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Sensitivity of the GME Estimates to Support Bounds

The generalized maximum entropy (GME) estimator was introduced by Golan et al. as a

way to overcome two empirical problems that hamper traditional econometrics: multi-

collinearity and ill-posed models. Despite its recent origin, several papers based on the

GME approach have appeared already in this journal (Paris and Howitt; Miller and

Plantinga; Lence and Miller; Zhang and Fan). The distinguishing feature of the GME es-

timator consists in its requirement of a specific assumption and non-sample information

about parameters and error terms. In particular, its implementation relies on subjective in-

formation about the range of variation of parameters and error terms that must be pro-

vided by the researcher.

For reference ease, we state the GME estimator of a classical linear statistical

model following the notation of Golan et al. (chapter 6): The linear model to estimate is

given by

(1)                    y = X + u , u ~ I I D (0,σ2I),

where the dimensions of the various components are y ~ (T ×1), u ~ (T ×1), ~ (K ×1)

and X ~ (T × K). The vector y  and the matrix X constitute sample information while the

vector  represents parameters to estimate and the vector u  contains random distur-

bances. The principal assumption of the GME formalism is that a parameter k  is re-

garded as the mathematical expectation of some discrete support values Zkm , m = 1,...,M ,

such that

(2) k = Zkm pkmm =1

M∑
where pkm ≥ 0, k = 1,...,K , m = 1,...,M , are probabilities and pkm = 1

m =1

M∑  for

k = 1,...,K . The element Zkm  constitutes a priori information provided by the researcher,

while pkm  is an unknown probability whose value must be determined by solving a

maximum entropy problem. An analogous reparametrization of the random errors ut ,

t = 1,...,T , is also assumed for the GME estimator.  In particular, let
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(3)                                                        ut = Vtjj =1

J∑ wtj ,

where  wtj ≥ 0, t = 1,...,T , j =1,..., J , are probabilities, wtj = 1
j=1

J∑  for t = 1,...,T , and Vtj

are the support values of the random errors.  They too constitute a priori information

provided by the researcher. Then, the GME estimator can be stated as

(4)           max
pkm ,wtj

H (p , w) =
def

− pkmm =1

M∑k =1

K∑ ln( pkm) − wtjj =1

J∑t =1

T∑ ln(wtj )

subject to yt = Xtk Zkm pkmm =1

M∑k =1

K∑ + Vtjwtjj =1

J∑ ,     t = 1,...,T

pkm = 1
m =1

M∑ ,  k = 1,...,K ,

wtj = 1
j=1

J∑ , t = 1,...,T .

The two extreme support values for each parameter and error term constitute the sup-

port’s bounds that are the subject of our paper. For future reference, let us denote by Z

and V  the matrices of parameter and error supports, respectively.

The choice of support’s bounds, whether for parameters or errors, has important

implications for the parameter estimates and the estimated variance of the error term. For

example, if the parameter estimates are sensitive to variations of support bounds, then it

is probable that policy implications will also be affected by the subjective choice of such

a priori information. It is rather disappointing, therefore, that the analysis of the same

sample data performed by two different researchers will produce different estimates and

different testing results. Motivated by such concerns, Caputo and Paris have carried out a

complete comparative statics analysis of the GME estimator for the general linear model.

They showed that nothing can be said, a priori, about the estimates’ direct response to

changes in either parameter or error bounds. They demonstrated however that, in general,

there exists a symmetric and negative semidefinite comparative statics matrix, each indi-

vidual element of which consists of a linear combination of T+1 Slutsky-like forms.
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Their Theorem 1 thus shows that it is the compensated changes in the support bounds that

result in unequivocal comparative statics for the GME problem (4). This implies that it is

not possible to derive unequivocal comparative statics results for the effects of the sup-

port bounds on the individual parameter and errors. In spite of this pitfall of the GME es-

timator, the econometric literature seems reluctant to acknowledge it, thereby leaving the

researcher with the wrong impression that support bounds do not matter much as deter-

minant of the estimates and their concomitant policy implications.

This paper’s objective is threefold: First, we will scrutinize and provide evidence

to counter the assertions about the impact of support bounds’ variations made by the

original proponents of the GME estimator.  This examination will be accomplished by

means of Monte Carlo experiments.  We will show that the assertions of Golan et al. are

unwarranted in general, and may be valid only within the limited confine of the Monte

Carlo studies which accompany them. Second, we will use the GME estimator in order to

attempt the extraction of econometric inference from the famous sample of US manufac-

turing data that was used in the original analysis of production functions carried out by

Cobb and Douglas in 1928.  In this section of the paper we will show the difficulty of de-

ciding which sets of support bounds ought to be selected in order to verify the economic

implications of Cobb and Douglas’ hypotheses.  It is a case of the proverbial chicken-

and-egg dilemma.  Third, we will summarize the general findings of Caputo and Paris re-

garding the lack of any unequivocal comparative statics results for the impact of the sup-

port bounds on the individual parameters and errors, briefly alluded to above.

The Impact of Variations of the Support Bounds on Parameter Estimates

Golan et al. said relatively little about this aspect of their estimator, but what they said

seems to have had a lasting influence. In their seminal book they state (p. 138): “The re-

strictions imposed on the parameter space through Z  reflect prior knowledge about un-

known parameters. However, such knowledge is not always available, and the researcher
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may want to entertain a variety of plausible bounds on .”  Reporting the result of a

Monte Carlo experiment where three sets of alternative parameter bounds were exam-

ined, they say (p. 138): “As the parameter supports are widened, the GME risk functions

(a loss function called MSEL and defined as the trace of the mean squared error matrix of

parameter estimates) modestly shift upward reflecting the reduced constraints on the pa-

rameter space. Hence, wide bounds may be used without extreme risk consequences if

our knowledge is minimal and we want to ensure that Z  contains . Intuitively, increas-

ing the bounds increases the impact of the data and decreases the impact of the support.”

With respect to the support bounds of the error terms, Golan et al. say simply (p. 88) that

this selection should be made according to the 3  rule, by which it is meant that the error

bounds should be set at three times the standard deviation from the origin, under the as-

sumption that the error terms are distributed with mean zero and variance 2 .

Essentially the same conclusions have been reiterated by Lence and Miller, but

with a notable variant. In two similar papers they stated that, within the scope of their

Monte Carlo study, a variation of support bounds has little or no appreciable impact on

sample estimates. They write (1998a, p. 860): “The most important pattern observed in

table 2 is that doubling (or halving) the parameter and error bounds has little impact on

the fit of the auxilliary regressions. … The impact of changes in the parameter bounds are

also slight but do not exhibit a consistent pattern.”  Similarly, in their other paper Lence

and Miller write (1998b, p. 195): “GME results are not sensitive to changes in the width

of the error supports, and the changes in the parameter supports must be relatively large

to have an impact on the parameter and input estimates.” This last statement contradicts

the previous assertion by Golan et al. according to which: “… increasing the (parameter)

bounds … decreases the impact of the support.”

The aggregate message of these studies suggests that widening the parameter sup-

ports has little impact on the estimates as measured by the risk function (MSEL) and,

similarly, that widening the error supports has also little effect on the estimates. To ex-
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amine these implicit generalizations about the GME estimator we performed three Monte

Carlo experiments, two of which deal with well-posed models and one with an ill-posed

specification.

The first Monte Carlo experiment is characterized by the following data generat-

ing process (DGP): There are ten parameters 0k , k = 1,...,10, to estimate. With the ex-

ception of 01 , each parameter 0k  was drawn from a uniform distribution U[−2 , 2 ]. The

parameter 01  was defined as the model’s intercept with a value of 58. Each element of

the matrix of regressors X  was drawn from a uniform distribution U[1,5] except for the

first regressor. All the regressors, except the first one, were measured in natural units.

The condition number of the matrix of regressors is equal to 29.  The values of the de-

pendent variable range from 50 to 80. Finally, each component of the disturbance vector

u  was drawn from a normal distribution N(0, 0
2 ) = N(0,16).  One hundred samples of

50 observations were drawn using the pseudo-random routines available in the nonlinear

programming application GAMS by Brooke et al.

The second Monte Carlo experiment is characterized by the same DGP as de-

scribed above, except that the regressors (but not the intercept regressor) and the depend-

ent variable are now defined in natural logarithms.

(table 1)

The results of the two experiments are reported in table 1, where the MSE loss

function (MSEL) is presented together with the estimate of the error variance. In both ex-

periments, the values of the MSEL function indicate a large variation when the error

bounds are widened, more than 140 percent in experiment 1 and more than 40 percent in

experiment 2, as measured from the value of the MSEL function corresponding to error

bounds of 3 =12  and parameter bounds [-5,5]. The more interesting observation, how-

ever, is that these values first decrease and then increase, denying a monotonic response
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of the MSEL function to variations of the support bounds. This result conflicts with the

repeated suggestion by Golan et al. that the error bounds could be chosen without too

much risk according to the 3  rule. In the two Monte Carlo experiments reported here,

this rule produces error bounds of [-12,12] but table 1 shows that, in the first experiment,

the lowest value of the MSEL function occurs in correspondence of the [-40,40] bounds

with almost a 40 percent decrease from the tighter bounds of the 3  rule. In addition, the

estimated error variance is closer to the true value in correspondence of the [-20,20] error

bounds. In the second experiment, the lowest value of the MSEL function occurs in cor-

respondence of the [-20,20] error bounds, with more than a 40 percent decrease from the

3  rule. Similarly, the widening of the parameter bounds produces a significant 33 per-

cent increase of the MSEL function in experiment 1, and more than 200 percent in ex-

periment 2, as measured from the value of the MSEL function corresponding to error

bounds of 3 =12  and parameter bounds [-5,5]. Hence, the results of table 1 contrast

sharply with the “modest shift upward” reported by Golan et al.

(table 2)

One of the most appealing aspects of the GME estimator is that it can easily pro-

duce unique estimates of the parameters belonging to an ill-posed model.  The third

Monte Carlo experiment, therefore, is devoted to examining the behavior of the MSEL

function of an ill-posed model characterized by the following DGP. There are 10 obser-

vations and 20 parameters. Each parameter 0k , k = 2, . . . ,20, was drawn from a uniform

distribution U[−2 , 2 ]. The parameter 01  was defined as the model’s intercept with a

value of 58. Each element of the matrix of regressors X  was drawn from a uniform dis-

tribution U[1,5] except for the first regressor. All the regressors, except the first one,

were measured in natural units. The values of the dependent variable varied from 100 to
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400. Finally, each component of the disturbance vector u  was drawn from a normal dis-

tribution N(0, 0
2 ) = N(0,16).

From the information of table 2, variations of both parameter and error bounds in-

duce extremely large changes in the MSEL function and error variance. For example, the

variation in the error bounds resulted in more than 700 percent difference in the value of

the MSEL function and more than 4000 percent difference in the error variance. Simi-

larly, the variation in parameter bounds results in more than 5700 percent difference in

the value of the MSEL function and more than a 100 percent difference in the error vari-

ance, as measured from parameter bounds [-5,5] and error bounds [-10,10]. It is interest-

ing to note that, also in this case, an estimate of the error variance which is close to the

true variance corresponds to error bounds between [-20,20] and [-40,40], well above the

3  rule. These results reinforce the previous conclusion that variations of either parame-

ter and/or error bounds induce complex and unpredictable patterns of response on the pa-

rameter estimates and on the statistical performance functions.

The conclusion gleaned from the three Monte Carlo experiments is anything but

encouraging for the practical application of GME in the context of flexible functional

forms. The reason for this pessimistic assessment is that the individual parameters of

these functions have no direct economic interpretation, as in the translog, generalized Le-

ontief, and asymptotically ideal model (Barnett and Jonas) functional forms, for example.

As a consequence, no a priori economic information can be brought to bear on the pa-

rameter support bounds in such instances, leaving the applied researcher with little

knowledge on which to base her choice of Z. Because the use of flexible functional forms

is the rule in applied demand and production analysis, the application of the GME esti-

mator in these contexts must be accompanied by an extensive exploration of the parame-

ter space and an informative reporting of all the results in order for the conclusion of the

empirical work to be of some predictive policy value and to convince the reader of its re-
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liability.  A few trials are not sufficient and may reflect only the personal bias of the re-

searcher.

The Cobb-Douglas Sample of US Manufacturing Data

Monte Carlo experiments are useful to gain some information about limited aspects of an

estimator but, in general, prove nothing.  On the contrary, they can disprove a conjectural

belief no matter how firmly held, as in this case. When this event happens, the economet-

ric researcher who desires to use the GME approach is left without guidelines on estima-

tion and inference and, therefore, must decide how to proceed only on the basis of the

available information that is confined to one sample of data.  This endeavor may not al-

ways be feasible.

In this section we will illustrate this point by analyzing a famous data sample

originally used by Cobb and Douglas in 1928 to estimate the first aggregate production

function. That study introduced and popularized the Cobb-Douglas functional form. The

objective of the two famous authors was actually very ambitious, as they intended to use

available accounting data of the US manufacturing economy to reconcile the marginal

theory of production with the marginal theory of income distribution.  This reconciliation

required that the input coefficients–representing the marginal contribution of capital and

labor to production–be positive and sum to unity in order to validate a long-run equilib-

rium between production and income distribution.  On an accounting basis, the income

share of labor was measured at 0.75 while that of capital was measured at 0.25.

Although this study has been criticized–with hindsight’s wisdom–on both theoreti-

cal and empirical grounds, it remains a path-breaking example of econometric analysis.

We, thus, will use the same data and model to trace the intellectual itinerary that could

have been undertaken by Cobb and Douglas if the GME estimator had been available to

them. The econometric model of interest is specified by the following Cobb-Douglas

production function
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(5)                             log(Pt) = + t + 1 ln(Ct ) + 2 ln( Lt) +ut

where, Pt ,Ct and Lt  are indices for production, capital and labor, and t  represents techni-

cal progress at time t. The economic hypotheses of Cobb and Douglas require that 1 > 0

and 2 > 0  and, furthermore, 1 + 2 = 1. The technical progress coefficient  may be

either positive or negative without jeopardizing the hypotheses. The time series of pro-

duction, capital and labor indices span a 24-year period from 1899 to 1922. The actual se-

ries of data were taken from Cobb and Douglas, p. 152, table VI, p. 145, table II, and p.

148, table III, respectively.

For reference, the ordinary least-squares (OLS) estimates of relation (5) are:

ˆ 
1 = −0.5262 , ˆ 

2 = 0.9060, ˆ = 0.0469, and ˆ = 2.8132. With ˆ 
1 < 0  and

ˆ 
1 + ˆ 

2 = 0.4798, these OLS results clearly do not support the economic hypotheses of

the marginal theory of value.  Can the GME estimator produce results that support these

hypotheses?

(table 3)

Table 3 reports the GME estimates of relation (5). Before examining this table,

however, it is convenient to recall that Golan et al. (p. 138) asserted that “…wide (pa-

rameter) bounds may be used without extreme risk consequences if our knowledge is

minimal and we want to ensure that Z  contains . Intuitively, increasing the bounds in-

creases the impact of the data and decreases the impact of the support,” and that Lence

and Miller (p. 195) also wrote that “GME results are not sensitive to changes in the width

of the error supports,…”

The results of table 3 tell a different story. Widening error bounds, while keeping

wide parameter bounds constant, has the effect of changing the sign of the capital coeffi-

cient in the direction of Cobb and Douglas’ expectations. Furthermore, for the theory of

production to match the theory of income distribution, the production elasticities of capi-

tal and labor should be close to 0.25 and 0.75, respectively. Hence, it would appear that a
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combination of bounds in the proximity of [-100,0,100] for the parameters and  [-30,0,30]

for the errors would fulfill Cobb and Douglas’ expectations.

Of course, this way of looking at the results is not an admissible process of statis-

tical inference since it would appear that the GME estimator, when properly massaged, is

capable of telling almost any story, including the story that Cobb and Douglas desired.

The fatal impropriety lies in using Cobb and Douglas’ expectations for exploring the a

priori information and mining the data until they produced the desired results. There may

be always unexplored corners of the parameter and error spaces that could have revealed

the true story or, at least, a more sensible one. But with this process we will never know.

There is nothing that the GME estimator can do to break this circular reasoning and “let

the data speak” on their own.

Comparative Statics of the GME Estimator

As remarked earlier, Monte Carlo results are not general and thus their conclusions are

not typically robust.  The conclusions derived from a limited set of Monte Carlo experi-

ments are at best correct within the specific confines of those experiments. There are,

however, general results available concerning the effects of perturbations in the parame-

ter and error support bounds on the GME parameter estimates.  To put the above Monte

Carlo and empirical results into proper perspective, therefore, we summarize the general

comparative statics results of Caputo and Paris, which were briefly alluded to in the in-

troduction.

To that end, and for the sake of keeping the present paper self contained, we pre-

sent the central theorem of Caputo and Paris.  Note that the ensuing theorem applies to a

version of the GME problem (4) in which each parameter and error has a pair of symmet-

rically placed support values about the origin, given by [- Zk , Zk ], k = 1,…,K , and [-

Vs ,Vs ], s = 1,…,T , respectively.
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Theorem 1 (Complete Comparative Statics): The K × K  comparative statics matrix

(a) for the GME problem (4) is symmetric and negative semidefinite, where

         

Ψk ′ k (a) =def ˆ 
t(a)Xtk

t=1

T

∑ 
 
 

 
 
 

∂ ˆ 
k (a) Zk[ ]
∂Z ′ k 

−
ˆ 

′ k (a)

Z ′ k 

 

 
 
 

 

 
 
 

Xs ′ k 

ˆ u s (a) Vs[ ]
∂ ˆ 

k(a) Zk[ ]
∂Vss =1

T

∑
 

 

 
 
 

 

 

 
 
 

−
ˆ 

k (a)

Zk

 

 
 
 

 

 
 
 

ˆ 
j(a)X jk

ˆ u j(a) Vj[ ]j =1

T

∑
∂ ˆ u j (a) Vj[ ]

∂Z ′ k 

−
ˆ 

′ k 
(a)

Z ′ k 

 

 
 
 

 

 
 
 

Xs ′ k 

ˆ u s (a) Vs[ ]
∂ ˆ u j(a) Vj[ ]

∂Vss =1

T

∑
 

 
 
 

 

 
 
 
,

k, ′ k =1,…, K .  Moreover, the rank of (a)  is no larger than K.

The vector a  contains all the parameter and error support bounds. The elements ˆ λ t(a),

t = 1,...,T , are the Lagrange multipliers of the T sample observations in the linear model

of problem (4).

Theorem 1 contains all the qualitative information derivable from the GME

problem (4) without imposing additional assumptions on its structure.  That is, Theorem

1 gives the fundamental comparative statics properties of the GME problem (4).  Each

element Ψk ′ k (a) of the comparative statics matrix (a)  consists of a linear combination

of T + 1  Slutsky-like forms.  The Slutsky-like forms consist of a parameter support-

bound effect, given by the expression ˆ 
k(a) Zk[ ] Z ′ k  or ˆ u j (a) Vj[ ] Z ′ k , and a lin-

ear combination of T error support-bound effects, the latter given by the expressions

ˆ 
k(a) Zk[ ] Vs  or ˆ u j (a) Vj[ ] Vs .

To acquire some understanding of the complex relations exhibited by the (a)

matrix, it is important to recognize that the form of the comparative statics given in Theo-

rem 1 applies not to the estimates of parameters and residuals, but to their values relative

to the endpoint of their own support interval. The kth diagonal element of the (a)  ma-

trix, for example, expresses the direct and indirect impacts of the variation of the support

bound Zk  on the own kth parameter estimate measured in relative terms by reference to

its own support bound ˆ 
k (a) / Zk .  But because the parameter k  enters in each of the T
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observations, its relative estimate ˆ 
k (a) / Zk  is also related to each of the T residuals

measured in relation to its own endpoint ˆ u s (a) / Vs , s = 1,...,T . In other words, by chang-

ing the support bound Zk  of parameter k , an unequivocal response is detected only

through a linear combination of all direct and indirect impacts generated by that change

through all the T sample observations.

The comparative statics matrix (a) , therefore, shows that it is the compensated

changes in the support values, scilicet, a parameter support-bound effect compensated

with every error support-bound effect, that results in unequivocal comparative statics for

the GME problem (4). Therefore, the fundamental comparative statics properties of the

GME problem (4) consist of compensated derivatives rather than simple partial deriva-

tives, and apply to the values of the parameters estimates and residuals relative to the

endpoint of their support interval.  This implies that, in general, one cannot hope to derive

unequivocal comparative statics results in the form of direct partial derivatives for the

GME problem (4), say, of the form ˆ 
k (a) Z ′ k .

For a better illustration of Theorem 1, we now assume an extreme ill-posed situa-

tion by letting K = 2  and T = 1 .  In this case the typical element of the (2 × 2) (a)  ma-

trix takes on the form

       

Ψk ′ k (a) =def ˆ 
1(a)X1k[ ] ∂ ˆ 

k (a) Zk[ ]
∂Z ′ k 

− X1 ′ k 

ˆ 
′ k (a) Z ′ k [ ]

ˆ u 1(a) V1[ ]
 

 

 
 
 

 

 

 
 
 

∂ ˆ 
k (a) Zk[ ]
∂V1

 

 

 
 
 

 

 

 
 
 

 
 
 

 
 

−
ˆ 

k(a) Zk[ ]
ˆ u 1(a) V1[ ]

 

 

 
 
 

 

 

 
 
 

∂ ˆ u 1(a) V1[ ]
∂Z ′ k 

− X1 ′ k 

ˆ 
′ k 
(a) Z ′ k [ ]

ˆ u 1(a) V1[ ]
 

 

 
 
 

 

 

 
 
 

∂ ˆ u 1 (a) V1[ ]
∂V1

 

 

 
 
 

 

 

 
 
 

 
 
 

 
 
, k, ′ k =1,2.

The Slutsky-like nature of the comparative statics matrix (a)  is now even more self-

evident.  It consists of a linear combination of two Slutsky-like terms under the simpli-

fying assumptions K = 2  and T = 1 .  The form of (a)  shows that even in this very spe-

cial case it is not possible to derive unequivocal comparative statics results in the form of
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partial derivatives for the GME problem (4), that is, comparative statics of the form

ˆ 
k (a) Z ′ k , exactly as recognized above.  Thus, in general, no simple definitive rela-

tionship exists between changes in the support bounds and the values of the parameters

and residuals in GME problem (4).

Conclusion

The GME estimates of a linear statistical model are sensitive, in general, to variations of

either parameter and/or error support bounds. Without a precise a priori knowledge of the

true range of parameter variations, the implementation of the GME estimator depends

heavily upon the subjective information provided by the researcher. In this paper we have

shown by empirical evidence and demonstrated by comparative statics analysis that the

impact of variations of parameter and error support bounds is unpredictable.  Three non

trivial Monte Carlo experiments have produced a large risk associated with such bounds’

variations. When dealing with a single data sample, it is difficult to decide which support

bounds ought to be selected to verify the model’s hypotheses. These results are the

Achilles heel of the GME estimator.
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Table 1. MSEL and error variance, well-posed models. T=50, K=10, 2 = 16 .  100

samples.

_____________________________________________________________________

Natural Units Logarithmic Units

Bounds Experiment 1 Experiment 2

 Parameter   /   Error MSEL Error Variance MSEL Error Variance

_____________________________________________________________________

[-5,0,5]         [-10,0,10]        26.684          15.359                 20.384             15.792

[-5,0,5]         [-12,0,12]        24.459          15.376                 15.394             16.143

[-5,0,5]         [-20,0,20]        17.769          16.133                   8.633             17.824

[-5,0,5]         [-40,0,40]        14.981          20.401                   8.700             20.169

[-5,0,5]     [-100,0,100]        27.103          29.373                   9.358             21.437

[-5,0,5]     [-200,0,200]        60.093          32.592                 21.978             21.667

[-10,0,10]     [-12,0,12]        30.171          15.257                 31.308             15.297

[-20,0,20]     [-12,0,12]        31.933          15.254                 41.817             15.195

[-40,0,40]     [-12,0,12]        32.396          15.255                 45.389             15.192

[-100,0,100] [-12,0,12]        32.527          15.256                 46.420             15.194

[-200,0,200] [-12,0,12]        31.687          15.227                 45.911             15.169
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Table 2. MSEL and error variance, ill-posed model. T=10, K=20, σ2 =16 ,

100 samples.

_____________________________________________________________________

               Bounds

    Parameter / Error                                MSEL                    Error Variance

_____________________________________________________________________

[-5,0,5]         [-10,0,10]                         56.881                           2.469

[-5,0,5]         [-20,0,20]                         86.664                         12.294

[-5,0,5]         [-40,0,40]                       131.405                         41.102

[-5,0,5]     [-100,0,100]                       223.442                         88.149

[-5,0,5]     [-200,0,200]                       490.988                       102.561

[-10,0,10]     [-10,0,10]                       584.328                           0.382

[-20,0,20]     [-10,0,10]                     1928.708                           0.041

[-40,0,40]     [-10,0,10]                     2927.637                           0.003

[-100,0,100] [-10,0,10]                     3334.252                           0.00009

[-200,0,200] [-10,0,10]                     3334.320                           0.000006

____________________________________________________________________
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Table 3. GME estimates of a Cobb-Douglas production function for the US manu-

facturing economy, 1899-1922.

_____________________________________________________________________

               Bounds                      Capital         Labor       Technical

  Parameter   /   Error                     ˆ 
1               

ˆ 
2          Progress      Intercept      ˆ 

1 + ˆ 
2

_____________________________________________________________________

[-100,0,100]  [-3,0,3]               -0.2746        0.8940       0.0309          1.7245       0.6194

[-100,0,100]  [-5,0,5]               -0.1086        0.8814       0.0205          1.0279       0.7728

[-100,0,100]  [-10,0,10]            0.0746        0.8428        0.0097         0.3739       0.9274

[-100,0,100]  [-30,0,30]            0.3066        0.6722       -0.0009         0.1103       0.9788

[-100,0,100]  [-100,0,100]        0.4577        0.5219       -0.0059         0.1046       0.9796

______________________________________________________________________


