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Introduction 
 

The U.S. is the world’s largest strawberry producer, accounting for over a quarter of total world 

strawberry production (Perez et al, 2011). Over the past ten years, U.S. utilized production1  increased by 

more than 60% (figure 1). Most of the U.S. production is consumed domestically, and an increasing 

amount of strawberries are being produced for fresh-market uses (Boriss et al, 2010).   

 

 
* 2011 values are projected 

Source: Perez et al, 2011 

 

Among U.S. states, Florida ranks second for strawberry production (after California). Strawberries are the 

most significant berry crop produced in Florida, and during the winter season Florida dominates the 

                                                           
1  where utilized production is defined as produced crops that were marketed, and either domestically consumed or 
exported 
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national strawberry market. The 2011 Florida winter strawberry crop was estimated at a record 257.4 

million pounds, up 33% compared to the previous year, while yields rose by 18 percent to 260 pounds per 

acre. Harvested acreage in the State was projected at 9,900 acres, which is up 12 percent from 2010 

(Perez, 2011).  Almost ninety percent of Florida’s strawberry acreage is grown around Plant City in 

Hillsborough County, west central Florida. Strawberries are also grown in the adjacent counties of Pasco, 

Polk, and Manatee, as well as in the south (Collier, Palm Beach, and Dade counties) and north (Bradford 

County) areas of the state (Peres, 2010a). The production season in Florida starts in November and 

continues through May of the following year. The heaviest harvesting occurs between February and 

March.  

 

Fungal diseases such as Anthracnose and Botrytis fruit rot are considered major challenges for strawberry 

growers. Even in well-managed fields, losses from fruit rot can exceed 50% when conditions favor 

disease development (Ellis and Grove, 1982). Fungicides are commonly used by the growers to stem off 

the development of the diseases. Fungicides are applied once a week, and fungicide cost comprise 

approximately 7% of pre-harvest variable costs less the interest on variable cost, which represents about 

$690 per acre (IFAS, 2010). Main problems that are facing strawberry industry are increasing costs of 

fungicides, building of resistance to the fungicides, and rising public concerns about potential health and 

environmental effects of fungicide use (Peres, 2010b). Production methods that can reduce fungicide rates 

without affecting strawberry yields can provide significant economic benefits to Florida strawberry 

industry. 

 

The objective of this study is to examine the economic benefits associated with precision fungicide 

application associated with fungus disease management for Florida strawberry producers. In Florida, 

periods with warm and wet weather create especially favorable conditions for the development and spread 

of Anthracnose and Botrytis fruit rot, thus increasing the risk of harvest losses. In contrast, given cool and 

dry conditions, the risk of the disease development is relatively minor. If a weather and disease forecast 

system is available, growers can potentially reduce fungicide application rates during cool and dry 

conditions without affecting yields, thus reducing production costs. In this study, we evaluate the 

economic value of a weather / disease forecast information system, and examine the opportunities to 

reduce costly fungicide usage by using precision disease management practices.   

 

The precision disease management system examined in this study relies on the model of weather 

conditions and disease severity estimated by Bulger et al. (1987), Wilson et al. (1990), and Mackenzie et 

al (2009). Specifically, Bulger et al. (1987) used a logit regression analysis to examine the spread of 
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disease as a function of temperature and leaf wetness duration (LWD). Mackenzie et al (2009) identified a 

combination of temperature and LWD that results in a critical spread of the disease given Florida 

conditions (referred to as “weather index” below). In a set of production experiments conducted by 

University of Florida researchers, harvestable yield and disease spread were compared given two 

fungicide application methods: applications based on the weather index (referred to as “model 

application” below) and the calendar-based method currently used by most growers (Peres, 2010a). 

Specifically, the model application method applies fungicides only if the values of weather index indicate 

high risk of disease development. In contrast, the calendar-based method applies fungicides weekly. The 

use of the model application in research trials resulted in elimination of a 33% to 50% of the fungicide 

applications (Mackenzie, Mertely, and Peres, 2009). The weather index is currently used in the web-based 

disease forecast system available to Florida strawberry growers since the 2009-10 production season (the 

forecast system can be accessed at http://agroclimate.org/tools/strawberry). The objective of this study 

was to economically compare the two methods of fungicide applications, and to evaluate the effect each 

method has on strawberry production, profits and risks. Based on three simulated risk scenarios, the study 

determines which application method delivers the most profit.   

 

Below, we review the published studies about modeling production risks in agriculture (Section II), 

describe the data used in this analysis (Section III), present the study methodology (Section IV), and 

discuss the study results (Section V). The data section discusses the production experiment conducted by 

University of Florida researchers. The methodology section presents the regression analysis that was 

utilized to identify the effect of the fungicide application methods and weather on strawberry harvest and 

the number of the diseased berries. We also discuss modeling production risks given different weather 

scenarios and fungicide treatment methods. Then economic analysis is used to identify the fungicide 

method that has the most economic benefit for the grower. Final results demonstrate that a precision 

disease management system has the potential to produce significantly higher profit in comparison with 

conventional calendar method of application.   

 
 

Modeling production risks in agriculture  
 

Published studies have shown that changes in the use of production inputs (such as fungicides or 

fertilizers) can influence not only average yield and income, but also income and yield variability. These 

changes in the income variability are important for the input use decisions of a risk-averse producer. For 

example, Lambert (1990) developed a model to measure income and risk impacts resulting from 

reductions in nitrogen rates that were induced by a fertilizer tax. The author showed that reduction in 

http://agroclimate.org/tools/strawberry
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nitrogen use can decrease income variability, influencing the utility of a risk-averse producer. In 

Lambert’s model, input use levels and proportions are influenced by input and output prices, output price 

variance, output level, marginal products, producers’ risk aversion, and the marginal contributions of 

inputs to yield variance.  

 

Asche et al (2006) also investigated how production risk may influence optimal input levels of a risk-

averse producer. The authors compared the input use levels for risk-averse and risk-neutral producers 

given that the mean and variance of production output as influenced by soil quality, labor, land, fertilizer, 

pest control, seed and irrigation. The dataset used in the analysis resulted from a survey of small-scale 

subsistent farmers (213 farmers from 11 villages) in the Tanzanian Kilimanjaro region. It was shown that 

risk-averse producers chose different input levels compared with risk neutral producers (Asche, 2006). 

 

Ramaswami (1992) showed that for risk-averse producers, the marginal risk premium is positive 

(negative) if and only if the input is risk-increasing (decreasing). However, if the input is neither risk-

increasing nor risk-decreasing, the marginal risk premium can be positive or negative for risk-averse 

producers. For such a case, Ramaswami derived a sufficient condition on technology which signs the 

marginal risk premium for the restricted class of concave utility functions with convex marginal utility.  

Several studies have also explicitly modeled the effect of weather-related risks on adoption of precision 

management technologies. For example, Isik and Khanna (2003) examined the impacts of risk 

preferences and uncertainties about weather and soil conditions on adoption of site-specific technologies. 

The following steps were used in their analysis: 1) estimate the stochastic production technology and 

farmers’ risk preference parameters jointly, using survey data from farmers; 2) incorporate these risk and 

technology parameters into a micro-level utility maximization model to determine the impact of risk 

aversion and uncertainty on adoption decisions for site-specific technologies; and 3) determine the cost-

share subsidies needed to induce the technology adoption. The study results demonstrate the advantages 

of the joint parameter estimation technique for production technology and farmers’ utility modeling.   

 

Production decisions under the uncertainty of future weather events are also examined in Dai, Fletcher, 

and Lee (1993). The authors used the profit maximization framework to analyze crop decisions for corn 

production.The uncertainty about weather conditions was modeled using a stochastic soil moisture 

index.To comprise that index they calculated annual estimates for the soil moisture index for a variety of 

Indiana soil conditions and weather patterns. They also simulated yield response using response functions 

estimated from long-term experimental data. As an empirical example, nitrogen application rates that 
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maximize farmers' expected returns are developed for 15 different soil and weather conditions in Indiana. 

The authors then used this information to evaluate the possible economic loss of applying the optimal 

nitrogen recommendation developed for one soil type to another (Dai, Fletcher, and Lee, 1993).  

 

Similar to Isik and Khana (2003), Dai, Fletcher, and Lee (1993), and Thrikawala et al. (1999), we use the 

utility maximization model in our analysis to examine producers’ choices related to the precision 

fungicide application, and we also examine the effect of producers’ risk preferences on the technology 

adoption decisions. Weather events are modeled through a weather index, similar to Dai, Fletcher, and 

Lee (1993). However, unlike Dai, Fletcher, and Lee (1993), we use the index for comparing economic 

profits between two production technologies (i.e., different fungicide treatments) for a specific soil type. 

 

 

Study Area and Data  
 

According to Peres et al. (2005), C. acutatum (Anthracnose) likely enters production sites on 

contaminated nursery plants. It then survives and reproduces on the surface of leaves through secondary 

reproduction (Leandro et al., 2001). Contamination occurs mainly through splashing water (Ntahimpera et 

al, 1999). According to Wilson et al. (1990), the optimum temperature for infection for both immature 

and mature fruit is 25 to 30oC. In turn, Bortrytis (B. cinerea) infection occurs through dead strawberry 

foliage (Sutton, 1998). The infection starts on the young leaves sporulating as the leaves die. The 

contamination occurs through wind or water dispersion onto the healthy fruit and petals (Mertely et al., 

2002, Sutton, 1998). The open flower, white bud, and senescent flower stages are most susceptible to 

infection (Henneber and Gilles, 1958). The optimum temperature for flower infection is approximately 

20KC (Bulger, 1987). 

 

In this study, we use data from production experiments conducted at the University of Florida research 

farm at Gulf Coast Research and Education Center, in Wimauma, Florida. Replicated field trials were 

conducted during the production seasons of 2006/07, 2007/08, and 2008/09 (Mertely et al., 2009). Bare-

root strawberry transplants were planted into fumigated soil in plastic-mulched, raised beds using 

staggered rows. Treatments were arranged in a randomized complete block design with four blocks (four 

plots), each in a separate bed (for each treatment) (Mertely, Seijo, and Peres, 2009). Three groups 

(treatments) were compared: calendar-based applications (once a week conventional application), model-

based applications (sprays timed according to the disease forecast system), and a control group (this group 

received no fungicide applications). Compliance with the fungicide application specifications was 
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insured. Separate independent trials were conducted for Anthracnose and Botrytis diseases (strawberry 

transplants were inoculated with fungus for the Botrytis production experiments). Trials were conducted 

using the two strawberry cultivars most popular in Florida, ‘Strawberry Festival’ (which is more tolerant 

to Anthracnose and Botrytis) and ‘Camarosa’ (which is more susceptible to both diseases) (Table 1). The 

weather data (leaf wetness interval and temperature) was recorded daily. 

 
 
 
 
Table 1. Beginning and Ending Dates for the Production Experiments  
  Season Beginning of Harvest End of Harvest 
Anthracnose 
Trials 

06-07 11/13/2006 3/12/2007 
07-08 11/13/2007 3/14/2008 
08-09 11/7/2008 3/17/2009 

Botrytis Trials 06-07 11/13/2006 3/12/2007 
07-08 11/12/2007 3/14/2008 
08-09 11/4/2008 3/16/2009 

 
 
The model-based fungicide application schedule was based on the study by Bulger et al. (1987) and 

Wilson et al. (1990), in which a logistic regression was used to model the proportion of immature and 

mature strawberry fruit infected by the fungus, %Inf, as a function of temperature, T, and wetness 

duration, W: 

   
�� ����

������
	 
� � 
�� �
��� �
���� � 
����   (1) 

 
Denoting the left-hand side of equation (1) as the disease index, or DI, the proportion of strawberry fruit 

infected by the fungus can be specified as: 

 

���� 	
�������

� � �������
��� 

 
 
The value of regression coefficients (b0, b1, b2, b3, and b4) were selected given Florida’s production 

conditions (Mertely, Seijo, and Peres, 2009). Specifically, for Bortrytis experimental trials, the following 

relationship was used to guide model-based fungicide applications: 

 
����� !�"# 	 $%&�'( � )&)�*% +� + � $ )&)*)� + � $ )&))))�,- + � + ��(3) 

 
The model-based group was sprayed with fungicides when the model predicted that weather conditions 

should result in 50% of strawberries to be affected by Bortrytis (i.e., ������� !�"# . )&%**). The decision 
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on which fungicide to use, Captan or Captevate, was based on the manufacture’s specifications. 

Specifically, the fungicides can be applied at most once every seven days. In addition, Captevate’s rate of 

application is no more than 5.25 pounds per acre per season and no more than 21 pounds per season. Also 

Captevate is a stronger fungicide, so if conditions are conducive for the development of the disease for 

several consecutive days, Captevate fungicide is used. 

In turn, for Anthracnose trials, model-based was applications were scheduled according to the following 

disease index model: 

��/��0 12��#3 	$,&4 � )&,, + � $ )&)'* + � + � � )&))- + � + �� $ )&))))*, + � + ��(4) 

When model (4) predicted that 15% of strawberries were expected to develop disease (i.e., 

����56789:;6<=> . )&�%**), Captan was sprayed. In turn, when model (4) predicted that 50% of 

strawberries were expected to develop disease (i.e., ����56789:;6<=> . )&%**), Cabrio, a more powerful 

fungicide, was used. Manufacturer specifications for fungicide application were also followed, according 

to which the maximum number of sequential applications for Cabrio was limited to two and maximum 

rate of its application was 70 oz (4.375 pounds) per acre per season.  

The number of days when the weather conditions were conducive for the development of Anthracnose 

and Bortrytis is summarized in Table 2 given a) % Inf ≥ 15% and b) %Inf ≥ 50%. In turn, the total 

number of fungicide applications for each of the three treatment groups (calendar-based, model-based, 

and control group) is summarized in Table 3. Since manufacture’s specifications set restrictions on the 

number of fungicide applications, the number of applications for model-based treatment slightly deviates 

from the recommendations based on models (3) and (4) (compare values in table 2 with the values in 

“total number of applications” column in Table  3).  

 
 
 
Table 2.  The Number of Days with Weather Conditions Conducive for the Disease Development  
Disease Season 15% Inf 50% Inf 
Botrytis 06-07 na* 3 
  07-08 na* 8 
  08-09 na* 8 
Anthracnose 06-07 33 1 
  07-08 34 4 
  08-09 13 4 

*na represents measure not applicable to treatment for Botrytis 
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Table 3. Number of Fungicide Applications for Different Treatment Groups*  

Disease  Season 

Calendar 
 

Model 
 

Cabrio Captan 
Total # of 
Applications Cabrio Captan 

Total # of 
Applications 

  06-07 4 12 16 4 6 10 
Anthracnose 07-08 4 12 16 3 9 12 
  08-09 4 13 17 1 4 5 
Botrytis 06-07 4 12 16 1 7 8 
  07-08 4 13 17 2 6 8 
  08-09 4 13 17 1 2 3 

* same for both Festival and Camarosa varieties 
 
 
For the plots with calendar-based applications, model-based applications, and a control group, fruits were 

harvested twice weekly from December through March, and marketable fruits were counted and weighed. 

Diseased fruits were also counted for Anthracnose (AFR) and Bortrytis (BFR) incidences. The 

researchers also counted the number of berries tossed for reasons other than AFR and BFR (i.e., cull).  

 

The production experiment results are summarized in Table 5 There were four plots (F1, F2, F3, F4) for 

each of the three seasons (2006/07,2007/08, 2008/09) and for each treatment group (Control, Calendar, 

and Model). The table summarizes the marketable number of the berries (“Number”), marketable weight 

of berries in grams (“Weight”), the number of berries tossed for other reasons than the disease (“Cull”), 

the number of berries that contracted Botrytis (“Botrytis”) and Anthracnose (“Anthracnose”). The results 

are summarized separately for the Camarosa and Festival varieties trials. 
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Table 5. Aggregated Data  

 
 

Methodology 
 

The objective of the study was to examine the effect of two fumigation methods, calendar-based 

application (traditional method) and model-based application (using the disease-forecast system) on 

strawberry production profits. The fumigation methods are not only compared with each other, but also 

with a “control” option, i.e., a no treatment group. 

 

The farmer’s objective is assumed to be to maximize expected profit: 

 
?:@A 	 B + �CD�EF G� +H� $ I�JF K� $ ���F �F LF MF N�OP $ Q�L� $ RS (5) 
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where p is the sale price, h is yield that depends on two random variables -  E (year-to-year variability due 

to external factors like weather) and w (within-year variability, e.g., from one production plot to the next 

due to different soil characteristics). D is the portion of harvest lost due to the Anthracnose and Botrytis 

fruit rot, and L is the proportion of the harvest lost due to reasons unrelated to Anthracnose and Botrytis. 

Disease frequency (D, measured as weight of diseased strawberries to the total weight of harvested 

strawberries, in percent), is a function of leaf wetness (W), temperature (T) and fungicide application (g) 

and two random variables: e (year-to-year variability) and η (variability from plot to plot).  L depends on 

two random variables – φ (year-to-year variability, e.g., due to weather events) and τ (within year 

variability, e.g., from one production plot to the next). Finally, Q�L�is the cost of fungicide and its 

application, and VC is variable cost associated with the other production inputs. This profit function is 

based on the assumption that the farmer is a price-taker, i.e., the strawberry market is competitive and sale 

price p is independent from the grower’s actions. 

The optimal fungicide application decision, g*, is given as (marginal cost of the fungicide is equal to its 

marginal value): 

T2�U�
TU

 = $B + �CD�EF G� +TV�WFXFUF3FY�
TU

P                            (6) 

 

Perfect disease / weather forecast information can allow the farmer to make fungicide application 

decisions given a specific value of the random variable e (i.e., the year-to-year variability affecting 

disease frequency): 

?:@A 	 B + �CD�EF G� +H� $ I�JF K� $ ���F �F LF MF N�OZ3[3\ P $ Q�L� $ RS           (7) 

 

We denote the optimal fungicide level that solves the equation (7) as g**. The objective of this study is to 

examine whether the fungicide application decisions made with disease / weather forecast should result in 

higher profits, as compared to the decisions made without additional weather/disease information: 

]�^ �3_�CA�L++�PZ3[3\` . �CA�L+�P�(� 

To test the hypothesis (8), we will use simulation methods to examine the marketable yields, costs, and 

returns for calendar-based and model-based fungicide application. Such simulations require assigning 

specific distributions for the random variables influencing marketable yield. These distributions are 

developed based on the results of the production experiments, as discussed below. Simetar© software 

(Richardson et al., 2004) is used to conduct all simulations and data analysis. Simetar© is a simulation 
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language written for risk analysts to provide a transparent method for analyzing data, simulating the 

effects of risk, and presenting results in the user friendly environment of Microsoft® Excel (Richardson, 

2008). It is an add-in software for Microsoft® Excel spreadsheets, which was developed specifically to 

conduct farm-level risk analysis.  It allows simulating random variables, conducting statistical analyses 

and tests, econometric modeling and forecasting.  The method was previously used for production risk 

and budget analysis in Archer and Reicosky (2009), Van Sickle et al. (2009), Prato (2008), and Liu 

(2007). 

Results 
 
To simulate and compare farmers’ costs and returns for calendar-based and model-based fungicide 

application, we used production experiment results (see Table 5). We identified systematic effects of 

weather and fungicide application method on strawberry yield, as well as random effects of weather, soil 

characteristics, and other uncertain factors. This section describes the analytical procedure as well as the 

results.      

 

Experimental Trial Results for the Two Strawberry Varieties 
 
As the first step in the analysis, we examined whether experimental trial results for the two strawberry 

varieties could be combined. Specifically, for each fungicide treatment group in Anthracnose and Botrytis 

experiments, two-tailed T tests (at 95% confidence intervals) were used to examine whether the means of 

each category (marketable number, weight, cull, botrytis, and anthracnose) are the same for two 

strawberry varieties across the three growing seasons 2006/07, 2007/08, and 2008/09: 

 
H0: the means are the same for the two strawberry varieties;   
H1: the means are different for the two strawberry varieties.  
 
The analysis shows that the null hypothesis cannot be rejected for all the categories tested (marketable 

number, weight, cull) and all treatments (model-based, calendar-based, and control). These results were 

consistent for both Botrytis and Anthracnose production experiments for both Camarosa and Festival 

varieties. 

 
Further, F tests were used to examine if the variance of each category (marketable number, weight, cull, 

botrytis, and anthracnose) is the same for the two strawberry varieties: 

 
H0: the variances are the same for the two strawberry varieties;  
H1: the variances are different for the two strawberry varieties. 
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When the F-test was used to compare the control and calendar-based fungicide treatments, the null-

hypothesis could not be rejected. In contrast, for model-based fungicide treatment, the test results were 

mixed. In Botrytis production experiments, the null hypothesis was not rejected for two categories: 

marketable number and number of Botrytis instances. However, in Anthracnose production experiments 

(for season 2008/09), the null hypothesis was rejected for weight and cull categories, implying that the 

data for the two varieties are drawn from different distributions and cannot be combined. Based on the 

test results, the data for the two strawberry varieties were analyzed separately.  

 
 
Experimental Trial Results for Different Fungicide Treatment Groups 
 
The mean and variance tests (at 95% confidence interval) were conducted to compare experimental trial 

results for Control and Calendar, Control and Model, and Calendar and Model fungicide treatments 

groups. We compared results for the market weight, market number, cull, and the number of Botrytis and 

Anthracnose berries. These tests were conducted separately for each strawberry variety.  

 

The test results show that for the Control and Calendar-based treatments, the null hypothesis of the same 

variance was rejected for cull, number of botrytis berries, and number of anthracnose berries categories. 

This result was consistent for both Camarosa and Festival varieties. In addition, for Camarosa variety, T-

test showed that the hypothesis of the same means was rejected for cull and the number of anthracnose 

berries categories.  For Festival variety, the hypothesis of the same means was rejected for the number of 

berries affected by Botrytis. Based on these test results, we conclude that there is a significant difference 

between the Control and Calendar-based treatments. This result confirms our expectations, since Control 

group was not sprayed with any fungicide.     

 

When Control and Model treatments were compared for the Camarosa variety, the null hypothesis that the 

variance is the same was rejected for the number of Botrytis instances. In addition, based on T-test, the 

hypothesis of the same means was rejected for cull and the number of anthracnose affected berries. 

Between the two tests, there is enough evidence to suggest that the Control and Model treatments have 

different effect on the disease in the crop. In turn, for Festival variety, the hypothesis that the means are 

the same could not be rejected at 95% confidence interval for any of the categories. However, the 

hypothesis of similar variances was rejected for cull, number of berries affected by botrytis, and number 

of berries affected by anthracnose categories.  Considering the results of the two tests together, we 

concluded that there is difference in the Control and Model treatments for both strawberry varieties. This 

result confirms expectations that the precision disease management system used for Model-based 



13 
 

treatment leads to different production outcomes as compared with the Control group (which received no 

treatment).  

 

Finally, when Model-based and Calendar-based groups were compared, the Null hypothesis that variances 

were equal was rejected for all categories (marketable number, weight, cull, number of berries affected by 

botrytis, and number of berries affected by anthracnose). The hypothesis that the means are the same 

could not be rejected at 95% confidence interval. These results were consistent for both varieties of 

strawberries: Camarosa and Festival.  

 

The test results are summarized in Table 5. Overall, the variance of experimental trial results appears to 

be different across control, calendar, and model plots for both Camarosa and Festival varieties. In 

addition, for the Festival variety, model- or calendar-based fungicide application results in statistically 

higher yields, and statistically lower number of discarded berries (compared with the control treatment). 
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Table 5. Means and Variance Tests Results 
 

Variance (F-test) Camarosa Festival 

95% Conf. Interval 
Categories that showed to be 

statistically Categories that showed to be statistically 

  Different The Same Different The Same 

Control VS Calendar 
Cull, 
Anthracnose, 
and Botrytis 

Marketable 
Number and 
Weight 

Cull, 
Anthracnose, 
and Botrytis 

Marketable Number 
and Weight 

Control VS Model Botrytis 

Marketable 
Number, Weight, 
Cull, and 
Anthracnose 

Cull, 
Anthracnose, 
and Botrytis 

Marketable Number 
and Weight 

Model VS Calendar all none all none 

Mean (T-test) Camarosa Festival 

95% Conf. Interval 
Categories that showed to be 

statistically Categories that showed to be statistically 

  Different The Same Different The Same 

Control VS Calendar Cull and 
Anthracnose 

Marketable 
Number, Weight, 
and Botrytis 

Botrytis 
Marketable Number, 
Weight, Cull and 
Anthracnose 

Control VS Model Cull and 
Anthracnose 

Marketable 
Number, Weight, 
and Botrytis 

none all 

Model VS Calendar none all none all 
 
 
Experimental Trial Results for Strawberry Marketable Weight  

For Anthracnose experimental trials and for each strawberry variety, regression analysis was used to 

examine the relationship between the marketable weight of berries (as dependent variable) and weather 

and fungicide treatment method (Table 6). We expect that the regression analysis will confirm that the 

calendar-based treatment and the model-based treatment result in higher strawberry yields (as compared 

with the control group). We also expect that the model-based treatment results in higher yields than the 

calendar-based treatment. Weather conditions are modeled based on Wilson’s weather index, and we 

expect it to have a negative effect on yield. However, weather conditions can also have a positive effect 

on yields, since it takes sun and water for the crop to grow. In turn, to capture the differences in the 

weather and disease risks at different stages of plant growth, we introduce a “weather intensity measure”, 

WIntnsty1. For each production season and each experimental plot, the values of this variable are 
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obtained as follows. For each day when the Wilson weather index indicates conditions conducive for the 

disease, we recorded the number of the weeks left in the season. Then we summed up these values over 

the entire season. Larger values of WIntnsty1 indicate that the days with unfavorable weather conditions 

occurred earlier in the season, and/or that there were greater number of such days, and we expect that the 

effect of this variable on yield should be negative.  

Table 6. Independent variables used in regression analysis for Strawberry Marketable Weight 

Variable Description Expected effect on the dependent 
variable, which is marketable yield  

Cal Dummy Variable (Short for Calendar), 
indicating the experimental plots treated with 
calendar-based method (i.e., weekly schedule).  

positive  

Mod Dummy Variable (Short for Model), 
indicating the experimental plots treated with 
the model-based method (i.e., precision 
disease management) . 

positive and greater than that for Cal 
(expecting that model-based treatment 
performs better than the calendar-based 
treatment). 

Weather Cumulated number of days that are conducive 
for the development of the decease according 
to the Wilson weather index for the entire 
season (%Inf > 0.15, Table 2).  

negative  

WIntnsty1 “Weather intensity”  negative  
   

The results of the regression analysis are presented in Table 7. The results were consistent for the two 

strawberry varieties, and the effects of all the variables on strawberry yield matched the expectations. The 

only exception is variable WIntnsty1, which appears to have a positive effect on yield. However, this 

effect is much smaller in absolute terms than the significant and negative effect of variable Weather.  

 

Tables 7. Regression Analysis Results for the Weight of the Marketable Berries 

 Festival Variety  Camarosa Variety 
  Beta S.E. Beta S.E. 
Intercept 5713.25 654.52 3914.89 527.933 
Cal 741.16 342.72 1750.5 276.435 
Mod 1382.25 342.72 1754.917 276.435 
Weather -792.9 40.77 -698.645 32.885 
Wintnsty1 83.165 5.533 72.89 4.463 
 a� =  0.939; ab� 	0.931 a� =  0.951; ab� 	0.945 

 

In the Festival variety regression, the coefficient for Model dummy variable, Mod, is significantly higher 

than that of Calendar dummy. In fact, the value of the coefficient for Mod variable is almost double (1.87 
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times) that of Cal. This result implies that plots with model-based fungicide treatment yielded 641.09 

grams more of marketable strawberries than calendar-based treated plots.  

For the Camarosa variety regression model, the coefficients for Cal and Mod are nearly the same, with 

Model’s coefficient being about 4 gramss more than that of Calendar’s. Thus, this result also favors the 

model treatment application system, especially since model treatment results in fewer numbers of 

applications with fungicide (on average 44% less in fungicide use). Therefore, this application system can 

be considered as low cost without penalty to yield.       

 

Conclusion 
The objective of this study was to examine the economic benefits associated with precision fungicide 

application system for Florida strawberry production. Given the weather and disease forecast system 

developed by the University of Florida researchers (Peres, 2010a , strawberry growers can potentially 1) 

reduce fungicide application rates during cool and dry conditions without affecting yields, thus reducing 

production costs; or 2) apply fungicide at the precise time of high disease pressure during warm and wet 

weather, therefore, decreasing disease development and spread, and increasing the yields and profits.  

The data from three-year strawberry production experiments were examined using regression analysis 

techniques. Strawberry harvests given the traditional (calendar-based) and the precision (forecast model-

based) fungicide treatment were compared with the control group with no fungicide applications. The 

effects of climatic conditions on strawberry yields, as well as the differences between the two popular 

strawberry varieties – Festival and Camarosa, were explored.  

Production experiments data showed that for the three seasons (2006-07, 2007-08, 2008-09), Model based 

treatment required on average 44% less fungicide applications as compared with the Calendar based 

treatment (38%, 25%, and 71%, respectively for each season). Furthermore, the regression analysis 

showed that the two strawberry varieties responded differently to the changes in the fungicide treatments. 

For Festival variety (which is more resistant to Anthracnose and Botrytis fungus diseases), strawberry 

harvest for the Model based treatment was about 1.87 times higher, and the fungicide used was on 

average 44% lower as compared with the Calendar based treatment. In other words, the precision (model-

based) fungicide application can potentially save Florida strawberry producers 44% of fungicide cost, 

while increasing the yield and revenues by 87%.  

In turn, for Camarosa variety (which is less resistant to the fungi), the fungicide use was also on average 

about 44% lower given Model-based treatment (as compared with the Calendar based treatment). The 
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difference in yields between the two treatments was insignificant (only 0.2%). Hence, given Camarosa 

variety, strawberry growers who opt for the Model based treatment (vs traditional treatment) can expect 

the same yields, but lower fungicide use and production costs. 

Overall, the precision (Model-based) application system is a viable fungicide management system that 

can provide economic benefits to Florida strawberry producers by reducing their fungicide use and costs, 

and potentially, increasing the yields.  

In future, we plan to expand this analysis and examine the effects of alternative fungicide treatments on 

the average profits of Florida strawberry producers, as well as the profit variability. The effect of the 

degree of the growers’ risk aversion on the choices of the fungicide treatments will also be analyzed.  
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