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Introduction

Technical change embodied in fishing fleets through the adoption of new technology has

markedly contributed to the increased harvesting capacity of fisheries around the world.  Over

the past few decades, vessel owners have made substantial technical improvements to their boats

and equipment to increase yields as well as to enhance safety.  Vessels’ wood hulls have been

replaced with steel over wood or all steel hulls, and the proportion of ferro-cement and fiberglass

hulls has expanded.  Engines are being built or adapted to be more powerful and efficient.  A

myriad of electronics have been adopted, such as global positioning systems, route tracers,

hydro-acoustic devices, onboard computers, and satellite-based communications.  Overall, it has

been estimated that global fishing power has increased at an annual rate of 9.0 percent per year

through these types of technological improvements (Fitzpatrick 1995).

Studies by the Food and Agriculture Organization (FAO 1997,1998a,b) have established

both that the number and catching capability of participants in fisheries world-wide has

substantially increased, and that capacity needs to be reduced in virtually all fisheries to move

toward a sustainable balance.  Garcia and Newton (1997) document that approximately 70

percent of the world’s marine capture fisheries are overexploited, fully exploited, or recovering.

They also estimate that fishing capacity should be reduced by 53 percent in order for operating

revenues to equal the total cost of production.  Mace (1997) finds that harvesting capacity in the

world’s industrial fisheries increased at a rate eight times greater than the rate of growth of

landings from world capture fisheries.

Although technical progress has clearly exacerbated this capacity issue by augmenting

the capability of operating units to increase harvest levels, no economic studies have attempted

to quantify the extent or effects of technical change in fisheries over time.  Efforts to evaluate
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technical progress in fisheries have instead been confined primarily to engineering studies.  But

information on the economic contribution of investments in fishing technology is crucial for

evaluating both the production impact of, and the returns to, such investments.  Evidence on the

amount of technical change, and its contribution to actual catch and expansion of available

fishing power, is central to decisions by vessel owners, as well as fisheries managers concerned

with establishing and reducing capacity levels.

Economic measurement of the productive contribution of technical progress is usually

based on models representing output growth given inputs (primal), or cost diminution given

output (dual), over time.  It is therefore measured in the primal context, for example, as output

growth net of observed input changes.  Such a disembodied technical change notion, motivated

by Solow (1957) and providing the basis for the large literature on the Solow productivity

residual, has both computation and interpretation limitations that are widely recognized.  One

issue in particular is that “technical progress” is in this context simply represented as the

ratcheting upward of net output over time – related to a time counter – rather than directly

associated with technological innovation (Lambert and Shonkwiler 1995)

For most applications, however, this seriously limits the interpretability of the resulting

technical progress measures, since all technological, market, or other factors affecting output

production or input use, or their measurement, are lumped into the productivity residual.  In

particular, if one is attempting to determine the returns to investment in specific technologies, or

the actual output production (catch) contribution of a particular type of technical advancement

for a fishery, a model more directly recognizing the impact of embodied innovation and its

components is necesssary.
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Construction and implementation of such a model requires data on investments for

specific types of technological equipment that are designed to increase the productivity or

competitiveness of the individual decision-making-units (vessels).  If recognized separately in an

econometrically implementable model, the returns to these investments – in the context of

production augmentation – can then be distinguished from other external technical change,

regulatory, and environmental factors, that would otherwise all be attributed to disembodied

technical change.  That is, the productivity residual, which captures any adaptations in the

operating environment over time that might affect productivity, may be divided into components

to facilitate its interpretation.

In this study we use a detailed data set on technological investments and innovations of

19 vessels in the Sete fishing fleet of Southern France over the 1985-99 time period, to identify

various components of embodied and disembodied technical change, and their productive

contributions to overall catch.  We distinguish the contributions from technical change embodied

in the capital base (vessels), and the electronic equipment and other technology applied to it

through (internal) purchases by vessel owners, separately from disembodied “technical change”

that may have arisen from adaptations in (external) technical, regulatory, environmental, and

resource stock conditions.  We also examine the contribution of technical efficiency to observed

output – changes in how close a vessel is operating to its maximum potential catch level, given

observed input use.  And we evaluate whether output compositional changes affect the

productivity and returns measures.

Overall, we find that embodied technical change increased at approximately 1.1 percent

per annum for the Sete fleet overall between 1985-99.  That is, changes in vessel characteristics

(size, hull material, the number of drums, and engine power), and the technological base (such as
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the adoption of sonar, route-tracers and onboard computers) enhanced production by more than 1

percent per year.   Of this, technical change associated with capital (vessel) adaptations increased

catchability by an average of 0.46 percent per year.  And technical improvements directly due to

investment in new technology generated the remaining productivity increase of 0.61 percent per

year.  Concurrently, external events, such as declines in resource abundance and changes in

management or regulations, captured as overall “disembodied technical change”, caused a net

output decline of approximately 3 percent per year.  By contrast, increased effort put forward by

the fleet as a whole, which is also associated with reduced resource stocks, augmented catch

rates, but by less than 0.1 percent.  And neither output composition or efficiency changes appear

to have had a substantive effect on productivity.

 The Data

 The Sete fleet is made up of two types of trawlers, bottom trawlers (the traditional

activity), and pelagic trawlers (an activity that increased greatly in the 1980s).  Trawlers of both

types may change fishing strategy according to market conditions for small pelagics (sardines

and anchovies).  Most vessels targeted anchovy from 1987 to 1992, but many switched back to

traditional demersal species once the market for anchovy became less remunerative.

The main technical developments during the late 1900s included increased size and

power of vessels, and development of pelagic trawling in the 1980s and electronic equipment in

the 1990s.  All Sete trawlers already had some types of electronic equipment at the beginning of

the 1980s, including a navigation radio, precision automatic pilot, radar, and radioelectric

navigation equipment.  But during the past 20 years many types of investments have been made

to enhance the technological base.  For example, VHF began being used for offshore-onshore
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communications in the mid-1980s, and GPS was introduced in the early 1990s, followed by

onboard computing and the use of sonar.

For our analysis we used data on production activities for 19 vessels in the Sete fleet,

operating between 1985 and 1999, and representing a broad range of sizes and output/input

patterns.  These data, obtained by the Institut du Développement Durable et des Ressources

(Montpellier, France), include information on species landings, input characteristics, and

technological equipment and investment.  We have data on two outputs, whitefish (traditional

demersal species) and bluefish (anchovies and sardines), measured by pounds landed.1

Measured vessel and gear characteristics include gross registered tonnage (GRT), vessel length

(LEN), engine horsepower (HWP), hull construction (HULL), number of drums (DRUM), and

number of two kinds of nets used (N1-N2).  Technology variables include sonar (SON), route

tracer (RT), global positioning system (GPS), kort nozzle (NOZ), onboard computers (COMP),

and whether or not the vessel had adopted alternative processing activities (PROC).

The oldest vessel (vessel 10) in the fleet was constructed of wood in 1947, is relatively

small (26.1 GRT), and as of 1999 had not installed sonar.  At the other extreme is vessel 8,

which was built in 1994, has a plastic hull, and is the largest vessel (96.66 GRT) in the sample

fleet.  It was outfitted with sonar, GPS, a route tracer, and an on-board computer.  Between these

ranges a wide variety of innovative behavior has been exhibited, but during the sample period

most of the vessels adopted considerably more modern technology.

Fishery independent measures of resource abundance to use as control variables for

resource stock levels, and thus distinguish this aspect of environmental conditions from

                                                
1 Some data on the value of these outputs, and thus implicitly their price (French Francs), was also
available.  Although these data potentially could be used to reflect changes in the quality of the catch, or
choice of species through augmenting the specification by output choice equations (assuming profit
maximization), the value data were not sufficiently complete to allow such an extension.
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disembodied technical change, were not available.  As a proxy for such stock effects, a measure

of landings-per-unit-effort—LPUE—was constructed for the entire fleet.  LPUE was calculated

by summing all vessel landings and days at sea in each year, and then dividing fleet level

landings by fleet level fishing effort.  LPUE-1 (lagged one period) was then used as an indicator

for catch per unit effort, potentially capturing some stock abundance effects.  This measure is not

ideal for such a task, however, so stock effects still likely appear in the productivity residual.

The Methodology

Technical change from an economic perspective involves shifts in the relationship

between production (output) and factors of production (e.g., capital, labor, energy, and

materials).  It is thus typically defined and measured as the percentage change in net output

between consecutive time periods, and conceptually motivated as a shift in the production

function.  Increases in the resulting measure implies declines in the resources (inputs) used to

produce a given amount of output.  If the associated shift in the production technology affects the

use of all inputs equivalently – without affecting their marginal rates of technical substitution –

technical change is neutral.  If it instead involves a rotation of the underlying production

technology, and thus a change in input composition, the underlying technical change is non-

neutral (or biased), in turn implying cross-effects with the inputs.

To justify the use of this methodological base for defining and measuring technical

change we must have appropriately represented the input base, and the form or determinants of

technical progress.  That is, technical change must stem from external forces, rather than explicit

investment carried out by the firm/vessel owner that would involve an increase in some type of

input.  If formalized by a production function that expresses output produced (catch), Y, as a

function of a vector of inputs used, X, this suggests that an external factor, generally expressed
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as a time counter, t, is recognized as a production determinant: Y=Y(X,t).  Disembodied

technical change is thus measured simply by changes in output produced, given input use, over

time – or ∂Y/∂t, usually expressed in proportional or percentage terms as ∂ln Y/∂t.

If changes in Y(X) also occur due to identifiable changes in the technological or capital

base stemming from purchases by the firm (vessel owner), these endogenous or embodied

technical change factors or drivers should be recognized and distinguished by generalizing the

representation of the production technology.  Such a relationship may be specified according to

the production function Y(X,K,TE,tD,S), where X is a vector of variable inputs, K a vector of

capital stocks, TE a vector of embodied technological factors, tD a vector of disembodied

technical change drivers, and S a vector of environmental conditions affecting production.

More specifically, for our analysis we will define the one component of the X vector as

“days at sea” (or “effort”, X1=E).  Although this input specification is not typical for production

analysis, it is consistent with the way managers and fishery researchers represent fisheries inputs.

Effort, proxied by days at sea, reflects energy, materials, and labor inputs applied to the (quasi-

fixed) capital stock.  This summary measure, sometimes motivated as an intermediate output

from the first of two production stages (Pollak and Wales), is used at least in part because more

explicit input measures – such as fishermen on board or fuel used – are usually unavailable or

vary little on a per-day basis.2

A measure of resource abundance, or the resource stock/biomass, could also be

incorporated as part of the X input vector.  It alternatively might be thought of as an external

factor, and appear in the tD vector.  However, these treatments disregard the unique characteristic

of the resource stock as a “discretionary” input.  It is not under the control of any particular
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vessel or skipper, but it is clearly affected by the decisions of vessel operators in the fleet as a

whole, as well as fishery managers.3  It is also a critical determinant of the environmental climate

within which the vessel is operating.

Therefore, we will include our proxy for changes in the resource stock, LPUE-1=S1=S, as

the only component of the S vector.  Distinguishing this “input” into fish production or catch is

an attempt to separate stock impacts from disembodied technical change effects, although its

effectiveness in doing so depends on the appropriateness of the stock measure.

 The K components that are individually measured for the Sete fleet consist of capital

characteristics for the particular boat.  Gross tonnage (K1), length (K2), type of hull (1 for wood,

K3), number of drums (1-4, K4), and number of engine changes (ENGC,1-3, K5), are represented.

We are implicitly assuming, when defining these characteristics as inputs, that each has a

positive marginal product that reflects a component of embodied technical change derived from

capital investment.4  This might not be true, however, for some vessel characteristics.  For

example, greater length could potentially imply an older more cumbersome boat, which might be

reflected in a negative marginal product estimate.

The embodied technical change variables we employ as components of the TE vector

could also be thought of as capital stock components.  But it is useful for our purposes to

distinguish them separately from vessel characteristics to facilitate interpretation of the resulting

measures.  For this data set our TE variables are variable pitch propeller, T1, kort nozzle, T2,

                                                                                                                                                            
2 This type of analysis could also focus on explaining catch/day rather than catch (output, Y).  However,
including days (effort, E) as an argument of the function controls for days within the estimating model
without the implicit assumption that its coefficient is 1.
3 An individual skipper also has options about where to fish, which will affect the effective stock level for
the particular boat, although characterizing such a vessel-specific measure it not possible with these data.
4 Note that any of these variables that are constant for a given vessel – GRT, length, and type of hull in
particular – will not show up in a technical change computation for a particular vessel or for the fleet
overall, since they do not change over time.



10

sonar, T3, netsonde, T4, GPS, T5, route tracer, T6, computer, T7, and processing facilities

(amelioration of processing and storage), T8.  Increases in these factors are again assumed to be

productivity-enhancing, or have a positive marginal product, thus generating upward shifts in the

production frontier that can be attributed to (embodied) technological asset investment.

We include only one explicit “disembodied technical change” factor tD; t1=t is a time

counter, representing shifts in the production function each year.  The output change associated

with changes in t lumps any trends in output productivity, or shifts over time not explained

elsewhere in the specification of the production or technical relationship, into the overall

technical change or productivity measure.  In this sense it is, as Solow noted, a “measure of our

ignorance”.  However, when included in a model that explicitly recognizes – and thus allows for

the explanatory power of – embodied technical change investment, this measure captures the

impacts only of other uncontrolled-for factors.  This might in the current context include un- or

mis-measured changes in the biomass stock, or the number of vessels participating in the fishery,

that reduce (or enhance) the productivity of an individual vessel independently of the amount of

technology, capital, fishermen, and other inputs devoted to the productive process.

We also consider two adaptations to this overall framework representing production

processes and thus productivity patterns.  First, note that the typical characterization of the

production technology in the form of a production function presupposes that output composition

changes are not an important part of the puzzle.  However, in a multi-output industry, or fishery,

this assumption may be inappropriate.  One way to deal with this is to define instead a distance

function, as discussed in Coelli et al (1998).  We will just briefly summarize this framework

here, since it does not comprise a substantive part of our analysis; recognizing multiple outputs

turns out empirically not to be a key issue for our application.
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A distance function (output-oriented) may be thought of as a multiple output production

function allowing for deviations from the production frontier, or technical inefficiency.5  Such a

function may be defined as DO(X,Y,R) = min{Θ: (Y/Θ) ∈ P(X,R)}, where P(X,R) is the

production set generally defining the production technology, and the R vector includes any

production determinants not appearing in the specified output (Y) and input (X) vectors.  If

DO=1, and Y=Y1 is the only output, this collapses to a standard production function.  If DO=1

and there are multiple outputs, it may be interpreted as a multi-output production function.  In

turn, if DO≠1, the distance function recognizes a one-sided “inefficiency error” in addition to the

standard white noise error appended to estimating equations for standard econometric models,

which may be estimated using stochastic production frontier (SPF) methods.

This raises our second adaptation – recognizing technical inefficiency by allowing for

such a two-component error term in either the distance or production function model.  This

facilitates consideration of whether observed output increases – enhanced productivity – imply

that firms (vessels) are expanding their technological horizons (shifting the production frontier

out), or moving toward an existing frontier.

That is, the usual production function framework is only representative if the boats are

operating efficiently in each time period – they are on the technological frontier, so any change

in Y given other arguments of the function can be interpreted as a shift of the frontier.  If,

however, some boats are operating within the frontier, due to some type of unexplained

inefficiency (skipper skill, for example), it is possible also to increase Y/X by moving toward the

frontier.  Such efficiency adaptations can be identified if deviations from the frontier are allowed

for in the estimation of the production relationship.

                                                
5 See Paul (1999) for a brief introductory discussion of these issues, and Coelli et al. (1998) for a more
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The Measurement of Technical Progress

In order to empirically identify the independent impacts of each determinant of the

Y(E,K,TE,t,S) frontier on production (catch), and ultimately the overall implications for

technical progress, we need to quantify these impacts.  This requires assuming functional forms

for the production (or distance) function, and for the statistical error term (or terms), and

estimating the parameters of Y(•).

Assumptions about the functional form for Y(•) necessary for econometric

implementation are sometimes thought to be limiting, although if the data suggest more complex

relationships exist this can be accommodated.  In particular, a standard approximation to the

production function is a first-order log-linear or Cobb-Douglas (CD) functional form:

1) ln Yit =  α + βE ln Eit + Σk γKk ln Kk, it + Σj δTj Tj,it + αt t + βS ln St + v it,

where k denotes the capital inputs, j the technological innovations, E, S, and t are defined as

above, and vit is an error term (assumed to be independently and identically normally

distributed), representing “white noise” in the data.  The panel-nature of the model with I boats

(denoted i) and T time periods (denoted t), is also explicitly represented in (1), although we

suppress these superscripts for notational simplicity in most of our treatment.  This functional

representation may easily be extended into a second-order (translog) approximation, allowing a

full range of curvature possibilities to be reflected in the output-input relationships, by adding

second-order (cross and squared) terms among the arguments of the function.6

When a number of the arguments are qualitative variables (in a restricted range, such as

0-1, HULL, or 0-4, DRUM), however, the extra information provided by such cross-terms might

be limited.  That is, in general these factors might be thought to not only shift but also twist the

                                                                                                                                                            
complete overview of and references for frontier analysis.
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function (be non-neutral), but the additional rotation might not be well defined when

measurement is based on qualitative information.

For our analysis we initially incorporated a full range of 2nd-order terms in (1), but found

that they were largely uninformative.  Even the few cross terms that were statistically significant,

and thus remained the model for the production function (p.f.) framework, became insignificant

for the multiple output (distance function, d.f.) specification.  The somewhat more general form

of model (1) we use for estimation,7

2) ln Yit =  α + Σi λi DUMi + βE ln Eit + Σm βmE Vm,it ln Eit + Σk γKk ln Kk,it

+ Σj δTj Tj,it + αt t + βS ln St + Σm βmS Vm,it ln St + βO Oit + Σn βNn Nn,it + vit ,

thus allows for cross-terms with ln E and ln S (where Vm may be any argument of the Y(•)

function), and fixed effects (dummy variables) for each boat.  This specification also includes

variables representing supplemental information on the operating scenario of the vessel –

changes in boat ownership (O) and number of nets of type 1 and 2 (net otter trawls and mid-

water trawls, N1 and N2) – which exhibited statistically significant estimated contributions in

preliminary empirical investigation.8

Estimates of the parameters of (2) are typically interpreted as representing the

contributions of each factor to overall production, or their “returns”.  For example, ∂ln Y/∂ln E  =

βE + Σm βmE Vm is a proportional expression of the marginal product of E (MPE), ∂Y/∂E•E/Y =

MPE•E/Y, or the output elasticity εYE= ∂lnY/∂ln E.  To estimate the actual productivity impacts

corresponding to the various types of technological innovations captured in our data, and

                                                                                                                                                            
6 If all such terms are included the resulting function is a fully flexible translog function.
7 For implementation of the distance function framework, as elaborated below, the left hand side of
equation (2) is specified as ln Y1, where Y1 is whitefish, and the output ratio YRAT=Y2/Y1, where Y2 is
bluefish, appears on the right hand side.  A squared YRAT term also was kept in the function due to its
statistical significance.
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combine them to generate an overall measure of technical change, we can take this one step

further.  This step is analogous to that used to motivate the Solow residual, extended to recognize

the various driving factors for productivity growth embodied in our framework.

First, note that the observed change in output between two time periods can analytically

be expressed as the total derivative dY/dt, so taking this derivative decomposes the full change

into the individual factors driving it:

3) dY/dt = ∂Y/∂E dE/dt + Σk∂Y/∂Kk dKk/dt + Σj ∂Y/∂Tj dTj/dt + ∂Y/∂S dS/dt + ∂Y/∂t,9

or, in proportionate or percentage terms,

4) dln Y/dt = ∂ln Y/∂ln E dln E/dt + Σk ∂ln Y/∂ln Kk dln Kk/dt + Σj ∂ln Y/∂Tj dTj/dt

+ ∂ln Y/∂ln S dln S/dt + ∂ln Y/∂t,

where logarithmic derivatives are taken for continuous variables (such as E) and level derivatives

for variables that are in the form of qualitative variables or “counters” (0-1 variables or time).

Note that qualitative variables – such as the dTj/dt terms – will fall out of this

computation for most observations.  That is, such a derivative represents the change in the

variable between two time periods.  Therefore, the only time a 0-1 dummy variable would show

up in expression (4) would be in the period the shift actually occurred.  Similarly, if any variable

(such as GRT) does not change within the sample (for a particular time series – a boat in our

analysis), it will drop out of this expression.

In a nonparametric framework (based on just data manipulation without estimating the

relationships), a technical change or productivity residual representing the output change not

explained by the inputs in the X, S, K and TE vectors could be imputed by rewriting (4) as:

                                                                                                                                                            
8 Some linear dependency occurred between the boat dummy variables and the 0-1 technology variables,
so dummies for boats 17, 23 and 27 were dropped from the estimation.
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5) ∂ln Y/∂t = dln Y/dt - ∂ln Y/∂ln E dln E/dt - Σk ∂ln Y/∂ln Kk dln Kk/dt - ∂ln Y/∂ln S dln S/dt

- Σj ∂ln Y/∂Tj dTj/dt ,

where the derivatives such as dln Y/dt are computed as percentage changes from the data

(dln Y/dt is the percentage change in output between periods t0=1984 and t1=1985, or ln Y1985-ln

Y1984, for example), and the elasticities such as εYE = ∂ln Y/∂ln E, that weight these changes, are

approximated by input shares, assuming profit maximization.10

However, for some arguments of the function (probably all for our application), an

appropriate price may not be available to compute an input share, or the profit maximizing

assumption may be inappropriate.  We then wish to attribute the factor’s true contribution

without assuming the firm/boat owner has already provided this information implicitly by

making choices balancing the marginal costs of an action by its marginal benefits.

To do this, we measure the effective contribution of the inputs to output through

parametric estimation of the elasticities ∂ln Y/∂ln E = εYE, ∂ln Y/∂ln Kk = εYKk, ∂ln Y/∂Tj = εYTj,

∂ln Y/∂ln S = εYS, and ∂ln Y/∂t = εYt, and weight them by the actual changes in the associated

arguments of the function, to compute the components of (4).11  We can then average these

measures over boats and/or years to determine overall patterns for the fleet as a whole.

                                                                                                                                                            
9 For simplicity we will leave the contribution of the addition variables added to the analysis, O and Nn,
out of these specifications, although strictly speaking they should be included since they are arguments of
the production function.
10 If profit maximization is assumed, and prices for each input observable, the profit maximization
condition is VMPm = MPm•pY = pm, where MPim= ∂Y/∂Xm is the marginal product of input Xm, pm the
price of Xm, pY the price of Y, and VMPm the value of the marginal product.  Thus MPm =pm/pY, so
εYXm=pmXm/pYY – the revenue share – which can be computed directly from the data.
11 In this parametric framework ∂ln Y/∂t is directly estimated, rather than solved out in residual form as in
(5).  This implies, however, that a residual remains for equation (4) that is comprised of all unmeasured or
uncontrolled for factors that drive the errors in estimating the true relationship.
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 In turn, we can isolate and analyze specific pieces of the production and technical change

puzzle captured in (4).  First, note that the impacts of various types of technical changes are

reflected in the final components of (4), associated with the Tj and Kk factors and t:

6) TECHE,D = Σk∂ln Y/∂ln Kk dln Kk/dt + Σj ∂ln Y/∂Tj dTj/dt + ∂ln Y/∂t,

where the E,D subscripts indicate that both embodied (K, TE) and disembodied (t) factors are

included.  The first element of this expression is technical change embodied in capital: TECHK =

Σk∂lnY/∂lnKk dlnKk/dt = Σk εYKk dlnKk/dt.  The second is technical change embodied in the

technological base: TECHT = Σj∂lnY/∂Tj dTj/dt = Σj εYTj dlnTj/dt.12  A combination of these

indicators thus reflects embodied technical change impacts: TECHE = TECHK + TECHT.

The third piece, TECHD = ∂ln Y/∂t = εYt, that captures the remaining (unexplained)

output trends, is typically interpreted as disembodied technical change.  But, as alluded to above,

the value of TECHD can also be driven by anything else that is changing over time, such as

regulations, biomass stock adaptations not captured in the S measure, or other types of

stress/impacts on the fishery.  It is particularly likely in the fisheries context that TECHD reflects

something other than technical change, since there are so many unobserved and uncontrollable

factors not captured in the specified production function (especially at the boat level).

Finally, one measure that could be computed to shed some light on these additional

factors would be an analogous “technical change” measure representing the impacts of external

environmental or stock changes rather than technical change directly.  This would be computed

analogously to those for the more specific technology factors as TECHS=εYS dln S/dt, which

represents the productive contribution of S adaptations.

                                                
12 It should be emphasized that these components reflect both the actual technological investments made
(dln Kk/dt and dTj/dt), and their corresponding contributions to output production (εYKk = ∂ln Y/∂ln Kk,
εYTj = ∂ln Y/∂Tj).
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The Results:  elasticities and technical change components

Estimation of the model represented by equation (2), to measure the components of (4),

can be carried out by ordinary least squares (OLS), since even with cross-terms the function

remains linear in the parameters.  Such estimation is based on the maintained assumption that the

error term vit is normally distributed.  Various econometric adaptations to the model can be made

to accommodate possible deviations from this simple stochastic assumption, such as

heteroskedasticity or autocorrelation.  However, these proved unimportant for our specification,

according to standard tests.

The model may also be adapted to recognize the potential presence of technical

inefficiency, by assuming a two-part error term of the form µit = vit + uit.  This combines the

symmetric (white noise) error term vit with an asymmetric or one-sided (inefficiency) error term,

uit, that reflects the productivity contributions of changes in efficiency (estimated deviations from

the production frontier).  Such a function may be written as

7) ln Yit =  ln Yit(DUMi,Eit,Kk,it,Tj,it,t,St,Oit,Nn,it;α,β,γ,δ) + vit + uit ,

where ln Yit(DUMi,Eit,Kk,it,Tj,it,t,St,Oit,Nn,it;α,β,γ,δ) + vit represents equation (2).

The adaptation to multiple outputs, by specifying a distance function, is in turn a simple

extension of this function.  First, the distance function mentioned in the previous section may be

written (as developed in depth by Coelli et al.), as

8a)  ln DO,it = ln Yit(DUMi,Eit,Kk,it,Tj,it,t,St,Oit,Nn,it;α,β,γ,δ) + η1 ln Y1,it + η2 ln Y2,it

+ Σrs ηrs ln Yr,it ln Ys,it + vit
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to accommodate the two outputs Y1 and Y2 (r=1,2).13  Certain regularity conditions, in particular

homogeneity of degree one in outputs, must theoretically hold for this function.  As in Lovell et

al. (1994), however, these conditions can be simply imposed by normalizing the function by one

of the outputs, resulting (for our two-output specification) in:

8b) ln DOit/Y1it = ln Yit(DUMi,Eit,Kk,it,Tj,it,t,St,Oit,Nn,it;α,β,γ,δ) + η2 ln Y*2,it

+ η22 ln Y*2,it
2 

 + vit , or

8c) ln Y1it = -ln Yit(DUMi,Eit,Kk,it,Tj,it,t,St,Oit,Nn,it;α,β,γ,δ) - η2 ln Y*2,it

- η22 ln Y*2,it
2 

 - vit + uit ,

where Y*2=Y2/Y1, and uit=ln DOit is the one-sided “inefficiency” error, which equals zero if

DOit=1 so the firm (vessel) is on the frontier of the function.  This is the maintained hypothesis

for the reported preferred version of this alternative model in our empirical results, since

inefficiency contributions to explaining productivity change appear negligible for these data.

In this section we present estimates for three specifications, corresponding to equations

(2) (standard econometric production function model – the base specification), (7) (stochastic

production function frontier, SPF, model), and (8c) with uit= 0 (standard econometric distance

function model).  The arguments of the functions include E and S, five K components (K1=GRT,

K2=LEN, K3=HULL, K4=DRUM and K5=ENGC), eight TE variables (T1=PROP, T2=NOZ,

T3=SON, T4=NSOND, T5=GPS, T6=RT, T7=COMP, and T8=PROC), boat dummies (DUMi), O,

N1 and N2.  In the two-output model Y1=whitefish and Y2=bluefish are separated.  The preferred

specifications for each model were chosen by initially including a full set of dummy variables

and cross terms, and then deleting those that were insignificant or redundant.  Estimation of the

                                                
13 For flexibility of the function cross-terms between the outputs and the arguments of the Yit(•) function
would also be included.  These terms are omitted here for simplicity, as well as because they were



19

standard econometric models was carried out by PC-TSP (Hall, Cummins and Schnake, 1996).

Estimates for the stochastic frontier models were generated using FRONTIER (Coelli, 1996).

First consider the data patterns evident from the averages of changes in the data –

output(s), and the arguments of Y(•) – for the entire sample, presented in Table 1.  All technical

change (Tj and Kk) factors have increased over time.  This represents the direct incidence of

changes in technology – the innovations that were actually put in place over this period.  For

example, the average yearly increase in the use of T2 (NOZ) for the entire fleet over the 1985-

1999 period was 4.3 percent.

This compares to an average increase in output of only 0.33 percent, and in fact apparent

declines in each of the individual outputs.  The seeming inconsistency is due to the very high

variation in the catch of Y2 (bluefish), which had dramatic down- as well as up-swings, the

former appearing more in the 1994-99 time period (and dominating), and the latter in the 1985-

93 period.  Note also the very different time trends for the (small) overall increases in fishing

effort and resource abundance; E growth was negative on average in the first half of our data

sample and positive in the second half, and the reverse pattern was evident for S.

Given the patterns exhibited in the data, it is worth emphasizing that falling stocks, or

stress on the fishery – as suggested by the measured changes in E and in S (LPUE-1) – will

reduce the impacts of technical change on catch levels, especially for a particular boat.  Due to

such external factors boats might ultimately fail to maintain the status quo, much less enhance

output, even with significant technological investment.  Since individual boats are competing for

fish, a catch-up game is implied.  Technological investments that would have an impact if others

did not change their procedures may just allow boats to retain their share if something like a

                                                                                                                                                            
invariably insignificant in preliminary empirical investigation and thus were not included for empirical
implementation of the distance function.
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zero-sum game is taking place.  Such a scenario is suggested by the fact that investment in

technological improvements far exceeds the associated negligible change in output production.

The economic contributions of the technical changes evident from the Kk and Tj

adaptations must be expressed in terms of their actual impact on production, balanced by

changes in other inputs and environmental conditions.  Determining the productive contributions

of individual innovations to production first requires evaluating the estimated parameters of the

model, representing the returns to technological investments.

The parameters of the model were first estimated by applying OLS to the CD production

function (1), to determine overall patterns.  The resulting returns to effort measure, εYE=βE, was

positive and significant, and that for stock, εYS=βS negative and significant.  This is consistent

with a priori expectations of a positive marginal product for E and a negative relationship

between increased catch in the previous year (LPUE-1) and current stock abundance.  However,

some of the other results suggested interpretation difficulties, many of which remain in the more

complete representations including cross effects.

The parameters on the K variables, εYk=γKk, implied negative marginal products for three

of the five capital components, with those for K1 and K2 significantly negative.  And the εYj=δTj

coefficients representing the productive contributions of embodied technological innovations

were positive on balance, but also captured some negative impacts.  In particular, the coefficients

on T1 and T5 were significantly negative, and those for T2 and T6 insignificantly negative.  Also,

the trend effect reflected by εYt=αt was strongly negative (indicating a depressing effect on

productivity of the fishery over time, holding all else constant).

The most difficult to interpret implication was the (almost invariably significant across a

variety of specifications) negative contribution of T5 (GPS).  One possible explanation is that
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GPS adoption was associated with some other types of unmeasured output-dampening impacts,

such as stock or regulation changes, that are being picked up as part of the GPS-effect.  This is

particularly likely given the evidence of a significant fall in output production in 1993.  Since

this is around the time GPS was being adopted, the drop may appear to be GPS-driven, and yet

actually be attributable to something else that is unmeasured.  The negative relationship could

also be due to GPS being superceded (or at least closely followed) by the introduction of

computers and sonar.  So, relative to other boats, GPS alone may indicate depressed technical

innovation.  Another possibility is that some type of underlying time dependence relates GPS

with the error term, which is suggested by the fact that the only real impact of autocorrelation

adjustments on this model was to make the statistical significance of this variable negligible.14

The driving forces for other discrepancies of parameter estimates from their expected

signs were also scrutinized for intuitive explanations.  And interactive effects were tested for by

incorporating cross-terms with other variables in the estimating function.  But few linkages were

found to be substantive, so little explanatory power from biases was evident.  The (insignificant)

coefficient on T2 (NOZ) seems attributable instead to the fact that it is a fuel-saving device, and

since fuel inputs are not represented here T2 does not contribute to production net of input use.

And the estimates for the coefficients on the T7 (COMP) and K4 (DRUM) variables were so

insignificant and small in magnitude that they have virtually no estimable effect on output

production, and so were left in the analysis only to illustrate this negligible impact.

Such insignificance could be at least partly due to linkages with other technological

variables that are absorbing the independent impacts of these innovations.  For example the

                                                
14 Although the existence of autocorrelation was suggested by this adaptation, little substantive difference
in other estimates was established, so to maintain comparability with the stochastic production frontier
estimation used for comparison the model was not adjusted for autocorrelation.  Note, however, that the
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effect of computers could be imbedded in the estimates for the impacts of route-tracers or

processing facilities, since they seem to some extent to be joint purchases.  If T8 is not included

in the estimation, the impact of T7 appears significant and larger, suggesting a temporal

combination of innovations.  Similar forms of jointness may contribute to the apparent negligible

impact of investments in the capital base, K.  These types of inter-connections are difficult,

however, to establish quantitatively with qualitative or boat-specific data.  Importantly, however,

although such linkages may convolute the implied significance of any one measure, the

combined measures are much more robust and thus definitive.

Although most cross-terms incorporated in these models turned out to be uninformative,

the few which are significant, as documented in the Appendix Tables A1a-c, provide some useful

insights.  The final models for the production function (p.f.) specifications include cross terms

between S and T4, K1, K2, and N2, and between E and T5 and T6.  But for the distance function

specification the interactions with the T variables and with N2 were very insignificant, and thus

were deleted.15  The only additional significant terms for this specification were 1st-order and

squared terms for Y*2 (with Y1 instead of Y as the dependent variable).

The significance of the δT4S and δT4S terms indicates that the contributions of T4

(NSOND) and T6 (RT) decrease with S levels and E levels, respectively, and that the negative

impact of T5 (GPS) becomes less so at higher E levels.  In fact, the contribution of T6 appears

strongly positive in the 1st-order when the 2nd-order interaction with E is recognized.16  Also, the

results show that the 1st-order impact of greater K1 (GRT) is to augment output, but the impact is

                                                                                                                                                            
standard errors used to establish statistical significance are robust to heterskedasticity (robust-White),
although this adaptation also made little difference to the implied significance of parameters.
15 The cross-terms between the K components and S were also insignificant, but less so than the others,
and so were retained for comparison.  They make very little difference to the technical change measures.
16 T1 (PROP) also has a positive interaction with E if T5 and T6 interactions are ignored.  Otherwise it is
very insignificant, again suggesting some form of jointness that is not easily represented with these data.
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reduced at higher S levels, whereas the reverse is true for K2 (LEN).  These impacts are

analogous in sign, but insignificant, for the multiple-output specification, suggesting that these

interactions are to some extent related to or explained by output composition.

To evaluate the overall productive force of technical innovations, the output elasticities

representing the weights in (4) (for the most part equal to the coefficient estimates due to the lack

of significance of second order relationships) must be combined with the actual changes in the

data from Table 1.17  That is, as developed above, the collective impact of the potential

productive contributions and the actual incidence of innovation – investment in technology –

provides us our overall measures of technical change TECHD, TECHK, and TECHT.  These

measures, averaged over the entire fleet for the 1985-99 time period, and divided into the 1985-

93 and 1994-99 sub-periods, are summarized in Table 2 for our three alternative models.

 The estimates for the base model, the p.f. standard econometric framework, show that the

effective impact of embodied technical change on output production (TECHE) was an expansion

of catchability at an average annual rate of 1.1 percent for all boats in the fleet over the whole

time period.  However, this yearly growth rate nearly doubled between the first and second sub-

periods.  This pattern is attributable to lower impacts of technological innovation (TECHT) in the

first part of the sample period, since the capital-oriented component (TECHK) is virtually the

same in the two sub-periods.  The disembodied component of “technical change” was strongly

negative, and since TECHD=εYt just depends on the coefficient estimate αt it does not vary by

sub-sample (the average change in t across the sample is simply 1).

                                                
17 Note that the be estimate of about 1.3 may be interpreted loosely as an indicator of scale economics;
since this exceeds 1 it implies that output increases may be generated by a less than proportional increase
in the “input” of days, since E is our primary input proxy.  However, since the true input base is not
measured with accuracy, this interpretation is not at all definitive.
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An additional measure included in the table to facilitate interpretation of the disembodied

technical change measure is TECHS =εYS dlnS/dt, which represents the contribution of stock

effects captured by our (limited) abundance measure, S= LPUE-1.  The overall impact of

increased S on output production or catch appears to be positive (including the interaction effects

with T and K), but it becomes negative by the mid-1990s (for all specifications, but with a

smaller magnitude in the two-output model).  Although this measure may be interpreted as a

resource stock effect, it probably does not effectively accommodate abundance impacts so they

are likely also reflected in the negative TECHD measure.

If the estimating model allows for efficiency changes, by using stochastic frontier

maximum likelihood techniques (the p.f. SPF specification), adaptations to the estimated

parameters are minor, and changes in the technical progress implications are not substantive.

The differences primarily emerge as smaller or more negative marginal products for the K

variables, as reflected in the negative TECHK component of TECHE.  Although TECHT is higher

in the SPF model, with an upturn over time (but not as dramatic for this case), the combined

effect is a smaller total embodied technical change effect (TECHE) of about 0.7 percent.    

The productive contribution of efficiency improvements is also minimal, ranging from

-0.3 percent (decreasing efficiency) in the first period to less than 0.1 percent (but positive) in the

second time period.  The lower levels of embodied (TECHE) and efficiency (EFFIC)

contributions to productivity are, however, counteracted to some extent by the smaller negative

disembodied technical change term TECHD.  That is, some of the productive negativity is

absorbed in this model by the efficiency and capital contribution trends.

Lower measured productive contribution of K changes, and greater impact of T changes,

also appear in the multiple output (standard econometric distance function) specification.  But
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again, on balance, the implications about the overall output augmentation from technical factors

– or innovation – are very similar.  In particular, TECHE is about 0.011 and TECHD is -0.032,

which differ from the p.f. model only at the fourth decimal point.  However, the TE and K

embodied contributions have a somewhat different balance, with TECHK picking up virtually

none of the impact; all is attributed to variables in the TE vector.

Our technical change measures may also be computed by boat, and by individual time

period.18  We  present results for these sub-samples only for the base specification, the standard

econometric p.f. model, since the model adaptations do not have significant impacts on the

overall technical change story.

Differences across years may be assessed from the measures presented in Table 3,

averaged for all boats in the fleet for each year in the sample.  The very worst year in terms of

regress in the contribution of technological innovations (TECHT) appears to have been 1993-94,

at -3.5 percent (with 1995-96 and 1989-90 following), whereas the best was 1997-98, with 1996-

97 close behind.  In fact the 1990s seem to have been somewhat of a roller-coaster.  By contrast

to these measures, which were negative for a number of years, returns to capital investment were

positive and relatively smooth, reaching as low as zero (or 0.1 percent for those years where

some capital investment did occur) to 1.3 percent in 1992-93.  The combined embodied effects

of these T and K technological investments, as exhibited by TECHE, was thus driven by the

TECHT patterns.19   Since the TECHD measure does not vary for sub-samples, however – it is

just an average trend over time – any “disembodied” effects that may have been experienced for

a particular year, say, from regulatory or stock impacts, will be reflected in TECHE.

                                                
18 TECHD is not included in these tables since it is constant for the fleet for all periods.
19 These time-specific patterns, and also the boat-level measures, were much more dependent on the cross-
terms included in the models than were the overall results.



26

It is also evident from the measures presented in Table 4 that there is quite a substantive

variation in the contributions of technological innovation by boat.  The greatest contributions

from the entire set of embodied technical change factors over the whole sample are, for example,

from boats 3, 2, and 13 (in that order), which all exhibited overall technical change advances

(TECHE) in excess of 3 percent per annum.  By contrast, a number of boats seemed to have

experienced negative output contributions from their technical investments, with the decline for

Boat 19 reaching nearly 2 percent/year.

This decline is far greater than that apparent for boat 17 (at about -0.2 percent), which

might a-priori be considered a base case due to its evident lack of technological innovation.

However, since these measures are specified in terms of changes rather than levels, for a boat

that carried out no innovative behavior – whether from a low or high initial base – TECHE=0.

This also suggests why perhaps the most low-tech vessel in this fleet, Boat 10, exhibited only a

small productivity decline (all in the first period), whereas the most high-tech vessel, Boat 8,

shows only a 1.8 percent increase (all in the second period).

 Concluding Remarks

A broad range of conclusions about technical change, productivity, and efficiency of the

Sete Trawl Fleet can be reached from the measures presented here.  Overall, it appears that

technical innovation generated much less effective (output-augmenting) gains than implied by its

direct investment, with an average productive impact of embodied technical change (TECHE) of

slightly more than 1 percent/year.  The disembodied impact on output growth (TECHD) by

contrast implies an overall productivity decline of nearly 3 percent/year, which may be

attributable to other regulatory, stock, and stress factors in the fishery that counteracted the

potential impacts of technological innovations.
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The estimated balance of the direct technological factors (TECHT), as compared to those

associated with the capital stock (TECHK), in the embodied technical change component TECHE

varies somewhat depending on whether the potential for efficiency gains, or the impact of output

composition, are taken into account.  If either inefficiency or multiple outputs are allowed for,

slightly less productivity enhancement seems attributable to capital-related technical investment.

And efficiency changes seem to have had little productive effect.

 These conclusions are representative of the results generated by investigation of a wide

range of empirical specifications of production and productivity for these data.  However, many

issues can convolute the estimation and interpretation of technical change and its productive

impact in the fishery.  Thus these results should not be taken as definitive in an absolute sense,

but instead as indicators of relative impacts.

In particular, evaluation of technical and efficiency change fundamentally relies on the

appropriate specification of outputs and inputs, and environmental factors and characteristics.

However, as is typical for analysis of fisheries, we do not have information on inputs such as

fuel, and other inputs (such as the primary effort and particularly resource stock variables) may

only be proxied.  And, regulatory impacts captured in these estimates are difficult to untangle

from the trend (TECHD) and yearly (TECHE) measures.

Also, it is not clear what capital characteristics such as GRT might actually represent in

terms of production processes and change (increasing size seems an important aspect of technical

development, and yet is not well measured by this or other variables contained in the data).  Or

what the role of characteristics that essentially are missing – but may be key factors, like

horsepower – might be.20

                                                
20 The horsepower data were not used since they seem uninformative, and are unreliable.  Other proxies
for power, such as net length and opening size, could potentially be used but are also unavailable.
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Interactions among the technological inputs could also generate misleading results.  For

example, including “amelioration of processing” (T8) reduces the measured positive impact of

computers (T7), and the implied negative productivity of kort nozzles (T2).  Such patterns suggest

some form of jointness that may not be measured using our essentially qualitative variables,

which do not embody sufficient information to capture a broad range of cross-effects.  The

combined effects therefore are more definitive than each individually.

Given these qualifications, however, our results present an overall picture of ongoing

technological innovation and investment to enhance catchability, that has been counteracted by

competition among boats, and exogenous forces that are imposing downward pressure on the

productivity of vessels in this fleet.  Investment in technological innovation thus seems for the

fleet as a whole to be largely a game of catch-up, although the results have varied dramatically

by boat and time period.

These patterns may also have implications for vessel owners and fisheries management.

They suggest for vessel owners that some combinations of investments may “pay” more than

others.  And that although such investments will not likely enhance overall catch very much, if

they are not carried out competitiveness will be sacrificed.  Overall, therefore, many resources

are being wasted.  For the fisheries manager, this suggests that enhancing efficiency involves

attempting to adapt incentives for fishermen to minimize this catch-up game, given current

concerns about reducing catch, particularly with the higher E and lower S levels over time

observed in the data.

Implications also arise that support the recent considerable concern exhibited by national

and international organizations about capacity issues.  Although output production has not

increased much as a result of advancing technical innovations embodied in fishing vessels, the
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potential for catching fish – or capacity – has clearly been enhanced.  For example boat 8, which

is the most high-tech of the fleet, has the greatest potential catch/day of all the boats – nearly 90

percent more than average.  Whereas the catch rates for boats 10 and 17, which are relatively low

tech and not very innovative, are only 20-25 percent of the average for the fleet.  This suggests

that capacity problems are rapidly being exacerbated by this game of catch-up, which must be

recognized both for guiding policy with regard to technological innovations, and also for

measuring and attempting to reduce excess capacity in fisheries.
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Table 1.  Output, Input, and Technical Changes:
Means and Standard Deviations, entire and sub-time periods

Change with respect to time 1985-99 1985-93 1994-99

Mean Std Dev Mean Std Dev Mean Std Dev

Total Landings (Y) 0.0033 0.496 -0.0282 0.520 0.0422 0.464

White Fish (Y1) -0.0125 0.514 -0.1156 0.527 0.1150 0.469

Blue Fish (Y2) -0.1622 3.303 0.2444 3.138 -0.6650 3.444

Fishing Effort, E 0.0054 0.365 -0.0318 0.390 0.0513 0.328

Resource Abundance, S (LPUE-1) 0.0102 0.164 0.0353 0.207 -0.0208 0.072

Number of Drums (DRUM, K4) 0.0431 0.239 0.0709 0.308 0.0088 0.094

Number of Engine Changes (ENGC, K5) 0.1412 0.349 0.1560 0.364 0.1228 0.330

Variable pitch propeller (PROP, T1) 0.0157 0.124 0 0 0.0351 0.185

Kort Nozzle (NOZ,T2) 0.0431 0.204 0.0355 0.186 0.0526 0.224

Sonar (SON,T3) 0.0353 0.185 0 0 0.0789 0.271

Netsonde (NSOND, T4) 0.0314 0.175 0.0355 0.186 0.0263 0.161

Global Positioning System (GPS, T5) 0.0667 0.250 0.0496 0.218 0.0877 0.284

Route Tracer (RT, T6) 0.0392 0.194 0.0355 0.186 0.0439 0.206

Onboard Computer (COMP, T7) 0.0549 0.228 0.0284 0.167 0.0877 0.284

Processing/storage (PROC, T8) 0.0353 0.185 0.0142 0.119 0.0614 0.241
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Table 2.  Technical Change for the Fleet:
Average Annual, all boats, 1985-1999

p.f. Standard
1985-99 1985-93 1994-99

mean st. dev. mean st. dev. mean st. dev.

TECHD -0.0316 0.000

TECHT 0.0061 0.079 0.0027 0.062 0.0103 0.096

TECHK 0.0046 0.014 0.0046 0.015 0.0045 0.012

TECHE 0.0107 0.080 0.0073 0.064 0.0149 0.096

TECHS 0.0077 0.164 0.0276 0.209 -0.0170 0.073

p.f.
SPF

1985-99 1985-93 1994-99

mean st. dev. Mean st. dev. mean st. dev.

TECHD -0.0281 0.000

TECHT 0.0146 0.073 0.0129 0.054 0.0168 0.085

TECHK -0.0074 0.017 -0.0092 0.019 -0.0052 0.015

TECHE 0.0072 0.074 0.0037 0.067 0.0115 0.082

TECHS 0.0067 0.138 0.0232 0.176 -0.0140 0.060

 EFFIC -0.0012 0.221 -0.0029 0.213 0.0008 0.231

d.f. Standard
1985-99 1985-93 1994-99

mean st. dev. Mean st. dev. mean st. dev.

TECHD -0.0325 0.000

TECHT 0.0117 0.055 0.0084 0.046 0.0158 0.065

TECHK -0.0002 0.0004 -0.0002 0.0005 -0.0001 0.0003

TECHE 0.0114 0.056 0.0082 0.046 0.0156 0.065

TECHS 0.0011 0.021 0.0036 0.027 -0.0019 0.010
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Table 3.  Annual Technical Changes Estimates

by year, standard econometric p.f. model

TECHT TECHK TECHE

1985-86 0.0000 0.0000 0.0000

1986-87 0.0000 0.0112 0.0112

1987-88 0.0141 0.0011 0.0151

1988-89 -0.0056 0.0053 -0.0003

1989-90 -0.0226 0.0010 -0.0216

1990-91 0.0182 0.0011 0.0192

1991-92 0.0100 0.0042 0.0142

1992-93 0.0072 0.0127 0.0199

1993-94 -0.0353 0.0020 -0.0333

1994-95 0.0210 0.0000 0.0210

1995-96 -0.0270 0.0040 -0.0229

1996-97 0.0465 0.0040 0.0505

1997-98 0.0474 0.0090 0.0565

1998-99 0.0095 0.0080 0.0175
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Table 4.  Technical Change per Vessel:

standard econometric p.f. model

1985-99 1985-93 1994-99
Mean st. dev. Mean st. dev. mean st. dev.

Boat 1
TECHT 0.0141 0.0512 0.0038 0.0107 0.0280 0.0791
TECHK 0.0041 0.0153 0.0024 0.0160 0.0064 0.0156
TECHE 0.0182 0.0523 0.0062 0.0187 0.0343 0.0780

Boat 2
TECHT 0.0307 0.1277 0.0223 0.0826 0.0419 0.1805
TECHK 0.0068 0.0177 0.0071 0.0203 0.0064 0.0156
TECHE 0.0375 0.1256 0.0294 0.0799 0.0482 0.1785

Boat 3
TECHT 0.0398 0.0831 0.0200 0.0437 0.0661 0.1176
TECHK 0.0027 0.0102 0.0048 0.0135 0.0000 0.0000
TECHE 0.0425 0.0866 0.0248 0.0567 0.0661 0.1176

Boat 4
TECHT 0.0059 0.0456 0.0000 0.0000 0.0137 0.0726
TECHK 0.0082 0.0163 0.0095 0.0177 0.0064 0.0156
TECHE 0.0140 0.0518 0.0095 0.0177 0.0200 0.0804

Boat 5
TECHT 0.0095 0.1398 -0.0303 0.1474 0.0626 0.1203
TECHK 0.0054 0.0205 0.0047 0.0245 0.0064 0.0156
TECHE 0.0150 0.1453 -0.0256 0.1588 0.0690 0.1159

Boat 6
TECHT -0.0202 0.0619 0.0012 0.0033 -0.0486 0.0907
TECHK 0.0068 0.0142 0.0071 0.0142 0.0064 0.0156
TECHE -0.0134 0.0658 0.0083 0.0139 -0.0423 0.0960
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Boat 7
TECHT -0.0030 0.0826 0.0241 0.0683 -0.0392 0.0920
TECHK 0.0027 0.0182 0.0000 0.0205 0.0064 0.0156
TECHE -0.0003 0.0840 0.0241 0.0713 -0.0328 0.0948

Boat 8
TECHT 0.0178 0.0436
TECHK 0.0000 0.0000
TECHE 0.0178 0.0436

Boat 9
TECHT -0.0157 0.0596 0.0000 0.0000 -0.0366 0.0913
TECHK 0.0027 0.0102 0.0048 0.0135 0.0000 0.0000
TECHE -0.0129 0.0613 0.0048 0.0135 -0.0366 0.0913

Boat 10
TECHT -0.0102 0.0383 -0.0179 0.0507 0.0000 0.0000
TECHK 0.0027 0.0102 0.0048 0.0135 0.0000 0.0000
TECHE -0.0075 0.0404 -0.0132 0.0543 0.0000 0.0000

Boat 12
TECHT -0.0045 0.0448 -0.0126 0.0358 0.0064 0.0563
TECHK 0.0055 0.0139 0.0048 0.0135 0.0064 0.0156
TECHE 0.0010 0.0407 -0.0079 0.0223 0.0128 0.0576

Boat 13
TECHT 0.0289 0.0851 0.0010 0.0387 0.0661 0.1176
TECHK 0.0027 0.0102 0.0048 0.0135 0.0000 0.0000
TECHE 0.0316 0.0847 0.0057 0.0408 0.0661 0.1176

Boat 14
TECHT 0.0056 0.0902 0.0098 0.1228 0.0000 0.0000
TECHK 0.0068 0.0177 0.0024 0.0160 0.0127 0.0197
TECHE 0.0124 0.0931 0.0122 0.1258 0.0127 0.0197

Boat 15
TECHT -0.0074 0.0632 0.0000 0.0000 -0.0160 0.0971
TECHK 0.0059 0.0143 0.0055 0.0144 0.0064 0.0156
TECHE -0.0015 0.0549 0.0055 0.0144 -0.0097 0.0826
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Boat 17
TECHT -0.0049 0.0183 0.0000 0.0000 -0.0114 0.0279
TECHK 0.0027 0.0102 0.0048 0.0135 0.0000 0.0000
TECHE -0.0022 0.0216 0.0048 0.0135 -0.0114 0.0279

Boat 18
TECHT 0.0192 0.0813 -0.0126 0.0358 0.0617 0.1077
TECHK 0.0068 0.0142 0.0095 0.0177 0.0032 0.0077
TECHE 0.0260 0.0819 -0.0031 0.0276 0.0649 0.1149

Boat 19
TECHT -0.0207 0.0715 0.0000 0.0000 -0.0482 0.1082
TECHK 0.0027 0.0102 0.0000 0.0000 0.0064 0.0156
TECHE -0.0179 0.0722 0.0000 0.0000 -0.0419 0.1112

Boat 23
TECHT 0.0165 0.1056 0.0516 0.1055 -0.0303 0.0939
TECHK 0.0041 0.0153 0.0024 0.0160 0.0064 0.0156
TECHE 0.0206 0.1043 0.0540 0.1021 -0.0240 0.0975

Boat 27
TECHT 0.0229 0.0893 -0.0169 0.0413 0.0626 0.1097
TECHK 0.0048 0.0166 0.0032 0.0188 0.0064 0.0156
TECHE 0.0276 0.0895 -0.0137 0.0468 0.0690 0.1064
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Appendix Tables

Table A1.  Coefficient Estimates for the Production Technology*

Table A1a. Production Function, Standard Econometric

Coeff Estimate t-stat Coeff Estimate t-stat Coeff Estimate t-stat
αT -0.0316 -3.523 γK2 -34.7700 -2.021 λ10 -0.1380 -0.594
δT1 -0.1247 -1.518 γK2,S 4.1142 2.387 λ12 0.5656 3.674
δT2 -0.1012 -1.706 γK3 0.2977 1.057 λ14 -0.3233 -0.967
δT3 0.1069 1.457 γK4 -0.0192 -0.293 λ15 -0.3725 -1.181
δT4 7.0338 2.553 γK5 0.0382 0.854 λ18 -0.7790 -2.723
δT4S -0.6992 -2.522 λ1 -0.0243 -0.073 λ19 0.0253 0.080
δT5 -8.7439 -4.325 λ2 0.0346 0.106 α1 85.9446 2.338
δT5E 1.6374 4.262 λ3 0.4177 3.064 βE 0.6322 5.794
δT6 5.2228 2.583 λ4 0.3100 1.040 βS -9.4984 -2.572
δT6E -0.9702 -2.540 λ5 0.4302 2.919 βO 0.2218 2.141
δT7 -0.0209 -0.313 λ6 -0.3125 -1.125 βN1 -0.2774 -5.586
δT8 0.2898 4.389 λ7 -0.3759 -3.067 βN2 -5.7864 -3.893
γK1 6.5910 1.176 λ8 0.1634 0.712 βN2S 0.5900 3.950
γK1S -0.7064 -1.270 λ9 -0.0922 -0.972

Table A1b.   Production Function, Stochastic Frontier

Coeff Estimate t-stat Coeff Estimate t-stat Coeff Estimate t-stat
αT -0.0281 -5.176 γK2 -29.9139 -31.154 λ10 -0.3683 -2.749
δT1 -0.1716 -3.386 γK2,S 3.6658 31.936 λ12 0.8955 7.589
δT2 -0.0168 -0.439 γK3 0.2783 1.852 λ14 -0.2122 -1.127
δT3 0.0801 1.456 γK4 -0.0425 -1.115 λ15 -0.1975 -1.032
δT4 5.7514 5.251 γK5 -0.0397 -1.342 λ18 -0.4502 -2.732
δT4S -0.5562 -5.051 λ1 -0.1487 -0.799 λ19 0.2716 1.368
δT5 -8.1076 -8.618 λ2 0.3781 1.963 α1 88.1912 86.757
δT5E 1.5286 8.638 λ3 0.6275 6.533 βE 0.2398 3.946
δT6 2.6204 2.540 λ4 0.4614 2.650 βS -9.4385 -70.792
δT6E -0.4746 -2.428 λ5 0.6748 4.805 βO 0.3738 6.142
δT7 0.0312 0.545 λ6 -0.1694 -1.043 βN1 -0.2053 -8.118
δT8 0.1554 4.497 λ7 -0.4321 -6.572 βN2 -3.9263 -5.552
γK1 2.9230 3.812 λ8 0.4859 2.877 βN2S 0.4003 5.593
γK1S -0.3834 -4.281 λ9 -0.0409 -0.571
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Table A1c.  Distance Function (2 outputs), Standard Econometric

Coeff Estimate t-stat Coeff Estimate t-stat Coeff Estimate t-stat
αT -0.0325 -4.546 γK3 -0.1950 -0.863 λ12 0.2810 2.272
δT1 0.0409 0.624 γK4 -0.0012 -0.023 λ14 0.0740 0.278
δT2 0.0053 0.112 γK5 -0.0009 -0.025 λ15 0.1373 0.543
δT3 0.0176 0.301 λ1 -0.2529 -0.952 λ18 0.2349 1.000
δT4 0.2095 3.701 λ2 0.3650 1.403 λ19 0.4629 1.829
δT5 -0.1134 -2.294 λ3 0.2838 2.625 α1 26.1279 0.956
δT6 0.0805 1.429 λ4 -0.0838 -0.353 βE 1.2365 30.848
δT7 0.0533 1.014 λ5 0.3182 2.758 βS -3.0945 -1.126
δT8 0.1448 2.863 λ6 0.3191 1.435 βO 0.0395 0.490
γK1 3.0144 0.723 λ7 -0.0821 -0.831 βN1 -0.0090 -0.212
γK1S -0.4072 -0.986 λ8 0.3649 1.997 βN2 -0.0492 -1.016
γK2 -10.7709 -0.851 λ9 0.0238 0.316 ηYR -0.1981 -12.219

γK2,S 1.5374 1.213 λ10 -0.2520 -1.361 ηYR2 0.0070 7.585

*Parameters correspond to the following variables: t=time trend, T1=variable pitch propeller,
T2=kort nozzle, T3=sonar, T4=netsonde, T4S=product of T4 and stock abundance, T5=global
positioning system, T5E=product of T5 and fishing effort, T6=route tracer, T6E=product of T6
and fishing effort, T7=onboard computer, T8=amelioration of processing and storage, K1=gross
tonnage, K1S=product of K1 and stock abundance, K2=length, K2S=product of K2 and stock
abundance, K3=hull type, K4=number of drums, K5=number of engine changes, λ1 - λ 19 =
dummy variables for each vessel, E=fishing effort, S=stock abundance (LPUE-1), O=owner,
N1=number of net otter trawls, N2=number of mid-water trawls, N2S=the product of N2 and
LPUE-1, YR=Bluefish/Whitefish, and YR2=YR2.  All variables, except time and change counters,
are in natural logarithms.
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