
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


Department of Agricultural and Resource Economics
University of California, Davis

Forecasting in the Presence of Level Shifts

by

Aaron Smith

Working Paper No. 04-014     

   

December, 2004

 
Copyright @ 2004 by Aaron Smith

All Rights Reserved. Readers May Make Verbatim Copies Of This Document For Non-Commercial  
Purposes By Any Means, Provided That This Copyright Notice Appears On All Such Copies.

Giannini Foundation of Agricultural Economics



 

 

 

 

Forecasting in the Presence of Level Shifts 

 

 

by 

 

 

AARON SMITH 

Department of Agricultural and Resource Economics 

University of California 

Davis, CA 95616 

email: adsmith@ucdavis.edu 

Ph: 530-752-2138 

Fax: 530-752-5614 
 

 

 

 



 

 

 

 

 

 

Author’s Biography 

Aaron Smith is Assistant Professor in the Department of Agricultural and Resource 

Economics at the University of California, Davis and a member of the Giannini 

Foundation of Agricultural Economics. His research interests include econometrics, 

forecasting, and finance. 

 

 

Acknowledgements 

This research was partially supported by a Sloan Dissertation Fellowship. The author 

thanks Robert Engle for many productive discussions and for his valuable input. Also 

acknowledged are Gauss programs written by Pierre Perron. 

 



 

 

 

 

 

ABSTRACT 

This article addresses the problem of forecasting time series that are subject to level 

shifts. Processes with level shifts possess a nonlinear dependence structure. Using the 

stochastic permanent breaks (STOPBREAK) model, I model this nonlinearity in a direct 

and flexible way that avoids imposing a discrete regime structure. I apply this model to 

the rate of price inflation in the United States, which I show is subject to level shifts. 

These shifts significantly affect the accuracy of out-of-sample forecasts, causing models 

that assume covariance stationarity to be substantially biased. Models that do not assume 

covariance stationarity, such as the random walk, are unbiased but lack precision in 

periods without shifts. I show that the STOPBREAK model outperforms several 

alternative models in an out-of-sample inflation forecasting experiment.  

 

Key Words: Stochastic permanent breaks, Markov switching. 
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INTRODUCTION 

 
Sudden level shifts can dramatically affect the forecasting performance of a time 

series model. Models that assume a constant level produce biased forecasts after a level 

shift. Such bias often dictates the overall performance of forecasting models as Clements 

and Hendry (1996) demonstrate for a model of wages and prices in the United Kingdom. 

For the United States, Stock and Watson (1996) provide evidence of structural shifts in a 

large number of macroeconomic time series. In this article, I show that the stochastic 

permanent breaks (STOPBREAK) model of Engle and Smith (1999) outperforms several 

alternative forecasting models in the presence of level shifts. 

The conventional approach to modeling with level shifts is to treat the break points as 

parameters and test these parameters for statistical significance. When the break points 

are known, this testing problem is standard. However, in practice forecasters rarely know 

the timing of the breaks, nor do they know the number of potential breaks in their sample. 

This lack of information significantly complicates the model specification process, 

although Elliott and Müller (2003) show that asymptotically optimal breaks tests can be 

formed without knowledge of the exact breaks process. Elliott and Müller’s result 

elucidates the testing problem, which until then had generated a huge literature in 

statistics and econometrics (see, for example, Bai and Perron (1998), Andrews, Lee and 

Ploberger (1996), and Hansen (1996)).  

Even if the break points are known, the conventional approach places undesirable 

restrictions on the data because it does not allow for shifts outside of the observed 

sample. Instead, that approach conditions on the in-sample breaks implying that the user 

cannot incorporate the possibility of breaks when computing out-of-sample forecasts. The 
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only way to adapt to future breaks in this framework is to re-estimate the model with an 

expanded parameter space when new data arrive. Such an approach yields forecasts that 

react slowly to breaks.  

In contrast, forecasting models with unit autoregressive roots react quickly to break 

points. These models produce unbiased forecasts in the presence of level shifts because 

they are not mean reverting; in essence, they predict a level shift every period. This 

feature accounts for the good performance of the random walk model in many forecasting 

experiments. The cost of these unbiased forecasts is imprecision in periods where the true 

level does not shift. 

To enable quick reactions to break points without compromising precision in stable 

periods, a model should incorporate the nonlinear dependence structure implied by level 

shifts. In a level shifts process, some shocks define break points and therefore persist for 

a long period, but most shocks are much less persistent. In contrast, most widely used 

econometric models are linear, specifying that each shock possesses the same degree of 

persistence. The STOPBREAK model is ideal for forecasting in the presence of level 

shifts because it allows shocks to have varying degrees of persistence. 

This article is organized as follows. In the next section, I outline the STOPBREAK 

model and extend it to cover a more general short-term dependence structure. In the third 

section, I provide evidence of level shifts in U.S. CPI inflation by testing for parameter 

shifts in a linear autoregressive model and by estimating a STOPBREAK model. In the 

fourth section, I examine the ability of various models to forecast through level shifts by 

conducting an out-of-sample forecasting experiment. I find that the STOPBREAK model 

outperforms numerous alternatives, including smooth transition threshold autoregressive 
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models (Teräsvirta, 1994) and unobserved components models (Harvey, 1989). The fifth 

section offers concluding remarks. 

 

THE STOCHASTIC PERMANENT BREAKS MODEL 

 
The STOPBREAK model (Engle and Smith, 1999) explicitly incorporates the 

possibility of occasional permanent shocks or breaks in a time series and automatically 

reacts to them when they occur. Rather than defining a discrete set of regimes, the 

STOPBREAK approach aims to forecast the permanent effect of each observation. For 

some time series yt, the basic STOPBREAK process can be written as 

ttt py ε+= −1                   (1)

 tttt qpp ε+= −1  

for t = 1, 2, …, T, where pt denotes a latent variable representing the conditional forecast, 

{εt, tℑ } signifies a martingale difference sequence, tℑ  represents an increasing sequence 

of σ-fields, and qt is a random variable bounded by zero and one. Although the 

information set tℑ  could in principle include any observable variable, in this article I 

assume that it only contains past values of yt. 

When the realized value of qt equals one, the most recent shock is entirely permanent 

and the best forecast for yt+1| tℑ  equals yt, i.e., the process behaves like a random walk. 

Conversely, if the realized value of qt equals zero, the most recent shock is entirely 

transitory and the forecast is the same as it was in the previous period, i.e., the conditional 

mean is constant. By also allowing for intermediate values of qt, the proportion of a shock 
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that is permanent ranges between zero and one. As such, the STOPBREAK process 

builds a bridge between the random walk and a constant mean process.  

The unique feature of the STOPBREAK model is that it aims to identify permanent 

shocks. These permanent shocks are equivalent to break points because they define a 

point where the process shifts to a new level. In this sense, the STOPBREAK model can 

be thought of as a parsimonious approximation to a level shifts process with discrete 

regimes. However, STOPBREAK is more general than a level shifts model because qt is 

not constrained to equal either zero or one. The STOPBREAK process may adjust 

continuously, with large values of qt when an innovation is mostly permanent and small 

values when most of an innovation is transitory. 

I identify qt by defining a function qt = q(εt, εt-1, …, εt-s), implying that the 

innovations drive the process. This structure for qt is intentionally agnostic about the 

cause of the permanent breaks. In reality, there could be many different causes; examples 

in macroeconomics include changes in monetary policy, oil shocks, currency shocks and 

wars. One could not include enough extra variables to cover every possibility. 

Nonetheless, the information set could potentially be extended to include other variables 

in the qt function. Such extensions provide an interesting topic for future research. 

 
Comparing STOPBREAK to other Nonlinear Models 

Two commonly used models that allow for stochastic regime shifts are the threshold 

autoregressive (TAR) model (Tong, 1983) and the Markov-switching (MS) model 

(Hamilton, 1989). The TAR model specifies that the dependent variable switches among 

several autoregressive processes depending on the observed value of a particular 

transition variable. Smooth transition autoregressive (STAR) models (Teräsvirta, 1994) 
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generalize the TAR model by specifying that the process is a linear combination of 

several autoregressive processes with the weights in the linear combination determined 

by some measurable function of observed data. 

The MS model (Hamilton, 1989) also treats level shifts as stochastic events. This 

model explicitly incorporates level shifts into a model by allowing the level to take on a 

finite number of possible values depending on the realization of an unobserved state 

variable. This state variable evolves according to a Markov chain. As with threshold 

models, MS models can accommodate out-of-sample level shifts as long as the process 

switches to one of the previously observed regimes. The model does not permit a shift to 

a previously unobserved level, unless the model is reestimated with an increased number 

of states. In this vein, Chib (1998) and Timmermann (2001) propose methods that allow 

for an expanding set of nonrecurring states as the sample size increases. This approach is 

akin to one that repeats hypothesis tests for deterministic breaks as new data arrive.  

The distinguishing characteristic of the STOPBREAK model is that the nonlinearity 

arises in the moving average component of the process. In contrast, most nonlinear time 

series models specify nonlinearity in the autoregressive component. Harvey (1997) 

outlines the importance of the moving average component in linear modeling and its 

importance carries over to nonlinear modeling. To show this distinction, I re-write the 

STOPBREAK model in (1) as a nonlinear MA(1) 

11)1( −−−−=∆ tttt qy εε . 

For comparison, consider the nonlinear autoregressive model 

  tttttt uysysy ++−++= −− ))(1()( 111100 ραρα ,         (2) 

where st ∈ [0, 1] and ut is an iid error term. The indicator variable st could be determined 
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by a threshold function of observable variables such as in a STAR or TAR model or by 

an unobservable Markov chain such as in a MS model. The model in (2) could be 

generalized to allow for more than two regimes, but such a change would not change the 

fundamental properties of the model. Furthermore, it would not aid in forecasting if the 

process moves to a previously unobserved level in the future. 

The time series properties of the yt process in (2) vary depending on the values of ρ0 

and ρ1 and the specification of st, but in no cases do these properties duplicate those of 

the STOPBREAK process. For example, suppose that ρ0 and ρ1 are less than one in 

absolute value and st equals either zero or one. This case incorporates both TAR and MS 

models and implies that yt is stationary and ergodic. Specifically, the process switches 

between two regimes and the long-run forecast equals the unconditional mean. In 

contrast, the STOPBREAK process is not mean reverting and is not constrained to a 

finite number of regimes. 

If st lies anywhere in the [0,1] interval depending on a function of past y values, then 

the expression in (2) represents a STAR model. In this model, the state space is a 

continuum between two end points defined by the parameters {α0, ρ0} and {α1, ρ1}. Thus, 

the model is not restricted to a finite set of previously observed regimes. However, 

because ρ0 and ρ1 are less than one in absolute value, all shocks have a transitory effect 

implying that the process is mean reverting in the long run. In contrast, the STOPBREAK 

model exhibits transitory shocks when qt = 0 and permanent shocks when qt > 0. The 

STOPBREAK process does not revert to any particular level because the innovations 

drive the dynamics; the STAR model reverts to a particular level because the level drives 

the dynamics.  
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If the process in (2) has a partial unit root, i.e., 1|| 0 <ρ , 1|| 1 =ρ , and α1 = 0, then it 

possesses some properties similar to the STOPBREAK process. For example, both the 

STOPBREAK and the partial unit root processes switch between a random walk and a 

stationary AR(1). However, whenever the partial unit root process shifts to the stationary 

regime, it returns to the level )1/( 00 ρα − . Thus, the partial unit root process alternates 

between a random walk and a process with mean )1/( 00 ρα − . Whenever the 

STOPBREAK process is in a stationary regime (qt = 0), it fluctuates around a level 

determined by the most recent permanent shock. 1   

Chen and Tiao (1990) proposed another model that explicitly incorporates the 

possibility of level shifts. They allow random level shifts to occur whenever a success is 

realized in a sequence of iid Bernoulli trials, i.e., 

ttty ξµ +=  

tttt sνµµ += −1 , 

where st ~ iid Bernoulli and ξt and νt are white noise. McCulloch and Tsay (1993) discuss 

a Gibbs sampler that can be used to approximate the likelihood and to forecast from this 

model. This model has the ability to adapt to out of sample shifts, though at a high 

computational cost. Engle and Smith (1999) demonstrate that a STOPBREAK model 

characterizes this type of random-level-shift process well with minimal computation.   

The best linear representation of Chen and Tiao’s random-level shift model and the 

STOPBREAK model is the local-level model (Harvey, 1989)  

                                                 
1 To draw an analogy, the partial unit root model is like an explorer who goes on random journeys (st = 1) 
but always returns home (st = 0) for a period before embarking on the next random journey. The 
STOPBREAK explorer, however, journeys randomly (qt > 0) until she happens upon a place that she likes. 
She may stay at this location for a period (qt = 0) before embarking on another random journey from this 
location, stopping at the next location that she fancies and so on. 
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ttty ξµ +=                   (3) 

ttt ηµµ += −1 , 

where ξt and ηt are white noise. This model can be written as  

ttt py ε+= −1                   (4) 

ttt qpp ε+= −1 , 

where pt is the prediction of the state variable from the Kalman filter and 10 ≤≤ q  is a 

parameter. When written in this form, the model is often referred to as an exponential 

smoother. This model reacts quickly to level shifts because it contains a unit root and its 

moving average component helps reduce volatility in stable periods. However, linearity 

constrains this model to react in the same way to all shocks, whether they are permanent 

or transitory. The ability to identify permanent shocks gives the nonlinear STOPBREAK 

model an advantage in forecasting level-shifting processes. 

 
Specification and Estimation 

Under mild assumptions on the function qt, the STOPBREAK process can be written 

as an invertible moving average in differences, and standard asymptotic results apply to 

the maximum likelihood parameter estimates (Engle and Smith, 1999). However, as 

presented in (1), the process lacks some of the dynamic elements that exist in many 

economic series. I generalize the process by allowing past deviations from the 

STOPBREAK level to affect short horizon forecasts and by adding seasonal dummy 

variables to capture seasonality. Because pt-1 represents the long run forecast of y, given 

information up to time t–1, these past deviations take the form yt-i – pt-i for i = 1, 2, …, r. 

Specifically, the generalized model is 
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( ) ttttttt dpyLdpy εα +−−++= −−−− 1111 )(           (5) 

where pt = pt-1 + qtεt, α(L) = α1 + α2L + … + αrLr-1, α(1) < 1, and dt represents seasonal 

dummy variables. These dummy variables are constrained to average zero within a year 

and they capture predictable seasonal disturbances.  

 The general specification in (5) nests a number of commonly used linear models. The 

most prominent is a linear autoregression, which occurs if qt = 0 with probability one. 

Under the null hypothesis that qt = 0, the model reduces to the stationary linear regression 

given by ttt yLpy εαα ++−= −10 )())1(1( . If in addition α(1) = 1, then ttt yLy ε+α= −1)(  

and, given the decomposition α(L) ≡ α(1) + α*(L)(1−L), the model reduces to 

ttt yLy ε+∆α=∆ −1
* )( ; a linear autoregression with a unit root. 

Engle and Smith (1999) specify the function qt as 

2

2

t

t
tq

ε+γ
ε

= , γ ≥ 0,                (6) 

which possesses the property that large shocks are more likely to have a permanent effect 

than small ones. This functional form is parsimonious and proves convenient for 

hypothesis testing and estimation. This functional form can be motivated by the Kalman 

filter expression for the local-level model in (4). In that model the Kalman gain is given 

in steady state by )/( 222
εσσσ += ppq , where 2

pσ  measures the forecast error variance of 

pt-1 as a forecast of the level µt. In the STOPBREAK model, this forecast error variance is 

not constant and we can think of it as being approximated by the prediction error εt. A 

large forecast error indicates that the level prediction was incorrect and should be 

changed substantially. 
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The functional form in (6) constrains permanent breaks to occur completely in one 

period, which may be too restrictive. For example, in an inflation model with sticky 

prices, a permanent shock may take time to filter through the system. Thus, I specify 

  
( )
( )

( )
( )21

0

21
0

21
0

21
0

1 ∑
∑

∑
∑

−
= −

−
= −

−
= −

−
= −

εδ+

εδ
≡

ε+γ

ε
=

s
i it

s
i it

s
i it

s
i it

tq ,           (7) 

where δ≡1/γ and s is a positive integer. One interpretation of the specification in (7) is 

that a sequence of errors of the same sign permanently increases the probability of a shift. 

In practice, this specification produces more stable estimates of pt because the model 

waits for multiple errors of the same sign before moving to a new level. An alternative 

specification would let the effect of past innovations on qt decay with time. However, 

because qt is a function of the unobservable innovations, precise estimation of such a 

model would be difficult. This difficulty is particularly acute in macroeconomics where 

the typical sample is small. Therefore in this paper I use the sum of the past year of 

innovations as in (7). This specification provides a long enough lag to keep the qt 

function from being too noisy. Furthermore, this specification is robust to unmodeled 

seasonality because it averages out intra-year variation.  

 I estimate the STOPBREAK model using the quasi-maximum likelihood estimator 

(QMLE) with a Gaussian likelihood function. For this model, the QMLE is equivalent to 

nonlinear least squares. Under the general assumptions that {εt, tℑ } is a stationary 

ergodic martingale difference sequence with finite variance and sufficiently low 

dependence in its higher conditional moments, the QMLE of the STOPBREAK model 

parameters is consistent and asymptotically normal. Engle and Smith (1999) prove this 

result for the case where qt is specified as in (6) and α(L) is of order one. The 
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generalizations presented in (5) and (7) are merely cosmetic from the point of view of 

their results, and consistency and asymptotic normality follow in most cases. The 

exception is when the data generating process is a linear autoregression, i.e., when δ=0 

for qt specified as in (7). In this case, the asymptotic distribution of the QMLE for δ is a 

function of Brownian motions. This asymptotic distribution arises in a parallel manner to 

the one for autoregressive unit roots because a model with δ>0 contains permanent 

breaks and a model with δ=0 is mean reverting. 

Careful treatment of p0 is important for estimation. For example if δ=0, the true 

process is a linear autoregression and p0 is the intercept in that regression. If an arbitrary 

value for p0 is imposed in the estimation of a STOPBREAK model, the QMLE for δ is 

inconsistent and biased upwards. This bias arises because, with an incorrect initial mean, 

the STOPBREAK model will need to adjust towards the true mean as it moves through 

the sample. It achieves this adjustment through positive realizations of qt, which in turn 

requires δ > 0. To solve this problem, I treat p0 as a parameter. If δ = 0, it can be shown 

that the estimate of p0 is consistent and asymptotically normal. If δ > 0, then the influence 

of p0 decays as t increases and it is irrelevant for the asymptotic distribution of the other 

parameters.  

 

EVIDENCE OF LEVEL SHIFTS IN INFLATION 

 
In this section, I demonstrate the presence of level shifts in U.S. inflation using two 

approaches. First, I estimate a linear model and apply the tests of Bai and Perron (1998) 

to estimate both the number and the location of level shifts. Second, I estimate a 
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STOPBREAK model for inflation. In a subsequent section, I compare the ability of 

various models to forecast through these level shifts. 

 
The Data 

I use seasonally unadjusted monthly data on the CPI for the period spanning January 

1968 to December 2003. When modeling inflation, it is necessary to account for one-time 

price shocks. Such movements do not constitute changes in core inflation, but they are 

included in the CPI. One option is to model the all-items CPI and specify a 

STOPBREAK model such that the qt function includes a measure of one-time price 

shocks. This specification would allow large temporary shocks to register as transitory 

rather than permanent.  

Another way of accounting for one-time price shocks is to regress CPI inflation for all 

items on a variable such as the change in the relative price of food and energy (Gordon 

1997). This regression enables the component of the all-items CPI that is susceptible to 

one-time price shocks to be partitioned out. This partition could also be achieved by 

directly modeling a core CPI series, i.e., a series that excludes those components 

susceptible to one-time price shocks. Because I aim to forecast core inflation, I model the 

core CPI directly, rather than modeling the all-items CPI and attempting to partition out 

the one-time price shocks.  

 In addition to food and energy, the shelter component of the CPI is vulnerable to one-

time price shocks. Before 1983, mortgage interest rates were included in the CPI as a part 

of homeowner’s costs, which induced some extreme noninflationary swings in the price 

index between 1979 and 1982 when the Federal Reserve experimented with reserves 

targeting. Since 1983 the Bureau of Labor Statistics (BLS) has used a rental equivalence 
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measure to capture the flow of services cost of housing, rather than the value of housing 

as an asset. A time series incorporating this change exists back to 1967. However, the 

BLS only published it for the all-items CPI and not for a core CPI measure. Therefore, I 

measure core inflation using the CPI excluding food, energy and shelter, a series that is 

published by the BLS.2 Specifically, I model seasonally unadjusted monthly log changes 

in this CPI series, multiplied by 12 to represent an annual rate. 

 
Testing for Level Shifts in a Benchmark Linear Model 

I specify a linear autoregressive model with seasonal dummy variables. This model 

forms a linear benchmark for the inflation forecasting experiments that follow in the next 

section. Table 1 presents estimates for an AR(12), which is the lag order selected by the 

Bayesian Information Criterion (BIC). The largest autoregressive coefficients are those at 

lags 1 and 12 and a Wald test for significance of the other 10 lag coefficients is rejected. 

This model successfully whitens the data, as indicated by an insignificant Q statistic.   

The model in Table 1 captures seasonality using the twelfth autoregressive lag and 

the monthly seasonal dummy variables. The dummy coefficient estimates indicate that 

inflation is larger in the fall and spring than it is in the summer and winter. This fact is 

apparent from the significantly positive seasonal dummy coefficients for February, 

September, and October and the significantly negative coefficient for December. The 

importance of seasonality is also illustrated by the fact that regressing inflation on just a 

set of 12 monthly dummy variables yields an R2 equal to 0.33 (estimates not reported). 

                                                 
2 Although I focus on this particular measure of core inflation, the level shift tests presented in this section 
produce similar results for other CPI measures, including the CPI less only shelter, the CPI less food and 
energy, and the all-items CPI. Furthermore, the forecasting comparison in the following section yields 
similar results for other CPI measures. 
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The null hypothesis of a unit root is not rejected for the model in Table 1, indicating 

that the inflation process may not be mean reverting over the sample period. A lack of 

mean reversion is also a symptom of level shifts. To show evidence of level shifts in U.S. 

inflation, I apply the sequential procedure of Bai and Perron (1998) and present the 

results in Table 1. This procedure provides a way to test for an unknown number of shifts 

at unknown points in a regression model. The test against the alternative hypothesis of 

one break (denoted F(1|0) in Table 1) cannot reject the presence of a break. However, the 

WDmax test indicates the presence of at least one break. Following Bai and Perron, I 

proceed sequentially through the test statistics for one extra break (denoted F(i+1|i) in 

Table 1) until the null hypothesis cannot be rejected. I conclude that there were three 

breaks, although evidence for the third break is somewhat weak because the F(3|2) 

statistic is significant at the ten-percent level but not the five-percent level. These breaks 

are estimated to have occurred in 1974, 1981, and 1993; mean inflation was 3.94 before 

1974, 7.60 between 1974 and 1981, 4.48 between 1981 and 1993, and 1.85 after 1993. 

 
STOPBREAK Model of Level Shifts 
 

The presence of level shifts implies that STOPBREAK is a candidate model for 

inflation. Table 2 presents the estimated parameters of the STOPBREAK model in (5) 

and (7) for two different specifications of the autoregressive lag polynomial α(L). The 

specification in the first column contains 12 autoregressive lags, although 

heteroskedasticity consistent t-statistics indicate that only lags one and twelve are 

significantly different from zero. The twelfth lag captures a strong stochastic seasonal 

component. The STOPBREAK model in the second column includes just the two 

significant autoregressive lags from column one. A Lagrange multiplier test indicates that 
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both of these models possess insignificant serial correlation in their residuals. In the 

following discussion, I refer to these as the large and small STOPBREAK models, 

respectively. 

The Akaike Information Criterion (AIC) and BIC suggest that the large 

STOPBREAK model beats the linear AR(12) in Table 1. However, the large number of 

insignificant t-statistics on coefficients in these models indicates that they are both too 

big. This indication is reinforced by the fact that AIC and BIC both favor the small 

STOPBREAK model. Furthermore, δ is estimated much more precisely in the small 

STOPBREAK model and the 95% confidence interval of (0.15, 0.71) is far from 

including zero.  

To illustrate the nature of the permanent breaks, I re-estimated the small 

STOPBREAK model except with the qt function including only the most recent 

innovation as in (6). After standardizing by the variance, the estimate of δ is about one 

third of the estimate for the small STOPBREAK model in Table 2. This difference 

implies that pt exhibits much less stability when qt contains only one lag, which is not 

surprising given that it only reacts to the most recent innovation rather than to the less 

volatile average of multiple recent innovations. The model with qt containing only one 

lag also yields a worse fit; the estimate of σ2 equals 4.76 compared to 4.55 for the small 

STOPBREAK model in Table 2.  

Figure 1 shows the estimated long run forecast (pt) from the small STOPBREAK 

model. The tests in Table 1 indicate distinct breaks in 1974, 1981, and 1993, but pt shifts 

more than these tests suggest. However, pt also displays a number of very stable periods, 

for example 1968-70, 1982-85, 1985-88, and 1994-2002. The transitions between stable 
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periods are sometimes sharp, as in 1971, 1973, 1982, 1985, and 1992. Other times they 

are gradual, as in 1971-73, 1988-92, and 2002-03. These varying dynamics highlight the 

flexibility of the STOPBREAK model; because it is not tied to a rigid regime structure, 

the model allows gradual transitions as well as sharp level shifts. 

Estimating the small STOPBREAK model with qt constrained to be constant for all t, 

which is equivalent to the exponential smoother in (4), yields an estimate of q=0.21. As 

such, this model predicts too much fluctuation during the stable periods. In contrast, for 

the small STOPBREAK model, 79% of the realized values of qt are less than 0.21 and 

64% are less than 0.1 (see Figure 2). These low values of qt generate superior forecasting 

performance in periods of stable inflation while retaining the ability to react to sudden 

permanent breaks. 

 

OUT-OF-SAMPLE FORECASTING COMPARISON 

 
 In this section, I analyze the ability of various models to forecast through the level 

shifts in inflation documented in the previous section. I begin the forecast evaluation 

period just prior to the first level shift in the sample, which occurred in January 1974 (see 

Table 1). Specifically, I estimate each of the forecasting models initially over the period 

from January 1968 through December 1973 and compute forecasts through the 1974-

year. I then re-estimate the models using data up to January 1974 and forecast through 

January 1975. I repeat this process for each month up December 2002, so that the last 

forecast interval ends in December 2003. This expanding sample illustrates the real-time 

performance of the models and allows the parameter estimates to evolve over time. 
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Models  

 I compare the forecasting performance of five models: 1.) STOPBREAK, 2.) AR(12) 

with seasonal dummies, 3.) AR(12) with seasonal dummies and a unit root, 4.) Local-

level model with evolving seasonality, and 5.) STAR. In this subsection, I present the 

model specification and the method for computing forecasts for the STOPBREAK, local 

level, and STAR models. Forecasts for the AR(12) models are computed by forward 

recursion in the standard way. 

The STOPBREAK model is the same as the “Small STOPBREAK” model in Table 2. 

Because I assume that qtεt is a martingale difference sequence with respect to the history 

of yt, I can easily compute multi-step forecasts recursively as 

( ) ( )121212121111 ˆˆˆˆˆ −+−+−+−+−+−+++ −−+−−++= ht
t

ht
t

htht
t

ht
t

hthtt
t

ht dpydpydpy αα   

where h represents the forecast horizon, ,...),|(ˆ 1−++ ≡ ttht
t

ht yyyEy  and 

,...),|(ˆ 1−−+−+ ≡ ttrht
t

rht yypEp . (Note that t
t

rht pp ≡−+ˆ  if h ≥ r and rht
t

rht pp −+−+ ≡ˆ  if h ≤ r.) 

The STOPBREAK model captures seasonality through the seasonal dummy variables 

d and the autoregressive lag coefficient α12.  However, it is possible that the seasonal 

pattern may evolve over time, which could affect the forecasting performance of the 

model. To explicitly model evolving seasonality in a linear context, Harvey (1989, p.40) 

suggests adding an evolving seasonal factor φt to a local-level model as follows:  

tttty ξφµ ++=                  (8)

 ttt ηµµ += −1  

t

s

j
jtt ωφφ +∑−=

−

=
−

1

1
, 

where ξt, ηt, and ωt are white noise. I include this model in the comparison set to assess 
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whether the STOPBREAK model adequately captures the seasonal component of the 

data. Multi-step forecasts for the model in (8) are computed using the Kalman filter. 

 To provide an alternative nonlinear model that incorporates regime shifts, I use the 

STAR model 

  tttttttt yysyysy ερραρρα +++−+++= −−−− ))(1()( 1212111112021010 ,    (9) 

where 1
1 )))(exp(1( −
− −−+= cys tt γ  and 12/12

11 ∑= = −− i itt yy . In this specification, I use 

average inflation over the previous year as the threshold variable. STAR models with the 

threshold variables yt-1 and yt-12 both performed poorly in preliminary analysis. I choose 

lags one and twelve in the autoregressive component of the model to mirror the 

STOPBREAK model specification.  

Multi-step forecasts from the STAR model are a function of the conditional 

expectation of intermediate s values, which in turn are nonlinear transformations of 

intermediate y values. For example, the two-step ahead forecast conditional on 

information up to period t is ( )(,...)|( 1002101022 −+++ ++= ttttt yysEyyE ρρα  

),...|))(1( 101211112 tttt yyys −++ ++−+ ρρα , which depends on the conditional moments of 

nonlinear transformations of yt+1. Thus in general, computing exact h-step ahead forecasts 

requires the evaluation of an h−1 dimensional integral. Following van Dijk, Teräsvirta, 

and Franses (2002), I approximate this integral using the average across 100 bootstrap 

draws of intermediate y values. 

 
Results 

Table 3 shows mean square forecast errors (MSFE) of each forecasting model relative 

to the STOPBREAK model. Table 4 contains the forecast bias for those same models. 
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These tables present results for the entire 1974-2002 period as well as for three decade 

long sub-periods approximately corresponding to the regimes discovered by the Bai-

Perron tests in Table 1. All of the multi-horizon forecasts reported in Tables 3 and 4 are 

of inflation over the relevant horizon, rather than a future spot rate. Each forecast is dated 

by the date the forecast is made. Using results in West (1996), I evaluate forecast 

performance by a t-test for significantly different mean square forecast errors (MSFE).3 

Because the forecast errors and squared forecast errors are serially correlated for multiple 

horizon forecasts, computation of the standard errors in Tables 3 and 4 requires care. To 

account for this serial correlation, I use the Newey-West (1987) estimator. 

In the relatively stable inflation environments that existed in the 1984-1993 and 1994-

2002 periods, the STOPBREAK model exhibits smaller MSFE’s than each of the other 

models. In many cases, the MSFE differences are large and statistically significant, and 

the relative performance of the STOPBREAK model tends to improve as the forecast 

horizon increases. For example, the stationary AR(12) model is 16% worse for 1-month 

forecasts and a massive 3.3 times worse for 12-month forecasts during 1994-2002.  

At horizons up to 6 months, the STAR model is the best of the non-STOPBREAK 

models in the 1984-1993 and 1994-2002 periods. It exhibits almost the same MSFE as 

the STOPBREAK model at the 1-month horizon, but 45 percent and 25 percent higher 

MSFE’s at the 6-month horizon for 1984-1993 and 1994-2002, respectively. At the 12-

month horizon the performance of the STAR model diminishes considerably. Table 4 

reveals that this poor performance at long horizons is due to a downward bias of more 

than 0.5. This bias arises because the STAR model is mean-reverting, causing the model 

                                                 
3 I disregard parameter estimation error because the identical QMLE and MSFE objective functions make 
the forecast errors orthogonal to the predictors, which is the condition required by West (1996, Remark 2). 
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to predict that inflation in the 1980s and 1990s would increase towards its historical 

average. Instead, inflation decreased to lower levels than at any previous point in the 

sample.  

The local-level model and the AR(12) with a unit root are not mean reverting and 

therefore have no level effect. Long-term forecasts in these models adjust in response to 

the innovations rather than the level. This feature reduces their bias, but causes them to 

be too volatile in the relatively stable environment that existed from 1984-2003. Their 

MSFE’s significantly exceed those for the STOPBREAK model across most forecast 

horizons in this period. The only instance where the local-level model exhibits a smaller 

MSFE than the STOPBREAK model in the post-1984 period is for one-month ahead 

forecasts in 1994-2002. Although the local-level model is insignificantly better than 

STOPBREAK in this case, its competitive performance may be due to its incorporation 

of evolving seasonality. Because the specification of the qt function in the STOPBREAK 

model averages out any intra-year variation, qt is robust to evolving seasonality. Thus, the 

ability of the STOPBREAK model to identify permanent shocks is not impaired by 

evolving seasonality and so long-term forecasts remain relatively unaffected even though 

one-step forecasting performance is reduced.  

In the volatile pre-1984 period, the STOPBREAK model exhibits a lower MSFE than 

the two linear autoregressions, although the high volatility of inflation in this period 

means that the differences are statistically insignificant. The local-level model produces a 

lower MSFE than the STOPBREAK model, although the difference is only statistically 

significant at the 12-month horizon. The STAR model is the worst of the five models for 

the 1-month, 3-month, and 6-month horizons, but performs well at the 12-month horizon. 
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The reason for the STAR model’s improved performance at the 12-month horizon is that 

its mean reverting property correctly leads to predictions of a fall in inflation from the 

heights that it reached in 1974 and 1980. Because these high inflation stretches are 

relatively short in duration, this model does not lose much by under-predicting during 

these periods and gains a lot by correctly predicting the subsequent drops. 

In summary, the STOPBREAK model performs well; it adapts quickly to the level 

shifts in inflation in the early 1980s and the early 1990s and it avoids being too volatile in 

the stable periods between level shifts. Additionally, the parameter estimates for the 

STOPBREAK remain stable over a long period as illustrated by Figure 3, which plots the 

estimated values of the parameter δ in the qt function over the forecast period. The 

estimated value fluctuated between one and two during the 1970s, before dropping to 

0.57 in 1983 and remaining close to that value through the end of the sample. This pattern 

indicates the flexibility of the STOPBREAK model because it shows that the model 

adjusted to the low post-1983 inflation levels without needing to change the parameter 

values. 

 
CONCLUSION 

 
This article addresses the issue of forecasting in the presence of infrequent level 

shifts. I extend the STOPBREAK model of Engle and Smith (1999) to allow for richer 

dynamics and show that it forecasts U.S. CPI inflation better than numerous alternatives. 

Rather than specifying the level shifts as draws from different regimes, the STOPBREAK 

model capitalizes on nonlinear dependence structure implied by level shifts. This 
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approach leads to a model that is both flexible enough to handle new breaks and more 

general in the sense that it is not wedded to a regime structure. 

The STOPBREAK model reduces forecast bias without compromising precision, as 

indicated by its lower MSFE than several alternative models. However, some forecasters 

may be willing to trade precision for an even faster reaction to level shifts, even if the 

cost were more false alarms. Conversely, some forecasters may be averse to falsely 

inferring that a break has occurred and would favor methods that adapt slowly to breaks. 

The literature on optimal forecasting under various loss functions has grown substantially 

in recent years. For example, see Granger and Pesaran (2000), Christoffersen and 

Diebold (1997), and Pesaran and Timmermann (1994). Nonetheless, in the context of 

level shifts, there remains considerable scope for research on optimal forecasting under 

different loss functions. 

The key to successful modeling in the STOPBREAK framework is identifying the 

persistent innovations. In this article, I use only the history of the observed innovations to 

make inference about their persistence. I find that when the average of the 12 most recent 

innovations is large, the current shock to monthly inflation is likely to be permanent. 

However, there is potential for the persistence of innovations to be better estimated using 

a larger information set. Thus, future research on specification of the qt function could 

further improve the forecast performance of STOPBREAK models. 
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Table 1.  Linear AR(12) Model for Inflation 

Autoregressive Coefficient Estimates        

α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 
0.37 0.10 0.01 0.06 0.10 0.10 –0.06 –0.05 –0.05 0.05 0.01 0.27 
(0.07) (0.06) (0.05) (0.06) (0.06) (0.05) (0.06) (0.06) (0.06) (0.05) (0.05) (0.05) 

            
Seasonal Dummy Coefficient Estimates        

dJAN dFEB dMAR dAPR dMAY dJUN dJUL dAUG dSEP dOCT dNOV dDEC 
−0.43 1.73 0.88 0.15 −0.05 −0.33 −0.66 0.49 2.62 1.13 0.01 −2.32 
(0.56) (0.54) (0.52) (0.50) (0.64) (0.54) (0.43) (0.53) (0.54) (0.53) (0.52) (0.54) 

            
Diagnostic Statistics Bai-Perron Tests for Mean Shifts  

σ2 4.66  Test WDmax F(1|0) F(2|1) F(3|2) F(4|3) 

AIC 4.49  Statistic 
(10% critical val.) 

9.64 
(8.63) 

6.85 
 (7.42) 

11.11 
 (9.05) 

11.11 
 (9.97) 

2.75 
(10.49) 

BIC 4.71         

t-stat: α(1)=1 
(10% critical value) 

−1.52 
(−2.57) 

 Break dates 
(90% Conf Interval) 

74:1 
(72:5, 75:6)

81:8 
(80:12, 83:7) 

93:2 
(91:10, 94:10)

Q-Stat (12 lags)  
(5% critical value) 
 

3.31 
(21.03) 

        

Wald: α2 = … = α11 = 0 
(5% critical value) 

33.94 
(18.31) 

 Means by regime 
(beginning date) 

3.94 
(68:1) 

7.60 
(74:2) 

4.48 
(81:9) 

1.85 
(93:3) 

 

NOTE: The sample period covers 432 monthly observations from January 1968 through December 2003. 
Inflation is measured as the annualized log change in the monthly CPI for all items less food, shelter, and 
energy. Coefficient estimates are accompanied by heteroskedasticity consistent standard errors in 
parentheses. The trimming parameter ε in the Bai-Perron tests was set to 0.1. 
 



 

 

Table 2.  QMLE Estimates of STOPBREAK Models for Inflation 

 
Large STOPBREAK Small STOPBREAK 

α1 0.25  (0.11)   0.22  (0.05) 
α2 0.03  (0.09)  
α3 -0.02  (0.09)  
α4 0.01  (0.24)  
α5 0.09  (0.05)  
α6 0.10  (0.10)  
α7 -0.04  (0.06)  
α8 -0.04  (0.08)  
α9 -0.03  (0.06)  
α10 0.05  (0.06)  
α11 0.01  (0.14)  
α12 0.32  (0.05)   0.34  (0.05) 

δ×100 0.39  (0.58)   0.43  (0.14) 

σ2 4.42 4.55 

AIC 4.44 4.42 

BIC 4.68 4.56 

t-stat: α(1)=1 
(10% critical value) 

−0.46 
(−2.57) 

−6.30 
(−2.57) 

Ljung-Box  
(5% critical value) 

18.44  
(21.03) 

18.62  
(21.03) 

Wald: α2=…=α11=0 
(5% critical value) 
 

13.84 
(18.31) 

 

 

NOTE: The columns contain quasi-maximum likelihood parameter estimates with 
heteroskedasticity-consistent standard errors to the right in parentheses. The sample 
period covers January 1968 through December 2003. Both models include seasonal 
dummy variables (estimates not shown). These models were estimated in Gauss using the 
BFGS algorithm. In all cases, convergence was achieved in under a minute. The row 
labeled “Ljung-Box” gives the LM test of the joint null that the first 12 lags of the 
residuals are uncorrelated with the scores. The 10% critical value is given in parentheses 
below the statistic. The AIC is computed as Tk /2ˆ2ln1 2 ++ σπ  and BIC is computed as 

TTk /)(logˆ2ln1 2 ++ σπ , where k indicates the number of estimated parameters and T, 
the sample size, is 432. 

 



 

Table 3.  Mean Square Forecast Errors 

 Absolute MSFE  MSFE Relative to STOPBREAK 
 1  2 3 4 5 

Horizon STOPBREAK  AR(12) AR(12) with 
unit root 

Local Level STAR 

1 Month       
 1974:1 – 1983:12 8.14  1.17  (-0.82) 1.17  (-0.89) 0.98   (0.15) 1.27  (-0.89) 
 1984:1 – 1993:12 4.36  1.22  (-5.57*) 1.20  (-5.24*) 1.11  (-1.79) 1.02  (-0.33) 
 1994:1 – 2002:12 2.66  1.16  (-2.82*) 1.11  (-2.05*) 0.95   (0.53) 0.99   (0.21) 
 1974:1 – 2002:12 5.13  1.18  (-1.62) 1.17  (-1.61) 1.01  (-0.19) 1.17  (-1.61) 
       
3 Months       
 1974:1 – 1983:12 6.74  1.23  (-0.80) 1.28  (-0.95) 0.94   (0.49) 1.38  (-0.95) 
 1984:1 – 1993:12 2.50  1.42  (-5.88*) 1.40  (-5.47*) 1.31  (-2.73*) 1.17  (-1.75) 
 1994:1 – 2002:12 0.97  1.57  (-5.16*) 1.32  (-3.45*) 1.02  (-0.13) 0.93   (0.79) 

 1974:1 – 2002:12 3.49  1.31  (-1.59) 1.31  (-1.59) 1.04  (-0.42) 1.29  (-1.07) 
       
6 Months       
 1974:1 – 1983:12 7.29  1.14  (-0.68) 1.34  (-1.02) 0.92   (1.33) 1.18  (-0.53) 
 1984:1 – 1993:12 1.13  1.80  (-4.99*) 1.69  (-4.26*) 1.85  (-3.45*) 1.45  (-2.50*) 
 1994:1 – 2002:12 0.39  2.53  (-6.24*) 1.63  (-4.00*) 1.62  (-2.91*) 1.25  (-1.84) 

 1974:1 – 2002:12 3.02  1.28  (-1.61) 1.40  (-1.41) 1.06  (-0.85) 1.21  (-1.01) 
       
12 Months       
 1974:1 – 1983:12 6.51  1.12  (-0.68) 1.75  (-0.50) 0.85   (2.64*) 0.85   (1.19) 
 1984:1 – 1993:12 0.60  2.00  (-2.73*) 1.47  (-2.15*) 2.13  (-3.34*) 2.12  (-2.22*) 
 1994:1 – 2002:12 0.25  3.30  (-6.14*) 1.00  (-0.01) 1.64  (-2.67*) 1.71  (-3.24*) 

 1974:1 – 2002:12 2.53  1.26  (-0.86) 1.70  (-0.25) 0.98  (-0.42) 0.98   (0.16) 
 

NOTE:  Numbers in parentheses represent a t-statistic for testing the null hypothesis of a zero difference 
between the MSFE in the relevant model and the MSFE of the STOPBREAK model. This statistic is 
asymptotically standard normal under the null, and significant statistics at 5% are denoted by ‘*’. A 
significant negative t-statistic indicates that the STOPBREAK model is the better forecaster. Longer 
horizon forecasts are a prediction of aggregate inflation over the period (at an annual rate). Standard errors 
are computed using the Newey-West method with 12 lags. For the STAR model, 3-month, 6-month, and 
12-month forecasts made in August 1974 were excluded because they were nonsensical due to explosive 
parameter estimates. 



 

 

Table 4.  Forecast Bias 

 1 2 3 4 5 
Horizon STOPBREAK AR(12) AR(12) with 

unit root 
Local Level STAR 

1 Month      
 1974:1 – 1983:12 -0.02   (-0.09)  0.44    (1.60) -0.02   (-0.06)  0.10     (0.39)  0.33    (1.12) 
 1984:1 – 1993:12 -0.18   (-0.96) -0.35  (-1.69) -0.09   (-0.41) -0.06   (-0.32) -0.36   (-1.92) 
 1994:1 – 2002:12 -0.15   (-0.96) -0.39   (-2.37*) -0.07   (-0.40) -0.07   (-0.48) -0.39   (-2.60*) 
 1974:1 – 2002:12 -0.12   (-0.97) -0.09   (-0.68) -0.06   (-0.42) -0.01   (-0.08) -0.13   (-1.03) 
      
3 Months      
 1974:1 – 1983:12 -0.04   (-0.10)  0.50    (1.34) -0.15   (-0.38)  0.06    (0.26)  0.46    (1.67) 
 1984:1 – 1993:12 -0.21   (-1.08) -0.46   (-2.08*) -0.10   (-0.43) -0.07   (-0.45) -0.53   (-3.54*) 
 1994:1 – 2002:12 -0.18   (-1.47) -0.51   (-3.67*) -0.07   (-0.53) -0.07   (-0.77) -0.44   (-5.37*) 

 1974:1 – 2002:12 -0.14   (-0.97) -0.14   (-0.88) -0.11   (-0.67) -0.03   (-0.27) -0.16   (-1.39) 
      
6 Months      
 1974:1 – 1983:12 -0.12   (-0.27)  0.50    (1.36) -0.42   (-0.87) -0.02   (-0.10)  0.48    (1.82) 
 1984:1 – 1993:12 -0.23   (-1.40) -0.58   (-3.76*) -0.12   (-0.78) -0.09   (-0.66) -0.61  (-5.94*) 
 1994:1 – 2002:12 -0.22   (-2.20*) -0.62   (-6.91*) -0.09   (-0.99) -0.11   (-1.40) -0.47  (-9.47*) 

 1974:1 – 2002:12 -0.19   (-1.01) -0.22   (-1.38) -0.21   (-1.20) -0.07   (-0.74) -0.19   (-1.87) 
      
12 Months      
 1974:1 – 1983:12 -0.34   (-0.76)  0.47     (1.17) -0.81   (-1.36) -0.25    (-1.17)  0.46     (2.17) 
 1984:1 – 1993:12 -0.27   (-1.49) -0.77   (-4.61*) -0.17   (-0.96) -0.13   (-1.28) -0.74   (-9.47*) 
 1994:1 – 2002:12 -0.29   (-2.85*) -0.79   (-8.60*) -0.13   (-1.34) -0.16   (-2.68*) -0.54  (-15.02*) 

 1974:1 – 2002:12 -0.30   (-1.77) -0.35   (-1.86) -0.38   (-1.68) -0.18   (-2.16*) -0.26    (-3.16*) 
 

NOTE:  Numbers in parentheses represent a t-statistic for testing the null hypothesis of zero bias. This 
statistic is asymptotically standard normal under the null and significant statistics at 5% are denoted by ‘*’. 
Longer horizon forecasts are a prediction of aggregate inflation over the period (at an annual rate). Standard 
errors are computed using the Newey-West method with the number of lags equal to the forecast horizon. 
For the STAR model, 3-month, 6-month, and 12-month forecasts made in August 1974 were excluded 
because they were nonsensical due to explosive parameter estimates. 
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Figure 1.  Inflation and Long Run Forecast (pt) for Small STOPBREAK Model 

 

 

 

 

 

 

 

 

 

 

 

 
 

  NOTE:  The dark line is pt and the light-colored line is inflation. 
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Figure 2. The qt Function for the Small STOPBREAK Model 
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Figure 3. The Estimated δ Parameter Over the Forecast Sample 

 


