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MELE: Maximum Entropy L euven Estimators
Quirino Paris

Leuven, Belgium, April 6, 2001

Abstract

Multicollinearity hampers empirical econometrics. The remedies proposed to date suffer
from pitfalls of their own. The ridge estimator is not generally accepted as a vital alterna-
tive to the ordinary least-squares (OLS) estimator because it depends upon unknown pa-
rameters. The generalized maximum entropy (GME) estimator of Golan, Judge and
Miller depends upon subjective exogenous information that affects the estimated pa-
rameters in an unpredictable way. This paper presents novel maximum entropy estima-
tors inspired by the theory of light that do not depend upon any additional information.
Monte Carlo experiments show that they are not affected by any level of multicollinearity
and dominate OLS uniformly. The Leuven estimators are consistent and asymptotically
normal.

Key words. multicollinearity, mean squared error, ordinary least squares, generalized
maximum entropy

JEL classification: C2, econometric methods: single equation models

Quirino Paris is a professor of agricultural economics at the University of California,
Davis and a member of the Giannini Foundation. This paper was written in honor and
loving memory of my wife, Carlene Paris, who died of leilomyosarcoma---a very rare
cancer---on May 5, 2001. | am indebted to Michael R. Caputo and Art Havenner for
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MELE: Maximum Entropy L euven Estimators
Quirino Paris

Introduction

On a dark and sleepless night in Leuven, Belgium, where my wife Carlene was undergo-
ing adifficult cancer treatment, | was struck by aray of light coming through the window
of my apartment looking onto Ladeuze Plein. A characteristic of my age is that, often, it
comes with cataracts, and the light striking my eyes scattered in a myriad of directions
forming all sort of images as in a kaleidoscope. At that moment, my mind wandered to
my amateurish readings about the theory of light and to the unexplainable finding of
Quantum ElectroDynamics (QED) according to which the probability that a photomul-
tiplier is hit by a photon reflected from a sheet of glassis equal to the square of its
amplitude. The amplitude of a photon is an arrow (a vector) that summarizes all the
possible ways in which a photon could have reached a given photomultiplier.

This totally implausible discovery about light and matter was presented by Rich-
ard Feynman (page 24) in clear and entertaining ways more than fifteen years ago: “The
situation today is, we haven't got a good model to explain partial reflection by two sur-
faces, we just calculate the probability that a particular photomultiplier will be hit by a
photon reflected from a sheet of glass. | have chosen this calculation as our first example
of the method provided by the theory of quantum electrodynamics. | am going to show
you ‘how we count the beans ---what the physicists do to get the right answer. | am not
going to explain how the photons actualy ‘decide’ whether to bounce back or go
through; that is not known. (Probably the question has no meaning.) | will only show how

to calculate the correct probability that light will be reflected from a glass of given thick-



ness, because that’ s the only thing physicists know how to do! ... You will have to brace
yourself for this---not because it is difficult to understand, but because it is absolutely ri-
diculous: All we do isdraw little arrows on a piece of paper---that’s all! Now, what does
an arrow have to do with the chance that a particular event will happen? According to
the rules of *how we count the beans,” the probability of an event is equal to the square of
the length of the arrow.”

| have always been envious of physicists because they have a nice story to tell and
because the story is so rich although the premises are so simple. Although it is too late
for me to become a physicist, it is not too late for attempting to emulate their reasoning.
But why would econometric analysis have anything to do with QED? In fact, it haslittle
to do with it. Except that the analogy between the theory of light and the theory of in-
formation became so irresistible in that sleepless night in Leuven.

The analogy can be elaborated along the following lines. Light carries information
about the physical environment. When light reaches the eyes (photomultipliers) of a per-
son with cataracts, the perceived image may be out-of-focus. That person will squint and
adjust his eyes in order to improve the reproduction of the image in his brain. Also eco-
nomic data carry information about economic environments and the decision processes
that generated those data. As with any picture, the information reaching a researcher may
correspond to an image that is out-of-focus. The goal of econometric analysis, then, is to
reconstruct the best possible image of an economic decision process as the way to better
understand the economic agent’ s environment.

This description of econometric analysis is of old vintage. The means to achiev-

ing a “better” statistical image of the economic process relies heavily upon the estimator



selected by the researcher for this purpose (along with a correctly specified economic
model). The novelty of this paper, then, is the proposal of a new class of statistical esti-
mators inspired by the theory of light. These estimators are maximum entropy estimators
and are named after the town of Leuven that has played such an important part in my life
and in the life of my wife Carlene.

In the next sections, two MELE specifications will be presented. For convenience,
they will be numbered 1 and 2. They are all maximum entropy estimators. The MEL es-
timators are consistent and asymptotically normal. Properties such as asymptotic unbi-
asedness, consistency and normality of the parameter estimates will be illustrated by
means of Monte Carlo experiments. We will present also a preliminary comparison with
rival estimators such as the generalized maximum entropy (GME) estimator of Golan,
Judge and Miller and the ordinary least-squares (OLS) estimator. A particularly inter-
esting aspect of this comparison is represented by the behavior of these estimators under
a condition of increasing multicollinearity as measured according to Beldey et a.’s
(1980) recommendation. The Leuven estimators outperform the OLS estimator for all
values of the condition number examined in several Monte Carlo experiments. They also
outperform the GME estimator when a large intercept is part of the econometric model. It
is also important to anticipate that, in contrast to the GME estimator, no subjective and a

priori information is necessary in order to implement any of the Leuven estimators.



L euven-1 and L euven-2 Estimators

The Leuven-1 and Leuven-2 estimators share the same entropy structure. Their difference
consists in the fact that the Leuven-2 estimator extends the entropy specification to the er-
ror term.

Let us consider a general, linear statistical model representing some economic re-
lation (production, demand, cost function) that characterizes the following set of Data
Generating Processes (DGP):

«y y=XB+u, u~11DQ,s?),

where the dimensions of the various components are y ~ (T~ D, u~ T " 1), ~ (K" 1)
and X ~ (T~ K). The vector y and the matrix X constitute sample information. The
vector  represents parameters to estimate and the vector u contains random distur-
bances.

In an econometric model with noise, it is impossible to measure exactly the pa-
rameters involved in the generation of the sample data. Each parameter depends on every
other parameter specified in the model and its measured dimensionality is affected by the
available sample information as well as by the measuring procedure. Following the the-
ory of light, it is possible to estimate the probability of such parameters using their re-
veadled image. The revealed image of a parameter can be thought of as the estimable di-
mensionality that depends on the sample information available for the analysis. Hence,
in the Leuven-1 estimator we postulate that the probability of a parameter b, (which car-
ries economic information) is equal to the square of its “amplitude” where by amplitude
we intend its estimated normalized dimensionality. Thus, the Leuven-1 estimator is

specified as follows:



2 min H(pb’Lb’u):é. B, log(pbk)+Lblog(Lb)+é- L{Z
k t

subject to Y, = a XDy T U,
k
L, = a b}
k
Po, = bi/ Ly

with Py, 20, k=1,...K, t=1,...,T. The amplitude (or normalized dimensionality) of pa-

rameter b, is given by b, / JL,, hence the probability of parameter b, is given by the
square of its amplitude, as in the theory of light. The term L log(L,) in the objective
function prevents the overflow of the L, parameter. The Leuven-1 estimator does not re-
quire any subjective a-priori information. It utilizes the components of the statistical lin-
ear model to define the relevant amplitude of the corresponding parameters. Although
this structure is relatively simple, it admits a series of sophisticated variations, as dis-

cussed in subsequent sections.

In matrix notation, the Leuven-1 estimator assumes the following specification:

©) minH(p,, L,,u) = pglog(p,) + L, log(L,) + ut
subject to y=Xp+u

L, =p®

P, =PQB/ L,

where p,3 0 and the symbol Q indicates the el ement-by-element Hadamard product.

In order to better clarify the nature of the probability relations, we must notice

that p, =pQP/ L, isnot arestriction as in the traditional sense since a minimization of

the sum of sguared residuals uti subject to the same relations of problem (3) will pro-



duce the unrestricted least-squares estimator. Traditionally, in other words, a set of pa-
rameter restrictions are appended to the model without changing the objective function.
On the contrary, in the Leuven-1 estimator the “restrictions” make sense only if accom-
panied by the entropy part of the objective function and vice versa. In other words, these
probability relations are simply definitions that characterize the Leuven-1 estimator.
Surely, these probability relations could have been hypothesized to have a different func-
tional expression in terms of the p parameters but here is where the inspiration to the
theory of light provides an intuitive story involving economic information. In the end,
whether or not the specification of the probability relations according to the theory of
light will have any econometric relevance will depend upon the empirical performance of
the Leuven estimators when confronted with many “real life” samples of economic data.
The Leuven-1 estimator (like all Leuven estimators) does not possess a closed
form representation. Its solution requires the use of a computer code for nonlinear pro-
gramming problems such as GAMS by Brooke et al. In order to examine the intricate
structure of the Leuven-1 estimator it is useful to derive the corresponding KKT condi-
tions. The corresponding Lagrangean function is given as
(4) L =pglog(p,) +L, log(Ly) + uki + Ay - XB - u) + (L, - BB) +n&p, - PO/ Ly,)
where the symbols \,mn are the Lagrange multipliers of the corresponding constraints.
Therelevant KKT conditions of problem (3) are stated as follows:
7 =log(p,) + 1+ =0
i =log(L,) +1+ m+meBQR/ Ly =log(L,) +1+ m ne, / L, =0

L=-Xo- 2nB- 2qQp/L, =0

L=2u-2=0

()



where the symbol , represents avector of unit elements of dimension K. The solution of
these KKT conditions, if it exists, will produce always a vector of probabilities with all
positive components. It is apparent that the Leuven-1 estimator is nonlinear nonlinear in
the parameters but, in spite of its complexity, the empirical solution of numerous test
problems was swift and efficient on the same level of rapidity of the least-squares esti-
mator.

The Leuven-2 estimator extends the probability specification to the error

term u resulting in the following symmetric structure:

(6)  minH(p,L,.p,L,)=a p, log®,)+a p, log(p, )+ L, log(L,) + L, log(L,)
k t

subject to Y= A Xby

k

L, = a b}
k

Py, :bi/Lb

L=au
t

P, =W /L,

with P, 20 and p, ® 0, k=1,...K, t=1,...,T. Except for the probability elaboration of

the error term, the Leuven-2 estimator shares the same structure and characteristics of the

Leuven-1 estimator. In matrix notation the Leuven-2 estimator assumes the following

form:
(7 minH(p,, L,,p,, L) =pglog(p, ) + L, log(Ly,) +pglog(p,) + L, log(L,)
subject to y=Xp+u

L, =p®



P, =BQB/ Ly
L, =ud
p, =uQu/L,
with p, 3 0 and p,3 0. Again, the Leuven-2 estimator does not require any subjective

exogenous information as does the GME estimator.

The Classof MELE asRival tothe GME and OL S Estimators
In 1996, Golan, Judge and Miller proposed a way to extend Jaynes maximum entropy
formalism in econometrics to any sort of linear statistical models. Their assumption is

that a parameter b, is regarded as the mathematical expectation of some discrete support

values Z, ., such that
8 b= Q ZinPn

where p, .3 0 are probabilities and, of course, a Pen =1 for k=1,...,K. The element

Z,., congtitutes a-priori information provided by the researcher, while p, . isan unknown

probability whose value must be determined by solving a maximum entropy problem.
Golan, Judge and Miller present a thorough discussion of the Generalized Maxi-

mum Entropy (GME) estimator. Let g=2Zp, with p, 3 0 and é_mpkm =1 for
k=1,.,K. Also, let u=Vw, with W, 3 0 and é th9=1 for t=1,....T. Then, the

GME estimator can be stated as

9 max H(p , W= - & Punl09(Pen) - & Wi l0G(W,,)
k,m t.g
subject to y=XZp +Vw



The GME estimator is not sensitive to multicollinearity because the matrix X ¢ does not
appear on the main diagonal of the appropriate KKT conditions.
The GME estimator, however, has important weaknesses for which the class of

MELE provides aremedy: The estimates of parameter b, and residual u, are sensitive, in

an unpredictable way, to changes in the support intervals. Caputo and Paris have done a
general and complete analysis of this aspect. A concomitant but distinct weakness of the
GME estimator is that the parameter estimates and their variances are affected by the
number of discrete support values. Many traditional econometricians reject the GME es-
timator because of these unsatisfactory properties. In effect, it is somewhat disappointing
to inject subjective information into the estimation and data analysis process without
knowing in what way this exogenous information will affect the estimated parameters.
Also, while knowledge of the bounds for some parameters may be available and, there-
fore, ought to be used, it is unlikely that this knowledge can cover all the parameters of a
model. In other words, the GME estimator depends crucially upon the subjective and ex-
ogenous information supplied by the researcher: The same sample data in the hands of
different researchers willing to apply the GME estimator will produce different estimates
of the parameters and, likely, different policy recommendations.

The class of MELE rivals aso the OLS estimator because of its better perform-
ance under conditions of increasing multicollinearity, an empirical event that plagues the

majority of econometric analyses.
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Uniqueness of the Estimates (Estimator Identification by the Sample Data)

The Leuven-1 estimator is composed by a strictly convex objective function, a convex
linear model, the length of the parameter vector which is a convex function, and a rela-
tion between probabilities and parameters which is neither concave nor convex. It isthis
last relation that makes it difficult to decide whether the Leuven estimators have a unique
global solution. A limited number of empirical examples have been analyzed by restart-
ing the solution routine with many different starting values. In particular, a grid for ten
parameters of a Monte Carlo experiment described bel ow was explored with initial values
that ranged from —100 to +100 (when the true value of the parameters ranged between -2
and +2) using a step size equal to 5. In all the runs, the Leuven estimators converged to
the same solution. These results justify the conjecture that the Leuven estimators have a

unique global solution given an arbitrary sample of data.

Distributional Propertiesof MELE

The Leuven estimators are consistent and asymptotically normal. A proof of this propo-
sition is presented in the appendix. To illustrate these properties, several Monte Carlo ex-
periments were performed. In particular, consistency, asymptotic unbiasedness and nor-
mality of the estimated parameters were considered. In these experiments, the value of
the mean squared error criterion tends to zero for a large sample size, supporting the no-
tion that the estimators are consistent and asymptotically unbiased. Furthermore, the be-

havior of the estimators under increasing levels of multicollinearity was analyzed.

11



Consistency and asymptotic unbiasedness were measured by the magnitude of the

mean squared error (MSE) criterion and of the squared biasin arisk function r ([S,fj), also
called mean sguared error loss (MSEL ), as suggested by Judge et al. (p. 558), where
(10)  r(B,p) =trMSE(B,B) = rEI(B - B)(B - B)0]= EI(B- B)CB- B)]

= trCOV/(B) + tr[BIAS() * BIAS(3)].

Tables 1 and 2 present the results of a non-trivial Monte Carlo experiment that
deals with a true model exhibiting the following Data Generating Process (DGP). There
areten parameters b, , k =1,...K, to estimate. Each parameter b, was drawn from auni-
form distribution U[-1.7,2.0. Each element of the matrix of regressors X was drawn
from a uniform distribution U[1,5]. The model has no intercept. Finally, each component
of the disturbance vector u was drawn from a normal distribution N(0,s2)= N(0,4.
With this specification, the dependent variable y was measured in units of tens, ranging
from 10 to 100 (in absolute value). Runs of one hundred samples of increasing size, from
50 to 5000 observations, were executed. The GME estimator was implemented with dis-
crete support intervals for the parameters and the error terms selected as [-5,0,5] and [-
10,0,10], respectively. The condition number (CN) (see Beldey et al.) of the X matrix is
given for each sample size.

Table 1. Monte Carlo Experiment N. 1: Model without intercept. Asymptotic unbiased-
ness of rival estimators. 100 samples.

Estimators T=50 T=200 T=400 T=1000 T= 2000 T=5000
CN=11.5 CN=10.3 CN=95 CN=9.1 CN=8.8 CN=8.1

Leuven-1 003630 0.00371 000043 0.00078 0.00013  0.00003
Leuven-2 000992 000179 0.00012 000058 0.00013  0.00003
GME 0.04986  0.00451 0.00057  =wceoem  meeeee eeeeee
OLS 000893 000170 0.00012 0.00056 0.0013  0.00003

12



The GME estimator implemented with the optimization program GAMS failed to
reach an optimal solution with a sample size of T>400. This event might be due to the
large number of probabilities that must be estimated for an increasing number of error
terms. The GME estimator produces results that approximate very closely uniform prob-
abilities and this characteristic of the GME estimator may make it difficult with large
samples to locate a maximum value of the objective function. Invariably, the GAMS
program terminated with a feasible but non-optimal solution when T>400.

The levels reported in Table 1 represent the sum of the squared bias over ten pa-
rameters. It would appear that the Leuven-2 estimator performs as well as the OLS esti-
mator in small samples. When the sample size increases, both Leuven estimators rival
the OLS estimator. This result is confirmed in Table 2 that presents the levels of MSEL

for the same experiment and sample sizes.

Table 2. Monte Carlo Experiment N. 1. Model without intercept. MSEL for rival estima-
tors. 100 samples

Estimators T=50 T=200 T=400 T=1000 T=2000  T=5000
CN=115 CN=103 CN=95 CN=91 CN=88 CN=81

Leuven-1 0.5448 0.1334 0.0709 0.0295 0.0132 0.0052
Leuven-2 0.5661 0.1347 0.0714 0.0294 0.0132 0.0052
GME 0.5469 0.1341 0.0715 ---smeem ememeen e
OLS 0.5882 0.1351 0.0715 0.0294 0.0132 0.0052

The MSEL values of the Leuven estimatorsin Table 2 tend to zero as T increases
at the same rate as MSEL value of the OL S estimator. This evidence supports the propo-

sition that the L euven estimators are consistent.
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The hypothesis that the parameter estimates are distributed according to a normal
distribution was tested by the Bera-Jarque (1980) statistic involving the coefficients of
skewness and kurtosis that the authors show to be distributed as a ¢ variable with two
degrees of freedom. In al the runs associated with Tables 1 and 2, the normality hypothe-
siswas not rejected with ample margins of safety.

The above results provide evidence that the Leuven-1 and Leuven-2 estimators
perform as well as the OLS estimator, under a well-conditioned XX matrix. The Leu-
ven estimators out-perform the OLS estimator under a condition of increasing multi-
collinearity. Following Belsley et a. (1980), multicollinearity can be detected in a
meaningful way by means of a condition number computed as the square root of the ratio
between the maximum and the minimum eigenvalues of a matrix X¢ (not a moment
matrix) whose columns have been normalized to a unit length. Equivaently, the same
condition number can be obtained by computing the singular value decomposition of a
normalized matrix, normX, such that normX = UDV ¢, where D is a diagonal matrix of
singular valueswhile U and V are matrices such that U¢J =1 and V&/ =|. The condi-
tion number of the normX matrix, then, is the ratio between the maximum and the mini-
mum singular values measured as absolute values. Because
normX & = VDU®DV ¢= VD’V ¢= VL V¢, with eigenvalues L = D?, the two definitions
of condition number are consistent. Belsley et a. found that the negative effects of mul-
ticollinearity begin to surface when the condition number is around 30. A Monte Carlo
experiment was conducted to examine the behavior of the MSEL criterion under in-
creasing values of the condition number with a given sample size of T=50. The experi-

ment’ s structure isidentical to that one associated with Tables 1 and 2.
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Table 3. Monte Carlo Experiment N. 1: Model without intercept. MSEL of rival estima-
tors for an increasing condition number. *T=50, 100 samples

Estimators
Condition

Number Leuven-1  Leuven-2 GME(-5,5) GME(-20,20) OLS

11 0.545 0.576 0.547 0.584 0.588

30 0.800 1.016 0.773 1.059 1.092

60 0.922 1.832 0.858 2.195 2.561

101 0.876 2.457 0.818 3.890 6.120

203 0.792 2.169 0.758 5.316 23.009

304 0.768 1.667 0.742 4.424 50.908

508 0.754 1.183 0.733 2.694 117.601

1,018 0.749 0.898 0.730 1.346 219.350

4,478 1.120 1.123 1.103 1.155 560.338

42,187 1.126 1.133 1.108 1.109 601.108

The Leuven-1 estimator reveals a remarkable stability as the condition number in-
creases. On the contrary, and as expected, the OL S estimator shows a dramatic increase
in the MSEL levels for values of the condition number that can be easily encountered in
empirical econometric analyses. The Leuven-2 estimator reveals a slightly less stable be-
havior although it seemsto converge to the same level of MSEL achieved by the Leuven-
1 estimator for higher values of the condition number. Also the Leuven-2 estimator out-
performs the OL S estimator uniformly. The GME estimator was implemented in two ver-
sions with two different support intervals of the parameters. The first version of GME,
with narrow support intervals, reveals a stability comparable to that of the Leuven-1 es-
timator. The second version of GME, with wider support intervals, exhibits a significant
increase in MSEL values. When the number of repeated samples was increased to 300,

the results were very similar to those givenintables 1, 2 and 3.
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Scaling Propertiesof MELE

With regard to scaling, the Leuven estimators are “invariant” to an arbitrary change of
measurement units of the sample information in the same sense that the OL S estimator is
“invariant” to a change of scale of either the dependent variable or the regressors. Inre-
ality, a more proper characterization of the OLS and Leuven estimators under different
scaling is that their estimates change in a known way due to a known (but arbitrary)
choice of measurement units of either the dependent variable or regressors or both. Be-
cause of this knowledge, it is aways possible to recover the original estimates obtained
prior to the scale change and, in this sense, both the OLS and the Leuven estimators are
said to be scale invariant. The scale-invariance property of the OLS estimator is well-
known. That the same property might be shared by nonlinear estimators may be a novel
result.

The lack of a closed form solution for the Leuven estimators requires a discussion
of the relevant KKT conditions. The main line of reasoning runs as follows: if the KKT
conditions corresponding to two different and arbitrary scaling schemes of the sample in-
formation produce solutions that can be interchanged in the respective KKT conditions
by means of an arbitrary and known linear operator, the Leuven estimators are said to be
scale-invariant.

The KKT conditions for the Leuven-1 estimator corresponding to an unscaled

model are given in system (5) and will be reproduced below for convenience:
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for = 109(Py) + 1+ =0

i =log(L,) +1+ m+m®QB/ Ly =log(L,) +1+ m+ne, / L, =0

L=-X0.- 2np- 2nQB/L, =0
L=2u-r=0

(11)

Notice that the fourth equation involving only the variables u and A establishes the
symmetric duality between error terms and the Lagrange multipliers of the linear statisti-
cal moddl: in unscaled models, therefore, the Lagrange multipliers are always twice as
large as the estimated residuals. With such a general result, the fourth equation can be
eliminated and the third equation of (11) can be rewritten as
(12) - X¢u- nff- nQP/ L, =0.
We will regard the first two equations of system (11) plus equation (12) as representing
the relevant KKT conditions for deriving the scale-invariance property of the Leuven-1
estimator.

We now scale the dependent variable y of the linear statistical model in equation
(1) by an arbitrary but known scalar parameter R and the matrix of regressors X by an
arbitrary but known linear operator S regarded as a non-singular matrix of dimensions
(K” K). Under this scaling scheme, the linear statistical model given by equation (1)

assumes the following representation:

= ié—<8168[3 +4
er- " R
(13)

oI o<

_aX 1By,
=erS P tu

where " ° Sp and u” © u/ R. The specification of the optimization model that will pro-

duce scale-invariant estimates of the Leuven-1 estimator can then be stated as

17



(14) min H(p,, L, u) = pglog(p,) + L, log(L,) + Ru" %’

. Y _aX 16y, s
subject to R S g[s +u

L, =BS5S’
P, =S'BQSB /L.
If the scalar R isequal to one and the matrix S is taken as the identity matrix, the model
specified in equation (14) is identical to the model exhibited in equation (3). We need to
show that the KKT conditions of model (14) produce a solution of the scaled model that
can be used to recover a solution of the unscaled model which satisfies the two KKT
equations of system (11) plus equation (12).
After setting up the Lagrangean function corresponding to model (14), the KKT
condition are derived as follows:
- =log(p,) + 1+ M =0
i =log(L,) +1+ memeS'B'QS™B" / Ly =log(L,) +1+ mn, / L, =0

(15) T _ _S_1¢£¢ _ zn_S_l%_l .~ 28_1(]: S'l */ _O
m T R B YIQ B Lb_

# =R2u" - A =0
Now, let us assume that the vector (G,é, Izb,f)b,Fn;\,ﬁ) represents a solution of the system

of KKT conditions (15). We will show that this solution can be used to recover a vector
of the same parameters that solves the first two equations of the KKT system (11) and
equation (12). First of all, the first two equations of system (15) have a structure that is

identical to the structure of the first two equations of system (11). Hence, the values of

p,.n,L, and m that satisfy the first two equations of system (15) by assumption, satisfy

18



also the first two equations of system (11). We can thus state that f)b =p, |:b = I:b,

=1 and m= fn, where a double hat indicates a solution of the unscaled model. Fur-

=»

thermore, using the identity u” © u/ R we can obtain an estimate of the unscaled residu-

R
(7))
[P
1
>
Py
O
(@b
I
[«

/ R. Thefourth equation of system (15) can then be re-stated as
(16) Rzza-iszzﬁ-i R2G- =0

to signify that the Lagrange multiplier in the scaled linear model is Rtimes as large as the
corresponding Lagrange multiplier in the unscaled model since we know that, in unscaled

models, 2u=A. We thus have = A/ R. The solution value of the Lagrange multiplier

 can be replaced by its equivalent expression [equation (16)] in the third equation of
system (15) after pre-multiplying it by the matrix S¢to obtain

(17) i LRG:RZU 208 - 20QS B/ L, =

Finaly, equation (17) reduces to equation (12) after using the identity g ° Sp from

which we can obtain an estimate of the unscaled parameter § as [AS =S 1[3. To be explicit,

19  -xdi- ip-9QB/L, =0
by making use also of the equalities dealing with parameters L, ,v and m as stated above.
Equation (18) has the same structure of equation (12) and, furthermore, we have found an
unscaled solution (based upon the solution of the scaled model) that satisfies it. This
completes the proof of the scale-invariance property of the Leuven-1 estimator.

In the OLS estimator, the parameter estimates are affected in a known way by ar-

bitrary changes in the measurement units of both the dependent variable and the regres-
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sors (except for the special case in which both sets of variables change in the same way).
On the contrary, the parameter estimates of the Leuven estimators do not change for an
arbitrary variation of the measurement units of the dependent variables. They change
only for ascale variation of the regressors.

The scale invariant specification of the Leuven-2 estimator assumes the following

structure;
(19) minH(p,, Ly, p,, L) =pglog(p,) + L, log(Ly,) + p¢log(p,) + L, log(L,)
. Y _aX 10y, -
subject to R_éRS g[j +u
L, =BS5S’

P, =SBQSB /L,
L, =RuY
p, =RUQu /L,
The proof of scale invariance of the Leuven-2 estimator follows aline of reasoning that is

similar to that developed for the Leuven-1 estimator.

Change of Origin

The change of origin of the sample information (deviations from the mean, for example)
produces two opposite results depending on whether or not the linear model has an inter-
cept. For models without intercept, the parameter estimates of the Leuven estimators are
invariant to a change of origin of the measurement units. In order to prove thisresult it is
sufficient to show that a solution derived from a model whose sample information is de-

fined in deviations from the mean satisfies also the KKT conditions of a model whose
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sample information is measured in natural units. The relevant KKT conditions of this
latter model are given, again, by system (11).

In order to set up amodel defined in deviations from the mean, it is convenient to
define a “deviator” operator D © Z?T - %E— that will generate a dependent variable and

regressors in deviations from their respective means. The vector 1, has T unit elements.
The D operator is an idempotent symmetric matrix. Operating on vectors y, u and ma-

trix X, the model in deviations from the mean is stated as

(20) min H(p,, L,.u) = pglog(p,) +L, log(L,) + ud
subject to Dy = DXp +Du

L, =p®

P, =BQB/ L.

Therelevant KKT conditions of problem (20) are given by

for = 10g(P,) + 1 + =0

i =log(L,) +1+ men@BQB/ Lj = log(L,) +1+ m+n, / L, =0
L=-XOk-2nB- QB /L, =0

% =2u- DA=0

(21)

Now, let us assume that the vector (G,[g, Iib,f)b,r“ni,ﬁ) represents a solution of the system
of KKT conditions (21). By replacing DA in the third equation of system (21) by its
equivalent expression given in the fourth equation of (21), the KKT conditions of the

modd in deviations from the mean have a structure that is identical to the KKT condi-
tions (11). Hence, the solution (G,[;, I:b,ﬁb,rAni,ﬁ) of system (21) will satisfy also system

(11).
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For models with intercept, the parameter estimates of the Leuven estimators are
not invariant to a change of origin of the measurement units. This implies that the famil-
iar practice of defining regressors and dependent variable in deviations from their mean is
not admissible. The reason for this result depends upon the different dimension of the pa-
rameter space in the two specifications. The KKT conditions of the model estimated with
an explicit intercept are articulated in six sets of relations (associated with

Pes P Ly, Bg,by,u, where b, is the intercept and B is the vector of the remaining pa-

rameters) whereas the KKT conditions of the model defined in deviations from the mean

exhibits only five sets of relations (associated withp, p,,L,,fs,u). In other words, in

models with intercept, the parameter space collapses by one dimension when the sample
information is defined in deviations from the mean and no information is available to re-
cover the parameter of the lost dimension.” The same reduction in the dimension of the
parameter space occurs also in the OLS estimator but with it there exists a specific rela-

tion (based upon average sample information) that recoversthe “missing” parameter b, .

Modelswith I nter cept

The Monte Carlo experiment presented above dealt with a model without intercept. The
nature of an intercept in a linear statistical model is different from the nature of all the
other slope parameters. While slope parameters may be interpreted as elasticities (in a
double logarithmic model), the intercept term is a catch-all parameter related, for exam-
ple, to regressors that, for lack of sample information, are assumed to be kept at some un-
known constant level. In principle, completely specified econometric models have no in-

tercept since the great majority of economic relations (cost, profit, demand, and supply
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functions), are homogeneous (of either degree one or zero). In reality, many empirical
econometric studies present large intercept values that are order of magnitude larger than
the value of the remaining slope parameters. Aside from ignorance about relevant regres-
sors, a large value of the intercept suggests that the dependent variable was not scaled
properly. Whatever the reasons for the presence of an intercept, we now assume a model
with an intercept that is order of magnitude larger (in absolute value) than the other slope
parameters. In this case, it is convenient to separate the intercept from the other parame-
ters and to define the probability relation only for these slope parameters. The intercept
is regarded as the first parameter b,. Then, the Leuven-1 estimator of this model with

intercept is stated as

K
(22) minH(p,,L,,u)=a m, log(p,, ) +L, log(L,) + a ¥
k=2 t
&
subject to y,=b, +a xb, +u
k=2
8 2
L, = a b
k=2
Po, = bE/ L

with p, 20, k=2,...K, t=1,...,T. As we will illustrate by means of a second Monte

Carlo experiment, the Leuven-1 estimator specified in (22) performs very well when a
large intercept is present. A similar specification can easily be extended to the Leuven-2
estimator.

The second Monte Carlo experiment was generated by the following DGP: There

are ten parameters b, , k =1,..K, and b, is considered the intercept with a true value of

15. Each remaining parameter b, k = 2,...,K, was drawn from a uniform distribution
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U[- 2,3] . Each element of the matrix of regressors X (other than the first column which
has all unit values) was drawn from a uniform distribution U[1,10]. Finally, each compo-
nent of the disturbance vector u was drawn from a normal distribution
N(0,s2) = N(0,4. With this specification, the dependent variable y was measured in
units of tens, ranging from 10 to 100. One hundred samples of size T=50 were replicated.
The GME estimator was implemented with discrete support intervals for the parameters
and the error terms selected as [-20,0,20] and [-10,0,10], respectively. The condition

number (CN) (see Beldley et al.) of the X matrix is given for each sample size.

Table 4. Monte Carlo Experiment N. 2: Model with intercept. MSEL and Squared Bias of
rival estimators for an increasing condition number.*T=50, 100 samples

Estimators CN=23 CN=55 CN=135 CN=539 CN=898 CN=2,692

MSEL

Leuven-1 4.862 3.780 4.460 4.606 4.593 4573
Leuven-2 5.023 3.952 5.312 5.217 5.016 4.843
GME 15508 13.707 15.916 15.891 15.014 14.966
OLS 5.061 4.253 8.972 93.053 212.582 488.583
Squared Bias

Leuven-1 0.0053 05368 1.2814 1.5419 1.5368 1.5206
Leuven-2 0.0130 0.1260 0.6595 1.6257 1.6628 1.6333
GME 12.8909 10.9858 10.8893 11.6888 12.0451 12.3789
OLS 0.0187 0.1401 0.2251 1.8467 6.5685 32.5240
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The main information presented by Table 4 is that, given the DGP of this Monte
Carlo experiment, the GME estimator exhibits MSEL values that are three times as large
as the Leuven estimators. Furthermore, the levels of squared bias of the GME estimator
are very large in comparison to those of the Leuven estimators. This evidence suggests
that, in the presence of amodel with alarge value of the intercept (relative to the value of
the other slope parameters), the use of the GME estimator may be unnecessarily too
risky. Considerable level of risk can be avoided by using one of the Leuven estimators.
The OLS estimator outperforms the GME estimator for levels of multicollinearity associ-

ated with a condition number smaller than 150.

Conclusion
The class of MEL estimators is inspired by the theory of light and rivals the GME esti-
mator of Golan et al. by performing very well under the MSEL risk function while
avoiding the requirement of subjective exogenous information that is a necessary compo-
nent of the GME estimator. They outperform the GME estimator when a model has an
intercept measured by orders of magnitude larger than the other slope parameters. The
Leuven estimators are invariant to a change of scale in the sense of the OLS estimator.
Furthermore, they are consistent and asymptotically normal.

In comparison to the GME estimator, the class of Leuven estimators is parsimoni-
ous with respect to the number of parameters to be estimated. For example, the solution

of the Leuven-1 estimator has (2K+T) components (K parameters b, , K probabilities Py, »

and T error terms u,). The solution of the GME estimator for a similar model has

(MK+JT) components, where M is the number of discrete supports for the parameter b,
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and J is the number of discrete supports for the error term u,. The empirical GME lit-
erature indicates that, in general, M=5 and J=3.

Another distinctive feature of the Leuven estimators regards the parameter prob-
abilitiesthat, in general, do not approach the uniform distribution as do the corresponding
probabilities of the GME estimator. In order to illustrate this proposition, the parameter
and probability estimates for one data sample of the Monte Carlo experiment N. 1 de-
scribed above are reported in Table 5. The condition number for the X matrix of this
sampleisequal to 1018. There are ten parameters with true values as reported in the first
column. The GME estimator was implemented with three support values for the parame-
ters and a support interval of [-20,0,20]. The three support values for each error term

were selected as [-10,0,10].

Table 5. Estimates of parameters and probabilities in rival estimators

Leuven-1 GME[-20,20] OLS

True Beta Beta Prob(Beta) Beta  Probl Prob2 Prob3 Beta

©

b, -0.0258  -0.0301 0.0001 -0.0208 0.3339 0.3333 0.3328 -0.0048
b, -1.0752  -0.8594 0.0957 -0.9108 0.3564 0.3328 0.3108 -0.9552
b, 0.4149  0.8509 0.0937 0.8469 0.3124 0.3329 0.3547 0.8855
b, 1.4772  1.1832 0.1815 1.2400 0.3028 0.3324 0.3648 1.2203
b, -1.5673 -1.1938 0.1847 -0.9819 0.3582 0.3327 0.3091  7.5817
b -0.3852 -0.5096 0.0337 -0.7394  0.3520 0.3330 0.3150 -9.2844
b, -0.4499 -0.8148 0.0861 -1.0607 0.3602 0.3326 0.3072 -9.5962
bg 0.1000 -0.1732 0.0039 -0.1822  0.3379 0.3333 0.3288 -0.2112
b -0.7403 -0.7781 0.0785 -0.7923 0.3535 0.3329 0.3136 -0.7938
b

1.5974  1.3662 0.2420 1.4385 0.2980 0.3320 0.3699 1.4385
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As anticipated, the probabilities of the GME estimator tend toward the uniform
distribution with all values very near to 1/3. On the contrary, the probability values of the
Leuven-1 estimator are far from the uniform distribution. Because of the presence of a
high level of multicollinearity, some of the OLS parameter estimates are very far from
the true values.

The Leuven estimators appear to succeed where the ridge estimator failed: Under
any levels of multicollinearity, the Leuven estimators uniformly dominate the OLS esti-
mator according to the mean squared error criterion. For small samples (T=50 or T=100),
the Leuven estimators produce estimates that are different from those of the OLS esti-
mator. These estimates are radically different under multicollinearity asthe MSEL of the

Leuven estimatorsis stable and very small relative to the MSEL of the OL S estimator.
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Footnotes

1. Golan, Judge and Miller in their 1996 book (Chapter 8) analyze the behavior of the
GME estimator against the OLS estimator using the wrong notion of condition number.
Although they quote Belsley, their condition number is simply the ratio of the maximum
to the minimum eigenvalues of the X ¢X matrix (not the square root of this ratio, as indi-
cated by Beldley et al.). Intheir empirical analysis, they selected values of the condition
number that varied from 1 to 100 which correspond to values of Belsley’s condition
number from 1 to 10. Because multicollinearity begins to signal its deleterious effects
when Belsley’s condition number is around 30, the discussion of Golan et a. does not
involve empirical problems that are ill-conditioned. The rapidly rising values of the
MSEL detected for the OL S estimator are due to the rather small sample size (T=10) se-
lected for their Monte Carlo experiment.

2. Presumably, the same result applies to the GME estimator. In this case, the variant of
the GME estimator proposed by van Akkeren and Judge isin jeopardy when dealing with
models that exhibit an intercept because its implementation depends on defining the re-

gressors and the dependent variable in deviations from the mean.
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Appendix: Distributional Properties of the Leuven-1 Estimator

The goal of this appendix is to prove that the Leuven-1 estimator is consistent and as-
ymptotically normal. The strategy is based upon the realization that, in the limit (that is,
for a sample size that tends to infinity), the objective function of the Leuven-1 estimator
converges to the limit value of the objective function of the OLS estimator. This implies
that the Leuven-1 estimator converges to the OLS estimator. In order to see this result
clearly it is sufficient to realize that the following model (where the entropy components

of the Leuven-1 estimator have been removed)

A.0 min{uei
subject to y=Xp+u
L, =B®
Py =BQB/ L,

is nothing else but a rather baroque way of stating the unrestricted OL S estimator.

The Monte Carlo experiment N. 1 reported above provides empirical evidence
that the Leuven-1 estimator might be consistent and asymptotically unbiased. Since it is
well known that the OL S estimator is consistent and asymptotically normal, it will be suf-
ficient to show convergence of the Leuven-1 estimator’s objective function to the limit
value of the OLS objective function in order to attain our stated goal. In other words, we
will demonstrate that the sequence of random variables representing the objective func-
tion of the Leuven-1 estimator converges to the limit value of the objective function of
the OL S estimator as the sample size tends to infinity. The smplest way to obtain thisre-
sult is to make sure that the model’ s parameters of the Leuven-1 estimator are bounded

by finite values so that, when the sample size will tend to infinity, the probability limit of
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certain expressions in the objective function will tend to zero. We must recall that the
Leuven-1 estimator does not have a closed form solution and, therefore, the structure of
the Leuven-1 estimator is given by its nonlinear optimization program or, equivaently,
its set of KKT conditions. For convenience we restate the Leuven-1 estimator and its as-

sociated KKT conditions:

Al minH(pb,Lb,u)=ék B, log(p,, ) +L, log(L,) + é} Y
subject to

A2 Y, = ék XDy + U, :

A3 Py, =B/ L hy

A4 L, =ab’ m

with p, 20, k=1,...K, t=1,...,T, and where | , h, and m are Lagrange muitipliers of
the corresponding constraints. We will assume that the above specification follows from
aspecific DGP where u, ~ N(0,s?).

In order to establish finite bounds on the parameters and the Lagrange multipliers
we need to state the KKT conditions of this problem:

A5 ﬂ? =log(p, )+1+h, =0
A6 & =log(L,)+1+ rmék hb? /L2 =log(L,) +1+ rmék hep,, /L, =0
A7 =3 xl, -2nb.-2hpl/L =0

t

A8 %:Zut-hzo
Now we assume that, for any randomly selected sample of data, a feasible solu-

tion exists for both the primal and dual problems. This means that the Leuven-1 estimator
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has an optimal solution and all the unknown variables are bounded away from infinity.
Then, from (A.3) and (A.4) we have é B, = é kbﬁ/ é_ jbf =1 while, from (A.5), each

probability p, is strictly positive since p, =& “*"~ >0 and since the Lagrange multi-

plier h, isbounded by the assumption of afeasible primal problem. Hence, we conclude

that

A9 1> pDk>0

for each k =1,..,K. Using (A.3) again, we aso conclude that each term b’ cannot be
equal to zero and cannot assume the value of infinity because either event violates rela-
tion (A.9). The second part of this result is equivalent to an upper bound on the parame-
ter L.

Having established finite bounds on every component of the Leuven-1 estimator,
we are ready to take the probability limit for T® ¥ of the entropy criterion (A.1) and
prove the proposition that

A.10 plimT*H'(y",8",L;,p;) = plimT 'SR'(y",p")

T®¥ T® ¥

where SR (y' ') = f::l:(yt -a :thbk)z represents the sum of squared residuals of the

linear model (A.2). The superscript "T" on every argument of (A.10) indicates its de-

pendence on the sample size T. Wethus have

K
plimT*§ pf log(py) =0

T®¥ k=1

A1l plimT *L] log(L{)=0
T®¥

.
. 19
plimT*a u =s;

TO¥ t=1
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This result demonstrates that the probability limit of the entropy objective function (A.1)
converges to the limiting value of the objective function of the OLS estimator, QED.
Thus, the asymptotic properties of the OLS estimator carry over to the Leuven-1 estima

tor. A similar development can be elaborated for the Leuven-2 estimator.
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