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[. Introduction
The most general representation of a consumer’s utility function includes commodity prices
alongside the quantities of real goods. The justification for including commodity prices was
advanced more than fifty years ago by Samuelson (1947) and Patinkin (1948), both of whom
also suggested the introduction of real cash balances into the consumer’s preferences. About the
same time, Scitovsky (1945) suggested that prices may also be choice variables when they are
perceived as an index of acommaodity’s quality. In spite of thisidea s old vintage, it remains an
open question as to how to derive empirically verifiable hypotheses under the most general
formulation of the consumer’s optimization problem. Most recently, Samuel son and Sato (1984)
formulated this challenge in explicit terms and provided their own analysis of the problem.

In this paper, we have taken up Samuelson and Sato’s (1984, p. 603) challenge and
presented the most general comparative statics solution of the price-dependent utility
maximization problem to date by deriving a symmetric and negative semidefinite generalized
Slutsky matrix that is empirically observable and which contains all other such comparative
statics results as special cases. Our analysisis of theoretical and empirical importance because it
provides atestable alternative to the standard consumer model when it is rejected by the sample
data. For better or worse, this event has occurred more often than not. For example, using data
from Holland and from Germany, Barten and Geyskens (1975) found that the Dutch sample did
not reject any of the theoretical restrictions implied by the archetype model, while the German
sample rejected the hypothesis that the Slutsky matrix is symmetric and negative semidefinite.
Similarly, Horney and McElroy (1988) found evidence against the neoclassical model, and
Altonji, et. a. (1989) rejected the household pooling hypothesisimplied by the standard
consumer model. Using a Bayesian approach and an ailmost ideal demand system specification,
Chalfant et. al. (1991) found that the posterior probability for concavity of the expenditure
function to hold isonly 0.16.

The rejection of symmetry and negative semidefiniteness of the Slutsky matrix weakens

our confidence in atheory that assumes the maximization of the utility of real goods subject to a



linear budget constraint. But, as Kuznets (1963) wisely wrote: “... (an) empirically irrelevant
theory lies on until an empirically relevant theory replacesit; just testing is not enough.” The
mounting evidence against the prototype consumer demand model suggests the need for
revisions and extensions that include the prototype specification as a special case. Inthisway,
more powerful tests of the traditional theory can be performed and Kuznets' (1963) appeal for an
empirically relevant theory may become areality.

To this end, our paper extends the standard consumer model by deriving the most general
set of conditions that may serve as a scaffolding for empirically verifiable hypotheses of the
corresponding theories when real-cash balances and commodity prices enter the direct utility
function of the neoclassical consumer in an explicit fashion. As noted above, this line of
research is of old vintage, dating back to Samuelson (1947), Patinkin (1948), Lloyd (1971),
Berglas and Razin (1974), and Samuelson and Sato (1984). I1n none of these works, however,
have the authors achieved the most general set of empirically verifiable and refutable
comparative statics properties possible under the stated specifications and assumptions.

At the macro level, economists seem to have accepted the view that consumers do not
derive utility directly from money, but rather from the consumption of goods that money can buy
[Marschak (1950) and Clower (1963)]. Hence, according to these economists, money does not
explicitly enter the direct utility function. At the micro level, however, thereis acompelling
reason for considering a specification of the consumer problem that includes real -cash balances
in the utility function, scilicet the increasing tendency of empirical studiesto refute the
implications of the standard consumer model. Lloyd (1971) has discussed thisissue rather

thoroughly, and it seems economical to quote him at length:
“... it isimportant to recognize that even if one can leave money out of the consumer’s
utility function with accuracy, one need not. If the consumer pattern of choices conforms
to certain axioms, then his preference ordering may be represented by a utility function.
These axioms assert certain properties of monaotonicity, continuity, and transitivity. If the
axioms apply to a consumer’s preferences over a commodity space which does not

include money, there seems to be little reason to doubt that they would also apply were



the commodity space augmented to include the money commodity. Roughly speaking, if
a consumer can choose between bundles which do not include amounts of the money
commodity, then he can likely choose between bundles which do. Moreover, if he
prefers more commaodities to less, he will probably prefer more money to less. If his
preferences were transitive without money, they will be likely to remain transitive with
its introduction, etc. To include money in the utility function, we need not claim that the
consumer gains any real satisfaction from it; only that he can make consistent choices

over bundles that include quantities of it, an almost gallantly innocuous assumption.

The analytical conclusion of Lloyd’s (1971) discussion is that the utility function U[% of
a consumer exhibits the property of weak separability between the set of real goods X and the
real-cash balances M, thereby implying that (M™,X)— U[M",g(X)]. Lloyd (1971) attempted,
without success, to derive the empirical implications of a consumer model based upon a utility
function that includes real-cash balances. It remained for Berglas and Razin (1974) to show how
to derive those implications under the assumptions of weak separability and a unitary interest
rate on money. Their specification of the utility function is slightly different from that of Lloyd
(1971), in that the real-cash balances are resolved in the nominal quantity of money M and a
priceindex p, asin the definition M™% M/ p. The utility function of Berglas and Razin
therefore takes the form (M, X, p) — U[M,g(X), p]. They derive comparative statics relations
using a two-stage maximization procedure. Although correct, their derivation produces only
sufficient conditions and lacks the elegance of a general approach, and as such, may explain the
neglect of this paper by authors that analyzed the subject in subsequent years.

Among these authors, Samuelson and Sato (1984) presented an interesting analysis of
money-goods models that can be considered heretofore the most complete discussion of the
subject. They elaborated on two main specifications that admit refutable hypotheses. Both
formulations hinge upon the assumption of weak separability of the utility function with respect
to some subset of the arguments. They also obtain only a sufficient set of conditions for problem

(1) below. Because the work of Samuelson and Sato (1984) is closely related to our work, itis



sagacious at this juncture to pause briefly and take stock of their basic assumptions, notation,
method of attack, and results.

[l. Samuelson and Sato
The first formulation of Samuelson and Sato [1984, Eq.(23)] is

V(r,P,Y)% rmx{U[M,g(X);P] st. M +P& =Y}, (1)

where M > 0 isthe nominal money balance, r > 0 isthe interest rate, Y > 0 isthe consumer’s
income, X & (x,%,,%,x,)T A" isthe vector of rea goods, P € (p,, p,,%4,p,)1 A", isthe
vector of prices of the real goods, and ¢denotes transposition. Note that we are following
Samuelson and Sato’ s (1984) notation quite closely, diverging only in minor ways for the
purpose of clarity. In particular, we adopt the convention that (i) the derivative of a scalar-
valued function with respect to a column vector is arow vector, (ii) adouble subscript on a
scalar-valued function represents the Hessian matrix of that function, with the number of rows
equal to the number of elementsin the first subscript and the number of columns equal to the
number of elements in the second subscript, and (iii) all vectors of variables are column vectors.
In model (1) thereal goods X are assumed to be weakly separable with respect to both M and P.
To eiminate money illusion, the utility function is further assumed to be homogeneous of degree
zero in the nominal money balance M and the prices P.

Samuelson and Sato (1984) used a two-stage maximization process to obtain a modified
Slutsky matrix involving the uncompensated demand functions for money and real goods, which
we now briefly outline. The first-stage maximization problem is

m)gx{g(X) st. PX :\?}, (2

where Y isan arbitrary allocation of income for the goods. The solution of problem (2) yields
the conditional demand functions H[%, with values H [P,\A(] . These demand functions obey all
the prototypical properties of standard demand functions. The second-stage maximization

problemis

rnqg{U[M,g(H[P,\Aq);P] st. M +\?:Y}. 3



The solution of problem (3) yields the uncompensated demand function for money, to wit M(%,
with value M(r,P,Y), and the optimal allocation of income for the purchase of the real goods,
namely Y=Y- rM(r,P,Y). The uncompensated demand functions X (% for the real goods, with
values X(r,P,Y), are the solution to problem (1) and the ultimate objects of interest, along with
M(r,P,Y). Theformer'svalues are related to the values of the conditional demand functions by
the identity

X(r,P,Y)° HPY - rM(r,P,Y)], 4)
as shown by Samuelson and Sato [1984, Eq. (31a)]. Using identity (4) and the fact that the
conditional demand functions H[% obey the archetype Slutsky properties, Samuelson and Sato
[1984, Eq. (32b)] derived the following modified Slutsky matrix

é ué u
, CGX XM oM 8
@ €X daX U €dr 9dY UuedP adY U

= + —X@¢,- - N ) (5)
P 9y é9M oM U
+ 2% M
gar "oy '8

and showed that, under their solution procedure, it is symmetric and negative semidefinite almost
everywhere. Samuelson and Sato (1984, p. 595) also showed that the compensated slope of the
money demand function is strictly negative almost everywhere.

The modified Slutsky matrix S' isremarkable in at least two respects. First, all the terms
of Eq. (5) are observable and thus estimable in principle. Hence the matrix S provides a
fundamental scaffolding for testing the hypothesis that consumers maximize utility with respect
to their choices of real goods and cash balances. Second, it clearly contains the Slutsky matrix of
the traditional consumer model as a specia case. The modified Slutsky matrix S therefore
provides the basis for additional statistical power for the test of the standard model.

The second formulation of Samuelson and Sato [1984, Eq.(24)] is

rm?({U[M/p(P),X] st. M +PX =V}, (6)

where p(P) isapriceindex that satisfies p(AP) © A p(P). Notethat the utility function in this

formulation is assumed to be homogeneous of degree zero in money M and the price index p(P).



By defining real cash balances as x, £ M/ p(P) and letting p, £ rp(P), Samuelson and Sato
(1984, p. 592) showed that model (6) isformally equivalent to the standard specification of the

consumer problem, to wit

maxx{U[xo,X] st. pX,+PX =Y}. (7)

Let the value of the demand functions associated with problem (7) be x, = H (P P, %2, 0., Y),

I =0,1%4,n, to which there corresponds the symmetric and negative semidefinite Slutsky matrix
[H +HH., ], 0,] =0,1%,n, (8)

wherethe (n +1)-st parameter of the demand functionsis the given level of income, and the

subscripts on the function H (¥ indicate partial differentiation. Note that we use H (¥ for the

demand functions of this model rather than H' (§ so as to distinguish them from the conditional

demand functions of model (1).

About problem (7) Samuelson and Sato (1984, p. 593) issued a“Warning: if p(P) is not
known to us in advance—and why would it be?-and why even be known to exist?-the (demand
functions) observations do not seem to be sufficient to ‘identify’ the form or even the existence
of the p(P) function and the (8) tests cannot be performed!”

In the present paper, we generalize and extend Samuelson and Sato’s (1984) resultsin
two directions. First, by abandoning their two-stage maximization scheme and applying the
primal-dual formalism of Silberberg (1974) to model (1) directly, we obtain an empirically
observable generalized Slutsky matrix that exhibits a more general structure than that obtained
by Samuelson and Sato (1984). That is, we produce the most general modified Slutsky matrix to
date that is empirically verifiable and which contains the Samuelson and Sato (1984) modified
Slutsky matrix as a special case. Thisisthe central result of our paper.

Second, Samuelson and Sato’s (1984) aforementioned “Warning” regarding model (7) is
unwarranted. We will show that only the existence of the priceindex p(P) isrequired, whileits
form need not be known. That is, we show that model (6) produces observable and verifiable

comparative statics relations without explicit knowledge of the form of the price index p(P).



In models (1) and (6) there are n +1 decision variables (M, X), n +2 parameters
(r,P,Y), and one constraint, thereby implying that there are n degrees of freedom in the decision
space and n +1 degrees of freedom in the parameter space. Asaresult the maximal rank of a
comparative statics matrix in either model cannot exceed the smaller of these two numbers,
scilicet n. We can therefore limit our searchto n” n comparative statics matrices without 10ss of
information.

Finally, we should note the assumptions upon which the results of Samuelson and Sato
(1984), and consequently ours, rest. Briefly, the central assumptions are the existence of a C
direct utility function which is strictly increasing and strictly quasi-concave in (M, X) for given
P. Inaddition, an interior solution to the utility maximization problem is assumed, a sufficient
condition for which isthe classical Inada-type condition.

[11. Comparative Statics Without Two-Stage M aximization
In this section we prove that the solution of problem (1) without using a two-stage maximization
approach generates comparative statics relations which encompass the modified Slutsky matrix
S of Samuelson and Sato (1984). The resulting generalized Slutsky matrix constitutes a set of
necessary and sufficient conditions for the consumer’ s problem (1). Thisisthe central result of
our paper. The discussion, therefore, isin the spirit of Samuelson and Sato’s (1984, p. 603) open
guestion to search for the most general specification of the money-goods model that yields
empirically observable refutable implications on the money and real goods demand functions.

A convenient analytical framework for dealing directly with problem (1) is the primal-
dua method of Silberberg (1974). We thusintend to solve the ensuing primal-dual problem:

M'rxr?quyy{V(r,P,Y) -U[M,g(X);P] st. rM+PX =Y}. (9)
Defining the Lagrangian for problem (9) as
L(M,X,r,P,Y)Z V(r,P,Y)- U[M,g(X);P] +A[rM + P¢X - Y],

the first-order necessary conditions for problem (9) include
L, (M, X,r,P,Y)=-U,[M,g(X);P] + Ar =0, (10)
Ly (M, X,r,P,Y) =-U,[M,g(X);P]g, (X) + AP¢= 0, (11)



L (M, X,r,P,Y)=V.(r,P,Y)+AM =0, (12)
Lo (M, X, 1,P,Y) =V, (r,P,Y) - UM, g(X);P] +AX¢= 0, (13)
LM, X,r,P,Y)=\(r,RY)- A=0, (14)
and the budget constraint. By making use of Egs. (10)—14) and the second-order necessary

conditions of problem (9), we prove the following theorem in the appendix. It isthe central

result of our paper.

Theorem 1. For the money-goods model (1) without two-stage maximization, the generalized

Sutsky matrix takes the form

*dgeaX_F% u_ear aY ueaP a u eaP aY uéeo a u
&P oY eal\/l+a|v| &M al\/l ’
Ear oY H §ar "oy M

and is symmetric and negative semidefinite.

A comparison of the generalized Slutsky matrices S and S revealsthat S equals S
plus athird term. Hence the two matrices differ only by the third term of S , which is comprised
of a positive semidefinite matrix in the numerator and a strictly negative scalar denominator.
Sinceboth S and S are derived under the assumption of weak separability of the real goods
with respect to money and prices, the two-stage maximization procedure implies a curvature
condition that is sufficient for obtaining the negative semidefiniteness of S'. Conversely, in the
absence of two-stage maximization, that is, by attacking problem (1) directly viathe primal-dual
formalism, the negative semidefiniteness of S requires an additional matrix, to wit itsthird
term, which is negative semidefinite by construction. Consequently, Samuelson and Sato’s
(1984) modified Slutsky matrix S isaspecial case of that derived here. In other words, the
negative semidefiniteness of the modified Slutsky matrix S isa sufficient, but not a necessary,

condition for the negative semidefiniteness of the generalized Slutsky matrix S .



How isit then that we are able to derive a more general Slutsky matrix than Samuelson
and Sato (1984) while employing exactly their assumptions and model formulation? The answer
liesin the method of derivation of the generalized Slutsky matrix. The two-stage maximization
approach, in effect, focuses one's attention on the main diagonal block matrices S, and S,, of
the symmetric and negative semidefinite matrix S defined in the Appendix, since one deals with
the decision variables M and X in two separate stages. Hence, by employing the two-stage
maximization approach oneis essentially unaware of the off diagonal (or interaction) block
matrices S, and S,;, and thus the fact that they obey the symmetry property S¢ =S,,.
Moreover, inspection of the proof of Theorem 1 in the Appendix reveals that the symmetry
S¢ =S, isbasal in establishing it. The primal-dual method, in other words, explicitly focuses
one' s attention on the entire symmetric and negative semidefinite matrix S, thereby permitting
the exploitation of the crucial symmetry property S¢ =S,,.

The generalized Slutsky matrices S and S extend the empirical relevance of the
archetypal consumer model. To see this, suppose that a sample of observations on consumer
choices of real goods and money balances made at different price vectors, interest rates, and
income levelsis available. The hypothesis that such information is consistent with the standard
utility maximization model can be verified by testing whether the prototype Slutsky matrix is
symmetric and negative semidefinite. Many empirical studies that have appeared in the literature
have refuted the implications of the standard model. Under these circumstances the usual
conclusions are that either (i) the consumers did not behave as utility maximizers, or (ii) the
quality of the dataisinsufficient to perform areliable test, or (iii) the tests were conditioned on
the functional forms used in the empirical analysis. In the absence of an aternative specification
the possibility that the standard model is the cause of the rejection would be an inoperative
conclusion. The analysis presented in this section introduces precisely the needed alternative
specification. Thus, it is possible that a sample of consumers who are not utility maximizers
according to the prototypical model may behave rationally according to model (1). The

estimation of the observable uncompensated demand functions M(r,P,Y) and X(r,P,Y), and the

10



verification of whether S and S are symmetric and negative semidefinite matrices constitute
two separate tests that the sample information is consistent with the maximization of utility
functions which include cash balances and commodity prices explicitly.
V. The Observability of Model (6)
Contrary to Samuelson and Sato’s “Warning” (1984, p. 593), the comparative statics
implications of model (6) are observable and, therefore, can form the basis for atest of consumer
rationality under the money-goods specification. The resolution of this issue proceeds by
deriving explicit expressions for the derivatives appearing in the Slutsky matrix in Eq. (8). For
this case the relevant demand functions are
M(r,P,Y) ¥ p(P)H (rp(P),P,Y), (15)

x(r,P,Y)€ H'(rp(P),P,Y), i =1,2%,n. (16)

while the associated symmetric and negative semidefinite Slutsky matrix in Eg. (8) can be

restated more explicitly as

0, i,j=1,2%,n. (17)

Notice that up to this point, we have followed Samuelson and Sato’s (1984) devel opment
scrupulously. The further step taken here to establish observability of the matrix |H! + H'H!,, |,
I,] =1,2,%,n, isthe use of the symmetry inherent in the matrix é, astep not taken by
Samuelson and Sato (1984).

To begin, differentiate Eq. (15) to get
IM M

. = PP H(rp(P) P.Y), (18)
ap] =rp(P)H apf)])w(P)H +H° p(j ), ] =12%,n (19)

IM

=3 = PP (rp(P).P.Y). (20)

Similarly, differentiate Eq. (16) to get

11



% = p(P)H, (rp(P),P,Y), i =1,2.%,n, (21)

ﬁ = rF (rp(P), P,Y)2 pg’) +A(rp(P).P.Y), i,j =121, (22)
9% (i (rp(P),P,Y), i =1,2%,n (23)

Y

Using Egs. (15), (16), and (18)—(23), we find that the elements of S can be written as follows:

1 é8|\/|+8|\/|
T (PP E&ar  aY H

He+HOHC,, = £ 0, (24)

1 € u é u .
0 - éaM +6M X, - 1 _ ap(P)gM +rﬂ6, j=12%,n, (25)
p(P)edp, aY ‘0 p(P) ap,- r

Ao e

1eax ax

H +H°A = i =1,2%,n, 26
0 nt p(P)g ar Y H ! (26)
A a A é
H}+HJH'n+1=ax X J-faxeiap(P) i1 =12%,n. (27)
ap 9Y ar gp(P) ap. 0

By the symmetry of é, Eq. (25) isequal to Eq. (26) when i = |, afact that allows elimination of

the priceindex p(P) and its derivatives:

€M oM U &x ax 0
é— + X; U-
1 apP) Gap oy g &r v i
dp(P) _ &P _ U ,j=12Y,n. (28)
p(P) ap, M+ iMY

&
Substituting Eg. (28) into Eq. (27) and recognizing that the symmetry and negative

semidefiniteness of S implies the same for its submatrix s [H + HIH, ] completes the proof

n+1

of the result of this section, to wit

Proposition 1. The comparative statics of problem (6) are summarized by the statement that the
matrix é, with typical element
€M oM q I,

€ X u
TR TR,
&1 MU
Mg

12

& wd% 9%, IXE
)

TR 2T

i j=1,2Y%n,



is symmetric and negative semidefinite.

Proposition 1 demonstrates that the comparative statics tests of model (6) can be
performed with the estimation of M(r,P,Y) and X(r,P,Y), without the requirement of knowing
explicitly the form of the priceindex p(P). The empirical relevance of the discussion elaborated
in this section is based upon the fact that it is not necessary to estimate the demand function for
real balances x,(r,P,Y) but, rather, for nominal money balances M(r,P,Y). The definition
x, & M/ p(P) is posited only for the purpose of logical analysis and need not be estimated since
its price slopes do not enter in Proposition 1. To achieve this result, we eliminated the unknown
price index effects viaa combination of observable price and income effects on the real goods
and money demand functions using the symmetry of the full Slutsky matrix (17). This operation
is exactly analogous to the estimation of the (directly unmeasurable) Hicksian substitution effects
of the standard model by means of observable Marshallian price and income effects.

V. Implications
The major economic implication of both modelsis that, now, the traditional Slutsky matrix is
neither symmetric nor negative semidefinite. Giffen-type commodities are admissible among
real goods even in the case of positive income effects. Indeed, the above models liberate demand
analysis from the shackles of normal goods, and the set of Giffen goods need not be confined to
afew, improbable examples. Sloping upward demand curves are admissible even for normal
goods because the burden of assuring a negative substitution term may fall upon a complex
combination of all marginal responses of the demand functions for money and real goods.

The above discussion also invalidates the well known proposition that, if the
uncompensated cross-price effects of the demand for real goods are equal, then the goods
weighted income effects are also equal [see, e.g., Silberberg (1990, p. 343)]. No such conclusion
is possible under the assumptions of the two models discussed in this paper.

The notion of commodity substitutes and complements must also be revised, accordingly.
In the standard model, two commodities are said to be substitutes (complements) if the cross-

price derivative of the compensated demand function is positive (negative). For normal goods,
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the positivity of the uncompensated cross-price derivative implies that the two commaodities are
substitutes. Conversely, for inferior goods, the negativity of the uncompensated cross-price
derivative implies that the commodities are complements. In the two money-goods models
discussed above, these conclusions are invalidated and no more shortcuts can be taken in the
determination of whether two commaodities are either substitutes or complements.

Another implication derives from model (1) when attacked directly with the primal-dual
formalism. The derivation of the generalized Slutsky matrix S of Theorem 1 required
expressing a combination of derivatives of the utility function in terms of the observable
compensated price slopes of the demand functions for money and real goods, asin Eq. (43) of
the Appendix. A close scrutiny of Egs. (40) and (43) of the Appendix shows that the same
generalized Slutsky matrix S could be obtained with the assumption Uy, °© O, .. In other
words, the assumption that goods X are weakly separable with respect to money balances M and
the prices of the goods P, generates the same set of observable refutable implications as the
assumption that goods X are additively separable from their prices P. The most general form of

the utility function that satisfies U,, ° 0, , IS
U(M,X;P)=F(M, P) +G(M, X). (29)

The additively separable utility function in Eq. (29) is more general than the weakly separable
utility function U[M,g(X);P] in model (1) in the sense that goods X are not weakly separable
from money balances M. On the other hand, the additively separable utility function in Eq. (29)
isless general than the weakly separable utility function U[M,g(X);P] in model (1) in the sense
that goods X are additively separable from the good prices P. In order to clarify how two utility
functions which are not monotone increasing transformations of one another can correspond to
the same empirically verifiable comparative statics relations as expressed by the generalized
Slutsky matrix S of Theorem 1, it is sufficient to note that S was obtained by exploiting the
particular structure of the primal first-order necessary conditions (10) and (11) of the primal-dual

problem (9), a step that is not required under the utility function in Eq. (29).

14



A final implication concerns the theory of revealed preference. It iswell known that the
weak axiom of revealed preference implies that the matrix of substitution effects of the standard
model is negative semidefinite, and that the strong axiom is equivalent to the assertion of utility
maximization in the prototype consumer model. The results of Samuelson and Sato (1984),
however, aswell as the generalization established here, show that the prototype Slutsky matrix
no longer need be symmetric and negative semidefinite to define rational behavior. Thisresult,
in turn, means that the strong axiom of revealed preference also need no longer hold to define
rational economic behavior. In other words, data which reject the symmetry and negative
semidefiniteness of the archetype Slutsky matrix and, therefore, the strong axiom of revealed
preference, may be consistent with the modified Slutsky matrix developed by Samuelson and
Sato (1984) and generalized here. Thus there exists, in principle, ageneralized version of
reveaed preference theory that is equivalent to the money-goods models discussed in this paper.

V1. Conclusions
We accepted Samuelson and Sato’s (1984, p. 603) challenge to find the most general set of
conditions which correspond to observable and empirically verifiable relations of the money-
goods model. Such relations were obtained in Theorem 1, which encompass Samuelson and
Sato’s (1984) sufficient conditions. The observability of the generalized Slutsky matrix S
hinges upon the structure of the matrix of cross-partial derivatives of the utility function U,,, .
By attacking problem (1) directly, we have shown that two alternative specifications of the utility
function give rise to the generalized Slutsky matrix S , videlicet UM, g(X),P] or
F(M,P) + G(M,X). Inthefirst case U, =UpQ,, whilein the second case U, =0, ,. A
priori, neither of these utility functions can be judged to be more general than the other.

Finally, by using symmetry conditions, which were disregarded by Samuelson and Sato
(1984), we were able to show that model (6) produces observable and verifiable relations without
the necessity of knowing explicitly the form of the priceindex p(P). Thisfinding voids

Samuelson and Sato’s “Warning” (1984, p. 593) issued in relation to this model.
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Appendix

Proof of Theorem 1. The second-order necessary conditions of problem (9) require that

ut,, (M, Xr,PY)us 0" ulT A™* h(a)u=0, (30)
where at® (r,PGY)T A" h(o) € Y- rM- P&, and h, (o) = (- M,- X¢1)T A™? isthe
normal vector to the level curve of the constraint function in the n + 2 -dimensional parameter
space. Since h, (a) * 0¢,, theimplicit function theorem implies that the level curve of the
constraint function in the n + 2 -dimensional parameter spaceis of dimension n+1. Thuswe
seek n +1 vectorsthat form abasis for the tangent hyperplane to the level set of the constraint
function in parameter space. It isrelatively straightforward to verify that a suitable set of such
basis vectorsis given by t* € (1,0,,M)¢ and t“ € (0,,0,,%4,0, ,,1,,0,.,,%,0, .., X )¢,
k=23%Y,n+1. Definethe (n+2)" (n+1) matrix A by placing the basis vector t™ in the mth
column, m=1,2% ,n+1. We can then define the following matrix

\ V. ue1 Ogu
N 1 el Og MUeV rP rY r¢u
s® A¢— A=- V. 80 | ePr [ PP~ UPP] YUeOn lnu
Y n n

é/Yr Vi Vv, BV Xa

_ 18 [V +2Wy, + MY, [Ve +V, X C+ MV, +MX 0y |
RV avpr+M\/F,Y+xer+Mva] [Vop = Upp + Voy X €+ XV +xxww]u
g Su Sl

g, st

where all the terms are evaluated at the solution to problem (1), namely M(r,P,Y) and
X(r,P,Y), and where S is a symmetric and negative semidefinite matrix in view of EQ. (30) and
V, (r,P,Y) >0.

Now solve Egs. (12) and (14) to get M =- V,(r, P,Y)/V,(r,P,Y), and then differentiate:
IM_ VY

=- LM, (32)
ar V, V.
ﬂ:-ﬁ_ M\ﬁ (32)
PV, V,
M:_ﬁ_ M\& (33)
Y v,



Next, compensate Eq. (31) with 55 M and (32) with %5 X ¢ to produce

aa_t/l LMy - _[vr+2|\/|\/rY M, ¥ s, £0, (34)
oM oM « g
I I = 2V +V.X G+ MV + MX O | 35
op 3Y VY[ rP ry N ] 12 ( )

Similarly, solve Egs. (13) and (14) to get

_ -Ve(LPY)E UM, PY).g(X(r,P.Y) P¢
~ OV /(r,P,Y) V, (r,P,Y) ’

and then differentiate;

U
X _ Moy Mo, U IM Uy o 0X (36)
ar V, vV, ar V, 7" oar

X _ Moy Mo, U Un dM  Ug Ugy o, 9X
Py VIR VAV VAFT-SME VI JPT=

aX VA U aM U oX
A NG \M —Sg,—. (38)
Y V, \/Y N v v, oY

(37)

Now compensate Eq. (36) with 3 M and (37) with % X ¢ to produce
€)X X u UPMeaM OM U Uy, &)X ax

” M- —2 , 39
&r "My V, &r Tav V Sy T H = Sa (39)
X 9X U Uy, &M aM_ 0 U, €9X

+— X - —2M + X - P9 40
&p v ¥ V, BaP  9Y \, “gp aY % S2- (40)

The next step in the proof isto apply the compensated derivatives = + % M and

=4 + £ X ¢ to the budget constralntlnldentlty form, scilicet rM(r,P,Y)+P&(r,P,Y)° Y, to get

€9 X 8X eaM oM U
P¢ =- +— My, 41
g or H ar oY H (41)
€9 X aX &M oM
P¢? =- +—X ) 42
aY % gaP Y (42)

UM

Note that the symmetry of Simpliesthat S¢ =S,,, and that g, = £ follows from the first-
order necessary conditions (10) and (11). Usetheseresultsin Egs. (35) and (39), and then use

Eq. (41) to simplify the resulting expression to obtain
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oM oMW &x ox U
M M - 22+ 2
&, U, U, U &P aY TR (43
— u_ T .
eevYU v, &M oM [
gr oy

Now substitute g, = UM £ into Eqg. (40), then use Eq. (42) to rewrite the resulting expression, and

finally substitute EQ. (43) into that result to get

éX  aX UM oM U €M oM W&am am U

08 492 Mia 19 e &0 IM oy a2l 9V

&X  IX u_gﬂ PV TR quf‘éaP oy 8er Ty 1

i TR €M M U €M, M U '
ar "oy 'H Ear "oy

Defining S ¥ S,, completes the proof. Q.E.D.

18



References

Altonji, J., F. Hayashy, and L. Kotlikoff, 1989, “Is the Extended Family Altruistically Linked:
Direct Tests Using Micro Data.” NBER Working Paper No. 3046. New Y ork: NBER,
1989.

Barten, A.P., and E. Geyskens, 1975, “ The Negativity Condition in Consumer Demand.”
European Economic Review 6, 227-60.

Berglas, E., and A. Razin, 1974, “Preferences, Separability, and the Patinkin Model: A
Comment.” Journal of Political Economy 82, 199-201.

Chafant, JA., R.S. Gray, and K.J. White, 1991, “Evauating Prior Beliefsin a Demand System:
The Case of Meat Demand in Canada.” American Journal of Agricultural Economics 73,
476-490.

Clower, R.W., 1963, “Classical Monetary Theory Revisited.” Economica 30, 165-70.

Horney, M.J., and M.B. McElroy, 1988, “ The Household Allocation Problem: Empirical Results
From aBargaining Model.” Research in Population Economics 6, 15-38.

Kuznets, C.M., 1963, “Theory and Quantitative Analysis.” Journal of Farm Economics 45,
1393-1400.

Lloyd, C., 1971, “Preferences, Separability, and the Patinkin Model.” Journal of Palitical
Economy 79, 642—-651.

Marschak, J., 1950, “The Rationale of Money Demand and of ‘Money Illusion’.”
Metroeconomica 2, 71-100.

Patinkin, D., 1948, “Relative Prices, Say’s Law and the Demand for Money.” Econometrica 16,
135-54.

Samuelson, P.A., Foundations of Economic Analysis, Cambridge: Harvard University Press,
1947.

Samuelson, P.A., and R. Sato, 1984. “Unattainability of Integrability and Definiteness
Conditionsin the General Case of Demand for Money and Goods.” American Economic

Review 74, 588-604.

19



Scitovsky, T., 1945, “ Some Consequences of the Habit of Judging Quality by Price.” Review of
Economic Sudies 12, 100-05.

Silberberg, E., 1974, “ A Revision of Comparative Statics Methodology in Economics, or, How
to Do Comparative Statics on the Back of an Envelope.” Journal of Economic Theory 7,
159-72.

Silberberg, E., The Sructure of Economics. A Mathematical Analysis, New Y ork:

McGraw Hill Book Co., 1990 (second edition).

20



