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Abstract

This paper presents a theory of technical progress that interprets the price-induced conjecture of
Hicks. It provides also an exhaustive set of comparative statics conditions that constitute the
scaffolding for an empirical test of the theory. A crucial assumption is that entrepreneurs make
decisions about techniques on the basis of expected information about prices and quantities.
Another assumption is that these decisions are made in order to fulfill a profitability objective.
The novelty of our approach is that expected relative prices enter the production function as
shifter of the technology frontier. The consequence of this assumption is an expansion of the
traditional Shephard lemma that is useful for identifying the portion of input quantities that have
been determined by the conjecture of price-induced technical progress (PITP). The theory is
applied to a sample of 80 years of US agriculture. Three versions of the general model are
presented. The first version deals only with expected relative prices. The empirical results do not
reject the PITP hypothesis. The second and third versions introduce lagged expected relative
prices, lagged R&D expenditures and lagged extension expenditures as explanatory variables of
the portion of the input quantities that may be attributable to technical progress.

JEL Classification: C60, D21.
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Price-Induced Technical Progress in 80 years of US Agriculture

1. Introduction

John Hicks (1932) is credited with advancing the conjecture that changes in relative prices
induce technical progress (TP). This conjecture implies that relative factor prices serve a dual
function, as signals of resource scarcity and as determinants of the firm’s technology choice.
Hayami and Ruttan (1971) revitalized Hicks’ conjecture and made important contributions to the
explanation of the magnitude and direction of TP in the American and Japanese agricultural
sectors using the relative price hypothesis. Over the past thirty years, many authors have
attempted to test this hypothesis using aggregate data and obtaining mixed results. In these
studies, the consensus approach to the econometric estimation and testing of the hypothesis that
technical progress is induced by relative prices has been to regress the ratio of some factors of
production over a distributed lag series of their price ratios and other similar series of extension,
public and private R&D expenditures. Thirtle, Schimmelpfennig and Townsend (2002)
summarized several significant studies of this kind and produced one of their own. The sample
information about output quantity and output price is remarkably absent in many of these studies.
This omission seems in contrast to the conjecture advanced by several economists according to
whom the choice of techniques is determined, to a large extent, by profitability considerations.
In this paper, therefore, we attempt to recast the price-induced technical progress (PITP)
hypothesis into a framework that utilizes all the available theoretical and sample information,
including output price and quantity. This approach leads to a novel set of comparative statics
conditions of the economic theory of the firm undergoing technical progress that provides an

exhaustive scaffolding for testing the PITP conjecture.



When dealing with technical progress, it is convenient to distinguish the innovation phase
from the adoption phase. The majority of price-taker firms self select into the adoption phase. In
general, the choice of available techniques made by those firms is guided mainly by expected
profitability considerations. When price-taker firms are aggregated into an industry, such as the
US agricultural sector, the R&D and extension expenditures may become determinants of the
industry technical progress. Griliches (1957, p. 519), Arrow (1969, p. 29), Hirsch (1965, p. 38)
and other economists have suggested that expected profitability objectives may be a determinant
of adoption rates.

The expected profitability conjecture relating expected profits to TP leads to a model
where expected output and input prices enter the production function as shifters of the
technology frontier. As originally suggested by Paris (1993) and re-elaborated more recently by
Paris and Caputo (2001) and by Caputo and Paris (forthcoming), we incorporate expected
relative factor prices (expected input prices normalized by the single expected output price)
explicitly into the production function and assume a cost-minimizing behavior of the individual
entrepreneur.

The introduction of expected relative prices into the production function invalidates the
traditional comparative statics relations of the competitive firms but leads---by necessity---to a
more general model of the cost-minimizing/profit-maximizing entrepreneur. The novel set of
comparative statics conditions depends on both primal and dual relations and is expressed in the
form of a symmetric and negative semidefinite matrix of estimable terms. It follows that the
empirical implementation of the PITP conjecture developed in this paper requires the joint
estimation of the derivatives of the cost function with respect to relative input prices, the

production function and the first order necessary conditions.



2. The Theory of Price-Induced Technical Progress
We assume that cost-minimizing firms are risk neutral and make their decisions on the basis of
expected quantities and prices. The process of expectation formation is characteristic of every
firm but is unknown to the econometrician.

Given the expected profitability conjecture, we postulate a production function f(-) for a
price-taker, risk-neutral and cost-minimizing firm with values

y s fxwhr) (D

where y° is the expected level of output for any strictly positive (J x1) vectors x and w° of
input quantities and expected relative input prices. The expected relative input prices are defined
as the ratio of expected input prices to the expected output price. In this paper, we assume a
single output. The symbol ¢ represents the index of traditional, exogenous technical progress.
With respect to the production function in relation (1) we assume only its existence and
differentiability of order 2.

The price-taking risk-neutral cost-minimizing model of the firm operating under the
influence of price-induced TP is stated as

oy W nE

min{w‘x s.t. - f(x,w’,r)< 0} (2)
where the symbol ' is the transpose operator. We assume that problem (2) possesses a unique

interior ¢ solution o+ h‘(a) for all o € B(a’;8), where B(a’;0) is an open (J+2)-ball

. . . . def 0, o . .
centered at the point a Efﬁi’f with radius 6>0, and where a ;(w ,Y%,t) 1s the given
parameter vector of the problem. The Lagrangean function corresponding to the minimization

problem (2) can be stated as L(x,A;y*,w’,t)=wx+A[y’ = f(x,w’,¢)] and, assuming that a



nondegenerate constraint qualification holds at the solution (i.e., f. (h(w®,y",t);w*,t)= 0 for at
J

least one value of the index j), the first order necessary conditions are given by
L = wi— )»fx/_ x,w,1)=0, j=1,..,J 3)
L=y - f(x,w,t)=s0, A=z0, AL, = A[Y" - f(x,w*,1)]=0. 4)
since w >0, j=1,...,J equations (3) and (4) imply A(w*,y,r)>0. In turn, this fact and equation
(4) imply that the marginal product of each input is positive at the optimum, that is,

fxl_(h(ye,we,t),we,t)>0, j=1,...,J, where x°=h(y’,w’,) is the optimum vector of input
derived demand functions.

The properties (or lack of them) of the cost function ¢(-) defined in equation (2) can be
listed as follows. The presence of the expected relative prices in the production function induces
a property of non-concavity with respect to the same prices on the cost function. Hence, the
traditional comparative statics conditions are violated. Secondly, the prototype Shephard’s
lemma must be modified to assume a functional form that involves also the derivatives of the

production function with respect to expected relative prices and the Lagrange multiplier. In fact,
the application of the envelope theorem to problem (2) results in

€ (O W0 = By (5 W0 = A0S W N f, (R w0,we ), =1 (5)
Thirdly, the cost function c¢() in relation (2) is not homogeneous of degree one in the expected
relative prices because of the dependence of the production function upon those same prices.
Furthermore, the cost function is not necessarily increasing in the expected input prices because
nothing was assumed regarding the derivatives of the production function with respect to the
expected relative prices. Finally, the cost function in relation (2) is increasing in output. This is

the result of combining the envelope theorem with A(W’,yt)>0, since



cyy(ye,we,t)= A(y*,w°,t)>0, the marginal cost function. Hence, the extended Shephard’s

lemma in equation (5) can be rearranged to read

X8 =, (WD +, (0 WON L, (hOSW 0w ), j=1,..7. (6)
Therefore, both primal and dual relations are required to recover the input demand functions
under the cost-minimizing price-induced TP hypothesis.

The extended Shephard Lemma in equation (6) provides the structure for a

decomposition of the cost-minimizing input quantities into an amount due to input substitution,
def . def .
x§j =C,., and a complementary amount due to the PITP conjecture, x;,j =c. fw_ Notice that our

theory does not require the simultaneous nonnegativity of the substitution and the PITP
components of the input demand function. This decomposition provides a natural setting for
introducing the dependence of the input quantities upon lagged expected relative prices, public
and private R&D and extension expenditure levels, as suggested, for example, by Thirtle,
Schimmelpfennig and Townsend (2002).

Theorem 1 generalizes the comparative statics conditions of the traditional production
and cost theory in order to account for the price-induced TP hypothesis. The theorem provides
an empirically verifiable, symmetric, negative semidefinite matrix and an upper bound for the
rank of that matrix. The proof uses the primal-dual formalism of Silberberg (1974) and is

presented in the appendix.

Theorem 1. The curvature properties of the price-taking, cost-minimizing model of the risk-
neutral firm operating under the price-induced technical progress hypothesis are summarized by

the statement that the J x J matrix S(y°,w*,t), defined as



def
Sy wt)=C , .+c . ' +c F,  +f . . +f c. I (7)
ww wiyTw Y whw wew’ T y'w w

o
is negative semidefinite, symmetric, and the rank(S(ye,We,t)) <J-1.

Theorem 1 provides a generalization of the traditional cost theory based upon a
neoclassical production function in the sense that the curvature property of the traditional cost-
minimizing model of the firm is contained in Theorem 1 as a special case. When

fwe (x,w’,t)=0,, problem (2) collapses to the traditional model of the cost-minimizing firm, that
is S(y*,w',t) = wawf , a symmetric and negative semidefinite matrix, which is equivalent to the

concavity of ¢(-) in w°, the neoclassical result.

A novel feature of Theorem 1 is the appearance of the derivatives of both the production
and cost function in the comparative statics matrix of equation (6). This property is absent from
any prototype model of the firm and it is the distinguishing feature of our model of price-induced
TP. It can be viewed as the scaffolding by which one can erect the estimating framework of the
price-induced TP hypothesis. In other words, in general, one must always estimate the
production function and first order necessary conditions jointly with dual relations, namely the
derivatives of the cost function, when carrying out an empirical test of the price-induced TP
theory presented here. This is called the primal-dual approach.

Although the above theory was formulated using the individual firm as the target agent,
we will assume that similar relations carry over to the agricultural sector, assuming that the
aggregation over firms will hold.

3. Specification of the Error Structure
The theoretical model is defined in terms of expected quantities and prices, given that it

represents the planning process of a price-taking, risk-neutral entrepreneur. The econometric



formulation of the same model sees the intervention of the econometrician sometime after the
planning process was carried out. If the expected quantities and prices used by the entrepreneur
for making her decisions were recorded at planning time, the recovery of the underlying
production and economic relations would be greatly simplified. Unfortunately, these expected
quantities and prices are not in general available and the econometrician must undertake the
painstaking job of measuring them. In so doing, he commits measurement errors on every
variable. We assume, therefore, that all quantities and prices involved in the production and cost
system are observed by y,x and w which bear an additive error relation to the corresponding
expected counterparts, thatis, y=y“+¢,, X=X"+¢&¢ and w=w°+v. Hence, the combination of
the theoretical relations and the additive error structure postulated above produces a nonlinear
errors-in-variables model with generalized additive errors that poses well-known estimation
challenges.

We summarize below the econometric model subject to the theoretical restrictions of the
cost-minimizing firm operating under price-induced TP that is given by the following primal and
dual relations:

Error structure

y=Y'+g (8)
W=W+V 9)
X=X+¢ (10)

Primal relations
Y= f(x°, W) production function ~ (11)
W = cy(,(ye,we,t)fxe (x°,w°,1) input price functions  (12)

Dual relations



x‘=h(y ,w,t) =X +Xj}, input demand functions. (13)

In case the first-order necessary conditions have no explicit analytical solution, the input

. . . . . . def .
demand functions exist via the duality principle. The vector of error terms e’ =e(£0,v',s') is

assumed to be distributed according to a multivariate normal density with zero mean vector and
variance matrix X.

Traditionally, aggregate models of TP based upon time series data have been specified
using a distributed lag representation of either quantities or prices, or both. This approach seems
to have been taken for two main reasons: (a) to capture, somehow, a dynamic aspect that is
assumed to be inherent in a process of technical progress, and (b) to represent some process of
expectation formation of the entrepreneur about quantities and prices. Often, the two aspects are
confounded. With respect to the PITP model presented above, we would like to point out that the
expectation process is taken into consideration explicitly and there is no need to formulate a
distributed lag representation of expected quantities and prices. We acknowledge that the
dynamic aspect of TP requires an explicit theory, akin to the static theory formulated above: a
distributed lag specification without theory is only an ad-hockery. A dynamic theory of PITP
will be the subject of another effort.

In general, it will be wise to postulate that the theoretical relations expressed in equations
(11)-(13) are represented by flexible functional forms. Such forms are not self-dual in the way
that the Cobb-Douglas and the CES functions are. Hence, the implementation of the above model
requires the statement of a cost function that has entirely different parameters from those of the

production function. The coherent link between the primal and the dual frameworks is



represented by the unknown expected quantities and prices that must be estimated along with the
parameters.

The discussion of how to estimate the model given by equations (8)-(13) will be the
subject of the following sections. We would like to advance here that, in principle, a Bayesian
approach along the lines presented by Zellner (1969, ch. 5) would produce consistent estimates.
But, as we are not comfortable with elaborate and multi-dimensional integration techniques, we
will propose a two-phase approach based upon a nonlinear least-squares estimator.

In phase I, the objective is to obtain estimates of the expected quantities and relative
prices. That is, assuming a sample of dimensions 7 =1,...,T, the explicit representation of the

phase I model can be stated as

T J T J T
min e /o, +33v, /0, +33e, /0] (14)

B.y/ W€ 1=l jumlt=l T jmltml

or

. T 5 J T 5 J T 2
min E£0t+EEth/)\.V‘+EE€U./)LEj (15)

B.y/ W€ 1=l jmltml S jelr=l
where Ufo,ai ,o_ are the variances of the respective error terms, j=1,...,J . The weights of the
J J

objective function (15) are specified as the ratios of the error variances using the variance of the

output quantity as the normalizing factor

2 2

g g

—_ Vi —_ €j
)LV, - O_2 ’)"e, O_2

In version 1 of the primal-dual model developed in this study, the minimization of the objective

function (15) is subject to the error structure and primal-dual constraints given in equations (8)-

(13).

10



Our theory, however, provides a natural decomposition of the expected input quantities
into complementary components called the substitution and the PITP counterparts. As noted by
Thirtle, Schimmelpfennig and Townsend (2002, p. 608), “... when factor substitution has been
accounted for, the major proportion of the change in factor ratios... can be explained by the
lagged effect of relative prices, ... private R&D expenditures ...” public R&D and extension

expenditures. In our specification, this conjecture can be articulated as follows:

¥ = WD = (O +X5,),w5 1) (16)
W = e O WNDES (X5, + X5, W) (17)
X; = h* (3] W) = X, +Xp, (18)
X}, = &(lagw! lagRD, lagExt,), (19)

e

e
where x§, and Xxj,

are the substitution and PIPT components, respectively, of the x|
decomposition. Hence, a second version of the PITP model can be thought of as minimizing
equation (15) subject to the error structure given in equations (8)-(10) and the theoretical
restrictions given by equations (16)-(19). If warranted, the PITP model can be further specified
to account for autocorrelation.

We assume that an optimal solution of the phase I problem exists and can be found using
a nonlinear optimization package such as GAMS (see Brooke et al. [1988]). With the estimates
of the expected quantities and prices obtained from phase I, a traditional NSUR problem can be
stated and estimated in phase II using conventional econometric packages such as SHAZAM
(Whistler et al. [2001]). For clarity, this phase II estimation problem can be stated as the

maximization of the concentrated log-likelihood function of the nonlinear seemingly unrelated

regression (NSUR) problem

11



Loglik = - %log(%r) - % - %10g(|MSR|(1/T)M) (20)

where Tand M are the number of sample observations and the number of equations,
respectively, MSR is the (M x M) matrix of sums of squared residuals and their cross products

of the following equations

y, = fX,W,10)) + ¢, (21)
w=c. (ﬁf,\iff,t;ec)fxe (f(f,v?'f,t;ﬂy) +v, (22)
X = h(y; ,w.,1;0.)+ £ (23)

where y7,w? and X! are the phase I estimates of the expected quantities and relative prices and

the dimension of M =2J +1, where J is the number of inputs. The parameter vectors 6, and 0,

belong to the production and the cost function, respectively. The objective in equation (20) is to
maximize the negative logarithm of the determinant of the MSR matrix. A second version of the
phase II specification deals with equations (16)-(19).

After estimating the PITP model, a measure of the input biases of technical change can be
assessed. For brevity, we follow Antle and Capalbo’s discussion of the subject (1988, ch. 2, p.
38-39) and define a primal measure of the bias of technical progress between input j and input &

as

dlog(f, If )| dlogf, Wl _ dlog f, R W)l
Jkwl=c - ot - ot ot

, Jj=k

that reflects the original formulation by Hicks involving the invariance (to technical change)

condition of the expansion path, and where f; represents the marginal product of the j-th input.

The condition that the input prices be constant guarantees the invariance of the expansion path.

As Antle and Capalbo state (1988, p.38): “...this measure of the bias is defined at a given point

12



in input space.” It is an open question, then, whether the biases should be evaluated at the same
point in input space for the entire sample period. An overall measure of the bias associated with

input j is stated as

dlog f; 1 . s dlogf, |,
) = w=c _ SG w =c¢ 24
.I'|WL=L' at lzl k 0')t ( )
where S, is the expected cost share of the k-th input. According to Antle and Capalbo (1988, p.

40), the condition B; >0 characterizes input-using technical progress, implying that the marginal
product of input j is increasing relative to all other inputs, while B; <0 indicates input-saving
TP. Hicks neutrality requires B, =0 for all j and k£ which, in turn, results in B; =0 for all
j=L..J.

As will become clearer in the empirical sections, the meaning of input-using (input-

saving) technical progress associated with the sign of the B; coefficient is rather arbitrary in the

sense that the bias coefficients measure simply how the marginal products vary with a change of
t. It is difficult, then, to specify in what sense a particular bias is either input-using or input-
saving. In other words, the definition of input bias in technical progress is simply a descriptive
measure of the change of the marginal product with respect to the exogenous technical progress
index ¢ which, in a time series sample, is confounded with the discrete time associated with the
sample observations. Consequently, the measure of input biases cannot constitute an empirical

test of technical progress.

4. The Data of US Agriculture
The sample input data for the present analysis were made available by Thirtle, Schimmelpfennig

and Townsend (2002) and are described in their paper. The time series consist of four input

13



quantity and price indices relating to machinery, labor, fertilizer and land, from 1880 to 1990;
public and private R&D and extension expenditures are also from 1880 to 1990. Additionally,
aggregate output quantity and price indices from 1910 to 1990 were derived from the US
Historical Statistics and USDA databases and provided by Spiro Stefanou. All the index series
are defined with base 1967 = 100. Because the primal-dual model of PITP developed in this
paper uses also the output quantity and price series, the usable sample data range from 1910 to
1990 with 81 observations. In this paper we chose to deal with the single aggregate of output for
the US agriculture. All the data were scaled by a factor of 100 so that the average of most series

is close to 1.

5. A Translog Primal-Dual Model of PITP: Version 1
The implementation of the primal-dual model of price-induced technical progress presented in
previous sections was realized with the choice of a translog production function and a translog

cost function. In particular, the production function is stated as

4 4 4 4
logy! =a, + Elaj log x; + Elyj log wjt + 3 Elfo’jk log xj.l logx;, /2
J= J=

j=lk=
4 4

4 4
+3 36, logw, logwi,/2+ 3 31, logx’, logw?, (25)
j=lk=1

j=lk=1

4 4
+ 3 ay; log x, logr + 3y, logw', logt + 6, logt +6,(logr)* /2
j=1 Jj=1
with symmetric 8, = B, and 8, = §,;.
The corresponding cost function is stated as
u (4 33 e € 3 e e
loge, = ¢, + 21¢j logw’, + EIkEl(pjk logw’, logw,, /2+ EI"DW logw’, log y;
J= J=lk= J=

4
+¢, logy; + ¢, (logy, Y /2+ j%@j logw’, logt + ¢, log y; log? (26)

+p,logt+p,(logt)’ /2

14



with symmetric ¢, = @,;.

The input price functions in equations (12) (first order necessary conditions), are given by
the product of the marginal cost function and the marginal product function of each input, for

j=1,...J,

o 4 e
W;l = Ct (¢y + ‘py_v log y: + E ‘pyk log Wkt + ¢Ty log t)(aj +
k=1
. A 27)
zlﬁjk log x;, + glnjk logw,, + a; logr)/ x',

The first term in parenthesis is the marginal cost (without the y! variable as a divisor) while the

second term in the second parenthesis is the marginal product (without the y{ variable as a

multiplier) of the j-th input . The total cost is, by definition, c, d=ef2 JXGW -

The input demand functions in equations (13) assume the structure of the expanded

Shephard lemma discussed in section 2 which produces the following expressions, for j=1,...,/,

4
x,=c (¢, +@,logy + zlcpjk logw,, + ¢, logt)/w',
4
+c, (¢, +@, logy; + z](pyk logw,, + ¢, logt)(y, + (28)

4 4
zléjk logw;, + zlnkj log x;, + v, logt)/w',

The first line of equation (28) is the traditional derivative of the cost function with respect to the

. . dc . dc .
input price, —-, and the two other lines correspond to the novel term —zi which expresses

e’ e
Jt t jt

the conjecture of price-induced technical progress in the expanded Shephard lemma.

The modified Slutsky matrix of the PITP model S(y‘,w‘,t), as given by equation (7),
requires the specification of five matrices involving the parameters of both the production and
the cost function as well as the level of all the output and input quantity as well as the input price

variables. In order to make the testing of the PITP conjecture a manageable enterprise, we

15



evaluate the S(y“,w‘,r) matrix at the level of each variable equal to 1 (recall that we scaled all
the variables so that their average values are close to 1). In turns, the logarithm of each variable
evaluated at 1 is equal to zero and the matrix S(y°,w*,t) is defined only in terms of parameters of
the production and cost functions. Theorem 1 defines necessary and sufficient conditions for the

PITP conjecture and, therefore, those conditions must hold also at the unit level of all the

variables.

To make the computations minimally intelligible, we reproduce below the assembly of
the matrix S as implemented in the programming of the PITP model.
The S matrix in question is given by

def
S=C_. . +c . ft' . +c F,  +f .  +f c 1,
ww wey T w Y ww wewe y°w we Yy w (29)

= A + A, + A, + A, + A

with each of the five component matrices defined as

A(J.k)= 40 +@,), j=k

A G =4(0,0,-D+,)

A, (k)= 4,9, +9,),

A k)= 49, (y;y, +0;), j=k

As(5 i) =49y, (r;=D+6;}

A, (k)= 4y,(9,0, + @)

A;(j.k)= 4y {9, (¢, - D},

If the PITP conjecture holds, the S matrix should be a symmetric negative semidefinite matrix
with rank less than J. The number 4 results from c, d=ef2‘]‘-=1 x‘,w, evaluated at the unit level of all

Jth e

the variables involved.

16



Given the translog PITP model, the input biases of technical progress in equation (24)

translate into

4 4
B,0)| . =0, Ka;+ k%ﬁfk log x‘, + k%njk logCP, + o logr}t 0)
4 4 4
- EISZ {ag (o + kkE—l B s 10g Xy, + kkE—I Newsc 10g CBy + oy logt)t}y

where S, is the expected cost share and CP, stands for constant prices of the k-th input. We
have chosen to let the input quantities vary throughout the sample period, so that the bias
measures of TP acquire the meaning stated in the definition (equation (24), “...this measure of

the bias is defined at a given point in input space.”) for each sample observation.

6. Empirical Results of the Translog Model of PITP: Version 1

Phase I of the PITP model was estimated using the GAMS programming package and unitary A
weights for the objective function (15). This choice was dictated by a lack of knowledge of the
true weights. The selection of these weights transforms the given problem into a nonlinear Total
Least Squares model, originally described by Gulob and Van Loan (1989, p. 576), and by a vast
literature since then. The model constraints, represented by equations (25), (27) and (28), are
highly nonlinear and non-convex. Hence, the solution achieved is only locally optimal. The
problem was solved several times with different initial values. A serial correlation of order 1 was
implemented during the estimation procedure.

The use of the GAMS 21.6 programming package requires a careful choice of upper and
lower bounds for all parameters. Still, the solution of the problem is a non-trivial enterprise. The
phase I PITP model has 1495 constraints (most of them nonlinear) and 1721 unknown
parameters. In a typical run, the CPU time to achieve a locally optimal solution was about 20-30

minutes on a Supermicro machine (Intel dual processor Xeon, 3.0 Ghz, Linux Redhat AS3 OS).
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We can report with confidence that the land input caused considerable headaches in all the
computations and may have been the cause of the extraordinary number of iterations (between
5,000 and 10,000) required to achieve an optimal solution, perhaps because its quantity index is
rather flat and exhibits very little variability.

The estimates of the expected quantities and prices obtained from the phase I estimation
problem are neither unbiased nor consistent. This is due to our ignorance of the true A ratios that
weigh the objective function (15). We have already suggested that a Bayesian approach to the
errors-in-variables problem may produce consistent estimates, albeit with a much more complex
estimator. Hence, we are willing to accept some level of non-consistency of the estimates in
exchange for a manageable estimator that can be implemented by normal practitioners. The
problem, of course, is how to gauge what is an acceptable level of inconsistency. We do not have
an analytical answer to this question. We only suggest that a small residual error may be an
indication of the smallness of inconsistency. We proceed under this conjecture.

A measure of the estimates obtained from the phase I model can be viewed in Figure 1
and Figure 2 that report a comparison between the sample and the estimated quantities and

prices.

18



Figure 1. Expected quantities (Series 1) and measured quantities (Series 2)
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Figure 2. Expected relative prices (Series 1) and measured relative prices (Series 2)
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In general, the estimated expected quantities and relative prices track the measured counterparts
pretty closely. An exception is represented by the land input quantity index that has fluctuated
around the value of 1---in a suspicious saw-tooth pattern---during the sample period.

Another synthetic view of the phase I results can be gleaned by the trend of the expected
and measured input shares as reported in figure 3. Overall, the estimated expected series track

the measured series rather closely.

Figure 3. Expected (Series 1) and measured (Series 2) cost shares of inputs
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With the estimates of the expected quantities and relative prices from phase I, a NSUR
model such as described by equations (20)-(23) was estimated using the NL option of the
SHAZAM package. Unfortunately, this SHAZAM option does not allow the imposition of
parameter constraints that cannot be directly incorporated into the definition of the various
equations. Hence, we were not able to test the negative definiteness of the S matrix using the
SHAZAM package. An autocorrelation scheme of order 1 was implemented in this phase II of
the estimation procedure.

In order to gauge the validity of the PITP model, a translog model of the traditional
theory (without prices in the production function) was estimated using the same primal-dual
approach and using the same estimated expected relative quantities and prices. This traditional
model, therefore, is nested into the PITP model and the difference in the level of the two log-
likelihood functions could determine whether or not the PITP conjecture ought to be rejected.
The PITP model has 89 parameters versus 55 of the traditional model. The results of this

comparison are reported in Table 1.

Table 1. Results of the PITP and the traditional translog models, phase II, version 1

Parameter PITP translog model, vers. 1 Traditional primal-dual model
LogLikelihood 1840.040 1517.200

Coeff. Value T-Ratio Coeff. Value T-Ratio
Production function
O -542.75 -1.2305 7.14E-02 0.13204
o 78.380 2.5480 1.17400 2.7579
a, 85.273 2.4471 0.64269 1.7173
a3 66.067 2.6086 0.88738 2.8188
oy 75.710 2.3662 1.00920 2.4462
Y1 153.77 2.4168
Y2 -24.992 -0.68515
Y3 -9.4141 -0.41724
Y4 -86.486 -2.5287
B 47.893 2.1649 1.32E-02 0.11344
B -20.078 -2.4408 -0.23754 -2.2158
Bis -6.1852 -1.7870 6.83E-02 2.0505
Bia -21.568 -0.40212 2.56150 2.5078
Bz 70.235 2.4722 5.30E-02 0.31294
Bas -18.511 -2.4790 -8.28E-02 -1.4088
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Bas -41.546 -2.2446 1.4473 2.3793
Bss 19.105 2.5155 0.19171 2.4714
B -9.6735 -0.92436 -0.38552 -1.9118
Bas 100.42 0.35775 -16.860 -2.4737
dy 1.4899 4.49E-02
3, -29.164 -1.2557
35 -15.443 -0.54165
dy 61.155 2.6697
9,5, 12.281 0.57925
[ 70.958 1.7158
S -18.728 -2.1144
83 -13.472 -0.51132
Oy -2.5234 -0.1991
du -35.332 -2.2147
Nu 41.761 2.3601
N2 -25.255 -2.1036
Ni3 -3.6551 -0.9069
Nia -7.5685 -1.5569
MNa1 -14.651 -1.6328
Nn 61.975 2.5563
M3 -31.937 -2.3454
N 3.9305 1.2869
N31 -7.4586 -2.1431
N3 -6.8758 -2.1197
N33 19.662 2.4092
N34 -1.648 -0.92095
Ny -24.018 -1.0654
N4z -33.081 -1.2830
M43 6.68E-03 4.30E-04
Naa 53.01 1.7911
B¢ 588.88 1.3124 -0.69034 -1.7026
Orr -168.5 -1.4616 -0.15380 -1.5365
Oty -6.7237 -2.0871 -0.10693 -2.3523
Oy -10.439 -1.6569 -5.62E-03 -3.23E-02
O3 -5.6783 -2.2765 -1.76E-02 -1.3936
Oty -4.9283 -0.90387 -0.10977 -0.91835
Y11 10.296 1.1246
Y12 7.3092 0.95815
Y13 -42.574 -2.0586
Y14 11.215 2.2295
Cost function
by 2.76E-03 2.5456 -8.87E-02 -0.93988
Pyy -1.82E-04 -0.12041 -1.146 -2.2298
Pyi 1.14E-04 0.91699 0.18881 2.9218
Py -3.43E-05 -6.99E-02 0.29347 2.3267
Py3 7.14E-07 1.41E-03 -0.39884 -2.1151
Pya -5.18E-04 -1.9047 0.12406 2.229
Oy 5.90E-04 2.1537 0.14239 2.3238
9, -0.31422 -5.6443 0.10826 2.8702
Py 0.17457 1.3961 5.74E-02 2.9728
P12 -5.87E-03 -8.84E-02 -0.10012 -4.9457
P13 2.81E-02 0.31727 5.37E-02 2.3745
Pia -0.20204 -3.9016 -1.33E-03 -0.14699
On -4.88E-02 -1.5540 8.43E-02 3.8237
9, 0.41121 6.3756 0.34966 5.5693
P2 0.17529 2.0367 -8.82E-02 -2.0802
Po3 -0.30891 -2.7852 0.18173 3.6021
P24 4.92E-02 1.6575 -9.64E-02 -5.0747
Or -5.95E-02 -2.1169 -6.59E-03 -0.35408
95 0.32825 4.4649 0.13111 2.1989
P33 0.15536 1.5236 -0.19042 -2.699
P34 -6.86E-02 -1.5074 4.07E-02 1.8226
Or3 0.12919 2.9768 4.61E-02 1.5981
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94 0.38405 9.7842 9.94E-02 3.4525
Paa 0.19859 4.1124 4.88E-02 2.6712
Orq -1.27E-02 -0.96841 -1.39E-02 -1.8384
Autocorrelation

Coefficients

p output 1.00930 183.42 1.02670 97.086
p machinery rel price 0.64920 9.3881 0.99020 127.31
p labor rel price 0.47907 5.3557 1.02000 137.16
p fertilizer rel price 0.81591 6.9074 0.98851 95.595
p land rel price 0.79549 10.242 0.96988 30.997
p machinery 0.83900 8.0537 0.86879 39.41
p labor 0.94764 56.311 0.96718 88.499
p fertilizer 0.93131 38.461 0.99036 32.385
p land 0.99458 274.13 1.00210 319.42

The difference between the values of the logarithm of the two likelihood functions is
equal to 322.84 for a number of restrictions equal to 34. Hence, the likelihood ratio test, which
gives a chi-squared variable constructed as twice the difference of the logarithm of the two
likelihood functions, is equal to 645.68, well above any imaginable critical value. This
preliminary test, therefore, does not reject the null hypothesis that the PITP model is suitable for
interpreting 81 years of technical progress in US agriculture.

The relevant test, however, is given by the negative semi-definiteness of the expanded
Slutsky matrix S defined in equation (29). Three of the four eigenvalues of the S matrix
corresponding to the estimated PITP model of Table 1 are negative and one is positive
(0.9303974 -0.4759490E-01 -0.1932879 -0.3887957) indicating that the matrix is indefinite.
We were not able to test (using SHAZAM) whether the PITP model, subject to the restriction
that the S matrix in equation (29) be negative semi-definite, is rejected by the sample data.

In order to pursue this objective from a different angle, however, we coded the NSUR
problem in GAMS achieving a level of the log-likelihood function that is close to, but not
exactly equal to the value achieved with the SHAZAM package. This event is undoubtedly due

to the highly nonlinear and non-convex problem at hand, and to the different optimization
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algorithms used in the two packages (or to our programming errors). Another shortcoming of this
approach is that we did not compute the standard errors of the estimates, as their programming in
GAMS is beyond our limited ability. In any event, the value of the unrestricted concentrated log-
likelihood function (as in equation (20)) obtained with GAMS was 1831.820 versus 1840.040 of
SHAZAM. The determinant of the MSR matrix was computed internally to the maximization
program by the LU decomposition, with the determinant defined as the product of the diagonal
terms of the U matrix. When the negative semi-definiteness condition of the modified Slutsky
matrix given in equation (29) was imposed on the problem (by means of the Cholesky
decomposition), the value of the log-likelihood function was 1829.505. A chi-squared test of the
negative semidefinite condition, constructed as twice the difference between the values of the
two log-likelihood functions (computed in GAMS), gives a measure of 4.630 with 46 degrees of
freedom (the parameters of the 5 component matrices of S), indicating that the null hypothesis is
not rejected even at a very small level of significance. The Cholesky values of the S matrix
estimated under constraint are (-27.78623 -0.13242 -0.33393 (0.00000) and the rank
condition is satisfied.

On the strength of this result and of the likelihood ratio test reported above, we will
continue the discussion of the empirical results assuming that the PITP model presented in Table
1 was not rejected by the sample data. It is interesting to notice that the conventional S matrix for
the traditional primal-dual model of Table 1 (represented by the A, matrix of equation (29)) is
indeed negative definite without imposing such a condition, with eigenvalues (-0.8739866E-02
-0.1921675 -0.3348949 -2.263713). In this case, however, the rank condition is not satisfied.

The biases induced on input quantities by a price-induced technical progress of the type

described in this paper were computed according to equation (30) and are reported in Figure 4.
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The spikes are due to peculiar combinations of parameters and logarithmic values in the complex
formula of equation (30). For example, by changing the level of constant input prices, it is
possible to reduce (or increase) those spikes, while maintaining the general pattern of the
diagrams. Abstracting from the spikes, the common characteristic of three out of four inputs
biases is a trend toward a zero level, with a substantial amount of PITP bias at the beginning of
the last century. The bias of machinery input is negative until soon after WWII, indicating an
input-saving PITP, and then becomes slightly positive. The bias of the labor input has the
opposite trend, remaining an input-using PITP until 1960 for, then, becoming an input-saving
PITP. The bias of the fertilizer input was negative prior to 1950, indicating an input-saving TP,
and then became slightly positive after that date. The land bias indicates a rapidly diminishing

input-using PITP.
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Figure 4. Input biases of price induced technical progress
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7. Empirical Results of the Translog Model of PITP: Version 2

A second version of the PITP model includes the public and private R&D and extension
expenditures as explanatory variables of the portion of inputs attributable to the PITP hypothesis.
A synthetic representation of this specification is given in equations (16)-(19). Before reporting
on the empirical results, we present the series of public and private R&D and extension
expenditures in Figure 5. All three series show a very similar trend, a fact that may lead to
multicollinearity and/or to nonsignificant estimates.

As anticipated in a previous section, we took inspiration from the empirical results of
Thirtle, Schimmelpfennig and Townsend (2002) who attributed the explanation of the non-
substitution portion of their input ratios to a distributed lag specification of relative prices, along
with private and public R&D. More accurately, in their machinery/labor factor ratio (equation
(5)), they reported that only a series of annual private R&D expenditures was significant,
together with the lagged machinery/labor price ratio. In their fertilizer/land factor ratio (equation
(6)), the lagged public R&D series was significant. The extension series was reported as being
not significant in either factor ratio equation. While the price ratios were specified with a
maximum lag of order 2, the private and public R&D series took on lags of 15 and 25 periods,
respectively.

Version 2 of the model stated in equations (16)-(19) specifies a lagged relationship
between the portions of expected inputs attributed to the PITP hypothesis and expected relative
prices, R&D and extension expenditures as explanatory variables. This relationship, then, feeds
into the production function and the input price equations in the joint determination of the

parameters of interest. In figure 6, we present the decomposition of the estimated expected
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inputs into their complementary portions attributable to a substitution effect and a PITP effect, as

they resulted from version 1.

Figure 5. Public (Series 1) and Private (Series 2) R&D and Extension expenditures
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The machinery diagram shows almost similar trends of the substitution and PITP
components suggesting that, throughout the last century, the machinery substitution effect had
about the same strength than the price induced TP effect. The labor diagram, on the contrary,
shows that the PITP component of labor was rather minimal throughout the sample period except
during the two war periods (including the recession of 1929). The fertilizer diagram indicates
that the PITP component is similar to the machinery pattern, with a substantial effect from the
early part of the century. Finally, the substitution and the PITP components in the land diagram
have an almost mirror-symmetric trend because the total land is roughly constant (around 1), as
already pointed out. It is intriguing to notice that the most pronounced substitution effect of the
land input took place in a period that begins with world war II (when the structure of agricultural
labor had to change in view of the war efforts, as indicated also in the labor diagram) and catches
up with the general trend by the middle of the fifties.

At this stage, the problem is to specify the type and the length of the distributed lag series
that can plausibly explain the variation of the PITP component of the estimated expected input
quantities. As there is no theory that can guide the choice of explanatory variables and the length
of their lags, some data mining is inevitable. In Table 2 we present the variables and their lags
that were selected in the explanation of the PITP component of the estimated expected input
quantities. The information of Table 2 refers to OLS estimates. The symbols for the variables
should be read as: Exp = expected, MA = machinery, LB = labor, FR = fertilizer, LA =land, P =
price. The lag is indicated explicitly and was restricted to a maximum of 6 periods for the
expected input prices and of 7 periods for the R&D and extension variables. These cut-off
periods were selected arbitrarily but with the goal of limiting the loss of degrees of freedom in a

sample of only 81 observations.
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Table 2. Variables and lags for the PITP components of input quantities: version 1

Parameter | Machinery PITP compo- Labor PITP component Fertilizer PITP compo- Land PITP component
nent Semi-log regression nent Semi-log regression
Coefficient | t-Ratio Coefficient | t-Ratio Coefficient | t-Ratio Coefficient | t-Ratio

Constant 0.1889 2.180 0.1902 5.025 -0.4665 -3.248 0.0784 2.669

ExpMAP-1 0.4735 4.185 -0.7845 -5.873

ExpMAP-5 -0.2475 -1.852

ExpMAP-6 | -0.1042 -2.591 0.1998 2.279 0.3110 2.858

ExpLBP-1 -0.3263 -2.866 0.9706 5.123 1.3677 5.991

ExpLBP-3 0.4913 4.674 -0.6851 -3.614

ExpLBP-6 0.5224 4.701 -0.8356 -5.180 -0.5349 -5.033

ExpFRP-1 -0.4498 -5.389 -0.2155 -3.077 -0.2311 -2.359

ExpFRP-4 -0.5227 -3.288 0.3803 4.395 -0.3373 2.714

ExpLAP-1 0.2341 4.863 -0.3188 -2.339 0.4034 3.561 -0.4894 -5.401

ExpLAP-4 -0.2494 -4.963 0.6854 5.457 -0.7548 -5.921 0.2489 2.828

Exten-3 0.5585 3.345

PriR&D-3 -0.5351 -1.851

PriR&D-5 -0.6611 -4.460 0.6772 2.205

PubR&R-4 0.5552 3.055 0.1989 4.978

PubR&D-7 -0.7213 -3.930

R-square 0.9579 0.7464 0.9175 0.8453

The machinery and the fertilizer equations, with all variables in natural units, fit the
respective PITP components fairly well, with R-square measures of 0.96 and 0.92, respectively.
The labor and the land equations, in semi-log specification, fit the respective PITP component
less well, with an R-square measure of 0.75 and 0.85, respectively. The a-priori selection of the
maximum lags may be responsible, at least in part, for the relatively low fit of these equations.
The extension-expenditures variable enters only the machinery equation; no R&D and extension
expenditure variables enter the labor equation; both private and public R&D expenditures enter
the fertilizer equation jointly.

In spite of the imperfect fit of the PITP equations, the overall information gleaned from
the results of Table 2 suggests that a proper combination of lagged expected prices, R&D and
extension expenditures may indeed explain (may be thought of as determinant of) the PITP
components of the input quantities. We reproduce here equations (16)-(19) for ease of reference

in the phase I estimation process of the PITP model that assumes the following structure:
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. T, JT o, 4T, JT ,
min  F&,+ X3V, +23E;+ 23U, (157)
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subject to

v = (O + x50 W0 1)+, (16°)
W, = (0 WEDES (X5, +X5,), Wi 1)+, (17°)
X, =h(y/,wi,t)+€, =X, +X}, +€, (18%)
X}, = &(lagw! ,lagRD, lagExt,)+u,. (19°)

The translog specification of equations (16’)-(18’) is similar to equations (25), (27) and
(28) except that the logarithm of the expected input quantities in equations (25) and (27) must
now be defined by the two complementary components of the input quantities. Equation (197)
expresses the lagged relation between the portion of the input quantities that is attributed to the
price induced technical progress and a series of relative prices, R&D and extension expenditures.
The structure of the lagged relations follows the pattern of Table 2.

After estimating the phase I specification of the PITP model (version2), the NSUR phase
I model was estimated using Shazam. The results are reported in Table 3. A significant

autocorrelation coefficient is present in every equation.

Table 3. Results of the PITP and the traditional translog models, phase II, version 2

Parameter PITP translog model, vers. 2 | Traditional primal-dual model
LogLikelihood 1829.693 1625.289

Coeff. Value T-Ratio Coeff. Value T-Ratio
Production function
Oy -48.4660 -3.094 -0.6532 -11.087
a, 2.4217 9.041 0.1640 6.585
a, 1.0737 1.321 0.1084 2.156
[oB 2.4969 12.608 0.1228 7.163
[oh 2.3115 4,199 0.2112 5.557
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Y1 8.0440 1.836
Y2 -4.2788 -1.227
Y3 9.2644 4.043
Ya 6.4685 2.932
B 1.4991 6.724 0.0279 2.039
B2 -0.7519 -5.679 -0.0371 -3.598
Bis 0.0884 -1.554 -0.0099 -1.828
B 2.1115 4.784 0.0202 1.166
Bos -0.3959 -4.388 -0.0208 -3.769
Bas 1.0249 1.747 0.0472 1.923
B 0.6655 8.845 0.0274 6.369
B 0.0897 0.324 -0.0115 -0.713
Bas -2.6101 -0.629 -0.3332 -1.316
Sy 14.0650 6.525
3, -0.0761 -0.071
33 -3.8508 -3.429
Oy -6.9204 -6.459
& 3.5488 2.071
[ 0.7908 0.969
S 0.9697 0.829
O3 -2.0441 -1.718
&, 4.9415 5.031
Sy -0.0555 -0.047
Nu 2.6353 9.287
Ni2 -1.1998 -7.152
Ni3 -0.1574 -1.645
N4 -0.4741 -3.820
Nai -0.1488 -0.453
N2 1.3583 4.708
MN23 -0.2110 -0.970
N2 -0.7076 -4.867
N1 -0.0551 -0.748
N3 0.0325 0.237
LES 0.6271 7.458
N34 -0.3476 -3.467
N4t 0.5633 1.792
Na -1.2737 -2.292
M43 -0.4185 -1.138
MN44 1.8762 9.100
¢ 5.8207 1.953 0.0313 0.484
Brr 0.1835 0.162 0.1943 7.607
Oty 0.1556 2.933 -0.0079 -0.967
Oty 1.0885 2.381 -0.0051 -0.184
Oty -0.0519 -1.909 -0.0019 -0.762
Oty 0.4060 1.216 -0.0358 -2.088
Yr1 -1.9502 -1.185
Y12 0.2379 0.298
Y13 -1.5531 -1.244
Y4 -3.6993 -3.451
Cost function
¢y 0.0981 17.292 1.8194 6.600
Pyy 0.0274 4.448 1.3306 4.240
Py1 -0.0162 -5.590 0.0861 1.549
Py 0.0143 6.208 -0.2577 -3.768
Py 0.0058 2.827 0.4450 7.300
Pya -0.0034 -1.972 0.0022 0.056
Oy -0.0089 -5.567 -0.0529 -0.635
9, -0.7028 -1.967 0.1525 2.598
P -0.9831 -4.745 0.1009 3.518
Pi2 -0.1544 -1.543 -0.0511 -3.191
P13 0.2966 3.076 -0.0376 -1.861
Pua 0.5641 5.538 0.0123 1.083
On 0.2106 1.563 0.0071 0.249
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02 0.6067 2.129 0.1493 4.797

P -0.1734 -1.070 -0.1006 -3.883
P23 0.0150 0.228 0.0516 2.937
P4 -0.1347 -1.373 -0.0258 -1.747
dr -0.0001 -0.001 0.0847 6.801
s -0.4769 -2.515 0.3025 5.202
P33 0.2024 2.086 0.0221 0.733
P34 -0.4510 -5.126 -0.0207 -1.497
O3 0.0881 1.039 -0.0899 -3.169
s -0.3912 -2.319 -0.0573 -1.208
Pas 0.0947 1.097 0.0098 0.644
Ora 0.2833 3.528 0.0154 1.333

Autocorrelation
Coefficients

p output 1.0112 141.200 0.2805 3.974
p machinery rel price 0.9791 90.234 0.8647 21.293
p labor rel price 0.9544 29.722 0.9985 64.527
p fertilizer rel price 0.9478 22.609 0.8908 15.373
p land rel price 0.8518 15.858 0.8308 20.609
p machinery 0.9973 259.550 0.9920 84.621
p labor 0.9508 28.877 0.9680 42.762
p fertilizer 0.4719 5.804 0.9987 59.736
p land 0.9941 253.310 0.9980 512.200

A traditional model (without prices in the production function) was also estimated and
reported in Table 3. The difference between the logarithmic value of the two likelihood
functions is equal to 204.404, which translates into a likelihood ratio test of 408.808, well above
any imaginable critical value for a chi-square statistics with 34 degrees of freedom. This
preliminary test, therefore, does not reject the hypothesis that a price induced technical progress
prevailed during 80 years of US agriculture.

As for the previous version 1 of the PITP model, we used the GAMS package to impose
the comparative statics condition represented by equation (29). The implementation of the NSUR
program gives a value of the unrestricted and concentrated log-likelihood function equal to
1864.147, while the restricted value is equal to 1858.630. The likelihood ratio test corresponds to
a chi-square variable of 11.034 for 46 degrees of freedom, well below the critical value for any
reasonable significance level. The Cholesky values of the constrained model are equal to

(-29.96039 -0.28846 -0.29598 0.00000) indicating that the extended Slutsky matrix S of
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equation (29) is negative semi-definite and satisfies the rank condition of theorem 1. Hence, the
PITP hypothesis is not rejected also in version 2 of the model. We notice that, in this case, the
value of the log-likelihood function obtained using the GAMS program is higher than the one
computed by SHAZAM. Again, this event may be due to the highly non-convex and nonlinear
model and to the different algorithms used by the two programming packages.

With the results of Table 3, the input biases were measured using equation (30). The
results are reported in figure 7. The machinery biases indicate a factor-using TP prior to 1935
and then a constant level of factor-saving TP for the rest of the sample period. The labor biases
exhibit a factor-using TP that decreases until WWII and then increases steadily for the rest of the
sample period. The fertilizer biases show a factor-saving TP for the entire period. The land
biases are factor-saving prior to world war II and the hover around a zero bias for the rest of the
period. The different trends of input biases in the two sets of diagrams (Figure 4 and Figure 7)
reveal the heavy dependence of these measures upon the estimated coefficients. Both patterns,

however, are consistent with our PITP theory.
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Figure 7. Input biases of price induced technical progress, version 2
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A final aspect of the empirical results associated with version 2 of the PITP model deals
with the pattern of substitution and PITP components of the input quantities obtained from the
application of the extended Shephard lemma as reported in Figure 8. The machinery
decomposition is similar to that one of Figure 6. The labor PITP component in Figure 8 is flatter
than in Figure 6 but has a similarly rising end portion. The fertilizer PITP component of Figure 8
exhibits a much smaller size than its counterpart in Figure 6. A radical difference lies with the
PITP components in the land input of the two Figures. In Figure 8, the PITP component of the

land input remains insignificant until the world war II years and then rises steadily until the year
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1980. The substitution component has a mirror pattern. Intuitively, the pattern of the land input

in Figure 8 is more plausible than the one in Figure 6.

Figure 8. Substitution (Series 1), PITP (Series 2), Total (Series 3) of expected inputs: Model
Version 2
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There remain to comment upon the distributed lag relationships that explain the PITP
components of the various inputs. We recall that the estimation of the version 2 model was
carried out according to problem (15°)-(19’) with the distributed lag pattern for the various

explanatory variables as indicated in Table 2. The four equations and their distributed lag pattern
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expressed a rather high level of fit with R-square measures of 0.90, 0.83, 0.95 and 0.98,
respectively. It is apparent, however, that several alternative combinations of lags can achieve
high levels of fit. In Table 4, therefore, we report a more refined exploration of fit that reveals a
different pattern of distributed lags. Now, all the four relationships exhibit a high measure of fit,
as indicated by the R-square, while maintaining a parsimonious specification (in terms of lags).
We note that in Table 4 the labor equation now contains significant lags of the extension and
public R&D explanatory variables. The extension expenditures and the public R&D variables
enter every equation. The private R&D expenditure enters only the fertilizer equation. It is

difficult to attach any intuitive meaning to the individual coefficients and we refrain from it.

Table 4. Variables and lags for the PITP components of input quantities: version 2

Parameter | Machinery PITP compo- Labor PITP component Fertilizer PITP compo- Land PITP component
nent Semi-log regression Semi-log regression nent Natural units Semi-log regression
Coefficient | t-Ratio Coefficient | t-Ratio Coefficient | t-Ratio Coefficient | t-Ratio

Constant 0.2424 14.72 0.3163 27.84 -0.0287 -1.702 0.3605 48.54

ExpMAP-3 -0.1745 -4.914 0.0296 2.447

ExpMAP-5 -0.0870 -2.459

ExpMAP-6 | -0.2970 -11.59 0.4218 10.14

ExpLBP-1 0.7523 24.55 -0.1245 -3.796

ExpLBP-3 0.3559 6.397

ExpLBP-4 0.2295 6.508

ExpLBP-6 0.4263 10.36 -0.6321 -9.835

ExpFRP-1 -0.3525 -13.81 -0.0629 -5.718 -0.1179 -4.620

ExpFRP-4 -0.1457 -5.519

ExpFRP-6 -0.0913 -2.874

ExpLAP-1 0.1331 5.369 -0.2203 -15.86 0.1532 11.46

ExpLAP-4 -0.2079 -9.551 0.0688 2.226

ExpLAP-6 0.2037 5.668

Exten-3 -0.1023 -3.052 0.0241 1.959

Exten-4 0.1565 5.857

Exten-7 -0.2025 -6.203 0.0985 3.511 -0.2782 -4.050

PriR&D-3 -0.2841 -8.403

PubR&R-3 0.1551 4.766 -0.1089 -4.094

PubR&R-4 0.1525 4431 -0.0433 -3.440

R-square 0.9689 0.9578 0.9622 0.9908

On the basis on the results of Table 4, it is tempting to examine a third version of the

PITP model where the distributed lag specification of the PITP input components in phase I is
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represented by the structure revealed in Table 4. Such an exploration could shed some light upon
the stability of the input biases and the decomposition of the input quantities into their

substitution and PITP components.

8. Empirical Results of the Translog Model of PITP: Version 3

Table 5 exhibits the empirical results of phase II estimation of the PITP model with a structure of
lags as defined in Table 4. The chi-square variable defined as twice the difference between the
values of the two log-likelihood functions in Table 5 is equal to 371.600, with 34 degrees of
freedom. Once, again, the null hypothesis of a traditional TP model (without prices in the

production function) is soundly rejected.

Table 5. Results of the PITP and the traditional translog models, phase II, version 3

Parameter PITP translog model, vers. 3 Traditional primal-dual model
LogLikelihood 1842.164 1656.364

Coeff. Value T-Ratio Coeff. Value T-Ratio
Production function
0 -238.38 -1.9259 -0.64293 -10.346
o -2.6941 -2.2693 0.15666 4.941
@ -1.2387 -1.2102 0.05856 1.385
oy -2.1895 -2.2606 0.09353 4.721
oy -3.6955 -2.1654 0.20699 4.205
v -0.5217 -0.1519
1 1.8853 0.6480
T -4.6907 -1.8148
Ve -2.8925 -1.8454
Bu -1.3012 -2.2030 0.03367 4.632
B 0.4325 1.8136 -0.0076 -1.321
Bis 0.1490 1.5956 0.00068 0.356
Bus 0.0641 0.2144 -0.01599 -0.988
Ba -3.3801 -2.1345 0.04938 2.572
Bas 0.2211 1.1372 -0.01386 -2.612
Bas 6.2815 1.8504 -0.29913 -3.416
Bss -0.8720 -2.1845 0.01989 3.694
Bss 3.0730 1.9108 -0.10367 -3.016
Bus -26.10 -1.4999 2.1069 3.257
du -3.3219 -1.4261
S 1.4447 1.1960
dis -1.2807 -1.1103
du 0.1418 0.1550
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S5, 7.0182 2.5399
Oy 0.4197 0.5142
O -3.7315 -2.6597
855 1.2127 0.9158
Oy -2.1055 -2.0518
O 3.0563 2.4887
N -1.7923 -2.1750
Ni2 0.7285 1.9601
Nis 0.3505 1.8822
Nia 0.1840 1.3521
N2 -0.6219 -1.7203
N -1.6617 -2.1683
23 1.3989 2.1641
N2y 0.3685 1.9939
LB -0.0495 -0.8547
N3z 0.5159 1.8983
N33 -0.5595 -2.2044
N34 0.0088 0.1350
Nai 0.7146 1.4700
N4z 1.5437 1.8620
Na3 0.6179 1.6974
um -1.9715 -2.1553
0r 232.78 1.8658 -0.03587 -0.611
Brr -57.75 -1.8340 0.22912 10.248
Oy 0.0149 0.1170 -0.01835 -3.330
Oy -0.6679 -1.2151 0.00938 0.404
O3 -0.0104 -0.2841 0.00055 0.457
Oy 0.6818 1.5639 -0.04385 -2.713
Y1 0.2569 0.4151
Y12 -0.5503 -0.8616
Y13 -0.7168 -0.8528
Y14 0.9091 1.8341

Cost function
¢y -0.0905 -2.2962 2.1682 5.269
Pyy 0.0036 0.6723 1.1837 4.372
Py 0.0199 2.4076 0.06244 1.319
Py -0.0157 -2.4529 -0.36456 -6.216
Py3 -0.0059 -1.9718 0.45227 7.581
Py 0.0058 2.2783 -0.05976 -1.847
Py -0.0031 -1.3014 0.0479 0.606
9, -0.0035 -0.0118 2.1682 5.269
P -0.3632 -1.9686 0.19748 4.667
P2 0.1768 1.7129 0.01674 0.763
P13 -0.1094 -1.1333 0.00664 0.477
P 0.0408 0.4935 0.01943 1.103
Ory 0.0134 0.3213 0.00952 1.074
9, 0.4542 1.7170 0.11056 4.982
P2 0.7065 3.4064 -0.10965 -4.209
P23 -0.0463 -0.6400 -0.00134 -0.084
P4 -0.3910 -3.8186 -0.04368 -3.591
O -0.0635 -1.1757 0.09403 7.718
93 -0.2414 -1.4041 0.4447 5.787
P33 0.1760 1.4360 0.01909 1.012
P4 -0.1924 -3.2749 -0.02893 -3.340
Or3 -0.0570 -0.8290 -0.14109 -3.267
Oy -0.2637 -2.5160 -0.023 -0.552
Paa 0.2934 2.9785 0.0445 3.363
Pry 0.0810 3.0058 0.01878 1.994
Autocorrelation
Coefficients
p output 1.0060 163.78 0.3295 8.373
p machinery rel price 0.8483 18.2900 0.97418 51.213
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p labor rel price 0.9296 22.9460 0.99764 60.939
p fertilizer rel price 0.8872 19.2760 0.83179 26.906
p land rel price 0.9598 41.4410 0.84079 25.791
p machinery 1.0052 368.350 0.85737 26.723
p labor 0.6978 8.2933 0.76469 15.371
p fertilizer 0.9990 445.02 0.99974 487.250
p land 0.9941 253.310 0.9980 512.200

We recall that this third version of the model was performed with the objective of
evaluating the robustness of the input biases to a variation in the lag distribution. The input
biases corresponding to the empirical results of Table 5 are presented in Figure 9. The pattern of
the labor and land diagrams is substantially similar to the pattern presented in Figure 7. The land
input is clearly characterized by a factor-saving TP throughout the sample period. Labor remains
a factor-using input. This counterintuitive result is mitigated by our previous discussion about the
difficulty of assigning a clear meaning of input-using (input-saving). The machinery and
fertilizer input diagrams of Figure 9 exhibit trends which are opposite to those in Figure 7. Now,
the machinery bias is factor-saving until WWII, becomes factor-using until 1980, and then
returns to be factor-saving. The fertilizer bias is factor-using until WWII and then hovers around
a zero bias for the rest of the sample period.

These empirical explorations suggest that the biases of TP are very sensitive to the model
specification and the values of the estimated parameters. This conclusion reduces the importance
of the notion of input bias in evaluating technical progress, since all the patterns of biases
exhibited in Figures 4, 7 and 9 are admissible under our PITP theory. Without a formal test of a
null-hypothesis pattern of input bias, it is exceedingly difficult to make sense of any pattern,

merely on the basis of “intuition.”
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Figure 9. Input biases of price induced technical progress, version 3
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The input decomposition for version 3 of the model is given in Figure 10. Although the
pattern of decomposition is roughly similar to the pattern depicted in Figure 8, we must point to
the quantitative aspect of machinery and land decomposition. The PITP machinery component
acquires a substantial magnitude after World War II in both pictures, but its level is halved in
Figure 10. The PITP land component in Figure 10 exhibits a trend that exhausts the entire amount
of input by the end of the sample period. The land input, with its low variability, may admit many

alternative patterns of decomposition.
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Figure 10. Substitution (Series 1), PITP (Series 2), Total (Series 3) of expected inputs:
Model Version 3
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Conclusion

The essential points of the paper can be listed as follows: A) a novel theory of technical progress,
complete of its comparative statics conditions, that re-interprets the relative price hypothesis of
Hicks; B) within this theory, an extended Shephard lemma that provides a natural decomposition
of the input quantities between a purely substitution component and a complementary amount
attributable to the price-induced conjecture; C) an empirical application of the theory that
requires a primal-dual approach to the corresponding econometric specification because of the
necessity to estimate both the production function and the cost function jointly.

The data dealt with in this paper involve a sample of 81 years of US agriculture with one
aggregate output and four inputs, machinery, labor, fertilizer and land. Furthermore, private and
public R&D series and extension expenditures were available. The sample data analyzed in this
paper constitute an unusual amount of information with prices and quantities for every
commodity. We attempted to utilize all the available information because this condition is a
fundamental requirement toward achieving efficient estimates.

Three versions of the general model were formulated using a translog specification for
both the production and its associated cost function. The first version dealt exclusively with
expected relative prices and the results indicated that the conjecture of price-induced technical
progress could not be rejected based upon a test of the comparative statics conditions that
characterize our PITP theory. The analysis of the input biases associated with this version shows
that three of the four inputs have minimal biases at the end of the sample period. Only the labor
input exhibits a significant level of bias at that point. This version of the PITP model allowed a

preliminary analysis of the conjecture that a distributed lag of relative prices, R&D and extension
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expenditure could explain the portion of inputs attributable to technical progress in the extended
Shephard decomposition.

A second version of the model incorporated lagged R&D private and public expenditures
as well as lagged extension expenditures. The lags were suggested by the regression analysis of
Table 2 and produced estimates of the PITP model that cannot reject the price-induced
hypothesis of expected relative prices entering the production function. The pattern of input
biases of version 2 differs from that of version 1 in ways that are both satisfying and against
intuition. In either case, however, those patterns do not contradict the necessary and sufficient
conditions of our theory.

A third version of the model incorporated the lag structure presented in Table 4 and was
carried out mainly to assess the robustness of the input biases to a variation of the lag
distribution. With a truly dynamic theory of TP, this ad-hoc sensitivity analysis can be avoided.
The translog functional form may have a determinant role in the shape of the input biases, but the
evaluation of this conjecture is left for another occasion.

Two aspects of this paper should be kept distinct: the PITP theory and its empirical
implementation. The theory generalizes many traditional specifications of models dealing with
technical progress and provides its own specific comparative statics conditions. The particular
implementation of the PITP theory that was executed in this paper is certainly imperfect. Yet, the
empirical results have given more than a glimpse of the ability of the primal-dual approach to

interpret the available information.
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Appendix
Proof of Theorem 1. Because there are J decision variables and one constraint in problem (2),
and the classical constraint qualification holds at the optimum due to the fact that ij (x,w,1)>0,
j=1,...,J, at the optimum, the dimension of the decision space is J —1. This implies that any
comparative statics matrix derived from problem (2) cannot have a rank greater than J -1, since
any complete comparative statics characterization of problem (2) cannot contain any more
information than that contained in the primal second-order necessary conditions. This fact
implies that rank(S(a)) < J-1forall a € B(a’;0).

Given the above rank property, we are permitted to fix ¢ =¢" for the purpose of deriving
the qualitative properties of problem (2). We therefore focus on the parameters (w,y).
Consequently, let x’=h(w’,y",t") and suppress ¢r=t¢" from the arguments of the ensuing
equations for notational clarity. Then the primal-dual optimization problem associated with

problem (2) is defined as

02 min{w'x" = C(W,y) s.t. y— f(x";w) = 0}. (A.1)

Problem (A.1) may be rewritten as an equivalent unconstrained minimization problem by using

the constraint to eliminate y from it, thereby yielding

0= min{w'x’ = C(W, f(x’;w)) }. (A.2)
The necessary conditions, which hold at w* by construction of problem (2), are given by

()= C, (W, f(x3W)) = C, (W, f(x3 W) £, (x5 w) = 0, (A3)

& {=Cp (W, F(X'W)) = Cy (W, F (X)) £ (X 5W) = C (W, (X 3W)) fop (X5 W)

(A4)
=, (WIC, (W, £(5W)) = £, wIC, (W, f(X3w)) fi(x5w)}g 2 0, Vg € R
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Now observe that the choice of (w,y) used in holding h(w,y) fixed in the construction of
problems (A.1) and (A.2) is arbitrary, so long as (w,y) & B((W°,y°);6). Hence the necessary
conditions (A.3) and (A.4) hold for all (w,y) & B((W°, y°);6). Using this observation in equation
(A.4), multiplying it through by minus unity, and then employing the constraint in identity form,
namely yEf(h(w,y);w) for all (w,y)EB((W°,y°);6), establishes that S(w,y) is negative
semidefinite for all (w,y) €& B((W°,y°);6). Symmetry of S(w,y) for all (w,y)€& B((W°,y°);6)

follows from the C® nature of f(-) and C(*). Q.E.D.
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