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Abstract

An exhaustive comparative statics analysis of a general price taking cost-minimizing model of

the firm operating under the influence of price-induced technical progress is carried out from a

dual vista.  The resulting refutable implications are observable and thus amenable to empirical

verification, and take on the form of a symmetric and negative semidefinite matrix.  Using data

from individual cotton gins in California’s San Joaquin Valley, we empirically test the complete

set of implications of the price-induced technical progress theory using both classical and Baye-

sian statistical procedures.  We find that the data are fully consistent with the atemporal, cost-

minimizing, price-induced microeconomic theory of technical progress.
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1. Introduction

The hypothesis that changes in the relative prices of factors of production influence the magni-

tude and direction of technical progress (TP) is of old vintage, most probably due to Hicks (1932,

p. 124).  This conjecture implies that relative factor prices serve a dual function, to wit, the pro-

totypical role as signals of resource scarcity, and the novel role as determinants of the firm’s

technology choice.  The premise is that a firm is confronted with an array of feasible production

techniques, and the relative prices of the factors of production influence the choice of technique.

Given a choice of technique, the firm then goes about its customary optimization process by

choosing its factors of production, subject to the chosen technology.  Hayami and Ruttan (1971)

revitalized Hicks’ conjecture and made important contributions to the explanation of the magni-

tude and direction of TP in the American and Japanese agricultural sectors using the relative

price hypothesis.  They provided some empirical evidence in support of this conjecture but their

studies did not culminate in a rigorous statistical test of the hypothesis.

Technical progress can be fruitfully classified into the two broad phases of innovation

and adoption.  In general, firms self-select into either one or the other phase, rarely into both.

Firms that self-select principally into the innovation phase have the explicit objective of discov-

ering new techniques of production and/or consumption.  Examples of this class are the biotech-

nology and pharmaceutical firms.  Their R&D budget constitutes the principal means for pursu-

ing the innovation objective.  Small firms that are tendentially price-takers, on the other hand,

typically self-select into the adoption phase of TP.  An important example of such entities is pro-

vided by agricultural firms.  Their path toward TP is mainly characterized by the adoption of al-

ready available and marketable techniques of production and consumption as motivated by their

profit objective.  The skill of these entrepreneurs together with the market conditions as per-

ceived by them allow an adoption rate of new techniques that, a posteriori, is interpreted and

measured as a rate of TP.  For these firms, the principal determinants of their TP are the plant

size and equipment decisions, together with the relative prices of inputs and outputs under differ-

ent technical possibilities.
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Furthermore, the analysis of TP can be performed either at the firm, industry, or economy

level.  Our paper focuses on the firm level in order to extract unambiguous and empirically veri-

fiable relations that form the basis for an exhaustive and direct test of the price-induced TP hy-

pothesis.  A principal deficiency of many studies dealing with TP, in fact, is the dearth of empiri-

cally testable hypotheses that can be used to either support or invalidate a specified model.  For

example, the earlier work of Paris (1993) and Paris and Caputo (1995) on price-induced TP was

only partly successful, in that although they derived the comparative statics properties of the

transpose (or reciprocal) specification of the profit maximization problem, they did not derive the

comparative statics properties of the profit maximization problem itself, which is the problem of

direct economic interest.  The recent work of Paris and Caputo (2001), in contrast, presented a

complete comparative statics characterization of a price-taking profit-maximizing model of the

firm operating under the influence of price-induced TP.

The majority of empirical studies about TP are static or atemporal in nature, even though

they may be based on time-series information.  While we do indeed recognize the dynamic na-

ture of TP, and believe that an intertemporal theory is more plausible and intellectually satisfy-

ing, a priori, the present paper concentrates instead on the price-induced TP hypothesis in a

static or atemporal context.  We do so in order to highlight the essential aspects of our model and

to solidify our own understanding of its basic theoretical implications.  Furthermore, we believe

this is a necessary first step before tackling the more complicated dynamic theory, in complete

agreement with Occam’s razor.  Moreover, the availability of a unique sample of data dealing

with cotton ginning cooperative firms in California has provided the opportunity for investigat-

ing the price-induced TP hypothesis with a close match between the atemporal theory and its

empirical implementation.  We thus leave the intertemporal extension for future research.

Another important characteristic of the data is that the cotton ginning firms are a priori

expected to be cost-minimizing, rather than profit-maximizing, enterprises for reasons that will

become clear in section 6 when we discuss the industry and tests of the theory in detail.  Hence,

our first objective of this paper is to extend the derivation of the comparative statics properties of
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the price-induced TP hypothesis to the case of a price-taking cost-minimizing firm.  As in previ-

ous work [see Paris (1993) and Paris and Caputo (1995, 2001)], we incorporate relative factor

prices (input prices normalized by the single output price) explicitly into the production function.

In this manner we succinctly capture the role of relative prices as shift parameters of the technol-

ogy frontier.  The double role postulated for relative prices, however, destroys the traditional

comparative statics relations of the competitive firm.  In order to recover refutable and empiri-

cally verifiable hypotheses for the cost-minimizing competitive firm operating under price-

induced TP, it is therefore necessary to consider a more complex framework.  The major result of

our theoretical analysis is a set of comparative statics relations that depend upon primal and dual

functions, and come in the form of a symmetric and negative semidefinite matrix of observable,

and hence estimable, terms.  Consequently, the empirical implementation of the comparative

statics conditions developed in this paper requires, in general, the concomitant measurement of

the cost function and the production function.  This novel feature is not present in the paradig-

matic models of the firm and thus creates the scaffolding for a specific logical test of the price-

induced TP theory together with an added complexity when carrying out empirical tests of it.

The second objective of our paper, therefore, is to statistically test the full set of refutable

and qualitative properties implied by the price-induced TP theory derived in section 3.  We use

classical and Bayesian statistical methods to conduct the estimation of the model and carry out

the hypothesis tests.  Our data consists of a combined time-series/cross-section of annual obser-

vations on individual cooperative cotton gins located in the San Joaquin Valley of California.

The statistical analysis yields strong evidence in favor of the cost-minimizing price-induced TP

model, but little evidence in favor of the profit-maximizing price-induced TP model.

2. Literature Review

To date, only a handful of papers have estimated a microeconomic model of the firm under the

hypothesis of price-induced TP.  All of the papers that estimated a production function included

output and/or input prices, or some function of them, directly in the production function.  None

of these papers, however, tested the refutable implications of the price-induced TP hypothesis,
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and as a result, their intent and focus contrasts sharply with ours.  Moreover, it is important to

recognize that our paper deals with price-induced TP rather than induced TP.  The induced TP

literature of the sixties and seventies postulated that TP is induced by R&D activities.  In con-

trast, the hypothesis of price-induced TP is based upon profitability considerations.  This ex-

plains the paucity of papers directly related to ours, whether theoretical or empirical.  In passing,

note that there is a substantial literature that has looked at the theoretical and empirical link be-

tween TP and environmental policy.  Since this literature is tangential to our focus, we refer

readers interested in such matters to the recent survey article by Jaffe et. al. (2002).

Fulginiti and Perrin (1993) used a combined time-series/cross-section sample of agricul-

tural production and price data from 18 countries to estimate a variable coefficient Cobb-

Douglas meta-production function.  They posited that the coefficients are functions of the output

price and a few input prices, and other pertinent technology changing variables, using five-year

moving averages for the prices.  Celikkol and Stefanou (1999) used annual data on the U.S. food

processing and distribution sector to estimate a price dependent generalized Leontief production

function.  They included the current output and input prices as well as a three-year moving aver-

age of input prices, the latter designed to capture the role of prices as technology shifters.  De-

parting from the use of aggregate data, Oude Lansink, Silva, and Stefanou (2000) estimated firm-

specific and price dependent quadratic production frontiers for Dutch glasshouse firms using the

generalized maximum entropy method.  They included a three-year moving average of past en-

ergy prices as an argument of the production frontier to capture the role of prices as technology

shifters.  Finally, Peeters and Surry (2000) used times series data on the feed manufacturing in-

dustry in Belgium to estimate a multiple-output symmetric generalized McFadden cost function.

They included lagged input prices as arguments of the cost function in order to capture the price-

induced TP effect.

3. Refutable Propositions of the Price-Induced Technical Progress Hypothesis

In this section we formally develop the complete set of refutable and testable implications of a

general price-taking cost-minimizing model of the firm operating under the influence of price-
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induced TP.  Along the way, we point out the features of the model’s qualitative properties that

depart from their traditional counterparts.  We formally model the Hicks’ conjecture of price-

induced TP by explicitly considering relative prices as determinants of the firm’s production

possibility set.  Such a formulation implies that relative prices enter the production function and

thus serve in the nontraditional role as shifters of the technology.

In order to gain some valuable insight into the plausible ways in which relative prices

may influence the choice of techniques, it is useful to begin by quoting McFadden [Fuss and

McFadden (1978, p. 6)]:

The production possibility set of a firm is determined first by the state of technological knowledge

and physical laws.  …  There may be further limitations on the availability of techniques due to

imperfect information and legal restrictions (e.g. patent agreements, pollution control standards,

safety standards).  Non-transferable commodities, such as ‘managerial capacity’, climate, and en-

vironmental factors, may also enter in the determination of production possibilities.  Finally, in

most economic problems, the firm will be required to meet restrictions on some input and output

quantities due to prior contracts, quotas, rationing, or ‘hardening’ of commodities following ex

ante decisions.  Common examples are commitments to fixed plant and equipment inputs, and

contracts to purchase inputs (e.g. labor services) or supply outputs.

It is important to observe that contracts to purchase inputs and supply outputs imply knowledge

of, and decisions based on, the corresponding input and output prices.  Similarly, commitments

to fixed plant and equipment inputs necessarily depend on input and output price expectations

which, in the atemporal context of this paper, necessarily collapse to the current input and output

prices.

The literature on TP also presents several statements concerning the role of relative prices

in influencing the choice of production technique.  For example, Arrow (1969, p. 29) wrote:

“From studies of Griliches (1957) and Mansfield (1968, Part IV) we know that the diffusion of

technological knowledge, at least within a given economy, is partly governed by profitability

considerations.”  Griliches (1957, p. 519) has emphasized repeatedly the dependence of TP in the
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cultivation of hybrid corn upon profitability.  One of his fifteen such references states: “…our re-

sults do suggest that a substantial proportion of the variation in the rate of acceptance of hybrid

corn is explainable by differences in the profitability of the shift to hybrids in different parts of

the country.”  Continuing the citation of established economists who advanced the conjecture

that TP may depend on profitability considerations, Hirsch (1969, p. 38) stated: “And although

the formal neoclassical models of the firm do not explicitly show the intertemporal trade-offs,

the engineer-manager is assumed to choose the most profitable techniques of production from

among all possible production functions.”  Profitability, of course, depends crucially on relative

prices.

The aforementioned conjectures and empirical evidence relating TP to profits suggests

that output and input prices enter the production function as shifters of the technology frontier.

This is therefore how we intend to formally model the price-induced TP hypothesis of Hicks

(1932).  Our formal specification of priced-induced TP is thus perfectly analogous to the intro-

duction of commodity prices into the direct utility function in order to account for Patinkin’s

conjecture about real cash balances [see Samuelson and Sato (1984) and Paris and Caputo

(2002)].  With this background in mind, we now proceed more formally.

To begin, let x ∈ℜ + +
N  be the vector of variable inputs used by the firm purchased at the

market determined price vector W ∈ℜ + +
N , and let y ∈ℜ + +  be the output of the single good pro-

duced by the firm which it sells at the market determined price P ∈ ℜ++ .  Define the relative

price vector of the factors of production by w =def
W P ∈ ℜ++

N .  Note that we treat the vectors

x ∈ℜ + +
N , W ∈ℜ + +

N , and w =def
W P ∈ ℜ++

N  as column vectors throughout.

Given the profitability considerations in the choice of techniques, the technological and

contractual environment of the firm depends on output and input prices (P,W)  as well as an in-

dex t representing exogenous technical change.  As a result, the production possibility set of the

firm may be defined as

Y(P,W,t) =def
(y,x) ∈ ℜ++

N +1 (y,x)  is feasible in the environment (P,W,t){ } . (1)
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In light of definition (1), the firm’s input requirement set is defined as

V(y,P,W,t) =def
x ∈ ℜ++

N (y,x) ∈Y (P,W,t){ } . (2)

The value of the production function F(⋅) is then defined as

F(x;P,W,t) =def
max y ∈ ℜ++ x ∈V (y,P,W,t){ } . (3)

Note that the semicolon in the arguments of F(⋅) separates the vector of decision variables

x ∈ℜ + +
N  from the vector of exogenous variables (P,W,t) .  We assume that F(⋅):ℜ++

2N +2 → ℜ+  is

C (2)  on its domain.  To capture the central role that relative prices play in determining the choice

of technology under the price-induced TP hypothesis, as asserted by Hicks (1932), we assume

that the production function F(⋅) is positively homogeneous of degree zero in the output price

P ∈ ℜ++  and input price vector W ∈ℜ + +
N , that is, F(x;θP,θW,t) ≡ F (x;P,W,t) for all θ ∈ ℜ++ .

Upon defining θ =def
P −1 ∈ℜ + + , we may rewrite the above identity as F(x;1,w,t) ≡ F (x;P,W,t),

without loss of generality.  Finally, defining f (x;w,t) =def
F(x;1,w,t) yields the production func-

tion f (⋅):ℜ+ +
2N +1 → ℜ+ , which is defined in terms of relative prices, the form of economic interest

and that which perfectly captures the Hicks conjecture.

The homogeneity assumption on the production function implies that a doubling of out-

put and input prices does not change the firm’s production function, which is what it means for

relative, as opposed absolute, prices to influence the technology.  This assumption also implies,

via the first-order necessary conditions given by Eqs. (5) and (6) below, that the factor demand

functions retain their desirable property of being homogeneous of degree zero in (P,W ) .  There-

fore, not assuming that F(⋅)  is homogeneous of degree zero in (P,W )  implies implausible eco-

nomic behavior, to wit, a doubling of output and input prices leads to changes in the production

function and in the factors of production employed.  In others, by not assuming homogeneity,

agents change their behavior even when no relative prices have changed.  Note that our homoge-

neity assumption is wholly analogous to that made by Samuelson and Sato (1984) when com-

modity prices and money balances enter the direct utility function, namely, that the latter is ho-

mogeneous of degree zero in prices and money balances.  Samuelson and Sato (1984) adopt this
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assumption so as to preserve the homogeneity of degree zero of the commodity demand func-

tions in prices and income, and to capture the difference between money and goods.

It is important to remark that we have not made a priori assumptions about (i) the signs

of the first-order partial derivatives of the production function with respect to the factors of pro-

duction, (ii) the curvature of the production function with respect to the factors of production,

(iii) the signs of the first-order partial derivatives of the production function with respect to the

relative prices, or (iv) the curvature of the production function with respect to the relative prices.

In spite of the lack of assumptions, we will demonstrate that empirically perceptible and refut-

able comparative statics properties are present in the model.  The lack of assumptions about the

production function therefore implies that the qualitative properties derived in Theorem 1 are

fundamental to our price-induced TP theory.  In other words, the refutable properties we estab-

lish in Theorem 1 are basic to the model since they are dependent only on the assumption of a

unique interior solution of the optimization problem and the mathematical structure of it, and are

not at all dependent on ad hoc assumptions or sufficient conditions imposed on the model.

Given these preliminaries, we may now state the price-taking cost-minimizing model of

the firm operating under the influence of price-induced TP as

C(w,y,t) =def
min

x
′ w x s.t. y − f (x;w,t) ≤ 0{ } , (4)

where the symbol “′” denotes transposition.  Because of the generic nature of problem (4), we

assume that it possesses a unique interior C (1)  solution   α � ˆ x (α ) for all   α ∈ B(α �;δ) , where

  B(α �;δ)  is an open (N + 2) - ball centered at the point   α
� ∈ℜ + +

N + 2 with radius δ > 0, and where

α =def
(w,y,t)  is the given parameter vector of the problem.  As a matter of notation, we adopt the

conventions that (i) the derivative of a scalar-valued function with respect to a column vector is a

row vector, and (ii) the order of a Hessian matrix of a scalar-valued function is given by (first

subscript order)×(second subscript order).  Given this notational convention, the prototype model

of the price-taking cost-minimizing model of the firm is a special case of problem (4), derived by

setting fw(x;w,t) ≡ ′ 0 N , where 0N  is the null column vector in ℜN .
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Defining L(x,λ;w, y,t) =def ′ w x + λ[y − f (x;w,t)] as the Lagrangian for problem (4), and

assuming that the archetype nondegenerate constraint qualification holds at the solution, i.e., that

fxn
x̂(w, y,t);w,t( ) ≠ 0  for at least one value of the index n, the first-order necessary conditions

are given by

Lx n
(x,λ;w,y,t) = wn − λ fxn

(x;w,t) = 0, n = 1,2,…,N , (5)

Lλ (x,λ;w, y,t) = y − f (x;w,t) ≤ 0, λ ≥ 0, Lλ (x,λ;w, y,t) ⋅ λ = [y − f (x;w,t)] ⋅ λ = 0. (6)

Since wn > 0, n = 1,2,…,N , Eqs. (5) and (6) imply that the optimal value of the Lagrange multi-

plier is positive, i.e., ˆ λ (w,y,t) > 0 .  In turn, this fact and Eq. (5) imply that the marginal product

of each input is positive at the optimum, that is, fxn
ˆ x (w,y,t);w,t( ) > 0 , n = 1,2,…,N .  These are

necessary implications of problem (4), derived using only the assumption of an interior solution

to the minimization problem (4).  The property fxn
ˆ x (w,y,t);w,t( ) > 0 , n = 1,2,…,N , turns out to

be important when we conduct the empirical tests of the price-induced TP theory in section 6.

Moreover, it also proves that the aforementioned nondegenerate constraint qualification is satis-

fied for problem (4).

Several features of problem (4) deserve comment before presenting the central result of

this section.  First, the cost function C(⋅)  defined in problem (4) is not concave in the relative

factor prices, thereby implying that the archetypal comparative statics properties do not hold.

This conclusion follows from the presence of the relative input prices in the production function

and the fact that we did not make any assumptions about the curvature of the production function

with respect to the relative input prices.  Said differently, Eqs. (5) and (6) show that every rela-

tive input price appears in every first-order necessary condition because of the dependence of the

production function on the relative factor prices.  As a result, the standard comparative statics re-

sults no longer hold due to the appearance of principal minors that are not border preserving in

the comparative statics expressions.

The second feature is the alteration of the form of the prototype Shephard’s lemma.  In

particular, it is no longer true that the partial derivative of C(⋅)  with respect to a relative input
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price equals the corresponding factor demand function under the cost-minimizing price-induced

TP hypothesis.  To see this, simply apply the envelope theorem to problem (4) to get

Cwn
(w,y,t) = ˆ x n (w, y,t) − ˆ λ (w,y,t) fwn

ˆ x (w, y,t);w,t( ) , n = 1,2,…,N . (7)

This perturbation of the prototype Shephard’s lemma is yet another way to understand the gener-

alization of the standard comparative statics results under the price-induced TP hypothesis.

The third feature is that C(⋅)  is not necessarily increasing in the relative input prices.

This conclusion follows from inspection of Eq. (7), the dependence of the production function on

the relative input prices, and the absence of any assumptions on the signs of the first-order partial

derivatives of the production function with respect to the relative input prices.  Our empirical re-

sults, which will be discussed in section 6, show that the estimated cost function is decreasing in

the relative price of labor, for example.

The fourth feature is that C(⋅)  is not positively homogeneous of degree one in the relative

input prices.  This follows at once from the definition of C(⋅)  given in Eq. (4), the dependence of

the production function on the relative input prices, and the lack of any assumptions about the

functional form of the production function with respect to the relative factor prices.

One property of the archetype cost function, however, does in fact carry over to C(⋅) ,

namely, that it is increasing in output.  This conclusion also follows directly from the envelope

theorem and the aforementioned result ˆ λ (w,y,t) > 0 , since Cy(w,y,t) = ˆ λ (w, y,t) .  Using this en-

velope result, the modified Shephard’s lemma in Eq. (7) can be rearranged to read

Cwn
(w,y,t) + Cy(w,y,t) fwn

ˆ x (w, y,t);w,t( ) = ˆ x n (w,y,t) , n = 1,2,…,N .

Notice that both primal and dual information is required to recover the input demand functions

under the cost-minimizing price-induced TP hypothesis.  Thus, specification of the dual cost

function C(⋅)  alone is no longer sufficient for recovery of the factor demand functions of firms

operating under the influence of price-induced TP.

The following theorem, which is the central result of this section, resolves the ostensible

lack of refutable qualitative properties in problem (4) by (i) deriving a symmetric and negative
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semidefinite matrix that contains its observable curvature properties, and (ii) establishing an up-

per bound for the rank of the matrix.  The proof employs the primal-dual formalism of Silberberg

(1974), and is relegated to the appendix for expository purposes.

Theorem 1 (Qualitative Properties).  The curvature properties of the price-taking cost-

minimizing model of the firm operating under the influence of price-induced TP defined by Eq.

(4) et. seq., are summarized by the statement that the N × N  matrix S1(w, y,t) , defined as

S1(w, y,t) =def
Cww + Cwy fw + Cy fww + fw

′Cyw + fw
′Cyy fw ,

is negative semidefinite, symmetric, with rank S1(α)( ) ≤ N − 1 for all  α ∈ B(α �;δ) .

Theorem 1 generalizes the curvature property of the neoclassical cost function in the

sense that the curvature property of Theorem 1 contains that of the prototype cost-minimizing

model of the firm as a special case.  To see this, simply observe that when fw(x;w,t) ≡ ′ 0 N ,

problem (4) collapses to the archetype model of the cost-minimizing firm.  More precisely, if

fw(x;w,t) ≡ ′ 0 N , then S1(w, y,t) = Cww(w,y,t) is a symmetric and negative semidefinite matrix,

which is equivalent to the concavity of C(⋅)  in w, the neoclassical result.  Theorem 1 and the

four remarks preceding it demonstrate that the qualitative properties of the cost-minimizing

price-induced TP model differ markedly from those of the archetype cost-minimizing model.

A novel feature of Theorem 1 is the appearance of both the production function and cost

function in the comparative statics characterization of problem (4).  This property is absent from

any prototype model of the firm and it is the distinguishing feature of our model of price-induced

TP.  It can be viewed as the scaffolding by which one can erect the estimating framework of the

price-induced TP hypothesis.  In other words, in general, one must always estimate the produc-

tion function with a dual relation, namely either a cost or profit function, when carrying out an

empirical test of the price-induced TP theory presented here.  In passing, note that in the appen-

dix we state and prove a second theorem that is equivalent to Theorem 1, but of a different form.
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The form of Theorem 2 highlights the comparative statics properties of the cost-minimizing

price-induced TP model (4) using the factor demand functions, and provides further evidence of

just how this model differs from the archetypal one.  Theorem 2 will prove useful in section 6

when we derive the testable implications of the cost-minimizing price-induced TP model for the

empirical specification of the production function best supported by the data.

4. California Cotton Ginning

The state of California was the second largest producer of cotton lint and cottonseed in the U.S.

in the year 2000, accounting for approximately 15% and 14% of the country’s production of lint

and cottonseed, respectively.  The combined value of these jointly produced goods was over $1

billion in 2000, placing cotton lint and cottonseed as the sixth highest value commodity produced

in the state, ahead of such notables as tomatoes and almonds.  Moreover, cotton lint was the sec-

ond leading agricultural export of the state in 2000.

Our cotton ginning data consist of financial and operations information supplied by 22

San Joaquin Valley ginning cooperative firms for the 1980–81 through 1984–85 ginning seasons.

We refer the readers to Sexton et. al. (1989) for a more extensive discussion of the data and the

construction of the basic variables.

Labor expenditures were calculated as the sum of direct and indirect expenditures for

full- and part-time employees for each gin.  The variable input labor xL  is defined as the annual

labor hours worked by the gin’s full- and part-time employees, including overtime hours.  The

wage rate WL  for each gin was computed by dividing labor expenditures by xL .

Energy expenditures for each gin were measured as the sum of its annual expenditures for

electricity, natural gas, and/or propane.  British thermal unit (BTU) prices for each fuel were

computed from each gin’s utility rate schedules.  These were then aggregated into a single BTU

price, WE , for each gin using BTU quantity weights for each energy source.  The variable input

energy xE  was then computed by dividing energy expenditures by WE .

Because of the gins’ lengthy down time each year, typically about nine months, capital is

treated as a variable input rather than a fixed or quasi-fixed input.  The long down time makes it



14

relatively easy for the gins to make adjustments in the ginning equipment and buildings, the two

components of capital in our sample.  The data show that such year-to-year adjustments were in

fact frequently made.  Each component of the capital stock was measured using the perpetual in-

ventory method and straight line depreciation, the latter being derived from the asset’s service

life.  The extended down time between two successive production seasons also gives the oppor-

tunity to the gin’s managers of choosing and adopting new techniques, thereby providing further

support for our inclusion of the relative prices into the production function.

The rental prices of the buildings and ginning equipment were measured by the Christen-

sen and Jorgenson (1969) formula, which accounts for, among other things, the gin’s average

marginal income tax rate for co-op members, an investment tax credit, and the property tax rate.

Expenditures for each component of the capital stock were computed as the product of each

component of the capital stock and its corresponding rental rate, and then summed to obtain total

capital expenditures.  The composite capital rental price, WK , for each gin was then computed

using an expenditure weighted average of the gin’s rental prices for buildings and equipment.

The composite measure of the capital stock service flow xK  is computed by dividing total capital

expenditures by the composite rental price WK .

As observed by Sexton et. al. (1989), the cotton gins take the raw cotton input xR  deliv-

ered to them by the grower-members of the co-op as given, and apply the variable inputs capital,

labor, and energy, to produce cleaned and baled cotton lint and cotton seed in fixed proportions,

thereby implying that we may consider them as producing a single composite output y .  Moreo-

ver, because there is effectively no substitution between the raw cotton input and the three vari-

able inputs, the gins produce the single composite output by way of a quasi-fixed production

technology, namely

  (xR, xK ,xL ,xE ,wK ,wL ,wE,t) � min ψ −1xR , f (xK , xL ,xE ;wK ,wL ,wE,t){ } ,

where wi =def
Wi P , i = K,L, E , are the relative prices of the three factors of production, P  is the

composite output price defined subsequently, and ψ  is the conversion factor between the raw
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cotton input xR  and the composite output y .  Technical efficiency on the part of the gins implies

that y = ψ −1xR = f (xK , xL ,xE ;wK ,wL ,wE,t) .  Such a technology implies that we are permitted to

use the raw cotton input xR  as our composite output variable in the estimation of the production

function, i.e., we may estimate the production relationship xR = ψf (xK ,xL , xE ;wK ,wL ,wE,t).  This

feature of the ginning process is particularly well suited to the cost minimization problem (4)

since the raw cotton input xR  is taken as given by the cotton gins, as noted above.

The price of the composite output y  is defined as P =def
Pc + φPs , where Pc is the price per

500-pound bale of cotton lint, Ps is the price per ton of cotton seed, and φ  is the ratio of tons of

seeds per 500-pound bale of cotton lint.  The ratio φ  captures the difference, if any, between the

picking and stripping methods of removing the raw cotton from the plant.  This ratio, however, is

not under the control of the gins, as it reflects the choice of stripping technique employed by the

cotton member-growers of the co-op.  Hence the composite output price is in fact exogenous to

the gins, just as problem (4) assumes.

In closing out this section we offer two more pertinent remarks on the data.  First, the

1983–84 ginning season was dropped from the sample due to the extraordinary nature of the

payment-in-kind program that was in effect that season only and greatly distorted growers’ pro-

duction decisions.  Second, of the remaining seasons in the sample, scilicet 1980–81, 1981–82,

1982–83, and 1984–85, 18 firms had the necessary data in the 1980–81 season while 22 did in

the remaining three seasons.  Taking both of these factors into account reduces our sample size

to 84 complete observations.

5. Empirical Evidence on the Functional Form of the Production Function

The empirical implementation of the theory in section 3 suggests a two-stage approach.  In the

first stage, we determine a parsimonious functional form of the production function that is con-

sistent with the available sample information.  In the second stage, we re-estimate the resulting

production function jointly with its dual cost function in order to conduct a statistical test of the

price-induced TP hypothesis.  This amounts to testing the inequality restrictions implied by the
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negative semidefiniteness property of Theorem 1 and the positive marginal products of the fac-

tors of production at the optimum.

We commence, therefore, by gathering empirical evidence on a parsimonious functional

form of the production function that fits the sample data.  First we specify a flexible and encom-

passing functional form, namely a time and relative price dependent translog production func-

tion.  Then we perform statistical tests on it to see if it can be reduced to one of its encompassed

specifications, for example, a relative price dependent Cobb-Douglas production function.  In

addition, we test for the robustness of the final functional form by initially specifying a time and

relative price dependent CES production function, and similarly test to see if it can be reduced to

a relative price dependent Cobb-Douglas production function.  As we will see, all the statistical

evidence points to a relative price dependent Cobb-Douglas production function.

It is worthwhile to remark that we undertake a sequence of statistical tests in order to de-

duce the functional form of the production function that best rationalizes the sample data.  As a

result, we hold the probability of a type-I error fixed at a relatively low level for each test, videli-

cet the 0.01 level of confidence.  This has the effect of keeping the overall probability of a type-I

error reasonably low.  Furthermore, we report the p-value for the computed statistic.  The p-value

is the tail probability for a two-tailed test of the null hypothesis, and is the exact level of signifi-

cance of a test statistic.  The null hypothesis is therefore rejected if the reported p-value is less

than the chosen level of significance of 0.01.

To reiterate, we begin by specifying a translog production function that includes capital

( xK ), labor ( xL ), and energy ( xE ), the price of each input divided by the composite output price

(wK ,wL ,wE ) , i.e., relative input prices, and a time index t, as arguments:

ln y = α0 + α i ln xi
i

∑ + 1
2 βij ln xi ln x j

j
∑

i
∑ + γ i ln wi

i
∑ + + 1

2 δ ij lnwi ln wj
j

∑
i

∑
+ η ij ln xi ln w j

j
∑

i
∑ + φ i ln tln xi

i
∑ + ϕ i ln tln wi

i
∑ + µln t + 1

2 θ(lnt)2,

where i, j = K ,L, E , symmetry of the second-order coefficients is imposed, that is, βij = β ji  and

δij = δ ji , i, j = K ,L, E , and the observation indices have been suppressed for notational clarity.
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The parameters of the translog production function are estimated using an instrumental variable

estimator so as to account for the endogeneity of the factors of production.  The instruments in-

clude the logarithm of the vector (wK ,wL ,wE ,t)  along with its associated combination of quad-

ratic form variables.

First we test the null hypothesis that a prototype Cobb-Douglas production function is

consistent with the sample of ginning data, that is, one in which only the factors of production

determine output.  This null hypothesis amounts to setting all the βij , γ i , δij , ηij , φi , ϕi , µ , and

θ  parameters to zero, for a total of 32 restrictions.  The computed Wald χ 2- statistic , with 32

degrees of freedom, is 74.9454 with a p-value of 0.00003, leading us to reject this null hypothe-

sis.

We then test the null hypothesis that a time dependent Cobb-Douglas production function

is consistent with the sample of ginning data.  This null hypothesis amounts to setting all the βij ,

γ i , δij , ηij , φi , ϕi , and θ  parameters to zero, for a total of 31 restrictions.  The computed Wald

χ 2- statistic , with 31 degrees of freedom, is 65.1193 with a p-value of 0.00032, leading us to re-

ject this null hypothesis too.

Next we test the null hypothesis that a time and relative price dependent Cobb-Douglas

production function is consistent with the sample of ginning data.  This null hypothesis amounts

to setting all the βij , δij , ηij , φi , ϕi , and θ  parameters to zero, for a total of 28 restrictions.  The

computed Wald χ 2- statistic , with 28 degrees of freedom, is 47.1052 with a p-value of 0.01335.

As a result, we cannot reject the null hypothesis in this case.  Our conclusion, therefore, is that a

time and relative price dependent Cobb-Douglas production function is consistent with the gin-

ning data.  Additional statistical evidence supporting this conclusion comes from the fact that the

time and relative price dependent Cobb-Douglas production function yielded residuals that

passed the goodness of fit test for normality and the Jarque-Bera normality test.  Moreover, eight

different tests for heteroskedasticity were conducted, and in each instance we could not reject the

null hypothesis of homoskedasticity.  In passing, note that the R-square between observed and

predicted for the time and relative price dependent Cobb-Douglas production function is 0.9074.
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The same conclusion regarding the functional form of the production function is reached

beginning with the time and relative price dependent CES production function

y = A δ1xK
−ρ + δ 2 xL

− ρ + [1− δ1 − δ2 ]xE
−ρ[ ]

−η
ρ wK

γ K wL
γ L wE

γ E tδ[ ] .

We estimated this production function using a nonlinear instrumental variable estimator to again

account for the endogeneity of the factors of production.  The instruments include the vector

(wK ,wL ,wE ,t)  along with its associated combination of quadratic form variables.  The null hy-

pothesis that a time and relative price dependent Cobb-Douglas production function is consistent

with the sample of ginning data amounts to testing whether the parameter ρ is zero, for a total of

1 restriction.  The computed Wald χ 2- statistic , with 1 degree of freedom, is 0.03972 with a p-

value of 0.84203.  Thus we cannot reject the null hypothesis.  In sum, we find ample and consis-

tent statistical evidence in favor of the time and relative price dependent Cobb-Douglas produc-

tion function, whether we initially postulate a translog or CES production function incorporating

time and relative input prices.

Conditional on the conclusion that a time and relative price dependent Cobb-Douglas

production function is consistent with the data, we now test to see if time is a significant deter-

minant of the gins’ technology.  For the null hypothesis that the coefficient on time is zero, the

computed asymptotic t-statistic, with 76 degrees of freedom, is –1.288 with a p-value of 0.198.

Hence we cannot reject the null hypothesis that time has no significant impact on the production

technology.  We may therefore conclude that a relative price dependent Cobb-Douglas produc-

tion function is consistent with the ginning data.  Observe that the R-square between observed

and predicted for the relative price dependent Cobb-Douglas production function is 0.9135.

Conditional on this conclusion, we now test to see if the presence of the relative prices in the

Cobb-Douglas production function is statistically significant.

The statistical evidence that relative prices are a significant determinant of the gins’

choice of technology is strong.  For the null hypothesis that all three coefficients on the relative

prices are zero, the computed Wald χ 2- statistic , with 3 degrees of freedom, is 19.7659 with a p-
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value of 0.00019.  We are thus led to reject the null hypothesis that relative input prices are sta-

tistically unimportant in influencing the gins’ technology, given a relative price dependent Cobb-

Douglas production function.  In other words, we may conclude that relative input prices are a

statistically important determinant of the gins’ technology.  In sum, therefore, all the statistical

evidence points to a relative price dependent form of a Cobb-Douglas production function for the

cotton gins.  This finding concludes the first stage of our test procedure.  For ease of reference,

we have compiled the various null hypotheses, the p-values of each computed test statistic, and

the decision pertaining to each of the statistical tests in Table 1.

6. Rigorous Tests of the Price-Induced TP Theory

Given the above first stage conclusion concerning the functional form of the production function,

we now turn to the second stage of the empirical work, to wit, the statistical test of the complete

set of qualitative properties of the price-induced TP theory.  To begin, we first present the gen-

eral form of the relative price dependent Cobb-Douglas production function deduced from the

first stage analysis:

y = A xK
α K xL

α L xE
α E wK

γ K wL
γ L wE

γ E . (8)

The corresponding dual cost function, found by solving problem (4) using the production func-

tion in Eq. (8), is given by

C = [α K + α L + α E ] A−1αK
−α K α L

−α L αE
−α E[ ]

1
αK +α L +α E y

1
αK +α L +α E wK

α K −γ K
αK +α L +α E wL

α L −γ L
α K +α L +α E wE

αE −γ E
α K +α L +α E . (9)

After taking natural logarithms of Eqs. (8) and (9), we estimated the pair of equations as a sys-

tem jointly using the nonlinear three-stage least squares estimator so as to account for the en-

dogeneity of the factors of production.  The instruments include the logarithm of the vector

(wK ,wL ,wE ,t)  along with its associated combination of quadratic form variables.  The results of

the estimation are presented in Table 2.  To gain confidence that we obtained a global minimum,

and not just a local minimum, of the criterion function, we employed several different sets of

starting values for the coefficients, three different numerical algorithms, and two different con-
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vergence criteria for the coefficients.  In every instance we obtained essentially the same set of

parameter estimates and standard errors.

It is worthwhile to point out that the joint estimation of the production and cost functions

is justified also in the case of a conventional Cobb-Douglas specification.  This is so because, in

an empirical context, the two functions carry specific information in the form of error compo-

nents and, therefore, their joint estimation results in efficient parameter estimates.

As a final check on the validity of relative prices in the production function, we tested the

null hypothesis that the γ i , i = K,L, E , coefficients are zero using the nonlinear three-stage least

squares estimates of Eqs. (8) and (9).  The computed Wald χ 2- statistic , with 3 degrees of free-

dom, is 48.5123 with a p-value of 0.0000.  Thus, we again are led to the conclusion that relative

prices are statistically important determinants of the gins’ production technology, just as we

found in section 5 when using single equation estimates of the production function.

In order to carry out a statistical test of the cost-minimizing price-induced TP theory, we

must determine if the estimated production and cost functions satisfy the implied inequality re-

strictions that follow from the negative semidefiniteness of S1(α)  from Theorem 1.  To this end,

we first compute S1(α)  using Eqs. (8) and (9).  After lengthy differential calculus and algebra

computations, we arrive at

S1(α) =
−C

[α K + α L + α E ]2

αK [αL + αE ]
wK

2

−α KαL

wK wL

−αKα E

wK wE

−αKα L

wK wL

α L[αK + αE ]

wL
2

−α LαE

wLwE

−α Kα E

wK wE

−α LαE

wLwE

α E[αK + α L]
wE

2

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

. (10)

By Theorem 1.E.11(iv) of Takayama (1985), necessary and sufficient conditions for the negative

semidefiniteness of S1(α)  are (i) nonpositivity of all three first-order principal minors, (ii) non-

negativity of all three second-order principal minors, and (iii) a nonpositive determinant.  In-
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spection of Eq. (10) reveals that the nonpositivity of the three first-order principal minors is

equivalent to

αK [α L + α E ] ≥ 0, α L[αK + αE ] ≥ 0, αE [αK + αL ] ≥ 0 , (11)

while nonnegativity of the three second-order principal minors is equivalent to

αKαLα E[αK + αL + αE ] ≥ 0 . (12)

Since S1(α ) ≡ 0 , the four inequalities in Eqs. (11) and (12) constitute the testable implications of

the negative semidefiniteness of S1(α)  from Theorem 1 given the relative price dependent Cobb-

Douglas production function in Eq. (8).  Moreover, that S1(α ) ≡ 0  implies that the rank conclu-

sion of Theorem 1, videlicet rank S1(α)( ) ≤ N − 1= 2, is automatically met by our estimated

model.  Observe that the inequalities in Eqs. (11) and (12) hold if αi ≥ 0 or if αi ≤ 0, i = K,L, E .

The four nonlinear inequalities in Eqs. (11) and (12), which we have shown to be

equivalent to the negative semidefiniteness of S1(α) , can be replaced by three linear inequality

restrictions on a subset of the parameters of the Cobb-Douglas production function in Eq. (8).

Key to our demonstration is the fact that Eqs. (11) and (12) do not represent the exhaustive set of

testable properties of the cost-minimizing price-induced TP model of the firm defined by Eq. (4).

To see this, recall that in section 3 we demonstrated that there is another set of qualitative impli-

cations associated with problem (4), to wit, the marginal products of the factors of production

must necessarily be positive at the optimum.  Using Eq. (8), this necessary requirement is that

∂ y
∂ xi

=
αiy
xi

> 0 , i = K,L, E (13)

at the optimal solution.  Since y > 0 and xi > 0, i = K,L, E , a set of inequalities equivalent to

those in Eq. (13) is given by

αK > 0, α L > 0, α E > 0. (14)

Thus, the inequality restrictions in Eqs. (11), (12), and (14) constitute the complete set of restric-

tions on the cost-minimizing price-induced TP model of the firm defined by Eq. (4).

Inspection of Eqs. (11), (12), and (14), however, reveals that the inequality restrictions in

Eq. (14) imply those in Eqs. (11) and (12), but not the converse.  Hence, in carrying out an ex-
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haustive empirical test of the cost-minimizing price-induced TP theory, all we have to test is the

three linear inequality restrictions in Eq. (14) pertaining to the coefficients of the factors of pro-

duction of the relative price dependent Cobb-Douglas production function in Eq. (8).  This fact

permits a considerable simplification of the empirical test of the cost-minimizing price-induced

TP theory since one need only test the three linear inequality restrictions in Eq. (14), rather than

the four nonlinear inequality restrictions in Eqs. (11) and (12).  It is important to comprehend

that this simplification of the test of the cost-minimizing price-induced TP theory is due entirely

to the Cobb-Douglas form of the production function.

The inequality restrictions in Eq. (14) might mistakenly lead one to believe that they are

equivalent to testing for the quasi-concavity of the production function of the prototype cost-

minimizing model, and therefore that the qualitative properties of the price-induced TP theory

and the neoclassical version are identical.  But as Theorem 1 and the discussion surrounding it in

section 3 have clearly demonstrated, the qualitative properties of the cost-minimizing price-

induced TP theory differ markedly from those of the neoclassical theory.  In addition, one need

only refer to Theorem 2 in the appendix to see that the comparative statics properties of the cost-

minimizing price-induced TP model are a generalization of, and thus different from, their neo-

classical counterparts.

In order to carry out the empirical test of the inequality restrictions in Eq. (14), we em-

ploy the Bayesian inequality constrained estimator of Geweke (1986) with 200,000 replications.

This estimator yields an estimate of the probability that the inequality restrictions in Eq. (14) are

true for a sample of data.  With our ginning data we find that the probability that the inequality

restrictions in Eq. (14) hold for relative price dependent Cobb-Douglas production function is

1.0.  Consequently, the statistical evidence overwhelmingly supports the cost-minimizing price-

induced TP theory.  In passing, note that the inequality constrained Geweke (1986) estimates are

identical to their unconstrained counterparts in Table 2, since the probability that the inequality

restrictions in Eq. (14) hold is 1.0.
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By referring to the comparative statics results in Paris and Caputo (2001), we may also

test whether the data are consistent with the profit-maximizing version of the price-induced TP

theory.  The profit-maximizing version of the theory requires that an additional inequality re-

striction hold.  The additional restriction is a result of the more stringent primal second-order

necessary condition of profit maximization, namely, local concavity of the production function.

Thus, in addition to the inequality restrictions in Eq. (14), the profit-maximizing price-induced

TP theory implies that

αK + α L + α E ≤ 1. (15)

The simple form that this restriction takes is again due the Cobb-Douglas form of the production

function.  Using the Bayesian inequality constrained estimator of Geweke (1986) with 200,000

replications, we find the probability that the inequality restrictions in Eqs. (14) and (15) hold is

0.0000 for the relative price dependent Cobb-Douglas production function.  Thus, in sharp con-

trast to the cost-minimizing theory of price-induced TP, there is no evidence that the profit-

maximizing version of the theory is compatible with the ginning data.

It turns out that these contrasting conclusions are not really surprising if one knows a lit-

tle bit about the relationship between the cotton gins and the member-growers of the cooperative.

In particular, an important feature of the grower and processor relationship is the fact that the

member-growers of the cooperative deliver whatever amount of raw cotton that they harvested in

a given period to the cooperative gins.  The gins, therefore, have no choice but to take the

amount of raw cotton delivered by their member-growers as given, that is, as something they

have no control over.  Because of the aforementioned quasi-fixed proportions production tech-

nology (xR, xK ,xL ,xE ,wK ,wL ,wE,t) � min ψ −1xR , f (xK , xL ,xE ;wK ,wL ,wE,t){ } , the volume of raw

cotton delivered to a gin essentially fixes the amount of cleaned and baled cotton lint it can pro-

duce.  This, in turn, implies that the cotton gins are fully capable of minimizing the cost of pro-

ducing a given amount of cleaned and baled cotton lint, but are not able to maximize profits, for

the amount of cleaned and baled cotton lint is not under their control, seeing as it is more or less

determined by the volume of raw cotton delivered by their member-growers.
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We close this section with a discussion of the nature of TP in the California cotton gins

studied.  As far as factor biases are concerned, because the production function is of the Cobb-

Douglas family, the effects of exogenous TP, as given by changes in t, or the effects of price-

induced TP, as given by changes in the relative factor prices, are neutral, i.e., bias free.  We

therefore find no evidence of factor bias due to any type of technical change in our admittedly

short time-series on the cotton gins.  Moreover, given that the time variable is never statistically

different from zero in any of the estimated equations, we may further conclude that all the TP in

the gins is due to relative input price changes and is therefore of the price-induced variety.

Table 2 shows that a 10% increase in the relative price of capital, ceteris paribus, results

in a 3.0% increase in the output of a gin, and a 10% increase in the relative price of labor results

in a 6.6% increase in the output of a gin.  On the other hand, a 10% increase in the price of en-

ergy yields a 3.6% decrease in output.  Though the first two results may initially strike one as

counterintuitive, our model of price-induced TP is quite general, and as such, it is fully consistent

with such a range of empirical features.  Moreover, such ostensible counterintuitive results are

the fundamental reason why the only complete and rigorous empirical test of the theory is given

by the test of its comparative statics properties.

To see that the above price-induced TP calculations are plausible, we simply adopt a dif-

ferent point of view.  That is to say, we now examine the effects of a 10% increase in the relative

input prices on the cost of production.  In addition, we compare the effect on cost of a relative

input price increase with and without price-induced TP operating.  These calculations are sum-

marized in Table 3, where we note that, in the second column, the cost and production functions

were jointly estimated with the parameters γ i , i = K,L, E , set equal to zero to obtain the pa-

rameter estimates for the version of the model without price-induced TP.  Table 3 shows that for

all three relative input prices, production costs rise less when price-induced TP is accounted for

than when it is not.  For example, a 10% increase in the relative price of capital results in a 3.5%

increase in production costs when price-induced TP is assumed to be absent, whereas production

costs rise only 1.4% when price-induced TP is accounted for.  Similarly, a 10% increase in the
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relative price of labor results in a 4.3% increase in production costs when price-induced TP is

neglected, while production costs fall by 0.2% when price-induced TP is present.  On the other

hand, a 10% increase in the relative price of energy results in a 2.3% increase in production costs

in the absence of price-induced TP, whereas production costs rise by 4.7% when price-induced

TP is accounted for.  Nonetheless, the first column of Table 3 reveals that price-induced TP has

been favorable overall to the cotton gins, in that a simultaneous increase in all three relative

prices results in a smaller cost increase than when price-induced TP is assumed to be absent, en-

tirely consistent with what one typically means by technical progress.

In passing, we remark that the computation of factor biases, whether price-induced or ex-

ogenous, can be straightforwardly carried out within the priced-induced TP theory of the firm

exposited here when the production function is not of the Cobb-Douglas variety, as Celikkol and

Stefanou (1999) have shown for a generalized Leontief production function.

7. Summary and Conclusions

We formulated an explicit microeconomic model of Hick’s (1932, p. 124) conjecture that rela-

tive prices influence the magnitude and direction of TP.  The resulting formulation permitted us

to derive a fundamental set of testable hypotheses that are amenable to empirical implementation

in two stages: (i) identification of a statistically acceptable functional form for the production

function, and (ii) re-estimation of the resulting production function jointly with its dual cost

function in order to conduct a statistical test of the price-induced TP hypothesis.  Using a unique

time-series/cross-section sample of data on cotton ginning cooperative firms located in the San

Joaquin Valley of California, we found strong and consistent statistical evidence in favor of the

cost-minimizing version of the price-induced TP theory.  In contrast, we found essentially no

statistical evidence supporting the profit-maximizing version of the price-induced TP theory.

Because the final form of production function is of the Cobb-Douglas family, the effects of ex-

ogenous TP, as given by changes in t, or the effects of price-induced TP, as given by changes in

the relative factor prices, are neutral.  Moreover, since the time variable was never statistically
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significant in any of the estimated production and cost functions, all the TP in the gins is due to

relative input price changes, that is, all TP is of the price-induced variety.

Two directions for future research come to mind when putting the results of the paper and

our approach into perspective.  First, further empirical tests of the price-induced TP theory are

necessary to further confirm or refute the model as a viable explanation of microeconomic level

TP.  Specifically, a longer time-series of firm level data would be valuable so that one may have

observations on the choice of production techniques over an expanded sample period.  Second,

the intertemporal nature of the technology adoption process begs for a dynamic version of the

theory propounded here.  We intend to address both of these concerns in our future work.

8. Appendix

Proof of Theorem 1.  Because there are N  decision variables and one constraint in problem (4),

and the classical constraint qualification holds at the optimum due to the fact that fxn
(x;w,t) > 0 ,

n = 1,2,…,N , at the optimum, the dimension of the decision space is N − 1.  This implies that any

comparative statics matrix derived from problem (4) cannot have a rank greater than N − 1, since

any complete comparative statics characterization of problem (4) cannot contain any more in-

formation than that contained in the primal second-order necessary conditions.  This fact implies

that rank S1(α)( ) ≤ N − 1 for all   α ∈ B(α �;δ) .

Given the above rank property, we are permitted to fix  t = t�  for the purpose of deriving

the qualitative properties of problem (4).  We therefore focus on the parameters (w, y).  Conse-

quently, let   x
� = ˆ x (w�, y� ,t� ) and suppress   t = t�  from the arguments of the ensuing equations for

notational clarity.  Then the primal-dual optimization problem associated with problem (4) is de-

fined as

  
0 =def

min
w ,y

′ w x � − C(w, y) s.t. y − f (x � ;w) = 0{ } . (16)

Problem (16) may be rewritten as an equivalent unconstrained minimization problem by using

the constraint to eliminate y  from it, thereby yielding

  
0 =def

min
w

′ w x � − C w, f (x � ;w)( ){ } . (17)
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The necessary conditions, which hold at   w�  by construction of problem (17), are given by

  (x
� )′ − Cw w, f (x � ;w)( ) − Cy w, f (x � ;w)( ) fw (x � ;w) = 0N , (18)

   

  

′ h −Cww w, f (x �;w)( ) − Cwy w, f (x � ;w)( ) fw (x � ;w) − Cy w, f (x � ;w)( ) fww(x � ;w){
− fw(x �;w ′ ) Cyw w, f (x � ;w)( ) − fw(x �;w ′ ) Cyy w, f (x � ;w)( ) fw(x � ;w)}h ≥ 0, ∀h ∈ℜ N .

(19)

Now observe that the choice of (w, y) used in holding ˆ x (w, y) fixed in the construction of prob-

lems (16) and (17) is arbitrary, so long as   (w, y) ∈ B (w�, y� );δ( ) .  Hence the necessary conditions

(18) and (19) hold for all  (w, y) ∈ B (w�, y� );δ( ) .  Using this observation in Eq. (19), multiplying it

through by minus unity, and then employing the constraint in identity form, namely

y ≡ f ˆ x (w,y);w( )  for all   (w, y) ∈ B (w�, y� );δ( ) , establishes that S1(w, y) is negative semidefinite

for all   (w, y) ∈ B (w�, y� );δ( ) .  Symmetry of S1(w, y) for all  (w, y) ∈ B (w�, y� );δ( )  follows from the

C (2)  nature of f (⋅)  and C(⋅) . Q.E.D.

Theorem 2 (Comparative Statics).  For the price-taking cost-minimizing model of the firm oper-

ating under the influence of price-induced TP defined by Eq. (4) et. seq., the N × N  matrix

S2(w,y,t) =def
IN − Cwy fx − Cy fwx − fw

′Cyy fx
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

∂ ˆ x 
∂w

,

is identical to S1(w, y,t)  for all  α ∈ B(α �;δ) .

Proof.  To prove that S1(w, y) ≡ S2(w,y) for all (w, y) ∈ B (w�, y� );δ( ) , we again use the fact that

Eq. (18) holds for all (w, y) ∈ B (w�, y� );δ( )  to convert it into an identity in (w, y).  Differentiating

the resulting identity with respect to w using the chain rule gives

  

Cww(α ) + Cwy (α) fw ˆ x (α);w,t( )

+ Cy(α ) fww ˆ x (α);w,t( ) + fw ˆ x (α );w,t( )′Cyw (α)

+ fw ˆ x (α);w,t( )′Cyy (α ) fw ˆ x (α);w,t( ) ≡ IN − Cwy (α) fx ˆ x (α );w,t( ) − Cy (α ) fwx ˆ x (α );w,t( )[
− fw ˆ x (α);w,t( )′Cyy (α ) fx ˆ x (α );w,t( )⎤ 

⎦ ⎥ 
∂ ˆ x (α )

∂ w
.

(20)
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Using the identity y ≡ f ˆ x (w,y);w( )  for all   (w, y) ∈ B (w�, y� );δ( )  in Eq. (20) and recalling the

definitions of S1(w, y) and S2(w,y) , it follows from Eq. (20) that S1(w, y) ≡ S2(w,y) for all

  (w, y) ∈ B (w�, y� );δ( ) . Q.E.D.

Observe that if fw(x;w,t) ≡ ′ 0 N , then y ≡ f ˆ x (α );w,t( )  implies that ′ 0 N ≡ fx ˆ x (α );w,t( ) ∂
∂ w ˆ x (α ).  In

turn, this implies that S2(α ) = ∂
∂ w ˆ x (α ) is a symmetric and negative semidefinite matrix, the com-

parative statics statement of the neoclassical cost minimizing model of the firm.
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Table 1
Determination of the Functional Form of the Production Function

Hypotheses p-value Decision
H0 :  Prototype Cobb-Douglas

H1:  Time and Relative Price Dependent Translog
0.00003 Reject H0

H0:  Time Dependent Cobb-Douglas

H1:  Time and Relative Price Dependent Translog
0.00032 Reject H0

H0:  Time and Relative Price Dependent Cobb-Douglas

H1:  Time and Relative Price Dependent Translog
0.01335 Do Not Reject H0

H0:  Time and Relative Price Dependent Cobb-Douglas

H1:  Time and Relative Price Dependent CES
0.84203 Do Not Reject H0

H0:  Relative Price Dependent Cobb-Douglas

H1:  Time and Relative Price Dependent Cobb-Douglas
0.198 Do Not Reject H0

H0:  Prototype Cobb-Douglas

H1:  Relative Price Dependent Cobb-Douglas
0.00019 Reject H0

Table 2
Joint Estimation of the Relative Price Dependent Cobb-Douglas

Production Function and Dual Cost Function

Parameter Estimated Coefficient t-ratio

A 22.656 10.928

αK
0.5054 19.394

αL
0.6297 12.205

αE
0.3362 7.6592

γ K
0.3002 4.3420

γ L
0.6563 5.1814

γ E
–0.3569 –2.7378

Table 3
Percent Change in Cost Resulting from a 10% Increase in a Relative Input Price

With Price-Induced TP Without Price-Induced TP

Relative Price of Capital 1.40 3.46

Relative Price of Labor –0.18 4.23

Relative Price of Energy 4.71 2.31


