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Dynamic Positive Equilibrium Problem

By Quirino Paris

Abstract

The Dynamic Positive Equilibrium Problem (DPEP) is a methodology for dealing with
time series about economic agents’ decisions, regardless of the amount of available in-
formation.  The approach is articulated in three phases, as in the static counterpart
Symmetric Positive Equilibrium Problem (SPEP), with the variant that it must be pre-
ceded by the estimation of the equation of motion which characterizes a dynamic model.
Furthermore, the definition of marginal cost in the DPEP model is different from the
same notion in the static SPEP.  In this paper, the DPEP approach was applied to a
panel data dealing with annual crops from California agriculture for a horizon of eight
years.  The dynamic character of the DPEP model is based upon then assumption of out-
put price adaptive expectations that follows a Nerlove-type specification.

Quirino Paris is a professor in the Department of Agricultural and Resource Economics at

the University of California, Davis and a member of the Giannini Foundation. This paper

was written in honor and loving memory of my wife, Carlene Paris, who died of leiomy-

osarcoma—a very rare cancer—on May 5, 2001. I am indebted to Michael R. Caputo for

stimulating conversations on this subject without implicating him in any possible error.  I

am indebted also to Richard E. Howitt for making available the data used in this paper

and for his crucial support.
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Introduction

The methodology of Symmetric Positive Equilibrium Problem (SPEP) presented by

Paris, and Paris and Howitt is extended in this paper to include a dynamic structure.  Dy-

namic models of economic problems can take on different specifications in relation to

different sources of dynamic information.  When dealing with farms whose principal out-

put is derived from fruit orchards, for example, the equation of motion is naturally repre-

sented by the difference between standing orchard acreage in two successive years plus

new planting and minus culling.  In more general terms, the investment model provides a

natural representation of stocks and flows via the familiar investment equation

(1)                       Kt = Kt −1 + It − Kt −1

where Kt  represents the capital stock at time t , It  is the investment flow at time t , and 

is the depreciation rate.  This dynamic framework, expressed by a relevant equation of

motion, becomes operational only when explicit information about investment, initial

stock, and depreciation is available.  Unfortunately, information about new plantings and

culling rarely exists.

Annual crops are also dynamically connected through decisions that involve price

expectations and some inertia of the decision making process.  We observe that farmers

who produce field crops, for example, will produce these activities year after year with an

appropriate adjustment of both acreage and yields. In this paper, therefore, we consider

economic units (farms, regions, sectors) that produce annual crops. That is, production

activities that, in principle, may have neither technological antecedents nor market con-

sequences but that nevertheless are observed to be connected through time.  We assume
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that the underlying dynamic connection is guided by a process of output price expecta-

tions.

In a static framework, the SPEP specification takes on the following structure:

(2) Ax + ≤ b, y ≥ 0

(3) x ≤ xR , ≥ 0

(4)   ′ A y + ≥ p , x ≥ 0

(5) y ≥ r , ≥ 0

and the associated complementary slackness conditions

(6)   ′ y (b − Ax − ) = 0

(7)         ′ (xR − x) = 0

(8)             ′ x ( ′ A y + − p) = 0

(9)            ′ (y − r) = 0

where b  is the vector of available resources, xR  is the vector of realized output levels, p

is the vector of market output prices, r  is the vector of market prices of resources, A is

the matrix of fixed technical coefficients.  The vectors x  and  are measured in output

and input units, respectively, while the vectors y  and  are measured in monetary terms.

This specification does not imply but neither excludes an explicit optimization as-

sumption about economic behavior.  The interpretation of constraints (2) through (5) is as

follows: Ax ≤ b −  states the physical quantity equilibrium condition on inputs accord-

ing to which the demand of limiting resources must be less-than-or-equal to the effective

supply of those resources.  The quantity b −  is interpreted as the effective supply be-

cause, while b  is a vector of fixed resource availability, the vector  acts as a buffer pa-

rameters between the actual demand and the fixed input availability. This implies that a
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positive shadow price of the limiting inputs may result even though the demand of limit-

ing resources is strictly less than its available nominal supply, that is Ax < b .  The vector

 is also the dual variable of constraint (5).  When > 0, the dual variable y  of limiting

resources is equal to the input market price, r . Constraint (4) states the economic equilib-

rium condition according to which the marginal cost of producing output, ( ′ A y + ) ,

must be greater-than-or-equal to marginal revenue, p .

The Dynamic Framework

The specification of a dynamic framework based upon the structure of problem (2)-(5)

begins with the assumption that the output price expectations of the decision maker are

governed by an adaptive process such as:

(10)           pt
* − pt −1

* = (pt −1 − pt −1
* )

where the starred vectors are interpreted as expected output prices and  is a diagonal

matrix of unrestricted elements.  In general, the elements of the  matrix are required to

be positive and less than 1 in order to guarantee stability of the difference equation in an

infinite series of time periods.  The case discussed in this paper, however considers a fi-

nite horizon of only a few years and no stability issue is at stake.  It is as if we were to

model an arbitrarily small time interval of an infinite horizon.  Within such a small time

interval, the relation expressed by equation (10) can be either convergent or explosive

without negating the stability of the infinite process. A further assumption is that the ex-

pected output supply function is specified as follows:
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(11)              xt =Bpt
*+w t

where B is a positive diagonal matrix and w t  is a vector of intercepts.  Then, equation

(10) can be rearranged as

(12)        pt −1 = pt
* − [I − ]pt −1

*

while, by lagging one period the supply function, multiplying it by the matrix [I − ],

and subtracting the result from equation (11), we obtain

(13)                 x t − [I − ]x t −1 = B{pt
* − [I − ]pt −1

* } + w t − [I − ]wt −1

 = B pt −1 + vt

where v t ≡ w t − [I − ]w t−1. Hence, the equation of motion involving annual crops and

resulting from the assumption of adaptive expectations for output prices is

(14)                    x t = [I − ]x t −1 + B pt −1 + vt .

It is important to emphasize that this equation of motion is different from the more tradi-

tional dynamic relation where the state variable is usually interpreted as a stock and the

control is under the jurisdiction of the decision maker.  The equation of motion (14)

emerges from an assumption of adaptive expectations about output prices.  Prices are not

under the control of the decision maker and, furthermore, the state variable is not a stock

but a flow variable as it represents yearly output levels.  Nevertheless, relation (14) is a

legitimate equation of motion that relates entrepreneur’s decisions from year to year.

Maximum Entropy Estimation of the Equation of Motion

Before proceeding further in the development of the Dynamic Positive Equilibrium

Problem, it is necessary to produce an estimate of the matrices B and  that define the

equation of motion.  We assume that the available information on realized output quanti-

ties, xRt , and output prices, pt , spans the horizon of T periods.  The maximum entropy
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approach employed in this paper to estimate the equation of motion is a variant of the

GME approach proposed by Golan et al. (1996).  This special case, introduced by van

Akkeren and Judge (1999), specifies the support intervals and the number of discrete

points within the sample using only the available sample information.  When feasible,

this variant of the GME approach eliminates the researcher’s subjective selection of the

discrete number of probabilities and the support’s end points.  It removes, therefore, the

often contentious  aspect associated with the original GME formulation.  In particular, let

us decompose the equation of motion in two parts: the average relation and an associated

equation defined in deviations from the average relation:

(15)                x R = [I − ]x R, −1
+ B p −1 + v 

(16)       (xRt − x R ) = [I − ](xR ,t −1 − x R, −1 ) + B (pt −1 − p −1 ) + (vt − v )

where the overhead bar indicates the sample average with respect to the index t. For

notational convenience we also define dxt ≡ (xRt − x R),dxt −1 ≡ (xR ,t −1 − x R, −1),

dp t −1 ≡ (pt −1 − p −1 ),dvt ≡ (v t − v ).

Following the GME approach, each of the parameters to be estimated is expressed

as the convex linear combination of the elements of a support matrix, say Z , where the

number of support points is taken to be equal to the number of sample observations.  In

our case, the parameters to be estimated are the diagonal matrices  and B and the vec-

tor v t . Hence,

(17)                

Γ j, j = PΓ , j , j ,s
s= 1

T

∑ ZΓ, j , j, s

Bj , j = PB, j, j,s
s =1

T

∑ ZD, j, j ,s

vt = Pv ,t, s
s=1

T

∑ Zv ,t, s
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where PF , j , j,s , PB, j , j ,s  and Pv,t ,s  are nonnegative weights for each of the estimated pa-

rameters that must add up to unity.  In the context of maximum entropy, these weights are

regarded as probabilities.

The variant of the GME methodology consists in using the sample observations to

define the  support matrices Z  and the number of discrete supports as follows:

(18)                

ZB, j , j , s = dx j ,sdx j, s −1

ZΓ , j , j , s = dx j,sdp j ,s −1

Zv, j, s = dx j, s

The relevant ME specification for estimating the equation of motion can, there-

fore, be stated as finding positive probabilities PB( j, j ,s),PΓ (j , j, s),Pv( j,s)  that

(19)     max H(PB , PΓ , Pv) = − PB( j , j,s)log(PB( j, j, s))
j ,s
∑ − PΓ( j , j ,s)log( PΓ ( j, j, s))

j .s
∑

− Pv (j,s)log(Pv( j ,s))
j, s
∑

subject to

(20)                   x R = [I − ]x R, −1
+ B p −1 + v 

(21)         (xRt −x R )=[I− ](xR,t−1−x R,−1)+B (pt−1−p −1)+(vt −v )

where the  and B matrices are replaced by their corresponding expressions = PΓZΓ

and B = PBZB  together with the adding-up conditions on the probabilities. Similarly, the

intercept terms v t  are replaced by their corresponding expressions v t =PvtZvt . The esti-

mated equation of motion calibrates the sample observations exactly.

Phase 1 of DPEP: Estimation of the Marginal Costs

Phase 1 of the Dynamic Positive Equilibrium Problem begins with a specification of the

optimization problem for the entire horizon from t = 1,...,T  and the statement of a salvage
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function.  We assume that the economic agent wishes to maximize the discounted stream

of profit (or net revenue) over the horizon T. After T periods it is assumed that the objec-

tive function consists of the discounted value of profit from period T  to infinity, which is

realized under a condition of steady state.  Analytically, then, the Dynamic Positive

Equilibrium Problem takes on the following specification:

(22)        maxV = { ′ p txt
t =1

T

∑ − ′ r t(b t − t )}/ (1+ )( t −1) + { ′ p x − ′ r (Ax)}
T

∞

∫ e− d

subject to

(23)           Atx t + t ≤ bt t = 1,...,T

(24)             x t = [I − ˆ ]xt −1 + ˆ B ̂  pt −1 + vt t = 1,...,T .

Constraint (23) expresses the technological requirements for producing the vector of crop

activities x t  given the limiting resource availability bt .   Constraint (24) expresses the

price expectations of the economic agent through an equation of motion that renders the

objective of producing annual crops a real dynamic problem.  The objective function is in

two parts.  The first component expresses the discounted profit over the horizon T.  The

second component is the salvage function where the absence of any time subscript indi-

cates the steady state stream of profit. The salvage function can be stated more conven-

iently as { ′ p x − ′ r (Ax)}T
∞∫ e− d ={ ′ p x − ′ r (Ax)} e− T  or, in order to relate it to the dis-

crete time horizon T, { ′ p x − ′ r (Ax)} e− T ≡ { ′ p T +1xT +1 − ′ r T+1(AT +1xT +1)} e− T .  With

these stipulations, the Lagrangean function of problem (22)-(24) is stated as

(25) L = { ′ p tx t
t =1

T

∑ − ′ r t (b t − t) } /(1+ )(t−1) +{ ′ p T +1xT +1 − ′ r T +1(AT +1xT +1)} e− T

+ (b t − t − Atx t ′ ) y t
t =1

T

∑ + {[I − ]xt − 1 + B p t −1 + vt − x t ′ } t
t =1

T +1

∑ .
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The corresponding KKT conditions are

(26)        
∂L

∂x t

= pt / (1+ )t −1 − At
′y t − t + [ − ] t +1 ≤ 0

(27)       
∂L

∂xT +1

= (pT +1 − ′ A T +1rT +1) e− T − T +1 = 0

(28)         
∂L

∂ t

= rt / (1+ )( t −1) − y t ≤ 0

(29)        
∂L

∂ t

= [I − ]x t −1 + B pt −1 + v t − x t = 0

(30)       
∂L

∂y t

= bt − t − Atxt ≥ 0 .

This discrete dynamic problem can be solved, year by year, using a backward solution

approach on the system of KKT conditions (26)-(30).    The key to this strategy is the re-

alization that the equation of motion calibrates exactly the sample information for any

year, that is, xR, t = [I − ˆ ]xR,t−1 + ˆ B ̂  pt−1 + ˆ v t  and, therefore, the left-hand-side quantity

xR, t  can replace the corresponding right-hand-side expression.  In other words, we can

equivalently use the available and contemporaneous information about the economic

agent’s decisions.  Furthermore, the costate variable T +1 for the time period outside the

horizon is equal to the derivative of the salvage function, that is

ˆ 
T +1 = (pT +1 − ′ A T +1rT +1) e− T . One needs knowledge of the steady state output and input

prices and of the technical coefficients at time T+1. Then, at time T, the equilibrium

problem to be solved is composed by the following structural relations

(31)       ATxT + T ≤ bT yT ≥ 0

(32)       xT ≤ xR ,T = [I − ˆ ]xR ,T −1 + ˆ B ̂  pT −1 + ˆ v T T ≥ 0
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(33)        ′ A TyT + T ≥ pT / dT + [I − ˆ ]ˆ 
T +1 xT ≥ 0

(34)        yT ≥ rT / dT
T ≥ 0

and by the associated complementary slackness conditions. The symbol d t = (1+ )t−1  is

the discount factor. Knowledge of the realized levels of output at time t and of the vector

of costate variables ˆ 
t+1 , estimated  at time t+1, allows the solution of the dynamic

problem as a sequence of T equilibrium problems.  Hence, the dynamic linkage between

successive time periods is realized through the vector of costate variables t . In this way,

the equilibrium problem (31)-(34) can be solved backward to time t=1 without the need

to specify initial conditions for the vector of state variables x0  and the price vector p0 .

As we indicated previously, there is the need to specify a terminal condition in the form

of a salvage function. This dynamic problem arises exclusively from the assumption of

adaptive price expectations. Given the DPEP as stated above, the costate variable t  does

not depend explicitly upon the state variable x t .  This implies that the positive  character

of the problem, with the concomitant use of the realized levels of activity outputs, avoids

the usual two-part solution of a dynamic problem where the backward solution is carried

out in order to find the sequence of costate variables t  and the forward solution is de-

voted to finding the optimal level of the state variables x t .  In the context specified

above, the solution regarding the state variable x t  is obtained contemporaneously with

the solution of the costate variable t .

The objective of DPEP during phase 1, therefore, is to solve T equilibrium prob-

lems starting from the end point of the time horizon, that is from t = T ,T −1,...,2,1, and

having the following structure:
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(35) min{ ′ v P1ty t + ′ v P 2 t t + ′ v D1 txt + ′ v D 2t t}

subject to

(36) Atx t + t + vP1t = b t

(37) x t + vP 2 t = xR, t

(38) ′ A ty t + t = p t / d t +[I − ˆ ]ˆ 
t+1 + vD1t

(39) y t = rt / d t + vD 2 t .

The objective function is the sum of all the complementary slackness conditions. A solu-

tion of the equilibrium problem is achieved when the objective function reaches the zero

value.  The principal objective of phase 1 is the recovery of the costate variables for the

entire horizon and of the dual variables for the structural constraints to serve as informa-

tion in the estimation of the relevant cost function during the next phase.

 The fundamental reason for estimating a cost function to represent the decision

process is to relax the fixed-coefficient technology represented by the At  matrix and to

introduce the possibility of a more direct substitution between products and limiting in-

puts.  In other words, the observation of output and input decisions at time t provides only

a single point in the technology  and cost spaces.  The process of eliciting an estimate of

the latent marginal cost levels and the subsequent recovery of a consistent cost function

which rationalizes the available data is akin to the process of fitting an isocost through

the observed output and input decisions.

Phase 2 of DPEP: Estimation of the Cost Function

By definition, total cost is a function of output levels and input prices.  In a dynamic

problem, the total cost function is defined period by period as in a static problem and rep-
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resented as C(xt ,yt ,t) ≡ Ct(xt ,yt )  (see Stefanou).  The properties of a cost function in a

dynamic problem follow the same properties specified for a static case: It must be con-

cave and linearly homogeneous in input prices in each time period.  The functional form

selected to represent the inputs is a Generalized-Leontiev specification with nonnegative

and symmetric terms.  For the outputs, the functional form is a quadratic specification in

order to avoid the imposition of a linear technology.  Furthermore, sufficient flexibility

must be allowed in order to fit the available empirical data.  For this reason, an unre-

stricted intercept term is added to the specification.  Finally, we must guarantee that the

cost function is homogeneous of degree one in input prices.  All these considerations lead

to the following functional form:

(40) Ct(x t ,y t) = ′ u yt ( ′ f txt ) + ′ u yt( ′ x tQ txt ) / 2 + yt
1 / 2′Styt

1/2 .

where u  is a vector of unit elements.  Many different functional forms could be selected

in such a way to satisfy the properties of a cost function. The matrix Q  is symmetric

positive semidefinite while the S  matrix is symmetric with nonnegative elements on and

off the main diagonal.

The marginal cost function at time t is the derivative of equation (40) with respect

to the output level at time t, that is

(46)
∂Ct

∂xt

= ( ′ u yt )ft + ( ′ u yt )Q txt = ′ A tyt

whereas, by Shephard lemma, the limiting input derived demand functions are

(42)
∂Ct

∂yt

= ( ′ f tx t )u + u( ′ x tQtx t) / 2 + ∆y −1 / 2Sty t
1 / 2 = Atxt = bt − t .

The matrix ∆ y−1/2  is diagonal with elements of the vector y t
−1 / 2on the diagonal.



13

Notice that there is a significant difference between the marginal cost of the static

equilibrium problem and the short-run (period by period) marginal cost of the dynamic

equilibrium problem.  If one considers the static equilibrium problem formulated in

model (2)-(5), the marginal cost is given in relation (4) as MC(x , y) ≡ ′ A y + .  In other

words, without a time dimension, the marginal cost is equal to the sum of the marginal

cost attributable to the limiting inputs, ′ A y , plus the variable marginal cost attributable to

the level of outputs, .   In the dynamic context elaborated above, the Lagrange multi-

plier t  assumes the meaning of a costate variable and signifies the marginal valuation of

the state variable x t  and its dependence on the entire horizon, that is,

T −n = [I − ] s(pT−n+s − ′ A T −n+syT −n+s)
s =0

n+1
∑ , where n = −1,0,...T .   In a dynamic context,

therefore, the costate variable t  cannot be used to define the period-by-period marginal

cost (as done in a static equilibrium problem where the symbol  is interpreted simply as

variable marginal cost) because it incorporates the long-run notion of a trajectory associ-

ated with a multi-period horizon.   In the dynamic equilibrium problem depicted above,

the period-by-period marginal cost is thus defined as MCt (x t , yt) ≡ ′ A ty t , as deduced

from relation (33).

The objective of phase 2 is to estimate the parameters of the cost function given in

equation (40), ft ,Qt  and St .  This estimation will be performed using the Kullback-

Leibler criterion known also as the cross-entropy formalism. Economic theory requires

that the Q t  matrix be symmetric positive semidefinite.  In order to guarantee this condi-

tion during the estimation process, two approaches based upon the Cholesky factorization

can be used.  The following specification
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(43) Q t = LtD t ′ L t

allows the estimation of a semidefinite matrix if the data support this structure. The L t

matrix is a unit lower triangular matrix and Dt  is a diagonal matrix with nonnegative

elements.  It can be shown that the Q t  matrix is positive semidefinite (definite) if and

only if the diagonal elements of Dt  are nonnegatine (positive) (see Lau).  These diagonal

elements are called the Cholesky values. This first specification of the Cholesky factori-

zation is computational intensive.  Hence, if a researcher wishes to make the sufficient

assumption that the Q t  matrix is positive definite, a computationally more saving struc-

ture of the Cholesky factorization can be implemented.

Following Golan et al., all the parameters to be estimated will be defined as  con-

vex combinations of a corresponding set of predetermined support values and where the

weights are regarded as probabilities. Hence, it is assumed that for each ( j, j )  parameter

(44) Lj ′ j ,t = ZL, t
s

∑ ( j, ′ j ,s)PL, t( j, ′ j ,s) ,                j, j 1,K, J

(45) Dj, j ,t = ZD,t
s

∑ (j , j, s)PD,t( j , j,s) ,   s 1,K,S

where ZL,t  and ZD,t  are the matrices of the known support values for the probability dis-

tributions of the L t  and Dt  matrices, respectively, while PL,t  and PD,t  are the corre-

sponding probability matrices.  In matrix notation, equations (44) and (45) correspond to

L t = ZL , tPL,t  and Dt = ZD,tPD,t , respectively, where the multiplication is performed only

with respect to the index s ,   s 1,K,S .  A similar specification involves the vector ft  and

the matrix St , that is ft = Z f ,tPf ,t  and St = ZS, tPS ,t
.

The Kullback-Leibler criterion can be stated as the problem of minimizing the

distance between two probability distributions where one of the distributions represents
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conditional or a priori information.  Suppose, therefore, that

PL
C( j , ′ j ,s),PD

C( j , j ,s),P f
C(j ,s),PS

C (i, ′ i ,s)  represent conditional (or a priori) information

about the corresponding parameters. The Kullback-Leibler criterion is then to find posi-

tive values of all the posterior probabilities, PL( j, ′ j , s),PD( j, j,s), Pf ( j ,s),PS(i , ′ i , s) , such

that, at time t

(46)        min KL(PLt ,PDt ,P ft ,PSt) = PLt( j , ′ j ,s)log(PLt (j , ′ j ,s) ÷ PL , t −1
C ( j, ′ j ,s))

j , ′ j ,s
∑

+ PDt( j, j,s)log(PDt ( j, j,s) ÷ PD,t −1
C ( j , j,s))

j,s
∑

      

+ Pft ( j,s) l o g (P ft( j,s) ÷ P f ,t −1
C ( j ,s))

j,s
∑

+ PSt(i, ′ i ,s)log(PSt (i, ′ i ,s) ÷ PS, t −1
C (i, ′ i ,s))

i, ′ i ,s
∑

subject to

(47)         ′ A t ˆ y t = ( ′ u ˆ y t)ft + ( ′ u ˆ y t)Q txR,t

         = ( ′ u ˆ y t)Z ftP ft + ( ′ u ˆ y t )(ZLtPLt )(ZDtPDt )(ZLtPLt ′ ) xR,t

(48) AtxR ,t = ( ′ f t x t )u + u( ′ x RtQtxRt ) / 2 + ∆
ˆ y − 1/2S t

ˆ y t
1/2

           = ((Z ft Pft ′ ) xRt )u + u( ′ x Rt (ZLtPLt )(ZDtPDt )(ZLtPLt ′ ) xRt ) / 2 + ∆
ˆ y −1/2 (ZSt PSt)ˆ y t

1 / 2

where the symbol (÷)  represents an element-by-element ratio.  Given the time horizon

t = 1,...,T , the a priori probabilities at time t = 1 can be taken as the uniform distribution.

The maximum entropy probabilities estimated at time t=1 become the prior (or condi-

tional) probabilities at time t = 2 , and so on.  In this way, the parameters of the cost

function in any given year are estimated under the requirement that they differ the least

from the estimates of the previous year.
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In the above formulation, the total marginal cost ′ A t ˆ y t , the limiting input demand

AtxR ,t , the realized level of activities x R ,t , and the shadow prices of limiting inputs ˆ y t ,

are known elements of the specification.  The parameters to be estimated are the prob-

abilities, PLt ,PDt ,Pft ,PSt .  The solution probabilities of problem (46)-(48) allow the recov-

ery of all the parameters of the total cost function, ft ,Q t , and St .

Phase 3 of DPEP: Calibration and Policy Analysis

The estimated cost function can now be used to replace the marginal cost levels and the

demands of inputs in the equilibrium problem of phase 1.  This replacement assures the

calibration of the model, liberates the specification from a fixed-coefficient technology,

and allows direct substitution among outputs and inputs.  At this stage, therefore, it is

possible to implement policy scenarios based upon the variation of output and input

prices.

The structure of the calibration DPEP  is given below.   With the knowledge of

the costate variables, ˆ 
t  and ˆ 

t+1  from the solution of the DPEP obtained in phase 1, the

following specification calibrates the solution of the output decisions and the input dual

variables for any period:

(49) min
x,y, ,v

{ ′ v P1,tyt + ′ v D1,tx t + ′ v D2, t t}

subject to

(50) ( ′ ˆ f tx t )u + u( ′ x t
ˆ Q txt ) / 2+ ∆y −1/2

ˆ S tyt
1 / 2+ t + vP1,t = b t

(51) ( ′ u y t )
ˆ f t + ( ′ u y t )

ˆ Q tx t = p t / d t−1 + [I − ˆ ]ˆ 
t+1 − ˆ 

t + vD1,t

(52) y t = rt / d t−1 + vD2,t .
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The use of the costate values obtained during phase 1 is required by the necessity

of eliminating the constraint on the decision variables, x t ≤ xR,t , which were used in the

phase 1 specification precisely for eliciting the corresponding values of the costates.  As

observed above, the costate variables are the dynamic link between any two periods and

their determination requires a backward solution approach.  If we were to require their

measurement for a second time during the calibration phase, we would need to add also

the equation of motion in its explicit form, since the constraint x t ≤ xR,t  would no longer

be acceptable.  In this case the T problems would be all linked together and ought to be

solved as a single large-scale model.  The calibration phase, therefore, is conditional upon

the knowledge of the costate variables obtained during phase 1 and involves the period-

by-period  determination of the output decisions and dual variables of the limiting inputs.

Given the dynamic structure of the model, a policy scenario becomes a prediction

at the end of the T-period horizon .  All the model components at period T are known and

the researcher wishes to obtain a solution of the Dynamic Positive Equilibrium Problem

for the T+1 period.  The parameters of the cost function are assumed constant and equal

to those at time T.  The costate variables at times T+2, and T+1, ˆ 
T +2 ,, ˆ 

T +1 are taken to

be equal to the steady state marginal values of the salvage function.  The remaining pa-

rameters, bT +1 ,rT +1  and pT +1  will assume the value of interest under the desired policy

scenario.

The relevant structure of the dynamic positive equilibrium problem during the

policy analysis phase takes on the following specification:

(53) min
x,y, ,v

{ ′ v P1,T +1yT +1 + ′ v D1,T +1xT +1 + ′ v D2,T +1 T +1}

subject to
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(54) ( ′ ˆ f T +1xT +1)u + u( ′ x T +1
ˆ Q T +1xT +1) / 2+ ∆y − 1/2

ˆ S T +1yT +1
1/2 + T +1 + vP1,T +1 = bT +1

(55) ( ′ u yT +1)ˆ f T +1 + ( ′ u y T+1)
ˆ Q T +1xT +1 = pT +1 / dT +[I − ˆ ]ˆ 

T +2 − ˆ 
T +1 + vD1,T +1

(56) yT +1 = rT +1 / dT + vD2,T +1 .

  Projected policy prices, either on the output or input side, will induce responses in

the output and input decisions which are consistent with the process of output price ex-

pectations articulated in the previous sections.

An Application of DPEP to California Agriculture

California’s agriculture is divided in twenty one regions.  We have selected a region of

the Central Valley that produces seven annual crops: rice, fodder crops, field crops,

grains, tomatoes, sugar beets, and truck crops.  Eight years of reporting are available from

1985 to 1992.  Three limiting inputs are also recorded: land, water and “other” inputs.

The available information is given in table 1 and deals with total availability of limiting

inputs, their prices, total realized production and the associated prices.  A technical coef-

ficient matrix was defined in terms of input per unit of output.

The first step of the DPEP procedure requires the estimation of the diagonal ma-

trix of output price expectations, .  The estimation was performed by means of a maxi-

mum entropy procedure with “endogenous”  probability supports as described above.

The estimate of  is given in Table 2.  Some of the coefficients are negative but, as ex-

plained above, they are admissible estimates of a sufficiently short horizon of eight peri-

ods.  No stability properties are violated within the context of this example.

The second step of the DPEP approach requires the estimation of the dynamic

equilibrium problem (35)-(39) using a backward solution as explained above.  For im-
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plementing this phase, a discount rate of 3 percent was selected.  We have experimented

also with discount rates that varied from 1 to 9 percent without detecting any significant

shift in the estimation results.

The parameters of the cost function (Q t ,St , and ft ) were estimated by the Kull-

back-Leibler cross-entropy approach for the years 1985-1991.  The year 1992 was kept in

reserve in order to measure the prediction error associated with the assumption of no

structural change between the year 1991 and 1992. Notice that the parameters of the cost

function were estimated for each year. In this case, therefore, the specification of the sup-

port values could not follow the suggestion of van Akkeren and Judge because it does not

apply when only one observation is available.  Hence, the original GME approach was

adopted for the support matrices ZD,ZL ,ZS  and Z f .  In particular, the supports for the

ZD matrix were defined as the product of a vector of weights w1
1 = (0,1.5,3)  and a pa-

rameter par( j) = mc( j) / xRj , where mc(j) is marginal cost.  The supports for the ZL  ma-

trix were defined as the product of a vector of weights w2
1 = (−2.5,0,2.5) and the same

parameter par( j) .  The supports of the matrix ZS  were defined as the product of the

weights w1
1  and the parameter b(i), the i-th input availability.  Finally, the supports of the

matrix Z f  were defined as the weights w2
1 .

The estimate of the Q  matrix for 1991 in the cost function is given also in table 2.

The off diagonal coefficients of this matrix are rather small relative to their diagonal

counterparts indicating a limited degree of substitutability between pairs of the seven

crops.  It is possible to compute the associated matrix of supply elasticities by inverting

the implicit supply function given by the marginal cost function. The estimated matrix
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turned out to be positive definite although the approach allowed the estimation of a posi-

tive semidefinite matrix.

Table 3 presents the estimate of the matrix S  of limiting inputs for 1991 in the

cost function.   The associated matrix of derived demand elasticities indicates that land is

marginally elastic in this agricultural region.  Allen and Morishima elasticities of substi-

tution are also given in table 3.  The matrix S  is positive definite.

Table 4 presents the S  matrices from 1985 to 1991.  It is remarkable to notice

how similar these matrices are, indicating that during the period 1985-1991 there were no

significant structural changes.  In order to aid in the evaluation of these matrices the cor-

responding eigenvalues are given along with the associated condition numbers.  The ei-

genvalues show a robust stability of these matrices as do their condition numbers (the ra-

tio of the largest to the smallest eigenvalues).

The Q  matrices are of dimension (7 by 7) and their reporting for the seven years

would require several pages.  In order to avoid such a visual chaos we present their ei-

genvalues  and condition numbers which, again, show a remarkable stability throughout

the time interval under study.  We wish to recall that the estimation of these matrices (Q

and S) was performed by means of the Kullback-Leibler cross-entropy ratio which al-

lows to minimize the deviation between two probability distributions.  In this case, the

minimum deviation translates into a minimum distance between two successive pairs of

matrices, as illustrated by the results of table 4.

The empirical results from the estimation of the cost function have indicated only

small variations from year to year of the Q t  and St matrices.  Thus, an alternative estima-

tion procedure (not currently pursued in this version of the paper) would assume that no
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technical change occurred during the 8-year horizon.   This assumption implies the con-

stancy of the Q  and S  matrices.   In other words, only one set of Q  and S  matrices

would be estimated and the endogenous variant of the GME approach could be imple-

mented.

The results of phase 3 contain two parts. The first part deals with the verification

that indeed the DPEP methodology calibrates the output decisions and land allocations

within the time period of 1985-1991.  The second part consist in a prediction of output

decisions and land allocation for 1992 using the cost function of 1991. Table 5 shows that

the calibration goal is achieved within very precise limits.  The prediction exhibits an er-

ror that varies from 2 to 20 percent in the case of the output decisions and from zero to 29

percent in the case of the shadow prices of limiting inputs. The average percent error for

the prediction of the output decisions is 12.13 while the average percent error for the

shadow input prices is 9.66.

Finally, table 6 presents the estimates of the costate variables associated with the

equation of motion involving price expectations.  Their values tend to increase as we

move toward the beginning of the time period because  their structure is given by the

following  expression: T −n = [I − ] s(pT−n+s − ′ A T −n+syT −n+s)
s =0

n+1
∑ .  One costate value in

each year is equal to zero by virtue of the degeneracy built into the primal equilibrium

problem (see relations (36) and (37)).

Sensitivity Analysis Involving the Support Intervals

A well-known limitation of the original GME approach is given by its dependence upon

the researcher’s subjective specification of the support intervals of the corresponding
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probability distributions.  As a consequence, the parameter estimates depend crucially

upon the pre-selected support values.  Furthermore, given the structure of the maximum

entropy, there is no possibility of making general statements about the direction of re-

sponse of the estimated parameters in relation to either an enlargement or a shrinkage of

the support intervals (see Caputo and Paris).  It remains, therefore, to judge the appropri-

ateness of the supports’ choice case by case.  Finally, we must recall that a quantitative

analysis is always characterized by two stages: estimation and prediction. A sensitivity

analysis involving some or all the support intervals may have a differential impact upon

the parameter estimates and the predictions.

With these considerations in mind, we re-estimated the empirical equilibrium

problem using two additional sets of supports.  The first of these sets shrinks the support

intervals by reducing the weights from w1
1 = (0,1.5,3)  to w1

2 = (0,1,2)  and from

w2
1 = (−2.5,0,2.5) to w2

2 = (−1,0,1).  The results of this shrinkage of the support intervals

are presented succinctly in Table 7.

Let us consider the S91  matrix first.  Only nonnegative weights w1
2 = (0,1,2)  were

involved in the estimation of the elements of this matrix.  We notice that to a 33 percent

reduction in the support intervals there corresponds a reduction of parameter estimates of

about 30 percent (except for the element land-land).  The eigenvalues of the St  matrices

are about 30 percent smaller than the corresponding eigenvalues of the original  matrices

in table 4.  The new condition numbers, however, are slightly larger but more uniform.

A similar pattern is uncovered for the Q91 matrix in table 7.  The diagonal ele-

ments have shrunk by about 30 percent with a 33 percent reduction of the support inter-

vals.  The off-diagonal elements show a wider range of changes, perhaps as a conse-
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quence of their miniscule original values.   The eigenvalues of the Q t  matrices in table 7

exhibit a 40 percent reduction in comparison to the original counterparts in table 4.  The

condition numbers, however, are only about 15 percent smaller.

There is no doubt that a variation of between 30 to 50 percent in the selection of

support values has produced a significant variation in the parameter estimates, as ex-

pected.  The same variation of support intervals reveals an interesting pattern of changes

in the predictions.  First of all, all the crops in table 7 exhibit a prediction error that lies

within 20 percent of the original prediction errors in table 5.  Some of the errors increase

and some decrease, in absolute value.   As an overall measure of the prediction error we

have computed the average absolute percent error.  Such an error is about the same in the

two sets of predictions, with an average error of 12,13 for the original predictions in table

5 and an average error of 11.62 for the prediction corresponding to the shrunk set of sup-

port values.   The average absolute percent error of the input shadow prices shows a re-

duction of about 20 percent between the two scenarios.

The second set of additional supports enlarges the original weights w1
1  to

w1
3 = (0,3,6)  and the weights w2

1  to w2
3 = (−5,0 ,5).  The results are presented in table 8.

The matrix S  for 1991 in table 8 (compared with a similar matrix in table 3) indi-

cates that an increase of 100 percent in the support intervals has induced a variation of up

to about 90 percent in the coefficients estimates.  The eigenvalues of the matrices from

1986 to 1991 follow a similar pattern.  The condition numbers of the S  matrix in table 8,

however, are very close to those of the original S  matrix in table 3.

A comparison of the Q  matrix in table 8 with the Q  matrix in table 3 indicates

that a 100 percent enlargement of the support intervals has induced an increase in the ei-
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genvalues by about the same percentage, except for the largest eigenvalue which exhibits

an increase of about 130 percent.  For this reason, the condition numbers of the Q  ma-

trix in table 8 are larger (by 3 points ) than the eigenvalues of the Q  matrix  in table 3.

The new eigenvalues exhibit the same pattern as the original ones.

Although, on the estimation side, the enlargement of the support intervals has in-

duced an increase of the estimated parameters of about 100 percent, on the prediction

side the same enlargement has much less dramatic effects.   Table 8 shows that the per-

cent difference in output decisions for 1992 is rather close to the same differences in table

5.  As a more compact measure, the average absolute percent prediction error for the out-

put decisions in table 8 is 13.02 while the comparison measure in table 5 is 12.13.  The

average absolute percent prediction error for the input shadow prices is 10.72 in table 8

and 9.66 in table 5. This result is similar to that encountered previously with a 50 per-

cent reduction of the support intervals. In any quantitative analysis the prediction aspect

is more relevant than the individual parameter estimates. The above sensitivity results in-

dicate that the effects of the subjective choice of support intervals in the GME approach

are considerably smaller at the prediction than the estimation stage.

Conclusion

The main goal of DPEP is to make a rational and consistent use of the available scarce in-

formation regarding economic decisions. In this paper, the routine statistical information

produced by the agricultural reporting service of the State of California was analyzed in a

dynamic model for annual crops under the assumption that the economic agents form

their output price expectations according to a Nerlove-type adaptive process. The DPEP
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methodology was developed along the framework of the static Symmetric Positive Equi-

librium Problem (SPEP) which requires a three-phase development.  Phase 1 recovers the

latent marginal costs of the limiting inputs and of the realized output levels.  Phase 2 es-

timates a consistent cost function that replaces the fixed coefficient technology and intro-

duces more direct sustitutability between inputs and outputs. Phase 3 verifies the calibra-

tion process and allows the analysis of various policy scenarios.  In the DPEP approach,

however the three-phase scheme proper of SPEP must be preceded by the estimation of

the relevant equation of motion that confers the dynamic character to the model.  Fur-

thermore, a significant difference between the original SPEP and the DPEP consists in

the definition of marginal cost.  In a SPEP static model, the marginal cost is the sum of

the fixed marginal cost due to limiting inputs plus the variable marginal cost associated

with the output levels.  In the DPEP model, on the contrary, the period-to-period mar-

ginal cost is simply the marginal cost associated with limiting inputs.  The marginal cost

associated with the output levels becomes the costate variable that assumes an inter-

temporal significance.

The estimation of the parameters of the equation of motion was performed using a

maximum entropy approach with “endogenous” specification of the support values of the

corresponding probability distribution.  In other words, the sample data were used to

specify both the levels and the number of discrete supports.  This procedure, suggested by

van Akkeren and Judge, eliminates the need for the researcher to select subjective levels

of support.

The estimation of the cost function, with parameters dated by each time period,

could not use the “endogenous” specification of the support values because the van Ak-
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keren’s suggestion requires more than one observation.  The original GME specification

was, therefore, adopted and a sensitivity analysis was performed in order to gauge the ef-

fects of the subjective choice of support intervals.  It turns out that the parameter esti-

mates are substantially more affected by this choice than are the prediction errors.   As

the predictions are more important than the parameter estimates, it may be possible to

rely with some confidence on the empirical results.

The parameter estimates of the cost function indicate a remarkable stability of the

technology implied by the economic agents’ input and output decisions.  Hence, it is pos-

sible to revise the specification of phase 2 and assume that the matrices Q  and S of the

cost function remain constant throughout the analyzed horizon.  In this case, the estima-

tion could be performed using the sample information in order to specify the support val-

ues, thus removing an important item of contention among researchers.
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Table 1.  Input Data from an Agricultural Region of California
_______________________________________________________________________________

           85       86      87       88       89       90       91       92

----    PARAMETER B             Total inputs

LAND    2.5227   2.2526   2.0994   2.1472   2.2489   2.1785   2.0080   1.9199
WATER   9.1027   8.1980   8.0426   8.6711   8.7030   8.1768   7.5498   8.0948
OTHER   5.3240   3.4727   3.9179   3.5405   4.3006   4.9299   4.5227   4.4895

----    PARAMETER R            Input prices

LAND    1.3900   1.2300   1.0800   1.2700   1.3900   1.3900   1.4600   1.4600
WATER   0.0494   0.0381   0.0398   0.0360   0.0402   0.0456   0.0427   0.0419
OTHER   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000

----       PARAMETER XBAR          Total production
            85       86       87      88       89       90       91       92

Rice     2.9825   2.6622   2.6725   2.9210   3.2612   2.6702   2.5026   2.2588
Fodder   1.2221   1.0976   1.0710   1.0249   1.0266   0.9914   1.1345   1.0045
Field    2.5976   2.5611   2.6446   2.1392   2.1240   2.2599   1.9356   2.2625
Grain    1.4609   0.8597   0.6639   0.7105   0.9506   0.7936   0.7146   0.8178
Tomato   5.8887   6.4537   6.0530   5.9482   7.5285   7.6154  10.2426   9.4169
SugarB   1.7742   1.8800   2.4728   2.5799   2.5998   1.8893   2.0331   1.5654
Truck    0.9682   0.9058   0.8088   0.7394   0.6915   0.8369   0.8550   0.9598

----   PARAMETER PRI           Output prices

Rice     1.5100   1.6100   1.5900   1.5400   1.4100   1.5300   1.6600   1.5500
Fodder   0.8500   0.7700   0.7170   0.8730   0.9230   1.0070   0.8330   0.7470
Field    0.9670   0.7700   0.7930   1.0130   1.0270   1.0600   1.0930   0.9830
Grain    0.9670   0.8070   0.8030   1.0700   1.1970   0.9830   1.0170   1.1030
Tomato   0.5100   0.5100   0.4600   0.4800   0.5200   0.5500   0.5470   0.4870
SugarB   0.3500   0.3430   0.3330   0.3730   0.3870   0.3900   0.3730   0.3830
Truck    1.7800   1.5800   1.6800   1.9800   1.8800   1.9500   2.0500   1.9600

_________________________________________________________________________________



29

Table 2.  Estimation results
________________________________________________________________________________

----   PARAMETER Gamma       Output price expectation diagonal matrix

            Rice    Fodder     Field     Grain    Tomato    Sugarbeets   Truck

         -0.0118    0.0059   -0.0271    0.0295    0.1032     -0.0113    0.0111

----   PARAMETER Q     Output cost matrix for 1991

            Rice    Fodder     Field     Grain    Tomato   Sugarbts     Truck

Rice      0.6775   -0.0328    0.0132   -0.0421    0.0024   -0.0015     -0.1767
Fodder   -0.0328    0.6607    0.0062   -0.0029    0.0001    0.0005     -0.0607
Field     0.0132    0.0062    0.3298    0.0254    0.0022    0.0026      0.0005
Grain    -0.0421   -0.0029    0.0254    1.0083    0.0074    0.0074     -0.0803
Tomato    0.0024    0.0001    0.0022    0.0074    0.1006    0.0003      0.0012
SugarB   -0.0015    0.0005    0.0026    0.0074    0.0003    0.2212      0.0008
Truck    -0.1767   -0.0607    0.0005   -0.0803    0.0012    0.0008      1.4923

----    Matrix of Supply Elasticities for 1991

            Rice    Fodder     Field     Grain    Tomato   Sugarbts     Truck

Rice      0.2811    0.0087   -0.0084     0.0091   -0.0026    0.0003     0.0430
Fodder    0.0355    0.2867   -0.0083     0.0035   -0.0007   -0.0003     0.0343
Field    -0.0139   -0.0034    0.4001    -0.0098   -0.0039   -0.0015    -0.0037
Grain     0.0468    0.0044   -0.0304     0.3530   -0.0142   -0.0042     0.0457
Toamto   -0.0021   -0.0001   -0.0019    -0.0022    0.1593   -0.0001    -0.0010
SugarB    0.0018   -0.0004   -0.0053    -0.0048   -0.0008    0.2454    -0.0010
Truck     0.0835    0.0163   -0.0043     0.0173   -0.0025   -0.0003     0.3790

_________________________________________________________________________________
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Table 3.  Estimation results (continue)
____________________________________________

----    S matrix of limiting inputs 1991

             LAND       WATER       OTHER

LAND       2.7690      0.9475      3.6797
WATER      0.9475      3.3798      0.5712
OTHER      3.6797      0.5712      7.3425

----    Derived demand elasticities 1991

             LAND       WATER       OTHER

LAND      -1.2344      0.0404      1.1940
WATER      0.3668     -0.6549      0.2881
OTHER      0.3122      0.0083     -0.3205

  Allen elasticities of substitution 1991

             LAND       WATER       OTHER

LAND      -6.0918      1.8100      1.5406
WATER      1.8100    -29.3707      0.3718
OTHER      1.5406      0.3718     -0.4135

Morishima elasticities of substitution 1991

             LAND       WATER       OTHER

LAND                   0.6953      1.5145
WATER      1.6011                  0.6086
OTHER      1.5465      0.6632

_______________________________________________
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Table 4.  Estimation results (continue)
__________________________________________________________________________________

---- PARAMETER S   Generalized-Leontief matrix for limiting inputs (seven years)

                  85        86        87       88        89       90       91

LAND .LAND     2.8108    2.6254    2.4966    2.6781    2.8777   2.6659    2.7690
LAND .WATER    1.0650    0.9549    0.9794    0.9666    1.0062   0.9815    0.9475
LAND .OTHER    3.4911    3.3117    3.2238    3.3089    3.6164   3.4435    3.6797
WATER.LAND     1.0650    0.9549    0.9794    0.9666    1.0062   0.9815    0.9475
WATER.WATER    3.7012    3.4115    3.5236    3.4523    3.5296   3.4988    3.3798
WATER.OTHER    0.7033    0.5704    0.6193    0.5809    0.6234   0.6129    0.5712
OTHER.LAND     3.4911    3.3117    3.2238    3.3089    3.6164   3.4435    3.6797
OTHER.WATER    0.7033    0.5704    0.6193    0.5809    0.6234   0.6129    0.5712
OTHER.OTHER    5.8371    5.9146    6.2138    5.6363    6.3916   6.4714    7.3425

----   Eigenvalues for the S matrices
             85        86        87        88        89        90        91

  1        8.4220    8.1740    8.2987    8.0086    8.8680    8.7064    9.5374
  2        3.4904    3.2983    3.4029    3.3109    3.4118    3.3956    3.3432
  3        0.4366    0.4792    0.5324    0.4472    0.5191    0.5338    0.6097

       Condition Number for the S matrices
     19.290    17.057    15.587    17.908    17.083    16.310    15.643

   
----   Eigenvalues for the Q matrices
         85         86          87         88         89         90         91

  1    1.6139     1.5600     1.5286     1.5362     1.5405     1.5260     1.5415
  2    1.0315     1.0048     1.0106     1.0205     1.0388     1.0095     1.0088
  3    0.6806     0.6790     0.6807     0.6756     0.6782     0.6738     0.6916
  4    0.5779     0.6366     0.6525     0.6240     0.5549     0.6353     0.5991
  5    0.3268     0.3279     0.3281     0.3311     0.3278     0.3300     0.3279
  6    0.2271     0.2279     0.2260     0.2254     0.2205     0.2238     0.2210
  7    0.1222     0.1249     0.1260     0.1257     0.1137     0.1186     0.1005

       Condition Number for the Q matrices
 13.207     12.490     12.132     12.221     13.549     12.867     15.338

_________________________________________________________________________________
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Table 5. Results of Phase 3
________________________________________________________________________________

----        Calibrated output decisions (Phase 3)
            85       86       87       88       89       90       91       92

Rice      2.9825   2.6622   2.6724   2.9211   3.2613   2.6703   2.5026   2.4827
Fodder    1.2222   1.0976   1.0710   1.0250   1.0266   0.9914   1.1346   1.0773
Field     2.5977   2.5612   2.6446   2.1392   2.1241   2.2600   1.9356   1.9611
Grain     1.4610   0.8598   0.6637   0.7106   0.9506   0.7936   0.7146   0.7004
Tomato    5.8887   6.4537   6.0529   5.9483   7.5285   7.6154  10.2427   9.6388
SugarB    1.7742   1.8800   2.4728   2.5800   2.5999   1.8894   2.0331   1.8803
Truck     0.9682   0.9058   0.8088   0.7394   0.6915   0.8369   0.8550   0.7912

Percent difference in output decisions.  Weights (0,1.5,3) and  (-2.5,0,2.5)
             85       86       87       88      89       90       91       92

Rice       0.0001   0.0001  -0.0058   0.0001  0.0001   0.0001   0.0001   9.9096
Fodder     0.0001   0.0001  -0.0047   0.0001  0.0001   0.0001   0.0001   7.2408
Field      0.0001   0.0001  -0.0019   0.0001  0.0001   0.0001   0.0001 -13.3226
Grain      0.0001   0.0001  -0.0419   0.0001  0.0001   0.0001   0.0001 -14.3592
Tomato     0.0001   0.0001  -0.0031   0.0001  0.0001   0.0001   0.0001   2.3555
SugarB     0.0001   0.0001  -0.0023   0.0001  0.0001   0.0001   0.0001  20.1150
Truck      0.0001   0.0001  -0.0081   0.0001  0.0001   0.0001   0.0001 -17.5683

                                   Average percent prediction error:    12.13

----  Calibrated input shadow prices (Phase 3)
             85       86       87       88       89       90      91       92

LAND       1.3900   1.1942   1.0184   1.1622   1.2350  1.1990   1.2227   1.1871
WATER      0.0494   0.0370   0.0375   0.0330   0.0357  0.0394   0.0358   0.0341
OTHER      1.4526   2.1502   1.7679   1.8113   1.8041  1.5889   2.0765   1.9003

Percent difference in input shadow prices.  Weights (0,1.5,3) and  (-2.5,0,2.5)
           85      86      87       88        89      90        91        92

LAND       0.0     0.0    0.0373    0.0       0.0     0.0       0.0       0.0
WATER      0.0     0.0    0.0360    0.0       0.0     0.0       0.0       0.0
OTHER      0.0     0.0    0.0356   -0.0001    0.0     0.0       0.0      28.9889

                                    Average percent prediction error:     9.66

----    Effective supply of limiting inputs

             85       86       87       88       89       90       91       92

LAND       2.5227   2.2526   2.0994   2.1472   2.2489   2.1786   2.0080   1.7473
WATER      9.1027   8.1981   8.0426   8.6712   8.7030   8.1768   7.5499   7.4007
OTHER      5.3241   3.4727   3.9179   3.5406   4.3006   4.9300   4.5228   4.4895

----    PARAMETER BETA
              92

LAND        0.1726
WATER       0.6941
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Table 6.  Costate variables
_________________________________________________________________________________
             85       86       87        88       89       90       91       92

Rice       0.5890   0.5474   0.3508   0.1550        0   0.0049    0.0415        0
Fodder     2.3440   2.0072   1.7945   1.6084   1.2171   0.8504    0.4877   0.2666
Field      3.4598   2.9836   2.5648   2.1762   1.6200   1.1790    0.8286   0.3571
Grain      2.4978   2.1117   2.0330   1.8697   1.4597   0.9497    0.6834   0.4089
Tomato          0        0        0        0   0.0079        0         0   0.0857
SugarB     0.2704   0.2706   0.2839   0.2344   0.1665   0.1041    0.0659   0.0961
Truck      6.8853   6.0046   5.4233   4.6504   3.5452   2.7187    1.8902   1.0543

_________________________________________________________________________________

Table 7. Sensitivity analysis of supports' end points. Weights (0,1,2),(-1,0,1)
________________________________________________________________________________

      S matrix of the cost function, 1991

             LAND       WATER       OTHER
LAND       1.3194      0.6533      2.0756
WATER      0.6533      2.4630      0.4459
OTHER      2.0756      0.4459      4.9995

----   Eigenvalues of the S matrix
            85       86        87        88        89        90        91
  1      5.4463    4.8799    5.0320    4.7918    5.5564    5.5540    6.0608
  2      2.5615    2.3644    2.4435    2.3821    2.4872    2.4772    2.4175
  3      0.2763    0.2312    0.2693    0.2303    0.2815    0.2830    0.3036

Condition number of the S matrices
        19.711    21.106    18.685    20.807    19.739    19.625    19.960

----   Q matrix of the cost function, 1991
           Rice     Fodder    Field     Grain    Tomato     SugarB    Truck

Rice      0.3922   -0.0124   -0.0003   -0.0171   -0.0001   -0.0007   -0.0583
Fodder   -0.0124    0.4230   -0.0008   -0.0096   -0.0005   -0.0006   -0.0328
Field    -0.0003   -0.0008    0.2185    0.0020    0.0002    0.0003   -0.0087
Grain    -0.0171   -0.0096    0.0020    0.6291    0.0010    0.0008   -0.0356
Tomato   -0.0001   -0.0005    0.0002    0.0010    0.0640    0.0002   -0.0023
SugarB   -0.0007   -0.0006    0.0003    0.0008    0.0002    0.1454   -0.0025
Truck    -0.0583   -0.0328   -0.0087   -0.0356   -0.0023   -0.0025    0.8865
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----   Eigenvalues of the Q matrix
            85        86        87        88        89        90        91

  1       0.9406    0.9122    0.9158    0.9210    0.9386    0.9058    0.8995
  2       0.5843    0.6292    0.6453    0.6394    0.6094    0.6257    0.6274
  3       0.4332    0.4350    0.4373    0.4337    0.4313    0.4384    0.4271
  4       0.3697    0.3861    0.4006    0.3633    0.3198    0.3908    0.3770
  5       0.2139    0.2104    0.2126    0.2201    0.2173    0.2214    0.2184
  6       0.1526    0.1525    0.1485    0.1470    0.1426    0.1483    0.1454
  7       0.0847    0.0855    0.0875    0.0871    0.0756    0.0800    0.0640

Condition number of the Q matrices
         11.105    10.669    10.466    10.574    12.416    11.323    13.992

Sensitivity analysis of supports' end points. Weights (0,1,2) and (-1,0,1)

           Percent Difference in output decisions

            85       86       87      88      89      90      91       92

Rice      0.0001   0.0001   0.0001  0.0022  0.0001  0.0001  0.0001  12.0758
Fodder    0.0001   0.0001   0.0001  0.0019  0.0001  0.0001  0.0001   5.5121
Field     0.0001   0.0001   0.0001  0.0016  0.0001  0.0001  0.0001 -12.0788
Grain     0.0001   0.0001   0.0001  0.0023  0.0001  0.0001  0.0001 -14.2596
Tomato    0.0001   0.0001   0.0001  0.0015  0.0001  0.0001  0.0001  -0.5895
SugarB    0.0001   0.0001   0.0001  0.0013  0.0001  0.0001  0.0001  16.2212
Truck     0.0001   0.0001   0.0001  0.0024  0.0001  0.0001  0.0001 -20.6870

     Average absolute percent prediction error    11.62

----  Percent Difference in limiting inputs.  Weights (0,1,2) and (-1,0,1)

                                           92

LAND                                       0.0
WATER                                      0.0
OTHER                                     23.2809

Average absolute percent prediction error  7.76
_______________________________________________________________________________
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Table 8. Sensitivity analysis of supports' end points. Weights (0,3,6), (-5,0,5)
_________________________________________________________________________________

        S matrix of the cost function  1991
             LAND       WATER       OTHER
LAND       6.2993      1.6474      7.5381
WATER      1.6474      5.7932      0.8565
OTHER      7.5381      0.8565     13.0223

----   Eigenvalues of the S matrix
           85       86        87        88        89        90       91

  1     16.2433  16.1937   16.2247   15.8037   16.9128   16.5639   18.1268
  2      5.5632   5.6620    5.8476    5.6241    5.7756    5.7901    5.7705
  3      1.0322   1.0301    1.0829    0.9016    0.9604    0.9459    1.2175

   Condition number of the S matrices
        14.820   15.720    14.983    17.153    17.610    17.511    14.988

----   Q matrix of the cost function  1991
           Rice    Fodder    Field     Grain     Tomato    SugarB    Truck

Rice     1.3965   -0.1922    0.0191   -0.3375    0.0097   -0.0169   -0.7443
Fodder  -0.1922    1.3497    0.0269    0.0030    0.0022    0.0041   -0.1278
Field    0.0191    0.0269    0.6451    0.0697    0.0104    0.0099    0.0134
Grain   -0.3375    0.0030    0.0697    2.1174    0.0414    0.0361   -0.1197
Tomato   0.0097    0.0022    0.0104    0.0414    0.2016    0.0013    0.0158
SugarB  -0.0169    0.0041    0.0099    0.0361    0.0013    0.4433    0.0046
Truck   -0.7443   -0.1278    0.0134   -0.1197    0.0158    0.0046    3.3955

----   Eigenvalues of the Q matrices
            85        86        87        88        89        90        91

   1      3.7911    3.8024    3.7558    3.9781    4.1022    3.7565    3.6440
   2      2.5023    2.2788    2.2230    2.2467    2.3081    2.2846    2.2453
   3      1.4118    1.4039    1.4018    1.3930    1.3933    1.3956    1.4480
   4      0.8599    0.9627    1.0031    0.9588    0.8426    0.9501    0.9349
   5      0.6403    0.6378    0.6358    0.6246    0.6305    0.6350    0.6350
   6      0.4460    0.4467    0.4461    0.4457    0.4414    0.4444    0.4420
   7      0.2309    0.2335    0.2339    0.2333    0.2214    0.2260    0.1999

     Condition number of the Q matrices
    16.419    16.284    16.057    17.051    18.528    16.622    18.229
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Sensitivity analysis of supports' end points. Weights (0,3,6) and (-5,0,5)

             Percent Difference in output decisions

            85       86       87       88      89       90       91       92

Rice     -0.0008   0.0001  -0.0001   0.0019  0.0001   0.0001  -0.0012   9.3474
Fodder   -0.0014   0.0001  -0.0001   0.0017  0.0001   0.0001  -0.0011   9.5259
Field    -0.0011   0.0001   0.0001   0.0008  0.0001   0.0001  -0.0005 -13.8771
Grain    -0.0013   0.0001  -0.0002   0.0022  0.0001   0.0001  -0.0014 -13.6492
Tomato    0.0016   0.0001   0.0002   0.0008  0.0001   0.0001  -0.0004   5.4770
SugarB   -0.0012   0.0001   0.0001   0.0008  0.0001   0.0001  -0.0008  24.7367
Truck    -0.0017   0.0001  -0.0002   0.0025  0.0001   0.0001  -0.0015 -14.5219

          Average absolute percent prediction error  13.02

----   Percent Difference in limiting inputs.

           85       86       87       88       89       90       91       92

LAND     0.0000   0.0000   0.0000   0.0000   0.0000   0.0001   0.0000    0.0000
WATER   -0.0018  -0.0001  -0.0001  -0.0093   0.0000   0.0000   0.0000    0.0000
OTHER   -0.0045   0.0000   0.0000  -0.0342   0.0000   0.0001  -0.0019   32.1727

                             Average absolute percent prediction error   10.72

_________________________________________________________________________________


