end. In that framework, the 2°C 

target becomes a tool, a process to generate discussion, focus attention, assign accountability, 
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and measure progress. Along this view of the 2°C target as primarily a mean to drive 

mitigation efforts worldwide, its inclusion in official texts, in particular the final UNFCCC 

text adopted in Cancun in December 2010, may be acknowledge as a real success, and 

renegotiating it would be damaging to the process. The Millennium Development Goals 

provide an example of such symbolic targets that are not supposed to be binding constraints, 

but as a commonly-agreed objective guiding the action of many governments, donors, and 

international organizations. The MDG offered a framework that undoubtedly helped reverse 

aid decline after end of Cold War, and stimulate the aid community (Hulme, 2007; Hulme and 

Scott, 2010). With such a target, the increasing difficulty in reaching the target might not be a 

problem, except if a “literal” interpretation of the target creates a demobilizing impression of 

failure (as suggested by Clemens et al.,2007).  

 

Depending on what one thinks about this debate, i.e. about the damage from the inconsistency 

between the global target and individual country commitments, the best approach is different.  

 

If one thinks that the damage is limited, then it is possible to keep the 2°C target as a symbolic 

target, and focus on improving country commitment to close the gap. If one thinks that the 

damage is large, then the international community should prevent a widening of the gap 

between the official global target and the sum of countries’ commitments. There are several 

ways to do so. 

 

First, one can think that such a global target is not necessary. In that case, it might be possible 

to drop it or give it less prominent a place, without any other changes.  
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Otherwise, assuming that a realistic long-term global target is useful or even necessary, the 

international community would have to set a new, more realistic objective. Changing the 

international target can be done through an increase in the objective (e.g., to 2.5°C), through 

the recognition that an overshoot will be needed and the provision of a limit to this overshoot 

(e.g., the objective of a 2°C stabilization with overshoot below 2.5°C), or through a focus on 

medium-term objectives (e.g. the objective of limiting warming below 1.8°C in 2050).  

 

Such a change in target would likely be perceived as a failure, especially by those who have 

championed the 2°C target for years, but it would issue a useful wake-up call, and would also 

be a way to communicate an important aspect of the climate change problem: delaying action 

does not mean we can still achieve the same results. If we delay the construction of a high 

speed train line by five years, we get the same train line, or an even better one, five years 

later. By contrast, with climate change mitigation, reachable objectives will become 

increasingly less attractive over time.  

 

 

 

Conclusion: 2C or not 2C? 

 

This paper does not pretend to answer on what should be done with the 2°C target. Indeed, 

this depends on what is considered achievable from a political and economical perspective, 

which is and will remain a subjective question (theoretically, one can stop emitting overnight 

by turning off all emitting devices). It also depends on the status of the 2°C target, and there is 

no consensus on this point in the scientific community. This is why we aim at providing 
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information to make it possible for the reader to make his or her own opinion. And this is why 

we let our readers draw their own conclusion from this information… 

 

Write your own conclusion here… 
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Annex  

This Annex describes the hypotheses and modeling assumptions used to produce Figures 2, 

and 4 to 7. 

 

Radiative Forcing from Other Gases 

 

The radiative forcing from other gases follows the trajectory from the scenario 

Representative Concentration Pathway 3 Peak&Decline (RCP3-PD) from the IMAGE 

model (van Vuuren et al., 2011). This scenario is representative for the scenarios leading 

to extremely low greenhouse gas concentration levels in the literature. It represents a 

substantial reduction of greenhouse gases over time and is a best-case scenario with 

respect to non-carbon dioxide (CO2) emissions.  

 

Carbon Cycle Model and Climate Model 

 

The carbon cycle is a three-box model, after Nordhaus and Boyer (2010). The model is a 

linear three-reservoir model (atmosphere, biosphere + ocean mixed layer, and deep 

ocean). Each reservoir is assumed to be homogenous (well-mixed in the short run) and is 

characterised by a residence time inside the box and corresponding mixing rates with the 

two other reservoirs (longer timescales). Carbon flows between reservoirs depend on 

constant transfer coefficients. GHGs emissions (CO2 solely) accumulate in the 

atmosphere and they are slowly removed by biospheric and oceanic sinks. 

 
The stocks of carbon (in the form of CO2) in the atmosphere, in the biomass and upper 

ocean, and in the deep ocean are, respectively, A, B, and O. The variable E is the CO2 

emissions. The evolution of A, B, and O is given by  
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The initial values of A, B, and O, and the parameters a12, a21, a23, and a32 determine the 

fluxes between reservoirs. The main criticism which may be addressed to this C-cycle 

model is that the transfer coefficients are constant. In particular, they do not depend on the 

carbon content of the reservoir (e.g. deforestation hindering biospheric sinks) nor are they 

influenced by ongoing climatic change (e.g. positive feedbacks between climate change 

and carbon cycle). 

 

Nordhaus original calibration has been adapted to reproduce data until 2010 and results 

from IMAGE model for a given trajectory of CO2 emissions (see below), giving the 

following results (for a yearly time step): a12= 0.02793, a21=0.03427, a23=0.007863, 

a32=0.0003552, with the initial conditions: A2010=830 GtC (i.e. 391ppm), B2010=845 

GtC and O2010=19254 GtC.  

 

Figure A1, panel B, compares the trajectory of total radiative forcing calculated with the 

three-box carbon cycle model and the IMAGE model forced with the emissions trajectory 
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used for calibration. This emissions trajectory, from Energy Modeling Forum 24 study, is 

between those of RCP 3PD and RCP 4.5 from RCP database. Panels A and C compares 

the three-box carbon cycle model and IMAGE model results for the RCP 3PD and the 

RCP 4.5 emissions trajectories, respectively. The differences are linked to elements 

modifying transfer coefficients, such as reforestation or deforestation for instance, not 

accounted for in the three-box model with constant transfer coefficients. For information 

the three emissions trajectories A, B and C lead to a temperature increase in 2100, using 

the simplified carbon-cycle and climate model presented here, of 1.9°C, 2.4°C and 2.9°C, 

respectively. 

 

Figure A1. Trajectories of total radiative forcing calculated with the three-box 

carbon cycle model (dashed black lines) and IMAGE model (solid grey line) for three 

given emissions trajectories: (A) the RCP 3-PD emissions trajectory, (B) the 

emissions trajectory used for calibration, from EMF24 study, between those of RCP 

3-PD and RCP 4.5, and (C) the RCP 4.5 emissions trajectory. 
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The additional forcing caused by CO2 and non-CO2 gases is given by  
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where API is the pre-industrial CO2 concentration (280 ppm), F2x is the additional radiative 

forcing for a doubling of the CO2 concentration (3.71 W.m-2), and 
2non COF −  is the 

additional radiative forcing of non-CO2 gases.  
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The temperature model is a two-box model, after Schneider and Thompson (1981) and 

Ambrosi et al. (2003), with the atmosphere temperature TA and the ocean temperature TO 

as follows:  
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where T2x is the equilibrium temperature increase at the doubling of the CO2 

concentration, that is, it represents climate sensitivity. All parameters have been calibrated 

to reproduce observed values and IPSL Global Climate Model scenarios for the 21st 

century (see Ambrosi et al. (2003) for details on calibration), leading to the following 

parameter values (for a yearly time step): σ1=0.1396048 C.W-1.m2, σ2=0.6833236 C-

1.W.m-2 and σ3=0.0206022. The climate sensitivity parameter is taken as equal to 3°C, the 

“best guess” value from the most recent Intergovernmental Panel on Climate Change 

(2007) report. 
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