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SUMMARY

In commodity futures markets, contracts with various delivery dates trade
simultaneously. Applied researchers typically discard the majority of the data and form a
single time series by choosing only one price observation per day. This strategy
precludes a full understanding of these markets and can induce complicated nonlinear
dynamics in the data. In this paper, I introduce the partially overlapping time series
(POTS) model to model jointly all traded contracts. The POTS model incorporates time-
to-delivery, storability, seasonality, and GARCH effects. 1 apply the POTS model to
corn futures at the Chicago Board of Trade and the results uncover substantial
inefficiency associated with delivery on corn futures. The results also support two
theories of commodity pricing: the theory of storage and the Samuelson effect.



1. INTRODUCTION

Futures markets play an integral role in the pricing and distribution of commodities.
Many observers perceive these markets to be very volatile, but a full portrait of volatility
patterns has been elusive. Creating such a portrait requires incorporating the effects of
the time to delivery on the contract, inventory levels of the commodity, and seasonality.
Understanding these effects in a unified framework is important in helping firms manage
risk and minimize transaction costs. A well-specified model of volatility dynamics is also
imperative for pricing options on futures contracts, which comprise an active and
growing market.

For most commodities with futures markets, multiple contracts trade simultaneously.
These contracts differ by the time to delivery. As time proceeds, some contracts reach
delivery and cease to exist, while others are born and begin trading. From an econometric
perspective, a set of futures prices presents a potentially large number of partially
overlapping time series. Most applied researchers ignore the cross-sectional dimension
and reduce the data to a single time series. A common method for such a reduction entails
splicing together the nearby contracts, i.e., when a contract matures, take the next
observation in the series from the contract that is the next closest to delivery. In many
markets, ten or more contracts can be trading at a given point in time, so this strategy
excludes most of the information about the commodity.

In this paper, I introduce the partially overlapping times series (POTS) model to
model jointly all contracts trading on a given day. The POTS model is a factor model for
partially overlapping time series that incorporates time varying conditional

heteroskedasticity and time and cross-sectional variation in the factor loadings and



innovation variances. For commodity futures, this model captures the effects of the time
to delivery, storability, and seasonality.

I apply the POTS model to corn futures at the Chicago Board of Trade (CBOT). The
results reveal the dynamic structure of corn futures prices and uncover substantial
inefficiency associated with delivery on the contract. The results also corroborate two
well-known theories of commodity pricing: the theory of storage and the Samuelson
effect. These theories have been studied extensively in isolation, but not within a fully
specified dynamic model.

Finally, my results illustrate the nonstandard dynamics in a time series of spliced
nearby prices. Erratic price behavior near the delivery month induces complicated
nonlinear dynamics around the points where the spliced series moves from contract to
contract. I suggest a strategy for avoiding these nonstandard dynamics and creating a
well-behaved single time series for the fundamental commodity price. This strategy
requires that the contracts be rolled over two to three months before delivery and that one
of the contracts be avoided entirely.

The paper proceeds as follows. Section 2 reviews the theory of commodity futures
pricing to set the stage for the POTS model, which I introduce in Section 3. Section 4

presents results from the application to CBOT corn, and Section 5 concludes the paper.

2. PRICING AND VOLATILITY IN COMMODITY FUTURES MARKETS
Futures markets allow economic agents to trade future obligations on commodities.
These trades enable agents to manage risk, reduce transaction costs, diversify portfolios,
and speculate. Two strands of research dominate the theory of commodity futures pricing

(Williams 2001). The first is the risk management perspective, which maintains that risk-



averse agents use futures markets to hedge price risk and speculators earn a risk premium
for accepting this risk (Keynes, 1930, Stein, 1986). Risk management models imply that
futures prices provide a biased forecast of future spot prices. This bias constitutes the risk
premium. However, there is minimal empirical evidence of a risk premium in commodity
futures markets (Telser, 1958, Gray, 1961, Kolb, 1992, Bessembinder, 1993), implying
that futures prices follow a martingale process.

The second strand of research focuses on the theory of storage, where arbitrage
relationships primarily determine futures prices (Working, 1948, Working, 1949). A
dynamic rational expectations model with risk-neutral agents underscores modern
versions of the theory of storage (Williams, 1987; Routledge et al., 2000). Equilibrium
occurs in such models when the marginal expected profit from storing an extra unit
equals the marginal value of consuming that unit. Therefore, the difference between a
futures price and the spot price equals the cost storing the commodity. Such a cost is
often referred to as the cost of carry, and it includes warehouse fees and foregone
interest. The potential to arbitrage the physical commodity against the futures contract
enforces a tight link between spot and futures prices.

Under the theory of storage, equilibrium implies that futures prices are in contango,
i.e., more distant futures prices exceed nearby prices. However, when inventory of the
commodity is low, nearby prices can exceed distant futures prices. This phenomenon is
known as backwardation; it arises when the marginal value of current consumption
exceeds the marginal value of storage, but it is impossible to reach equilibrium by
consuming more because inventory must be nonnegative. Until inventory is restored,

demand shocks will affect only nearby prices. Thus, the theory of storage implies that a



break in the link between nearby and distant futures prices is associated with low
inventory and negative cost of carry. Fama and French (1988) and Ng and Pirrong (1994)
provide empirical evidence supporting this theory.

A break in the link between nearby and distant prices is resolved when new inventory
arrives through a new harvest. For many agricultural commodities, the harvest is seasonal
and subject to weather shocks. Because weather shocks typically have a greater effect on
intra-year prices than do demand shocks, much of the annual price discovery occurs
around harvest time. Consequently, harvest time produces the highest volatility for all
contracts (Anderson, 1985). This seasonality in futures price volatility confounds the
relationship between volatility and time to maturity. The Samuelson effect (Samuelson,
1965) asserts that volatility should increase as the delivery date approaches. However, if
shocks are heteroskedastic, much of the price discovery can occur months before delivery
(Anderson and Danthine, 1983). Nonetheless, the Samuelson effect may exist conditional
on season if, on a given date, nearby contracts are more volatile than distant ones.

The Samuelson effect should be most pronounced when inventory is low and the link
between pre-harvest (i.e., old-crop) and post-harvest (i.e., new-crop) futures prices is
broken. In this case, the broken link means that current demand shocks only affect nearby
prices, implying that nearby prices are more volatile (Streeter and Tomek, 1992). When
stocks are plentiful, spot and futures prices move together and the effect is less evident.

Previous studies of futures market volatility have typically concentrated only on a
specific contract and rolled it over upon expiration. Many use the nearby contract, which
results in frequent rollovers. However, Goodwin and Schnepf (2000) study the December

contract for corn and the September contract for wheat, rolling each one over to the next



year in the delivery month. Streeter and Tomek (1992) go one step further and model
jointly the November and March contracts for Soybeans, rolling over to the next year’s
contract upon maturity. In the following section, I propose an econometric model for all

contracts that trade on a given commodity.

3. PARTIALLY OVERLAPPING TIME SERIES (POTS) MODEL

I begin this section by discussing some features of CBOT corn futures. This
discussion serves to motivate the POTS model, which follows in Section 3.1. Contracts
on corn at the CBOT mature five times per year: March, May, July, September, and
December. The contracts typically start trading a year and a half to two years before
delivery, but the start date varies across contracts. Consequently, seven to nine contracts
are typically trading on a given day, each with different delivery dates up to two years
into the future. The exact number of contracts trading is time varying, but deterministic; it
can be treated as exogenous. Thus, CBOT corn futures present a sequence of partially
overlapping time series of length 18 months to two years.

State-level data on corn inventory exist only at the quarterly frequency, so they are
uninformative about daily volatility. Nonetheless, because inventory only matters to the
extent that it ties old-crop and new-crop prices together, the relationship between old-
crop and new-crop prices contains all of the relevant information on inventory. Thus, the
POTS model includes two common factors for futures prices: one for old-crop contracts
and one for new-crop contracts. When inventory is high, the two factors move together,
but when inventory is low, the link between them breaks. To elucidate this two-factor
structure, Figure 1 shows the structure of the partially overlapping time series for CBOT

corn over a three-year period from 1991-1993. Each horizontal line in the figure



indicates a different contract and the span over which it trades. For example, contract 11
begins trading in September 1991 and reaches delivery in March 1993.

Consider the nine contracts trading on November 8, 1991 (indicated by a vertical line
in Figure 1). The next four contracts to reach delivery after November 8 are the
December, March, May, and July contracts (numbers 5-8 in Figure 1). Each of these four
contracts must deliver from the current set of inventory, because the next U.S. corn
harvest does not begin until September 1992. Consequently, these four contracts are all
priced by the old-crop common factor. In contrast, the December, March, May, and July
contracts for the 1992-93 crop year (numbers 10-13 in Figure 1) all deliver after the 1992
harvest and are therefore priced by the new-crop common factor.

The appropriate classification of the September contract on November 8 (number 9 in
Figure 1) is less clear because it comes to delivery after the harvest has started.
According to U.S. Department of Agriculture data, approximately five percent of the crop
is harvested by mid September, so some new-crop corn could potentially be delivered on
the September contract. However, sufficient corn is unlikely to have been harvested by
the delivery deadline to sufficiently replenish inventory, so a mix of the old-crop and
new-crop factors could determine the September price. In summary, on November 8§,
1991, four contracts are priced by the old-crop factor (solid line in Figure 1), four
contracts are priced by the new-crop factor (dotted line in Figure 1) and one contract is
affected by a mix of the two factors. The switch from new-crop to old-crop status occurs
on October 1, the first month after the last contract on the previous crop ceases trading.

The price change on a particular contract is a linear combination of the common

factors and an idiosyncratic term. As discussed in Section 2, serial correlation in futures



price changes is nonexistent because there is no risk premium. Nevertheless, the response
of prices to news shocks may vary stochastically and deterministically. I model the
stochastic component using a GARCH model (Engle, 1982, Bollerslev, 1986).1 The
deterministic component of volatility arises because news is likely to cause a greater
price change if it arrives close to harvest than if it arrives at another time. In addition, the
factors may affect distant contracts less than the nearby contracts because of the
Samuelson effect. Thus, the POTS model is a factor model where the factor loading
depends on the season and the time to delivery. Finally, the proportion of the variance
explained by the common factors may not be constant. For example, institutional frictions
regarding delivery may cause contracts to have a higher idiosyncratic component close to
delivery. Consequently, I allow the variance of the idiosyncratic term to also depend on

the season and the time to delivery.

3.1 The POTS model

Given the above discussion, the POTS model possesses the following four features:
(1) two common factors, (ii) time varying conditional heteroskedasticity, (iii) both time-
to-delivery and cross-sectional variation in the factor loadings, and (iv) both time-to-
delivery and cross-sectional variation in the innovation variances.

I index the price of a futures contract, F, with two subscripts; d represents the number
of trading days until the first day of the delivery month and ¢ represents the date on which
a particular price observation occurs. This (d, ¢) pair is sufficient to identify any price

observation in the sample. The model is

! See, for example, Goodwin and Schnepf (2000) and Baillie and Myers (1991) for applications of GARCH
models to futures markets.
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AF, = 0,,C0,8+ Ay g, (1)
where AF,, =F,,—F,,,,, and 04, and A, represent the factor loading and innovation

standard deviation, which are deterministic functions of d and ¢. The 2x1 vector g;
denotes the factors and the vector ¢, selects which factor, or linear combination of
factors, applies to the contract defined by (d, 7).

For identification, assume

1
QsE(qs;){ ”},
p 1

¢ Qc,, =1, E(eu,,)=0, and E(u;,)=1 for all s, d, t. In addition, assume that
E(u,u,,)=0 for d #d'. These assumptions imply that the factor loadings and the

innovation variances determine the scale of AF,,, i.e., E(AF;)=6;,+1,,. Based on

the documented lack of a risk premium in commodity futures prices, I assume

~

E(AF,, | 3y =0, where 3" denotes the information set, which contains past prices.’

This assumption implies that the variance of long-horizon changes in futures prices can

be calculated directly from (1) as

k-1
E(Fd,t _Fd+k,t—k )2 = ;)(‘92 i +;@+i,z—i)-

d+it—i
Furthermore, the martingale difference sequence assumption on AF),, implies that

F,. ... 18 the mean-square optimal forecast of Fy, given information at time ¢—k; the

2
+ 2’d-%—i,t—i) :

+i,t—i

forecast error variance from any other forecast of F,;, exceeds Zf:‘(}(é?j

This implication underlies traditional tests of futures market efficiency.

? Note that, because AF, .. 1s a martingale difference sequence, the change in the log futures price has a

negative (and possibly time varying) conditional mean. Thus, it is cleaner to directly model the level price
change than the log price change.



For most contracts, it is obvious which factor is relevant on a given day. In such cases
cq, has one element equal to one and the other element equal to zero. However, when the
appropriate factor is unknown, such as for the September contract on CBOT corn, ¢4,

must be estimated under the constraint ¢ Qc,, =1. To clarify this constraint, define
¢,, =(6, 6,) where 8>0 and 8,0, so that ¢}, Qc,, =1 implies 6’ +2p6,6,+ 3, =1.

Thus, one free parameter 8, is to be estimated and the constraint residually determines J.
The term &, represents the proportion of the variance due to the first factor, &; denotes
the proportion of the variance due to the second factor, and the remainder of the variance
is common to both factors. Future extensions of the POTS model could allow &, and 6, to
be flexible functions of d and ¢, rather than holding them constant.
By stacking all observations on a given day, the model in (1) can be written as
AF, =0ce +Au,,

where 0, and A, denote diagonal matrices containing the factor loading and innovation
standard deviation terms and ¢; is a n;x2 vector, where n; denotes the number of contracts
trading on date 7. Note that, unlike typical factor models, these data comprise an

unbalanced panel.

The common factors exhibit time varying conditional volatility, denoted by
E(ee|3™")=H,, where I model H, using a BEKK-type GARCH model (Engle and
Kroner, 1985). The model is

H =0+ ﬁHt—lﬁ’ +aE(€t—18t’—l | 3 a', ()

where ®, o, and 3 denote 2x2 parameter matrices. Because the unconditional variance of

each factor equals one, the matrix ® contains only one free parameter. This parameter p



measures the correlation between the factors. Assuming that H, is stationary, it follows
that ® depends on p, a, and P according to the formula @ = Q- QS — Q.

Like the latent factor ARCH model of Diebold and Nerlove (1989), equation (2)
specifies the conditional variance as measurable- 3™ to preserve a recursive relation for
H,. If the latent variable g, were included in (2), then new data would bring information

about past values of H, and the dynamic structure would be substantially more

complicated. Specifying the conditional volatility as a function of observed data
simplifies forecasting and estimation. The measurable- 3~ innovation term in (2) is

' ~t-1 '
E(g&,|37)= ARRTARI o AR
where &, = E(s, | 37) and P, = E((01 = &5~ 6.4) | 7). Expressions
for ¢_,,, and F_,, | can be obtained from the Kalman filter (Hamilton 1994, Diebold

and Nerlove 1989). Defining X, = E(AFAF'|3)=0,c,H,c/0,+A and assuming

normality, the Kalman filter yields
gt|t = Htct'etzt_lAFt

P

. =H,—H,0 >0 H,.

i

Considerable scope exists for extensions to the model in (2). For example, one could
allow volatility to react differently to positive shocks than to negative shocks; news about
reduced supply or increased demand may affect volatility more or less than news about
increased supply or reduced demand. Extending the dynamic specification to allow for
long memory or a second lag could also be fruitful. Such extensions will be easiest if the

recursive nature of the model is preserved by specifying innovations in H, as functions of

the conditional moments E(g, &/, | 3" and E(e,, | RIEDY

10



3.2 Modeling the factor loadings

To model the factor loadings and innovation standard deviations, I use cubic spline
functions with a small set of nodes as in Engle and Russell (1998). This type of spline is a
flexible parametric model that consists of a sequence of connected cubic polynomial
functions. These cubics connect at the nodes, which are chosen a priori and are typically
spaced evenly across the domain of the function. At each node, the adjoining cubic
functions are constrained to have equal value and slope. In the POTS model, the spline
functions capture deterministic effects of the season and the time to delivery and are
linear in their parameters, which enables standard inference conditional on the nodes.

Commodity futures typically reach delivery only a few times each year and typically
only a few contracts trade on any particular day. Therefore, given a date ¢, the
corresponding value of d will be one of a small number of values determined by the
contracts trading on date ¢. It follows that all of the data lie on a small number of lines on
the (d, t) plane and not throughout the (d, ¢) plane. Thus, I do not attempt to model the
factor loadings and innovation variances throughout the entire (d, ¢) plane. Rather, I fit
the spline functions only to the observed combinations of (d, ¢). To this end, I estimate a
separate spline for each delivery month. For example, for CBOT corn this strategy
requires estimating five different splines; one each for the March, May, July, September,
and December contracts. These splines also capture seasonality because the delivery
month and time to delivery uniquely determine the date of a particular price observation.

For a given delivery month, the factor loading and innovation standard deviation

spline functions take the form

(¢0‘/ + ¢1‘/ (dz - kj—l) + ¢2(/ (dz - kj—l)z + ¢3_;’ (dt - k_j—1)3)[jt >

M=

ed,t =
J

1

11



ﬂ”d,t = (70(/ +7; d, - kj—l) +7 d, - kj—l)z +7s; d, - k‘/—l)3 )[jt ’

|M>§

=
where [ a= l(kj_1 <d <k j) denotes an indicator function and ¢; and y; denote
parameters. The variable d; denotes the time to delivery on date ¢ for the contract of
interest, and the nodes ko, k1, ..., kx are chosen a priori.3 The spline constrains the value
and slope of adjoining cubics to be equal at the nodes. For example, for the 0 spline

Boro = oy + 4, =)+ 6,k =k )+ (K =K )

Bin =, + 20,k — k) + 3,k — k)7
forallj =1, 2, ..., K-1. Two final constraints are that the slope equals zero at the end
points, ie., ¢,=0 and @, +28,, (kx —ki ) +3dx (k. —k.,)> =0. Each spline is a
linear combination of 2K free parameters. Thus, given asymptotic normality of the

parameter estimates, asymptotic confidence intervals for the splines follow directly.

3.3 Estimation

To estimate the POTS model, I maximize the Gaussian likelihood function.

Conditional on past prices, the first two moments of AF, are E(AF, |3)=0 and

E(AEAF'| 3™ =%, =0,c,H 6 + 1, so the likelihood function is

L =Ylog f(AF, | 3
t=1

nT 1Z 1z —1
= —TIOg(2ﬂ)—E§IOg | Z, |_EZIAF;Zt AF;, 4)

— _ T . . .. .
where 7 =T"'Y._ n, . This function can be maximized numerically.

? Choosing the number of node points, K, is analogous to choosing the bandwidth in nonparametric
analysis; it exhibits the same bias-efficiency tradeoff and the same difficulty in consistent estimation.
Conditional on the number of nodes, however, the exact location of the node points has little influence on
the properties of the estimator in the same way that, conditional on bandwidth, the choice of kernel is not
usually important in nonparametric analysis.

12



The likelihood function in (4) is highly nonlinear because the spline parameters
appear in the GARCH equation through €, and Py, For this reason, analytic expressions
for the gradient and hessian are infeasible. This complication coupled with the potentially
large number of spline parameters can make numerical optimization very slow. However,
conditional on g, and H,, the estimation problem is much simpler and analytic expressions
for the gradient and hessian with respect to the spline parameters exist. I use this feature
to form an approximate EM algorithm (Dempster et al., 1977).

In general, the EM algorithm maximizes a likelihood function by alternately
computing the expectation of the complete data likelihood with respect to the latent
variable (the FE-step) and maximizing this expected likelihood with respect to the

parameters (the M-step). The complete data likelihood function for the POTS model is

M~

T
L, =Ylog f(AF, | &,3 )+ Xlog f(s, | 37
=1

t=1

= _TIOg(zﬂ') _Elog | ﬂ“t ’_EE(AF[ _etctgt) ﬂ’t (AF; _etctgt)

BER (Zﬂ)—lilo H —lig'Hflg
Zg 2z=1gt2z:1ttt.
Conditional on the observed data, the expected complete data likelihood is

t“tCie

E(L | 37) =~ Llog(27) = Slog| 4 |-~ 3 (AF —0.c.e,) 2 (AF, -0
¢ - TOg( 77) Eog| t| EE( t C(E‘) t( t tctgt\t)

T T T T
—thr(ct'é’[/l;thc,E‘, )—Zlog(2ﬂ') 1510 H RO H's, —thr(Ht’le ), )
24 2 24 24 24

e

where tr() denotes the trace operator. To simplify computation, I keep H, fixed when
maximizing (5) in the M-step, implying that the resulting parameter estimates merely
approximate the maximum likelihood estimates. Thus, I take the final steps to the
maximum using the estimates from this approximate EM algorithm as starting values for

a numerical algorithm such as BHHH applied to (4).
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In summary, I use the following algorithm to maximize the likelihood in (4):

1. Use the Kalman filter to obtain &, and P

" . (E-step).
2. Keeping H, fixed, maximize (5) with respect to spline parameters using Newton-
Raphson (M-step).
3. Still keeping H, fixed, iterate on the E- and M-steps until convergence.
4. Keeping the spline parameters fixed, maximize the likelihood in (4) numerically
with respect to other parameters in the model.
5. Repeat 1-4 until convergence
6. Using estimates from step 5 as starting values, use a numerical algorithm such as
BHHH to take the final steps to the maximum of the likelihood in (4).
Steps 1-5 in this algorithm markedly improve computation time because they generate
starting values for the numerical algorithm in step 6 that are close to the maximum

likelihood estimates. In contrast, a numerical algorithm such as BHHH that begins with

arbitrary starting values can be very slow to converge.

4. EMPIRICAL RESULTS FOR CBOT CORN

In this section, I test the theory of storage and estimate the Samuelson effect by
applying the POTS model to corn futures on the CBOT. CBOT corn is the most actively
traded agricultural futures contract. Active trading leads to liquid markets and observed
prices that correspond to the market’s valuation of the contract. Thus, CBOT corn
provides an ideal medium for illustrating the POTS model.

I estimate the POTS model using daily settlement prices for trading days from
January 1, 1991 to December 31, 2000. The sample includes data on 53 different

contracts. Specifically, the sample includes contracts that delivered in March, May, July,

14



September, and December for each year from 1991-2000 and on the March, May, and
July contracts for 2001. Because I use trading days from 1991-2000, the sample includes
a subset of the trading days for some contracts. For example, the sample includes only the
last three months of trading on the March 1991 contract and does not include the last
three months of trading on the March 2001 contract.* There are 19,745 total observations.

During the sample period, the average settlement price across all trading days and all
contracts was 263 cents per bushel, with a minimum of 175 and a maximum of 548. The
mean daily price change was close to zero at —0.02 cents, and the standard deviation was
2.96. The average daily trading volume was 57,154 contracts and average number of
contracts open at the end of each day was 323,064, where each contract requires delivery
of 5000 bushels.

The last trading day on a given CBOT corn contract is the business day prior to the
15th calendar day of the contract month. Holders of a short position can deliver any time
between the first day of the delivery month and the second business day following the
last trading day of the delivery month. The March, May, and September contracts begin
trading approximately a year and a half before delivery. Specifically, they begin in
September, December, and May, respectively. The July and December contracts begin
trading at various horizons throughout the sample, but typically at least two years before
delivery. The mean number of contracts traded per day equals 7.8, and on 85 percent of

days in the sample the number of contracts traded is either seven, eight, or nine.

* In the year 2000, the data include a subset of the contracts actually being traded because I do not have
data on the September 2001, December 2001, March 2002, May 2002, and July 2002 contracts, all of
which were trading by the end of December 2000. Two atypical contracts also traded during the sample
period. These contracts reached delivery in November 2000 and January 2001, but I exclude them from the
sample because they are the only contracts for November and January delivery during the sample period.

15



For the spline functions, I place nodes at zero, 126, and 252 days before delivery.
These nodes approximately correspond to the first day of the delivery month, the first day
of the month six months before delivery, and the first day of the month one year before
delivery. For the July and December contracts, I also include nodes at 378 days from the
delivery date (approximately one and a half years before delivery) because these
contracts trade for a longer period of time.” I use the same set of nodes for A and . I
estimate a total of ten splines; one for the factor loading A and one for the innovation
standard deviation 0 for each of the five delivery months.

Table 1 presents results from the estimation of a one-factor model and a two-factor
model. The two-factor model specifies a and 3 in (2) as diagonal matrices with nonzero
elements ay;, o2, P11, and B. To guarantee a positive and stationary conditional
variance, I directly estimate |, a3,, a;; + B, and a3, + 35, constraining each to lie in
the (0,1) interval. Table 1 shows that the estimates of &, + > and a2, + f3;, equal 0.987

for the two-factor model and 0.983 for the one-factor model. These estimates indicate a
high degree of persistence in the volatility of the common factor(s).

As discussed in Section 3, the September contract reaches delivery after the harvest
begins, and thus it may be affected by both the old-crop and new-crop factors. Table 1

shows that the estimated value of 6, equals 0.338. Under the scale constraint
¢y Qc,, =6] +2p5,8, + 5, =1, this estimate implies that the proportion of the variance
due to the old crop is 6] = 0.114 and the proportion of the variance due to the new crop

is &; =0.425. These two proportions do not sum to one, because the high correlation

> I also estimated models with a larger set of nodes, but I do not report the results because these models
were inferior by the Bayesian Information Criterion (BIC) and generated the same qualitative conclusions
as the reported models.

16



between the factors means that much of the variation is common to both factors. This
estimate indicates that the September contract relates more closely to the new-crop prices
than the old-crop prices. In other words, enough corn is harvested by the end of the
September delivery period to mitigate most of any inventory shortfall.

Adding the second factor generates a substantial improvement in likelihood over the
one-factor model. This improvement indicates that breaks in the link between the old and
new crops are empirically relevant. The importance of the second factor is also evidenced
by the correlation parameter p being significantly less than one. However, although the
second factor is significant, the correlation between the factors is high at 0.928. These
high correlations go hand in hand with the relatively small increase in the proportion of
the variance explained by the factors® when the second factor is added; adding the second
factor increases the overall proportion from 0.848 to 0.932.

Figure 2 illustrates the estimated spline functions from the two-factor model by

showing the unconditional variance as a function of the time to delivery. I compute the

unconditional variance as (Qjﬁt + /lf,,,). Figure 2 contains separate plots for each of the

five contracts with associated 95 percent confidence intervals. The confidence intervals
are computed using the delta method and the fact that A and 0 are linear in the estimated
parameters. The relatively tight confidence intervals around the spline estimates permit
some inference about the relationship between volatility and the time to delivery. Most
notably, volatility spikes during the delivery month for all but the December contract, and

it is low at long horizons. I discuss these features further in Sections 4.1 and 4.2.

% This proportion is measured as zd,t(edﬁ,g,‘t)z/ Zd,,AFdZJ , where the summation is taken over all

observations on a given contract when calculating the proportion by contract and over all observations in
the sample when calculating the overall proportion.
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The March contract is most closely related to the factors, with 97.6 percent of the
variation explained by the factors in the two-factor model (see Table 1). The factors
explain the least in the September and December contracts, where the proportions of the
variation explained are 0.910 and 0.886, respectively. To see how much variation the
factors explain through the life of a contract, consider Figure 3. This figure plots the
proportion of the model variance in each of the five contracts that is explained by the

common factors against the date of trading. I compute this proportion from the spline

functions as 6, /(60;,+A;,) =6,/ E(AF;). The figure covers three crop years: the

delivery crop year (year zero) and the two years preceding it (year one and year two).
According to the theory of storage, the common factors should explain most, if not
all, of the variance in prices. Figure 3 shows that, for the December, March, May, and
July contracts, the common factors explain over 95 percent of the variation for most of
the duration of the contracts. The curves fall substantially below 100 percent in two
cases. First, the proportion of the variance explained by the factors drops sharply in the
delivery month for all contracts. Second, the proportion of the variance explained by the
factors is smaller at points far from delivery for the July, September, and December
contracts. I discuss the first of these cases in Section 4.1 below. I then discuss the
second case in Section 4.2, before addressing the Samuelson effect and seasonality in

Section 4.3, and the theory of storage in Section 4.4.

4.1 Delivery month volatility
Figure 3 shows that the proportion of the model variance explained by the factors
drops sharply in the delivery month for all five contracts. For the May contract, the drop

begins two months before delivery in early March. For the September contract, the
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proportion drops similarly in March, six months before delivery. These drops indicate
that the influence of the March, May, and September contracts on the old-crop common
factor reduces after the beginning of March in year zero. Consequently, the July contract
drives this factor from early March until early July, as indicated in Figure 3 by the high
proportion of the variance explained by the factor for the July contract during this period.
From July until the end of the crop year, the September contract is the only contract with
an old-crop component still trading. These volatility patterns imply that the March, May,
July, and September contracts are less related to each other in the last half of the crop
year than earlier in their lives.

The relatively high idiosyncratic volatility around the delivery period indicates that
delivery costs are high. In general, delivery costs will be lowest when a liquid spot
market for the commodity exists at the delivery location. In such cases, holders of a short
position can easily buy the commodity and deliver on the contract. If the spot market at
the delivery location is illiquid, then its price will be volatile for reasons unrelated to
aggregate fundamentals, and therefore the futures price for imminent delivery will also
exhibit high idiosyncratic volatility. Even if liquid markets exist at points far from the
delivery location, the cost of transporting the commodity from this market to the delivery
location in time to meet an impending delivery obligation will be prohibitive. Thus, high
idiosyncratic volatility around the delivery period indicates inefficiency in the delivery
process. For CBOT corn, this inefficiency is largest in the delivery month for all
contracts, but it is also significant in the months leading up to delivery for the May, July,

and September contracts.
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For all but the last year of this sample, delivery on CBOT corn futures could be made
in either Chicago Illinois or in Toledo Ohio. A delivery point in St. Louis Missouri was
added beginning with the December 1993 contract. Concern that these delivery points
were peripheral to the main corn supply channels led to a change in delivery
specifications. Beginning with the March 2000 contract, delivery could be made
anywhere along the Illinois River between Chicago and Pekin Illinois. My results
indicate that such a change in the delivery institution was necessary. As more data
becomes available, it will become apparent whether this change was successful in

improving the efficiency of the futures contract.

4.2 Contracts far from delivery

Figures 2 and 3 reveal that, for the December, July and September contracts, both the
total variance and the proportion of the variance explained by the factors are small at long
horizons. This pattern is reinforced by Figure 4, which plots the unconditional variance
curves from Figure 2 as a function of the trading date. The figure covers three crop years:
the delivery crop year (year zero) and the two years preceding it (year one and year two).

At the times the July and December contracts begin trading, two harvests will occur
before delivery. Figure 4 shows that, from the start of trading until the first harvest begins
in September of year one, both contracts exhibit relatively low volatility. Volatility then
increases during the first harvest, i.e., between September and December. The proportion
of the variance explained by the factors mirrors this pattern, as shown in Figure 3.
Therefore, it appears that a significant amount of news about the following crop year is
irrelevant for contracts on the crop two years ahead. No trade occurs in March or May

contracts for corn two crop-years ahead.
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The September contract also exhibits low volatility and a low proportion of variance
explained by the common factors in early trading. In its first four months of trading (May
to September), the volatility patterns in the September contract match those of the July
and December contracts in the pre-September period of their first year (see the first
September curves in Figures 3 and 4). This pattern reflects the high new-crop component
in September volatility that is indicated by the low estimated value of &, in Table 1. The
final point of note on the September contract is that its volatility drops significantly in the
two months before delivery (see Figure 4). This drop may reflect the resolution of
uncertainty about how much new-crop corn will be available for delivery. Volatility

increases again during the delivery month indicating delivery frictions.

4.3 Samuelson effect and seasonality

Figure 4 demonstrates a nonlinear and nonmonotonic version of the Samuelson effect.
Specifically, at a given date, contracts that are closer to delivery typically have higher
volatility than more distant contracts. The nonlinearity of the Samuelson effect becomes
apparent if volatility is tracked through time. In year two in Figure 4, only the first
September contract and the July and December contracts are trading. The volatility of
these contracts is relatively low in this period. During year one, volatility steadily
increases as the market obtains more information about the year zero harvest. Volatility
peaks between September and November of year zero, during the middle of the harvest.
The harvest resolves much of the uncertainty about year zero prices, so volatility
decreases between November and March. As noted above, the September contract
exhibits higher volatility than the other year zero contracts between January and March

due to it being more closely related to the new-crop contracts than the old-crop contracts.
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Beginning in March, volatility increases dramatically for the two remaining year zero
contracts, May and July. As indicated in Figure 3, much of this volatility is idiosyncratic
and indicates the presence of frictions in delivery arrangements.

Figure 4 reveals substantial seasonality in year zero but little seasonality in year one.
The volatility curves exhibit only a slight increase going into the year zero harvest, when
a substantial amount of news about the new crop arrives. After the year zero harvest, the
variance drops by about 30 percent. One reason for the small seasonal differences in year
one is that in many years there were few surprises in the period leading up to harvest and
in the harvest season itself. Moreover, when surprises occurred, they often arose at
different times of the year. Figure 5 illustrates this point by showing the conditional
variance of the two factors as estimated by the GARCH model. The most prominent
surprises are indicated by high conditional volatility periods, which occurred in July-
September 1991, May-July 1994, January-February 1996, April-October 1996, February-

May 1997, July-September 1997, June-July 1998, and July-September 1999.

4.4 Theory of storage

The high proportion of price variation explained by the common factors lends support
to the theory of storage. For most of the life of all contracts, the proportion of the
variance explained by the factors exceeds 0.95. The theory of storage also has dynamic
predictions. Specifically, periods when the old-crop variance exceeds the new-crop
variance should coincide with periods of low correlation between the factors,
backwardated prices, and low inventory.

Figure 6 illustrates the dynamic predictions of the theory of storage by showing the

conditional correlation between the factors, the relative conditional variance, and the
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basis slope.” The summer of 1996 stands out in Figure 6, as well as Figure 5. Due to a
poor harvest in 1995, total stocks of corn were lower during the summer of 1996 than at
any point since 1976. In addition, futures prices were in steep backwardation and spot
prices reached $5 per bushel, after averaging about $2.50 a bushel in the first half of the
decade. Figure 6 reveals that the backwardation in 1996 was indeed associated with a
lower conditional correlation and a higher old-crop variance as predicted by the theory.
The fall of 1993 also produced a backwardation, and it also corresponded to lower
conditional correlation and a higher old-crop variance. In addition to 1993 and 1996, the
conditional correlation decreased and the relative variance increased in the fall of 1991.
This period exhibited no prolonged backwardation, but the 1991 crop had a low yield
which caused December stocks of corn to be lower than they had been since the shortage
of 1984. These low stocks lead to a break in the link between 1991 crop prices and 1992
crop prices. The only other times in the 1990s where December stocks were below their
1991 levels were in 1993 and 1995, corresponding to the other observed periods of
backwardation and low conditional correlation. Thus, the dynamic features of the data

support the theory of storage.

5. CONCLUSION
In this paper, I develop the POTS model for volatility dynamics in commodity futures
markets. The POTS model incorporates common factors across contracts with differing
delivery dates as well as time-to-delivery and seasonal effects. Applying the POTS model
to CBOT corn futures reveals substantial inefficiency related to delivery. Specifically, all

contracts exhibit a large proportion of idiosyncratic variation during the delivery month.

"1 compute the basis slope as the slope coefficient in a regression of the futures prices on a given trading
day on the times to delivery on those contracts. I compute a separate basis slope for each day in the sample.
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The May, July, and September contracts also show significant idiosyncratic variation in
the months leading up to delivery. In addition, the empirical results substantiate the
theory of storage and yield estimates of the Samuelson effect.

The POTS model directly applies to futures contracts on any storable commodity with
seasonal production. The model could easily be adapted to non-seasonal commodities by
specifying the selection variable ¢4, to reflect the production and transportation lag, rather
than seasonal production patterns. Applying the POTS model in other commodity futures
markets will enable additional tests for delivery frictions, the theory of storage, and the
Samuelson effect. Also, because it models jointly the whole spectrum of futures prices,
the POTS model will be very useful in pricing options on futures contracts and in
determining optimal hedging strategies.

I close this paper by using the POTS model to assess the common practice of splicing
nearby prices together into one time series to proxy a fundamental spot price. Applied
researchers typically treat the resulting series as a continuous, homogeneous time series.
Figure 7 shows a plot of the unconditional variance of such a nearby series as estimated
by the POTS model. I assume that rollover occurs on the first day of each delivery month.
The figure shows that volatility jumps sharply around the delivery period for the May and
July contracts and declines steeply for the September contract. The nonlinear
heteroskedasticity in this series indicates that it is far from a homogeneous time series.

For applied researchers who desire to represent a fundamental corn price by a single
series of futures prices, I make two suggestions. First, the futures contracts should be
rolled over two to three months before delivery to avoid delivery month inefficiency.

Second, the September contract should be avoided entirely because it has a high new-
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crop component. Specifically, I recommend using May contract prices during January
and February, prices on the July contract from March though May, prices on the
December contract from June through October, and prices on the March contract during
November and December. Figure 7 shows that this strategy yields a modified nearby time
series with a relatively smooth variance throughout the year, although the variance still
increases by 40 percent from the low point in March to the high point in September.
Thus, if seasonal heteroskedasticity is accounted for, this modified nearby price series
can be treated as a continuous time series. Moreover, the proportion of the variance
explained by the factors in the POTS model is close to one throughout the range of the

modified nearby series (see Figure 3), so it accurately reflects a fundamental corn price.
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Table 1: Estimates of POTS Model

1 Factor 2 Factors
0.928
P (0.003)
, 0.097 0.087
a, (0.031) (0.004)
, 0.100
a5 (0.006)
. 0.983 0.987
an+ B (0.019) (0.002)
. 0.988
ay + P (0.001)
5 0.338
Lsept (0.002)
Diagnostics
LLF 45,787,649 ~45,783,828
BIC —45,788,539 —45,784,757
Skewness 0.01 0.06
Kurtosis 8.35 7.26
Qs for gy, 6.85 7.04
(p-value) 0.23) 0.22)
Qs for &y 6.93
(p-value) (0.23)

Proportion of Variance Explained by Factors

Dec contract 0.866 0.886
March contract 0.935 0.976
May contract 0.843 0.946
July contract 0.780 0.946
Sept contract 0.855 0.910
Overall 0.848 0.932

Note: The spline nodes are at six-month intervals from the delivery data, i.e., for 0, 126, 252, 378 days
until delivery (the 378 node is only included for July and December). The data contain daily settlement
prices on corn futures contracts traded on the CBOT between January 1 1991 and December 31, 2000.
Heteroskedasticity consistent standard errors are given in parentheses. BIC is computed as LLF-X log(7),
where K equals the number of parameters and 7' =19,745. The skewness and kurtosis coefficients measure

the third and fourth moments of standardized futures price changes AF,, / E(AF], | 3" . The Qs statistics

test for serial correlation of up to order five in the standardized factors ¢, ,, / H,;, fori=12.



Contract

Figure 1: Partially Overlapping Time Series
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Note: Each horizontal line represents a particular contract on CBOT corn and the span over which it
trades. The style of the lines indicates whether a particular contract is for old-crop or new-crop corn, or a
mixture of the two. The vertical line at Nov 8, 1991 represents an arbitrary date for illustration purposes.



Figure 2: Unconditional Variance as a Function of Time to Delivery
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Note: The curves are computed from the estimated spline functions (6;, + 4;,) from the 2-factor model

in Table 1. Units on horizontal axis represent time to delivery (d) in number of trading days. One year
equals 252 days. Dashed lines indicate 95% confidence intervals.



Figure 3: Proportion of Model Variance Explained by Common Factors
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Note: The curves are computed as 8;, /(9] , + ;) from the estimated spline functions in the 2-factor

model in Table 1. September is included twice because it is a function of both the old-crop and new-
crop factors.



Figure 4: Unconditional Variance as a Function of Trading Date
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Note: The curves are computed as 6, , + 4, from the estimated spline functions in the 2-factor model

in Table 1. September is included twice because it is a function of both the old-crop and new-crop
factors.



Figure 5: Conditional Variance of Common Factors

25 ~
new crop

20 4 —old crop
157
107

5 -

0 T T T T
Jan-91 Jan-93 Jan-95 Jan-97 Jan-99

Note: The series are computed from the GARCH estimates of the 2-factor model (see Table 1).



Figure 6: Conditional Correlation and Relative Conditional Variance of Factors
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Note: The conditional correlation and relative conditional variance series are computed from the GARCH
estimates for the 2-factor model (see Table 1). The basis slope is computed from daily regressions of
futures prices on number of days to delivery.



Figure 7: Unconditional Variance of the Nearby Contract
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Note: Nearby contract rolls over on first day of delivery month. Modified nearby contract uses May
contract for January and February, July contract for March though May, December contract for June
through October, and March contract for November and December.



