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The Impact of Precision Agriculture Techniques on 

Kentucky Grain Farmers’ Carbon Footprint 

 

Abstract 

This study estimates the carbon footprint of a Henderson County, Kentucky grain farmer under 

different production strategies; traditional farming and precision agriculture technologies. Four 

constrained optimization, whole farm analysis models were formulated under no-till conditions. 

One of the models was optimized without utilizing any precision agriculture techniques and was 

used as a base model to compare the other three models which incorporated precision agriculture 

technologies (PAT). The three technologies investigated include sub-meter auto-steer, RTK auto-

steer and automatic section control (ASC). These models are used to analyze the different 

production systems to determine if said technologies increase expected net returns and enhance 

the carbon input:output ratio. Given the levels of anthropogenic greenhouse gases released by the 

agricultural sector, quantifying the potential reduction in these gases due to the adoption of PAT 

is essential in seeing exactly how PAT can alter the impacts to the environment. The results 

show that all precision agriculture techniques produce a Pareto improvement over the base 

model. Specifically, automatic section control gave the greatest improvement with a mean net 

return that was 0.59% over the base. RTK provided the most significant enhancement in the 

carbon ratio with an improvement of 2.42% over the base model. All of these improvements over 

the base scenario can to the adoption of precision agriculture technology.  

 

 

 

 

 

 

 

Keywords: Resource and Environmental Economics, Production Economics, Precision 
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The Impact of Precision Agriculture Techniques on 

Kentucky Grain Farmers’ Carbon Footprint 

 

Precision agriculture is the application of technologies and principles to help manage the spatial 

variability associated with all aspects of agricultural production. The potential benefits of these 

systems include the reduction of overlaps and skips, the lengthening of operator’s workday, 

accurate placement of inputs and reduced machinery costs resulting from an increase in 

machinery field capacity. The increase in machinery field capacity not only could reduce direct 

costs, but permit more land area to be planted closer to the optimal date. These advantages 

provide an incentive for producers to evaluate the potential benefits of these technologies in their 

farm operations (Shockley et al., 2011). The potential benefits of PAT directly impact crop 

performance and environmental quality, including the reduction of gases released into the 

atmosphere by the agriculture sector.  

 The continued increase in the atmospheric concentration of carbon dioxide due to 

anthropogenic emissions is predicted to lead to significant changes in the climate during the 

middle years of the 21
st
 century if conditions continue with “business as usual.” (Cox et al., 

2000) In 2007, the agricultural sector was responsible for 413.1 teragrams of Carbon Dioxide 

(CO2) emissions. This represented approximately 6% of the total US greenhouse gas emissions 

(USEPA, 2009). The primary gases released into the atmosphere by agriculture practices are 

methane (CH4) and nitrous oxide (N2O) (USEPA, 2009). The agriculture sector contributed 50% 

of the total anthropogenic CH4 emissions (Cole et al., 1997), which are 21 times more potent 

than CO2 (Rodhe, 1009; IPCC, 2007), and 75% of the total anthropogenic N2O emissions (Cole 

et al., 1997), which are 310 times more potent than CO2 (Cole et al., 1997).  

 The three applications of PAT technology reviewed in this paper are examples of 

embodied-knowledge technology. Embodied-knowledge technologies are technologies that 

increase efficiency without the requirement of additional management skills. On the other end of 

the spectrum there are information-intensive technologies such as variable rate applications and 

yield monitors (Griffin, 2009).  An introduction to the three types of PAT is as follows: 
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 Sub-meter: Auto-steering is accomplished with a device mounted to the steering column 

or through the electro-hydraulic steering system. This bolt-on auto-steer system is 

equipped with a sub-meter receiver (Shockley, et al., 2011).  

 RTK: integral valve system with a real time kinematic (RTK) GPS receiver on a tractor 

(Shockley, et al., 2011). RTK differential correction is accurate within one inch. Vehicles 

equipped with RTK equipment can be used to conduct strip tilling, drip-tape placement, 

land leveling and other operations requiring superior performance; as well as virtually 

any other task. In addition to the ability to accurately determine geographic location, 

auto-guidance systems usually measure vehicle orientation in space and compensate for 

unusual attitude, including roll, pitch and yaw. 

 Automatic section control (ASC): a horizontal series of light emitting diodes (LEDs) in a 

plastic case 12 inches to 18 inches long. This system is linked to a GPS receiver and a 

microprocessor. The lightbar is usually positioned in front of the operator, so he or she 

can see the accuracy indicator display without taking their eyes off the field. Software 

allows the operator to specify the sensitivity to and distance between the swaths (Grisso, 

et al., 2009).  

 These capabilities reduce the over and under application on irregular shaped fields that is 

prevalent in standard machinery technologies (Shockley, et al., 2008). With the increased 

accuracy, less time is actually spent with the machine in use. It is thought that the reduction in 

the use of the inputs, combined with the reduction in the use of the machinery will total a 

reduction in the carbon footprint of the farm itself.  

 

 While some studies have demonstrated potential increases in profitability from PAT 

(Shockley et al., 2009; Griffin et al., 2008), there is also the potential for enhanced 

environmental benefits due to the reduction in input usage given the improved performance rates. 

This has previously been discussed but no empirical studies have been performed. This study 

aims to look at the potential reduction in the carbon footprint of the farmer using the PAT against 

a base model.  

 

 



4 
 

Literature Review 

There have been many articles emphasizing the potential beneficial effects that using PAT can 

have versus conventional farming methods (Ancev et al., 2004, Bergtold, 2007, Bongiovanni et. 

al, 2004). However, little empirical research has been conducted to document the actual changes 

in the environmental impacts that PAT could have and the possible policy implications of those 

changes.  

 PAT can help manage crops in an environmentally friendly way. PAT can contribute in 

many ways to long-term sustainability of production agriculture, confirming the intuitive idea 

that PA should reduce environmental loading by applying fertilizers and pesticides only where 

they are needed, and when they are needed (Bongiovanni et. al, 2004). This article by 

Bongiovanni is an excellent reference that clearly lays out how PAT could be more 

environmentally friends than conventional agriculture. According to the USDA, precision 

agriculture can possibly reduce soil erosion, protect water quality, improve soil health and 

productivity and improve the wildlife and landscape (Bergtold, 2007).  

 Ancev looks at the environmental aspect of PAT from an “environmental damage cost.” 

He uses this cost function to look at how PAT affect the environment that it engages with. By 

separating the cost function into two parts, he is able to look at both the pollutant emission 

function and the damages caused by emissions. He concludes that the use of PAT could improve 

the environment it interacts with if the PATs are used on a regular basis and not once or twice 

(Ancev et al., 2004).  

 Many studies have analyzed the factors that farmers take into account when making the 

decision to adopt certain PAT (Pandit, et al., 2011, Daberkow and McBride, 2003; Larkin et al., 

2005; Roberts et al., 2004). Farmers who are environmentally conscious focus on the adoption of 

PAT and other technologies that could help mitigate environmental hazards. For example, 23% 

of cotton producers in the South East United States answered in a survey about the adoption of 

PAT that they consider the environmental benefits associated with the precision agriculture 

machinery a part of their decision making process while 14% viewed it as unimportant (Pandit et 

al, 2011).  In another study looking at the impacts of PAT on the environment, 36.2% of the PAT 

adopters saw an environmental improvement following the use of PATs (Larkin et al., 2005).  
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Methods, Data and Procedures 

A whole farm analysis using a resource allocation model was conducted on a hypothetical grain 

farmer producing corn and soybeans in Henderson County, Kentucky. This modeling process is a 

modification of previous mathematical programming models (Shockley, et al., 2011). The 

structure of these models includes both production and economic environments. These models 

will be used to analyze and determine if the various PAT increase mean net returns above 

specified costs and enhance the carbon input:output ratio. The carbon input:output ratio is 

defined as the ratio of the carbon equivalents of the inputs used for the different production 

practices to the carbon equivalent of the biomass produced from the production of corn and 

soybeans (Lal, 2004).  

 The reduction in energy and inputs due to various PAT will come from pertinent 

literature and expert opinion. Relevant literature will also be utilized in determining the 

appropriate carbon equivalent for each production strategy in order to calculate a representative 

input:output ratio for comparison. The inputs used for this ratio will include fertilizer, herbicides, 

insecticides and fossil fuel combustion for each machine. Outputs used will include total 

biomass.  

The four different scenarios are as follows: 

1. Grain farmer under no-till conditions. (Base Model) 

2. Utilization of the sub-meter auto-steer technology on a tractor. (Sub-meter) 

3. Utilization of RTK auto-steer technology on a tractor. (RTK) 

4. Utilization of automatic section control equipped with lightbar navigation technology on 

a self-propelled sprayer. (ASC) 

The Production Environment 

Expected production estimates were obtained using Decision Support System for 

Agrotechnology Transfer (DSSAT v4) which is a biophysical simulation modeling tool. This 

biophysical simulation will be used to estimate the underlying crop yield for a Kentucky grain 

farmer by altering production and management practices. The requirements to develop said yield 

estimates in DSSAT include weather data for the entire growing season, soil data and the 
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designation of production practices. Historical weather data for Henderson County, Kentucky for 

the previous 30 years was obtained from the University of Kentucky Agricultural Weather 

Center (2008). Following the identification of the soil series in Henderson County, Kentucky, 

data was obtained from a National Cooperative Soil Survey of Henderson County, Kentucky 

from the USDA NRCS (2008) and the NRCS Official Soil Series Description (Shockley, 2011). 

The four representative soils utilized in DSSAT are deep silty loam, deep silty clay, shallow silty 

loam and shallow silty clay.  

The definition of production practices for both corn and full season soybeans were 

identified in order to meet the minimum requirements for the DSSAT simulation; this 

information was established in accordance with the University of Kentucky Cooperative 

Extension Service Bulletins (2008). Production practices utilized in this study included planting 

date, crop variety, plant density, row spacing, and fertilizer practices (Shockley, 2011). Other 

data required for this study includes land available and the carbon equivalent for each production 

activity. By utilizing 30 years of data and varying production practices, the model is given 

strength and is able to model for an extensive number of scenarios. 

The Economic Environment 

The objective of these models was to maximize mean net returns above specified costs while 

looking at the carbon footprint of each model. The costs included in the models consist of input 

variable costs, operating costs and the cost of ownership of the PAT in applicable models. 

Decision variables in the model include corn and soybean production as well as optimal 

production strategies for which mean net returns and the estimated carbon equivalents are 

determined. Based on the decision variables, the models produced results including expected 

yields and expected net returns. A carbon footprint accounting variable was utilized to estimate 

the carbon emissions, carbon output and carbon ratio for each model. The mathematical 

representation of the carbon footprint equation utilized in this model can be found in the 

appendix.   

 Constraints include land, labor, crop rotation and variable rate feasibility. The land 

constraint guaranteed that the production of both corn and soybeans aggregated did not exceed 

the land available. Labor constraints include sowing, spraying, fertilizing and harvesting. This 
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Base Sub-Meter
% change             

from base
RTK

% change             

from base
ASC

% change             

from base

Net Returns 868,468.00$ 873,314.00$ 0.56% 871,018.00$ 0.29% 873,615.00$ 0.59%

Carbon Emissions 173488 171415 -1.19% 169430 -2.34% 170521 -1.71%

Carbon Output 5584615 5586140 0.03% 5586838 0.04% 5586140 0.03%

Carbon Ratio 32.19 32.59 1.24% 32.97 2.42% 32.76 1.77%

was constrained by suitable field days and labor available. Labor hours were determined based 

on the field capabilities of the operating machinery. In addition, prices are necessary for 

calculating the expected net returns. Prices for the commodities produced were determined by 

means of the World Agricultural Outlook Board (2008). “Prices used were the 2009 median 

estimates less Kentucky’s basis, which resulted in $9.75/bu and $4.25/bu for soybeans and corn, 

respectively” (Shockley, 2011).  

Nitrogen Price Risk Modeling 

A mean-variance (E-V) analysis was conducted each model to test the sensitivity of a farm to 

nitrogen price risk. This was done to determine if the farmer is sensitive to nitrogen prices and if 

it is reasonable for the farmer to try and mitigate nitrogen price risk. 12 years of historical 

nitrogen prices were collected from the USDA Economic Research Service (1997-2008) and a 

regression analysis was utilized to determine the residuals. Using the base model before testing 

for nitrogen price risk, the standard deviation was collected and nine risk aversion parameters 

were calculated. Using these risk aversion parameters and the residuals from the data, the models 

are able to provide information as to how farmers may react to variation in nitrogen prices.  

Results and Findings 

The results from the four models are presented in Table 1; the figures reported are mean net 

returns above specified costs (NR), carbon emissions, carbon output and carbon ratio.  

Table 1. Results from the execution of the four models¹  

 

ASC has the greatest benefit to the farmer with a net return of .59% over the base model. 

While not seemingly substantial, it should be noted that the mean net returns of the base scenario 

is $868.468.00 and therefore this represents an increase of $5,147.00. Automatic section control 

has the lowest input costs associated with pre-herbicide variable costs, post-herbicide variable 

1 Carbon emissions and carbon ratio are reported using teragrams as units. 
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Base Sub-Meter ASC RTK

Pre-Plant 8620.50 8021.86 7711.41 8620.50

Post-Plant 14374.50 13376.28 12858.61 14374.50

Tractor Fuel 12558.00 12558.00 12558.00 11247.64

Sprayer Fuel 2247.00 1896.82 1896.82 2247.00

Insecticide 1816.50 1690.35 1624.94 1816.50

Seed 18637.50 18637.50 18637.50 18199.43

Other Fuel 11949.00 11949.00 11949.00 11949.00

costs and spray fuel being 11% less than the other models and insecticide variable costs being 

16% less than that other models. Sub-meter offers the next best improvement to net returns; ASC 

has an annual cost of $2161.50 greater than that of the sub-meter, but the amount saved by 

reducing the costs of inputs with ASC has allowed that to be a better production practice for the 

farmer.  

 

Table 2. Carbon footprint by input¹ 

 

 

 

 

 

 

While automatic section control is most profitable for the farmer, from the carbon 

footprint standpoint, RTK is the most beneficial. RTK reduces the carbon emissions by 2.34% 

and improves the carbon ratio bringing it to 2.43% over the base model. This can be primarily 

attributed to two inputs: seeds and tractor fuel. When modeling the carbon aspect a carbon 

number was associated with each unit of input reported on the table. For seeds, the carbon 

number indicated the amount of carbon related to the production and sales of each individual 

seed. RTK uses 2% less seed than the other production practice modeled. While the amount of 

seed used and the reduction of 2% may not seem substantial, that resulted in a decrease of 438.07 

tergrams of carbon from all other models. The reduction in the amount of seed used can be 

attributed to the more precise seeding when using RTK, this providing improved results over the 

other production practices. For tractor fuel, the carbon number indicates the amount of carbon 

related to the production and combustion of each kilogram of tractor fuel used. RTK uses 10% 

less fuel than the other production practices modeled; again this can be attributed to the precision 

of RTK over the other production practices modeled.  

1 All figures are reported using teragrams as units. 



9 
 

Aggregation by harvest week separated by production practice

Base Sub-Meter ABSC RTK

Harvest Week 1 831.98 447.51 420.24 590.92

Harvest Week 2 217.41 602.49 629.78 459.08

H1/H2 Ratio 3.83 0.74 0.67 1.29

Acres planted by sowing date and production practice

Base Sub-Meter ASC RTK

April 22 808.33 967.04 967.06 1050.00

April 29 13.03 13.64 13.64 -

May 6 228.03 69.32 69.32 -

Pre-herbicide, post-herbicide, insecticide and sprayer fuel were most carbon efficient 

with automatic section control.  Pre-herbicide, post-herbicide and insecticide all had a reduction 

of 11% from the base model and a 4% reduction from the next best production practice. This 

coupled with the 16% reduction from the base model in sprayer fuel can be primarily attributed 

to the fact that ASC can spray more effectively by controlling specific sections of the boom. This 

resulted in the highest increase in mean net returns to the farmer.  

The optimal production practices for the base scenario were altered when modeling for 

the three PAT. All modifications to the production practices occurred exclusively to soybeans; 

results are presented in Table 3.  

Table 3. Selected results of soybean sowing and harvesting¹  

 

 

 

 

 

 

It is noteworthy to point out that plant population and row spacing were unvarying 

throughout all models for both corn and soybean production. For the base model during harvest 

week one (H1), sowing dates of 4/22, 4/29 and 5/6 are utilized while during harvest week two 

(H2) only sowing date 4/22 is utilized. The sowing dates for the sub-meter model are identical, 

but there is a shift in the acres sowed per harvest week. This is most likely attributed to the fact 

that with the ability to spray more effectively with sub-meter, more suitable field hours were 

available for planting allowing for the most optimal combination of the soybean sowing dates 

available. The largest change that occurred in consideration of the planting of soybeans was with 

the use of automatic section control. During H1, sowing dates of 4/22 and 5/6 were utilized while 

during H2, sowing dates of 4/22 and 4/29. This allowed for a more even distribution of the 

1 Soybeans planted are reported in acres planted. 
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amount of soybeans planted during each harvest week. Perhaps the most substantial change was 

with the use of RTK. For both harvest periods the only planting date that was utilized was 4/22. 

RTK increases the efficiency of tractor operations which allowed for the optimal number of acres 

of soybeans to be planted on April 29. Since all of the soybeans were able to be planted on this 

date, the other available planting dates are essentially obsolete. These differences demonstrate 

the importance of the whole-farm model and the need to adjust practices to take full advantage of 

the technologies available.  

It is interesting to take a look at the ratio of acres planted during H1 and H2 with respect 

to the different production practices. For the base model, the ratio is 3.83, meaning that for each 

acre planted during H2, 3.82 acres were planted during H1. Even though sub-meter had identical 

sowing dates, the amount planted in each harvest period shifted drastically causing a ratio of 

0.74. For every 1 acre of soybeans planted in H1, 0.74 acres were planted in H2. Again, this can 

be attributed to suitable field hours and the ability to spray more effectively. Automatic section 

control also planted more acres in H2 than H1 allowing for a ratio of 0.67. With the use of RTK, 

the number of acres planted in H1 surpassed the number of acres planted in H2, but is not nearly 

as asymmetrical as the base model, with a ratio of 1.29.  

While it was not optimal to vary the acres of corn produced from model to model, it is 

interesting to note that corn production utilized two plant varieties while soybean production 

only utilized one plant variety. During harvest week one, plant varieties 2650 and 2700 were 

utilized with fertilizer rate 168 and 196, respectively. During harvest week two, only plant 

variety 2700 was utilized with a fertilizer rate of 196. 

The findings for determining nitrogen price risk using E-V analysis suggest that nitrogen 

price is not a significant enough factor on its own to account for the management of its risk. The 

models were responsive at two risk aversion parameters; one at moderate risk and one at high 

risk. Even then, the mean net returns only decreased by 0.22% and 0.74% respectively. The 

responsiveness and level thereof was identical for all models. While nitrogen is important in the 

production of corn, and it is possible for a farmer to mitigate for nitrogen price risk, it is not a 

substantial enough percentage of the inputs used to warrant the mitigation of its risk. 
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Discussion 

It is clear from the results that with the use of the three PAT investigated there is a Pareto 

improvement in each model over the base model. The farmer receives a higher net return than 

the base model and the carbon input:output ratio is enhanced. These results are significant 

because there have been no previous studies to offer empirical results to verify previous thoughts 

on the subject. If this is truly a Pareto improvement over the base scenario, this begs the 

questions as to what the adoption rate is for corn and soybean producers.  

According to an ERS study conducted, corn and soybean farmers are among the first 

adopters when a new PAT emerges. In 2001, approximately 30% of corn producers and 25% of 

soybean producers were using some form of yield monitors (a precision agriculture technology). 

The adoption of PAT is expected to increase based on the previous trend of adoption. One of the 

main factors in determining if a PAT is suitable for farm operations is the farm size. Innovations 

with large fixed acquisition or information costs are typically less likely to be adopted by smaller 

farms since there are fewer acres over which to spread these costs. With a larger farm, the cost 

per acre of the PAT is more manageable for the farmer, therefore the larger farms are more likely 

to adopt these technologies. There is also regional variability in the adoption of PAT. There is a 

high concentration of yield monitor use in the Heartland and Northern Crescent regions. This can 

be attributed to the fact that this is where yield monitors were first introduced; specifically for 

corn and soybean production. These regions are major corn and soybean producers, and a 

sizeable PAT service sector has become established there (Daberkow, 2001).  

If the larger farms are able to purchase this equipment and the smaller farms are not 

afforded an opportunity to receive the benefits of these technologies, then at some point the 

smaller farms will collapse. The USDA NRCS has enacted two programs to help both the large 

and small farmers acquire the machinery necessary to keep them competitive; Environmental 

Quality Incentives Program (EQIP) and Conservation Stewardship Program (CSP). The first 

program, EQIP, is a voluntary program that provides financial and technical assistance to 

agricultural producers through the use of contracts. In 2011, the EQIP program has contract 

obligations totaling $514,060,894.37, with an average of $20,673.24 per contract and $68.25 per 

acre. The contracts provide financial assistance to help plan and implement conservation 

practices that address natural resource concerns and for opportunities to improve soil, water, 
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plant, animal, air and related resources on agricultural land and non-industrial private forestland. 

In addition, a purpose of EQIP is to help producers meet Federal, State, Tribal and local 

environmental regulations. EQIP provides financial assistance payments to eligible producers 

based on a portion of the average cost associated with practice implementation. (NRCS, 2011) 

While this program is not directed toward PAT practices, is does not exclude them either. 

The second program, CSP, is very similar to the EQIP program as it is also a voluntary 

program that encourages agriculture and forestry producers to address resource concerns through 

two directions. One, by undertaking additional conservation activities, and two, improving and 

maintaining existing conservation practices. CSP is open to all producers, regardless of operation 

size or crop produced. It rewards producers by the higher the performance, the higher the 

payment to the producer. The contracts can run five years in length and have a maximum 

payment of $40,000 per annum. (Conservation Stewardship Program, 2011) The advantage that 

CSP has over EQIP is that is specifically targets farmers who utilize PAT as a conservation 

practice. Of the many activities outlined on the CSP program, PAT is specifically targeted by 

highlighting three activities that a producer can take advantage of: 1) GPS, target spray 

application, or other chemical application electronic control system, 2) fuel use reduction for 

field operations and 3) precision application technology to apply nutrients (Conservation 

Stewardship Program Conservation Activity List, 2011). 

Summary and Conclusions 

Precision agriculture is both economically viable and more environmentally beneficial, due to 

the reduction of the carbon footprint, than conventional farming. The reduction in the carbon 

footprint with the use of precision agriculture can be attributed to several factors. Because 

precision agriculture is more precise with the application of fertilizers and seeds, fewer inputs are 

used thereby reducing the carbon footprint of the operation. With the reduction of inputs there is 

a reduction in the carbon footprint from two directions. First, the production of the inputs carries 

a carbon footprint while, second, the use on the farm carries a carbon footprint.   

 This study aimed to look at three precision agriculture techniques versus a base model of 

conventional farming and compare the four models against one another. The results show that all 

precision agriculture techniques produce a Pareto improvement over the base model. 
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Specifically, automatic section control gave the greatest improvement with a mean net return that 

was 0.59% over the base. RTK provided the most significant enhancement in the carbon ratio 

with an improvement of 2.42% over the base model. All of these improvements over the base 

scenario can to the adoption of precision agriculture technology. These results are significant 

because there have been no studies conducted to offer empirical results to verify previous 

thoughts on the subject. 
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Appendix: Mathematical Representation of the Carbon Footprint Equation  

The carbon footprint accounting equation described in the model is depicted mathematically as 

follows: 

 

   ∑ ∑ ∑ ∑ ∑ ∑CFACT * SCARBI,PS,RS * XSH,VS,ST,PS,RS,SS  

+ ∑ ∑ ∑ ∑ ∑ ∑CFACT * CCARBI,PF,FR * XC H,VC,ST,PC,FR,SC           

-  CARBFPI         ≤ 0    I  

Activities include: 

XSH,VS,ST,PS,RS,SS = production of soybeans harvested during period H in acres of variety VS 

for soil type ST with plant population PS with row spacing RS under sowing date SS.  

XCH,VC,ST,PC,FR,SC = production of corn harvested during period H in acres of variety VC for 

soil type ST with plant population PC with fertilizer rate FR under sowing date SC.  

 

Coefficients include: 

SCARBI,PS,RS = Soybean production requirements for input I for plant population PS with row 

spacing RS. 

CCARBI,PF,FR = Corn production requirements for input I for plant population PF with 

fertilizer rate FR. 

CFACT = carbon emissions for each input used 

CARBFPI = carbon footprint by input used  

 

Indices include:  

SS – sowing date soybeans 

SC – sowing date corn 

VS – plant variety soybeans 

VC – plant variety corn 

PS – plant population soybeans 

PC – plant population corn 

FR – fertilizer rate corn 

RS – row spacing soybeans 

ST – soil type 

I – inputs 

H – harvest week 

 

H    VS   ST   PS   RS   SS 

H    SC   VC   ST   PC  FR 


